

ISSN 2056-9890

Received 9 January 2022 Accepted 19 January 2022

‡ Deceased.

Keywords: crystal structure; lanthanide complexes; luminescence; antenna ligands.

CCDC reference: 2143190

Supporting information: this article has supporting information at journals.iucr.org/e

Bis[3-(anthracen-9-yl)pentane-2,4-dionato- $\kappa^2 O,O'$]-(N,N-dimethylformamide- κO)[tris(pyrazol-1-yl- κN^2)hydroborato]europium(III)

Elena A. Mikhalyova,^a* Matthias Zeller,^b Jerry P. Jasinski,^c‡ Manpreet Kaur^c and Anthony W. Addison^d

^aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv, 03028, Ukraine, ^bDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA, ^cDepartment of Chemistry, Keene State College, Keene, NH 03435, USA, and ^dDepartment of Chemistry, Drexel University, Philadelphia, PA 19104-2816, USA. *Correspondence e-mail: elenaamikhalyova@gmail.com

The title compound, $[Eu(C_9H_{10}BN_6)(C_{19}H_{15}O_2)_2(C_3H_7NO)]$ or [TpEu(Anthra $cac)_2(DMF)]$, was synthesized by reaction of a tris(pyrazolyl)borate $(Tp^-) Eu^{3+}$ complex with 3-(anthracen-9-yl)pentane-2,4-dione (HAnthracac) in the presence of triethylamine. In the title compound, Eu^{3+} is located in an octavertex square-pyramidal coordination environment. In the two Anthracac⁻ ligands, the anthracene and nearly planar acetylacetonate fragments are almost orthogonal. Neighboring molecules of $TpEu(Anthracac)_2(DMF)$ are connected in the crystal by intermolecular van der Waals interactions, while π -stacking interactions are limited to the edges of two anthracene rings.

1. Chemical context

Lanthanide complexes find numerous applications as, for example, luminescent materials, markers, security inks, components of lasers, light-emitting diodes, and many others (Bünzli, 2017; Venturini Filho et al., 2018; Khullar et al., 2019; Bünzli, 2019). This variety of uses relies in large parts on the electronic structure of the Ln^{3+} ions, which leads to electronic transitions occurring between *f*-orbitals, providing them with unique luminescence characteristics, including high color purity and exact reproducibility of the emitted light color (Sarkar et al., 2019; Wang, Pu et al., 2019; Wang, Zhao et al., 2019). In spite of these advantages, the electronic structure of Ln^{3+} ions causes the luminescence to be of low intensity due to the forbidden nature of *f*-*f* electronic transitions (Bünzli, 2017; Zhang et al., 2020; Wang, Zhao et al., 2019), hence the weak absorbance of the exciting radiation. This feature is usually evaded by using organic 'antenna' ligands, which are capable of absorbing exciting radiation and transferring the gained energy to the Ln³⁺ ions (Bünzli, 2017; Carneiro Neto et al., 2019; Aulsebrook et al., 2018). Recently, it was shown (Mikhalyova et al., 2017; Gheno et al., 2014; Mikhalyova et al., 2020; Bortoluzzi et al., 2012) that tris(pyrazolyl)borate anions are efficient antenna ligands for Tb³⁺ and Eu³⁺, both exhibiting emission in the visible range. Anions of β -diketones with different substituents are also well-known antenna ligands (Wang, Zhao et al., 2019; Nehra et al., 2022). To increase the extinction coefficients of the ligands, it can be of advantage to add a large conjugated moiety to their structure. Recently it was found by us (Kandel et al., 2017; Mikhalyova et

Jerry P. Jasinski tribute

al., 2017), that the combination of several antenna ligands in one compound can have complex and unpredictable effects on its luminescence characteristics, which also depend on the molecular and crystal structure details of the complex. Thus, for this work, an Eu^{3+} complex with two types of antenna ligands, *i.e.* tris(pyrazolyl)borate (Tp⁻) and 3-(anthracen-9-yl)pentane-2,4-dionate (Anthracac⁻), of the composition TpEu(Anthracac)₂(DMF) was obtained and its molecular and crystal structures were studied.

2. Structural commentary

The title compound is a neutral metal-containing complex and crystallizes in the monoclinic $P2_1/n$ space group with only one molecule in the asymmetric unit (Fig. 1). The unit cell contains two molecules of each enantiomer, whose crystallographic positions are related by the inversion centers, glide planes and screw axes (Fig. 2). The asymmetric unit consists of the Eu³⁺

Figure 1

The molecular structure of the title compound. Atomic displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity of presentation.

Stick diagram of a unit-cell view with symmetry elements: inversion centers (orange), glide planes (violet) and screw axes (green).

ion surrounded by one Tp⁻ and two Anthracac⁻ ligands and one dimethylformamide molecule. Of these ligands, the Tp⁻ is coordinated tridentately, donating three N atoms to the coordination polyhedron, while each Anthracac⁻ acts as a bidentate O ligand, donating a combined four O atoms. The DMF molecule acts as a unidentate O donor. As is typical for lanthanide ions with seven, eight or nine coordinating atoms, the assignment of the coordination geometry carries some ambiguity. Several different criteria have been proposed to define the shape of such a coordination polyhedron. Use of the Shape 2.1 software (Casanova et al., 2005; Alvarez et al., 2005), indicates that the Eu³⁺ ion in the title compound is an octavertex with a slightly distorted square-antiprismatic geometry (Fig. 3), with a mean angle between the capping and basal square planes of the coordination polyhedron of $0.75 (8)^{\circ}$. According to the Lippard & Russ (1968) criterion, the angle between the body-diagonal trapezoids for the title compound, ω , is 88.24 (7)°, which is closer to the angle for a dodecahedron (90.0°) than a square antiprism (79.3°) . A more accurate criterion is the one proposed by Porai-Koshits and Aslanov

The geometry of the Eu³⁺ coordination polyhedron.

Figure 4 Packing view along the *a*-axis (see also Fig. S3).

(1972) based on the angles, δ , between pairs of faces intersecting along the edges connecting the vertices where the five edges intersect. The respective angles for the complex here are 6.6 (1), 8.9 (1), 43.3 (1), and 49.7 (1)° and the degrees of nonplanarity of the diagonal trapezoids, φ , are 18.81 (9) and 19.74 (1)°. From these criteria, the δ angles are closer to those of an idealized square antiprism, yet the φ angles correspond to those of a bicapped trigonal prism. Thus, three different criteria define three different polyhedra and among these criteria, only the δ -based one agrees with the assignment using the *Shape 2.1* software.

The lengths for Eu-donor atom bonds are listed in Table 1 and these are in the usual range for compounds with similar ligands (Mikhalyova *et al.*, 2020; Lawrence *et al.*, 2001; Dei *et al.*, 2000).

Regarding the geometrical features of the ligands, it should be noted that the planar anthracene moiety and the nearly planar acetylacetonate fragment are almost orthogonal to

Table 1			
Selected	bond	lengths	(Å).

Eu1-O1	2.351 (3)	Eu1-O5	2.417 (3)
Eu1-O2	2.313 (3)	Eu1-N1	2.582 (3)
Eu1-O3	2.344 (3)	Eu1-N3	2.555 (3)
Eu1-O4	2.340 (3)	Eu1-N5	2.573 (3)

Т	a	b	le	9	2
---	---	---	----	---	---

				0	
Selected int	ermolecular	interatomic	distances ((\mathbf{A})).

$C8 \cdot \cdot \cdot C15^{i}$	3.258 (8)	C8···H36 ⁱⁱ	2.698
$\begin{array}{l} H8\cdots C15^{i}\\ H50C\cdots N3^{i}\\ H50C\cdots C41^{i}\end{array}$	2.817 2.680 2.718	$\begin{array}{c} H37 \cdots C26^{iii} \\ C48 \cdots C14^{iii} \end{array}$	2.830 3.159 (8)

Symmetry codes: (i) -1 + x, y, z; (ii) x, 2 - y, 1 - z; (iii) $-\frac{1}{2} + x$, $\frac{3}{2} - y$, $-\frac{1}{2} + z$.

each other in each Anthracac⁻ ligand, subtending dihedral angles of 87.84 (7) and 79.98 (7)°. This is due to the presence of the CH₃ groups, which prevent rotation of the anthracenyl fragments along the C2–C4 and C19–C21 bonds.

3. Supramolecular features

The crystal packing of the title compound consists of separate neutral molecules. Several short contacts are observed (Table 2), but none of these exhibit the typical characteristics of directional attractive interactions, *i.e.* they are not hydrogen bonds or $C-H\cdots\pi$ interactions. It thus can be said that these molecules are organized in the lattice predominantly by intermolecular van der Waals or dispersion interactions (Fig. 4, Table 2).

 π -Stacking interactions play no dominant role in this structure. For one of the anthracene fragments (C4–C16) no π - π stacking interactions are observed at all. For the other anthracenyl group (C21–C34) one π -interaction is present, but it is limited to part of one of the outer phenylene groups, C29–C34, which is π -stacked with its inversion-related counterpart [symmetry code: (i) 2 – x, 1 – y, 1 – z], with a centroid-to-centroid distance of 3.958 (8) Å (Fig. 5). The remainder of the

Figure 5

(a) View of the π - π stacking interaction observed for one of the phenylene groups of the anthracene fragments and (b) a view of the same, perpendicular to the planes of the anthracenyl (C21-C34) fragments [symmetry code: (i) 2 - x, 1 - y, 1 - z]. Other occurrences of parallel (but not stacked) anthracenyl units are shown in Figs. S1, S2 and S4.

Jerry P. Jasinski tribute

 Table 3

 Experimental details.

Crystal data	
Chemical formula	$[Eu(C_9H_{10}BN_6)(C_{19}H_{15}O_2)_2(C_3H_{7-}NO)]$
M _r	988.71
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.3728 (3), 22.5555 (7), 22.0840 (6)
β (°)	96.314 (3)
$V(\dot{A}^3)$	4640.4 (2)
Ζ	4
Radiation type	Cu <i>Kα</i>
$\mu (\mathrm{mm}^{-1})$	10.11
Crystal size (mm)	$0.48\times0.18\times0.12$
Data collection	
Diffractometer	Pigaku Oxford Diffraction Comini
Dimactometer	Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2015)
T_{\min}, T_{\max}	0.163, 1.000
No. of measured, independent and	19671, 8850, 7261
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.048
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.106, 1.03
No. of reflections	8850
No. of parameters	583
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({ m e} \; { m \AA}^{-3})$	1.09, -1.25

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020), and publCIF (Westrip, 2010).

anthracenyl group does not participate in the π - π stacking interaction; for the entire anthracene moiety (C21–C34) the distance between the centroids is 6.006 (8) Å. The distance between inversion-related mean planes (C21–C34 and C21ⁱ–C34ⁱ) is 3.455 Å, indicating a medium strength stacking interaction (Fig. 5).

4. Database survey

The Cambridge Structural Database (CSD, version 5.41, updates till Aug 2020; Groom *et al.*, 2016) contains just one crystal structure with an Ln^{3+} ion surrounded by two β -diketonate anions and one tris(pyrazolyl)borate ligand, namely, bis(1,3-diphenyl-1,3-propanedionato-O,O'){hydrotris[3-(2-pyridyl)-

pyrazol-1-yl]borato}praseodymium(III) (FOLZUC; Davies *et al.*, 2005). However, in this compound the Pr^{3+} ion is decacoordinate owing to the presence of 2-pyridyl substituents in the tris(pyrazolyl)borate ligand, so a direct comparison of the coordination geometries of this and the title compound is not possible.

Fragments containing one Ln ion surrounded by at least one β -diketonate anion and one tris(pyrazolyl)borate ligand encompass 34 entities (including FOLZUC). Most of them (28), contain eight-coordinate lanthanide ions with two tris-(pyrazolyl)borate ligands and one β -diketonate anion: DULWEP, DULWIT, DULWOZ, DULWUF, DULXAM, DULXEQ, DULXIU, DULXOA, DULXUG, DULYAN, DULYER. DULYIV. DULYOB. DULYUH. DULZAO. DULZES, DULZIW, DULZOC, DULZUI and DUMDAT (all Mikhalyova et al., 2020); ESUHOP (Galler et al., 2004); GIFCUT, GIFDAA (Moss et al., 1988); GIFCUT10, GIFDAA10 (Moss et al., 1989); KIFKUI (Guégan et al., 2018); XICHIA (Lawrence et al., 2001). Again, the coordination environment of these compounds and the title one cannot be directly compared. One of the compounds, FOLZUC, is discussed above and another, [tris(3-t-butyl-5-methylpyrazolvl)hydroborato](2,2,6,6-tetramethylheptane-3,5-dionato)vtterbium(II) (ESUJIL; Morissette et al., 2004) is a neutral molecule of Yb²⁺. Four entities are complexes with salicylaldehyde derivatives [JAJRAO (Onishi et al., 2004), QIDGAL, QIDGAL01 (Onishi et al., 1999), and ZUCCIJ (Lawrence *et al.*, 1996)], which are also β -diketonate anions, but, again, compounds with these anions contain eightcoordinate Ln^{3+} ions.

Only three metal-containing structures were found with 3-naphthyl or 3-anthracenyl substituents. The interplanar angles for acetylacetonate *vs* aryl fragments are 86.4° for [3-(1'-naphthyl)pentane-2,4-dionato][tris(2-aminoethyl)amine]-cobalt(III) bis(tetrafluoroborate) dihydrate, 87.1° for [3-(2',4'-dinitro-1'-naphthyl)pentane-2,4-dionato][tris(2-aminoethyl)-amine]cobalt(III) dibromide (BEYTEE and BIMLUE, respectively; Nakano & Sato, 1982) and 83.5° for [3-(9'-anth-ryl)acetylacetonato]chlorido(1,4,7-trimethyl-1,4,7-triazacyclo-nonane)iron(III) perchlorate mesitylene solvate (NUCZUG; Müller *et al.*, 1998). These angles are in the same range as for the title compound.

5. Synthesis and crystallization

The starting Tp₂EuCl complex was obtained by reaction of TpTl with EuCl₃·6H₂O in methanol (Kandel *et al.*, 2017). Then, 307 mg (0.50 mmol) of Tp₂EuCl and 138 mg (0.50 mmol) of HAnthracac were dissolved in 15 mL of methylene chloride, followed by the addition of 0.15 mL of triethylamine. After the solution had been stirred for 1 h, the reaction mixture was filtered and the filtrate was evaporated under reduced pressure (rotavapor). The resulting residue was washed with water and dried in a vacuum desiccator over P₂O₅. The crude product was recrystallized by slow diffusion of methyl *t*-butyl ether into a DMF solution of the compound. The title compound was obtained as orange prismatic crystals (25 mg, yield 10%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C–H bond distances were constrained to 0.95 Å for aromatic and alkene C–H moieties, and to 0.98 Å for CH₃ moieties. The B–H bond distance was constrained to 1.00 Å. $U_{iso}(H)$ values were set to $kU_{eq}(C)$ where k = 1.5 for CH₃ and 1.2 for C–H units.

Funding information

This work was partially supported by a grant from the National Research Foundation of Ukraine (project 2020.02/0202), and by the Target Program of Fundamental Research 'Prospective fundamental studies and innovative developments of nanomaterials and nanotechnologies for the needs of industry, health protection and agriculture', National Academy of Sciences of Ukraine (contracts No. 32/20-N and 32/21-N). We acknowledge the NSF–MRI program (grant No. CHE-1039027 to JPJ) for funding of the Gemini X-ray diffractometer.

References

- Alvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693–1708.
- Aulsebrook, M. L., Graham, B., Grace, M. R. & Tuck, K. L. (2018). Coord. Chem. Rev. 375, 191–220.
- Bortoluzzi, M., Paolucci, G., Gatto, M., Roppa, S., Enrichi, F., Ciorba, S. & Richards, B. S. (2012). *J. Lumin.* **132**, 2378–2384.
- Bünzli, J.-C. G. (2017). Eur. J. Inorg. Chem. pp. 5058-5063.
- Bünzli, J.-C. G. (2019). Trends Chem. 1, 751-762.
- Carneiro Neto, A. N., Teotonio, E. E. S., de Sá, G. F., Brito, H. F., Legendziewicz, J., Carlos, L. D., Felinto, M. C. F. C., Gawryszewska, P., Moura, R. T. Jr, Longo, R. L., Faustino, W. M. & Malta, O. L. (2019). *Handbook on the Physics and Chemistry of Rare Earths*, vol. 56, pp. 55–162. Amsterdam: Elsevier.
- Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). *Chem. Eur. J.* **11**, 1479–1494.
- Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m221–m223.
- Dei, A., Gatteschi, D., Massa, C. A., Pardi, L. A., Poussereau, S. & Sorace, L. (2000). *Chem. Eur. J.* 6, 4580–4586.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Galler, J. L., Goodchild, S., Gould, J., McDonald, R. & Sella, A. (2004). *Polyhedron*, **23**, 253–262.
- Gheno, G., Bortoluzzi, M., Ganzerla, R. & Enrichi, F. (2014). J. Lumin. 145, 963–969.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guégan, F., Riobé, F., Maury, O., Jung, J., Le Guennic, B., Morell, C. & Luneau, D. (2018). *Inorg. Chem. Front.* 5, 1346–1353.
- Kandel, A. V., Mikhalyova, E. A., Zeller, M., Addison, A. W. & Pavlishchuk, V. V. (2017). *Theor. Exp. Chem.* **53**, 180–186.
- Khullar, S., Singh, S., Das, P. & Mandal, S. K. (2019). ACS Omega, 4, 5283–5292.
- Lawrence, R. G., Hamor, T. A., Jones, C. J., Paxton, K. & Rowley, N. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2121–2126.

- Lawrence, R. G., Jones, C. J. & Kresinski, R. A. (1996). J. Chem. Soc. Dalton Trans. pp. 501–507.
- Lippard, S. L. & Russ, B. I. (1968). Inorg. Chem. 7, 1686-1688.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Kiskin, M. A., Smola, S. S., Dotsenko, V. P., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2017). *Dalton Trans.* 46, 3457–3469.
- Mikhalyova, E. A., Zeller, M., Jasinski, J. P., Butcher, R. J., Carrella, L. M., Sedykh, A. E., Gavrilenko, K. S., Smola, S. S., Frasso, M., Cazorla, S. C., Perera, K., Shi, A., Ranjbar, H. G., Smith, C., Deac, A., Liu, Y., McGee, S. M., Dotsenko, V. P., Kumke, M. U., Müller-Buschbaum, K., Rentschler, E., Addison, A. W. & Pavlishchuk, V. V. (2020). Dalton Trans. 49, 7774–7789.
- Morissette, M., Haufe, S., McDonald, R., Ferrence, G. M. & Takats, J. (2004). Polyhedron, 23, 263–271.
- Moss, M. A. J., Jones, C. J. & Edwards, A. J. (1988). *Polyhedron*, **7**, 79–81.
- Moss, M. A. J., Jones, C. J. & Edwards, A. J. (1989). J. Chem. Soc. Dalton Trans. pp. 1393–1400.
- Müller, M., Weyhermüller, T., Bill, E. & Wieghardt, K. (1998). J. Biol. Inorg. Chem. 3, 96–106.
- Nakano, Y. & Sato, S. (1982). Inorg. Chem. 21, 1315-1318.
- Nehra, K., Dalal, A., Hooda, A., Bhagwan, S., Saini, R. K., Mari, B., Kumar, S. & Singh, D. (2022). J. Mol. Struct. 1249, 131531.
- Onishi, M., Kayano, K., Inada, K., Yamaguchi, H., Nagaoka, J., Arikawa, Y. & Takatani, T. (2004). *Inorg. Chim. Acta*, 357, 4091– 4101.
- Onishi, M., Yamaguchi, H., Shimotsuma, H., Hiraki, K., Nagaoka, J. & Kawano, H. (1999). Chem. Lett. 28, 573–574.
- Porai-Koshits, M. A. & Aslanov, L. A. (1972). J. Struct. Chem. 13, 244–253.
- Rigaku OD (2015). CrysAlisPro. Rigaku Oxford Diffraction, Yarnton, England.
- Sarkar, D., Ganguli, S., Samanta, T. & Mahalingam, V. (2019). Langmuir, 35, 6211–6230.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Venturini Filho, E., de Sousa Filho, P. C., Serra, O. A., Weber, I. T., Lucena, M. A. M. & Luz, P. P. (2018). J. Lumin. 202, 89–96.
- Wang, F., Pu, Y., Zhang, X., Zhang, F., Cheng, H. & Zhao, Y. (2019). J. Lumin. 206, 192–198.
- Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z. & Huang, C. (2019). Adv. Opt. Mater. 7, 1801256.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, H., Chen, Z.-H., Liu, X. & Zhang, F. (2020). Nano Res. 13, 1795–1809.

Acta Cryst. (2022). E78, 103-107 [https://doi.org/10.1107/S2056989022000676]

Bis[3-(anthracen-9-yl)pentane-2,4-dionato- $\kappa^2 O$,O'](N,N-dimethylformamide- κO)[tris(pyrazol-1-yl- κN^2)hydroborato]europium(III)

Elena A. Mikhalyova, Matthias Zeller, Jerry P. Jasinski, Manpreet Kaur and Anthony W. Addison

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009), *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009), and *publCIF* (Westrip, 2010).

Bis[3-(anthracen-9-yl)pentane-2,4-dionato- $\kappa^2 O, O'$](N, N-dimethylformamide- κO)[tris(pyrazol-1-yl- κN^2)hydroborato]europium(III)

Crystal data

$[Eu(C_9H_{10}BN_6)(C_{19}H_{15}O_2)_2(C_3H_7NO)]$ $M_r = 988.71$ Monoclinic, $P2_1/n$ a = 9.3728 (3) Å b = 22.5555 (7) Å a = 22.0840 (6) Å	F(000) = 2016 $D_x = 1.415$ Mg m Cu K α radiation, Cell parameters f $\theta = 4.0-71.4^\circ$ $\omega = 10.11$ cm ⁻¹
c = 22.0840 (6) A $\beta = 96.314$ (3)°	$\mu = 10.11 \text{ mm}^{-1}$ T = 173 K
V = 4640.4 (2) Å ³	Prism, orange
Z = 4	$0.48 \times 0.18 \times 0.1$
Data collection	
Rigaku Oxford Diffraction Gemini Eos diffractometer	$T_{\min} = 0.163, T_{\max}$ 19671 measured
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source	8850 independen 7261 reflections
Graphite monochromator	$R_{\rm int} = 0.048$
Detector resolution: 16.0416 pixels mm ⁻¹	$\theta_{\rm max} = 71.4^{\circ}, \theta_{\rm min}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -27 \rightarrow 17$

Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.106$ F(000) = 2016 $D_x = 1.415 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 8094 reflections $\theta = 4.0-71.4^{\circ}$ $\mu = 10.11 \text{ mm}^{-1}$ T = 173 KPrism, orange $0.48 \times 0.18 \times 0.12 \text{ mm}$

 $T_{\min} = 0.163, T_{\max} = 1.000$ 19671 measured reflections
8850 independent reflections
7261 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{\max} = 71.4^{\circ}, \theta_{\min} = 3.9^{\circ}$ $h = -11 \rightarrow 11$ $k = -27 \rightarrow 17$ $l = -26 \rightarrow 24$

S = 1.038850 reflections 583 parameters 0 restraints

Primary atom site location: dual	$w = 1/[\sigma^2(F_0^2) + (0.0592P)^2]$
Hydrogen site location: inferred from	where $P = (F_0^2 + 2F_c^2)/3$
neighbouring sites	$(\Delta/\sigma)_{\rm max} = 0.004$
H-atom parameters constrained	$\Delta \rho_{\rm max} = 1.09 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.25 \ {\rm e} \ {\rm A}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Eu1	0.52702 (2)	0.81156 (2)	0.43393 (2)	0.01770 (8)	
01	0.4093 (3)	0.77371 (12)	0.51430 (12)	0.0316 (6)	
O2	0.4941 (4)	0.88721 (12)	0.50175 (13)	0.0396 (8)	
03	0.5692 (3)	0.70993 (11)	0.42273 (11)	0.0263 (6)	
O4	0.7264 (3)	0.78408 (11)	0.50130 (13)	0.0317 (6)	
05	0.2953 (3)	0.77901 (14)	0.38675 (14)	0.0383 (7)	
N1	0.5855 (4)	0.79579 (14)	0.32351 (13)	0.0248 (7)	
N2	0.6057 (4)	0.83970 (15)	0.28333 (14)	0.0294 (7)	
N3	0.7242 (4)	0.88341 (14)	0.41029 (14)	0.0266 (7)	
N4	0.7259 (4)	0.91415 (14)	0.35743 (14)	0.0268 (7)	
N5	0.4131 (4)	0.89911 (15)	0.37142 (16)	0.0331 (8)	
N6	0.4623 (4)	0.92238 (15)	0.32156 (16)	0.0361 (8)	
N7	0.0779 (5)	0.7911 (2)	0.3344 (3)	0.0597 (14)	
C1	0.3798 (4)	0.79077 (17)	0.56538 (18)	0.0266 (8)	
C2	0.4045 (5)	0.84859 (17)	0.58988 (17)	0.0269 (8)	
C3	0.4583 (5)	0.89398 (18)	0.55457 (19)	0.0339 (10)	
C4	0.3751 (5)	0.86189 (16)	0.65368 (18)	0.0298 (9)	
C5	0.2383 (5)	0.88156 (16)	0.6657 (2)	0.0345 (10)	
C6	0.1212 (5)	0.88699 (18)	0.6203 (2)	0.0424 (11)	
H6	0.1357	0.8791	0.5792	0.051*	
C7	-0.0128 (6)	0.9033 (2)	0.6333 (3)	0.0591 (16)	
H7	-0.0900	0.9063	0.6018	0.071*	
C8	-0.0347 (9)	0.9156 (2)	0.6950 (4)	0.079 (3)	
H8	-0.1274	0.9266	0.7046	0.094*	
C9	0.0737 (9)	0.9117 (2)	0.7394 (3)	0.071 (2)	
H9	0.0562	0.9201	0.7800	0.085*	
C10	0.2147 (7)	0.89522 (18)	0.7277 (2)	0.0496 (15)	
C11	0.3259 (8)	0.8903 (2)	0.7737 (2)	0.0584 (18)	
H11	0.3095	0.9007	0.8140	0.070*	
C12	0.4595 (7)	0.87091 (19)	0.7630 (2)	0.0501 (14)	
C13	0.5756 (10)	0.8643 (2)	0.8103 (3)	0.072 (2)	
H13	0.5615	0.8757	0.8506	0.086*	
C14	0.7041 (10)	0.8424 (3)	0.7996 (3)	0.084 (3)	
H14	0.7790	0.8385	0.8320	0.101*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.7271 (7)	0.8252 (3)	0.7400 (3)	0.0683 (19)
H15	0.8169	0.8088	0.7328	0.082*
C16	0.6219 (6)	0.8320(2)	0.6926 (2)	0.0471 (12)
H16	0.6406	0.8211	0.6527	0.056*
C17	0.4842 (5)	0.85520 (18)	0.70201 (19)	0.0360 (10)
C18	0.6316 (5)	0.66956 (16)	0.45555 (16)	0.0250 (8)
C19	0.7273 (4)	0.67949 (16)	0.50837 (16)	0.0253 (8)
C20	0.7690 (4)	0.73674 (18)	0.52778(17)	0.0271(8)
C21	0.7840 (5)	0.62631 (17)	0.54511(18)	0.0353(10)
C22	0.6957 (6)	0.59931(18)	0 58541 (19)	0.0417(12)
C23	0.5594 (6)	0.6217(2)	0.5950(2)	0.0448(12)
023 H23	0.5257	0.6567	0.5741	0.054*
C24	0.5257 0.4744(7)	0.5949(3)	0.5741 0.6332(2)	0.054
U24 H24	0.38/3	0.5747 (5)	0.6394	0.0300 (13)
C25	0.5345	0.0118 0.5420(3)	0.6535 (3)	0.070
U25	0.3201 (10)	0.5420 (5)	0.0033 (3)	0.073 (2)
C26	0.4393	0.5229	0.0892	0.090°
U20	0.0484 (9)	0.3188 (2)	0.0302(2)	0.0034 (19)
H20	0.6/68	0.4828	0.6765	0.079^{*}
C27	0.7442(7)	0.5466 (2)	0.6185(2)	0.0503(14)
C28	0.8772(7)	0.5250 (2)	0.6124 (2)	0.0587(17)
H28	0.9088	0.4905	0.6347	0.070*
C29	0.9690 (7)	0.5512 (2)	0.5747 (2)	0.0540 (15)
C30	1.1070 (8)	0.5289 (3)	0.5678 (3)	0.074 (2)
H30	1.1411	0.4948	0.5903	0.089*
C31	1.1914 (8)	0.5550 (3)	0.5299 (3)	0.071 (2)
H31	1.2842	0.5391	0.5269	0.085*
C32	1.1462 (7)	0.6054 (3)	0.4942 (3)	0.0692 (19)
H32	1.2067	0.6229	0.4674	0.083*
C33	1.0122 (6)	0.6281 (2)	0.4999 (2)	0.0511 (13)
H33	0.9806	0.6620	0.4764	0.061*
C34	0.9201 (6)	0.6030(2)	0.5391 (2)	0.0434 (12)
C35	0.2815 (6)	0.9201 (2)	0.3731 (3)	0.0520 (13)
H35	0.2225	0.9118	0.4043	0.062*
C36	0.2421 (8)	0.9556 (3)	0.3235 (4)	0.076 (2)
H36	0.1529	0.9753	0.3135	0.091*
C37	0.3605 (7)	0.9565 (3)	0.2915 (3)	0.0662 (17)
H37	0.3686	0.9774	0.2547	0.079*
C38	0.6116 (6)	0.8170(2)	0.22766 (18)	0.0374 (10)
H38	0.6252	0.8389	0.1920	0.045*
C39	0.5948 (5)	0.7566 (2)	0.23078 (18)	0.0373 (10)
H39	0.5933	0.7287	0.1985	0.045*
C40	0.5805 (5)	0.74553 (18)	0.29162 (17)	0.0282 (8)
H40	0.5688	0.7072	0.3083	0.034*
C41	0.8332 (5)	0.9041 (2)	0.4480 (2)	0.0384 (10)
H41	0.8576	0.8906	0.4886	0.046*
C42	0.9064 (6)	0.9479(2)	0.4203 (2)	0.0476 (12)
H42	0.9882	0.9695	0.4372	0.057*
C43	0.8344 (6)	0.95314 (19)	0.3629 (2)	0.0410 (11)
- · ·		··········	······································	~~~ (11)

H43	0.8576	0.9799	0.3323	0.049*
C44	0.4746 (8)	0.9563 (2)	0.5808 (2)	0.067 (2)
H44A	0.5506	0.9772	0.5623	0.101*
H44B	0.4998	0.9540	0.6250	0.101*
H44C	0.3839	0.9778	0.5720	0.101*
C45	0.3115 (6)	0.74539 (18)	0.6032 (2)	0.0405 (11)
H45A	0.2855	0.7102	0.5783	0.061*
H45B	0.2251	0.7623	0.6177	0.061*
H45C	0.3796	0.7342	0.6382	0.061*
C46	0.8711 (6)	0.7442 (2)	0.5854 (2)	0.0445 (12)
H46A	0.9668	0.7302	0.5782	0.067*
H46B	0.8363	0.7211	0.6183	0.067*
H46C	0.8762	0.7862	0.5968	0.067*
C47	0.5960 (6)	0.60688 (18)	0.43470 (19)	0.0394 (11)
H47A	0.5374	0.5879	0.4633	0.059*
H47B	0.6850	0.5844	0.4333	0.059*
H47C	0.5424	0.6078	0.3940	0.059*
C48	0.2187 (6)	0.7920 (2)	0.3402 (3)	0.0481 (12)
H48	0.2645	0.8035	0.3057	0.058*
C49	-0.0009 (10)	0.8083 (3)	0.2768 (4)	0.106 (4)
H49A	0.0668	0.8210	0.2485	0.158*
H49B	-0.0658	0.8412	0.2835	0.158*
H49C	-0.0568	0.7745	0.2594	0.158*
C50	-0.0025 (8)	0.7747 (4)	0.3832 (4)	0.094 (3)
H50A	0.0636	0.7644	0.4192	0.141*
H50B	-0.0630	0.7404	0.3709	0.141*
H50C	-0.0632	0.8079	0.3929	0.141*
B1	0.6109 (6)	0.9057 (2)	0.3029 (2)	0.0331 (11)
H1	0.6336	0.9311	0.2681	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Eu1	0.02659 (12)	0.01614 (10)	0.01118 (10)	0.00364 (9)	0.00566 (7)	-0.00032 (7)
O1	0.0516 (18)	0.0232 (13)	0.0240 (13)	-0.0069 (12)	0.0212 (13)	-0.0064 (10)
O2	0.079 (2)	0.0166 (12)	0.0292 (14)	-0.0018 (14)	0.0342 (15)	-0.0044 (10)
O3	0.0391 (15)	0.0230 (12)	0.0160 (11)	0.0072 (11)	-0.0003 (11)	0.0018 (10)
O4	0.0422 (17)	0.0186 (12)	0.0318 (14)	-0.0022 (12)	-0.0072 (13)	0.0049 (11)
O5	0.0329 (16)	0.0390 (16)	0.0406 (17)	-0.0004 (13)	-0.0067 (14)	0.0018 (13)
N1	0.0393 (19)	0.0235 (15)	0.0127 (13)	0.0060 (13)	0.0075 (13)	-0.0013 (11)
N2	0.046 (2)	0.0281 (17)	0.0149 (14)	0.0025 (15)	0.0055 (14)	0.0022 (12)
N3	0.0397 (19)	0.0229 (14)	0.0178 (14)	-0.0003 (14)	0.0060 (14)	0.0029 (12)
N4	0.0397 (19)	0.0201 (14)	0.0225 (15)	-0.0010 (14)	0.0123 (14)	-0.0017 (12)
N5	0.037 (2)	0.0259 (16)	0.0366 (19)	0.0130 (15)	0.0052 (16)	0.0034 (14)
N6	0.050(2)	0.0284 (17)	0.0277 (17)	0.0182 (16)	-0.0042 (16)	0.0058 (13)
N7	0.039 (2)	0.041 (2)	0.094 (4)	0.0157 (19)	-0.021 (3)	-0.021 (2)
C1	0.033 (2)	0.0217 (17)	0.0267 (18)	-0.0019 (15)	0.0119 (16)	-0.0023 (15)
C2	0.040 (2)	0.0227 (17)	0.0206 (17)	0.0004 (16)	0.0159 (16)	-0.0031 (14)

C3	0.056 (3)	0.0205 (18)	0.028 (2)	-0.0003 (18)	0.019 (2)	-0.0025 (15)
C4	0.048 (2)	0.0183 (17)	0.0268 (19)	-0.0071 (17)	0.0188 (18)	-0.0059 (14)
C5	0.054 (3)	0.0143 (16)	0.040 (2)	-0.0052 (17)	0.028 (2)	-0.0038 (15)
C6	0.047 (3)	0.0206 (18)	0.064 (3)	-0.0014 (19)	0.027 (2)	-0.0067 (19)
C7	0.050 (3)	0.024 (2)	0.108 (5)	0.000 (2)	0.028 (3)	-0.001 (3)
C8	0.092 (5)	0.022 (2)	0.140 (7)	0.009 (3)	0.090 (5)	0.010 (3)
C9	0.115 (6)	0.019 (2)	0.093 (5)	0.007 (3)	0.085 (5)	0.000 (3)
C10	0.091 (4)	0.0167 (18)	0.051 (3)	-0.005 (2)	0.052 (3)	-0.0055 (17)
C11	0.127 (6)	0.028 (2)	0.027 (2)	-0.016 (3)	0.040 (3)	-0.0104 (17)
C12	0.101 (5)	0.023 (2)	0.028 (2)	-0.017(2)	0.013 (3)	-0.0027 (16)
C13	0.146 (7)	0.031 (3)	0.034 (3)	-0.028(4)	-0.007(4)	0.002 (2)
C14	0.126 (7)	0.053 (4)	0.062 (4)	-0.045 (4)	-0.045 (5)	0.017 (3)
C15	0.063 (4)	0.057 (3)	0.079 (4)	-0.022(3)	-0.015(3)	0.023 (3)
C16	0.049 (3)	0.045 (3)	0.047 (3)	-0.016(2)	0.006 (2)	0.005(2)
C17	0.059 (3)	0.0224(18)	0.028(2)	-0.0147(19)	0.011(2)	0.0014(15)
C18	0.039 (2)	0.0197(17)	0.0168 (16)	0.0072 (16)	0.0052 (15)	-0.0013(13)
C19	0.035 (2)	0.0214 (17)	0.0191 (16)	0.0052(15)	0.0000 (15)	0.0017 (13)
C20	0.029 (2)	0.0293(19)	0.0221(17)	0.0038 (16)	-0.0012(16)	0.0035(15)
C21	0.054 (3)	0.0222 (18)	0.0261 (19)	0.0072 (18)	-0.0128(19)	-0.0028(15)
C22	0.075 (4)	0.0229 (19)	0.0226 (19)	-0.002(2)	-0.012(2)	0.0012 (15)
C23	0.066 (3)	0.035 (2)	0.033 (2)	-0.005(2)	-0.001(2)	0.0079 (18)
C24	0.080 (4)	0.052 (3)	0.042 (3)	-0.017(3)	0.009 (3)	0.010 (2)
C25	0.114 (6)	0.059(4)	0.050(3)	-0.029(4)	0.001 (4)	0.022(3)
C26	0.115 (6)	0.034 (3)	0.043 (3)	-0.016(3)	-0.012(3)	0.019 (2)
C27	0.087 (4)	0.025 (2)	0.034 (2)	0.004 (2)	-0.018(3)	0.0059 (18)
C28	0.102 (5)	0.029 (2)	0.040 (3)	0.015 (3)	-0.017(3)	0.003 (2)
C29	0.070 (4)	0.041 (3)	0.044 (3)	0.024 (3)	-0.026(3)	-0.017(2)
C30	0.090 (5)	0.055 (3)	0.068 (4)	0.038 (4)	-0.033 (4)	-0.012 (3)
C31	0.066 (4)	0.071 (4)	0.069 (4)	0.040 (4)	-0.023(3)	-0.019 (3)
C32	0.057 (4)	0.089 (5)	0.058 (4)	0.017 (3)	-0.010(3)	-0.028(3)
C33	0.051 (3)	0.048 (3)	0.050 (3)	0.020 (2)	-0.011(2)	-0.013 (2)
C34	0.056 (3)	0.034 (2)	0.036 (2)	0.014 (2)	-0.014(2)	-0.0124 (18)
C35	0.044 (3)	0.032 (2)	0.080 (4)	0.022 (2)	0.007 (3)	0.005 (2)
C36	0.061 (4)	0.056 (4)	0.109 (6)	0.033 (3)	0.000 (4)	0.020 (4)
C37	0.076 (4)	0.051 (3)	0.068 (4)	0.023 (3)	-0.007 (3)	0.024 (3)
C38	0.056 (3)	0.042 (2)	0.0161 (17)	-0.004 (2)	0.0130 (18)	0.0007 (16)
C39	0.056 (3)	0.039 (2)	0.0193 (18)	-0.003(2)	0.0113 (19)	-0.0079 (16)
C40	0.037 (2)	0.0282 (19)	0.0200 (18)	0.0001 (17)	0.0070 (16)	-0.0047 (14)
C41	0.044 (3)	0.036 (2)	0.034 (2)	-0.006(2)	-0.002(2)	-0.0020(17)
C42	0.051 (3)	0.036 (2)	0.056 (3)	-0.014 (2)	0.005 (2)	-0.004 (2)
C43	0.057 (3)	0.027 (2)	0.042 (2)	-0.009(2)	0.021 (2)	-0.0025 (17)
C44	0.140 (6)	0.023 (2)	0.049 (3)	-0.020(3)	0.060 (4)	-0.012 (2)
C45	0.062 (3)	0.0257 (19)	0.040 (2)	-0.014 (2)	0.032 (2)	-0.0065 (17)
C46	0.054 (3)	0.031 (2)	0.042 (3)	0.002 (2)	-0.023 (2)	-0.0043 (18)
C47	0.064 (3)	0.0226 (19)	0.028 (2)	0.003 (2)	-0.011 (2)	-0.0035 (15)
C48	0.051 (3)	0.035 (2)	0.056 (3)	0.006 (2)	-0.007 (2)	-0.004 (2)
C49	0.100 (6)	0.077 (5)	0.125 (7)	0.032 (5)	-0.056 (6)	-0.029 (5)
C50	0.062 (4)	0.090 (6)	0.135 (8)	-0.007 (4)	0.035 (5)	-0.044 (5)
	\ /	\ /	\ /	\ /	\ /	<u>\</u> -/

B1	0.057 (3)	0.026 (2)	0.0174 (19)	0.004 (2)	0.008 (2)	0.0094 (16)
Geometric parameters (Å, °)						
 Eu1	01	2.351 (3)		C20—C46		1.515 (5)
Eu1—	02	2.313 (3)		C21—C22		1.418 (7)
Eu1—	03	2.344 (3)		C21—C34		1.399 (7)
Eu1—	04	2.340 (3)		C22—C23		1.411 (8)
Eu1—	05	2.417 (3)		C22—C27		1.443 (6)
Eu1—	N1	2.582 (3)		С23—Н23		0.9500
Eu1—	N3	2.555 (3)		C23—C24		1.364 (7)
Eu1—	N5	2.573 (3)		C24—H24		0.9500
01-0	21	1.251 (5)		C24—C25		1.410 (9)
02—0	23	1.258 (5)		С25—Н25		0.9500
03—0	218	1.266 (5)		C25—C26		1.339 (10)
04—0	220	1.261 (5)		С26—Н26		0.9500
05—0	248	1.223 (6)		C26—C27		1.434 (9)
N1—N	J2	1.357 (5)		C27—C28		1.359 (9)
N1—0	240	1.333 (5)		C28—H28		0.9500
N2—C	238	1.339 (5)		C28—C29		1.393 (9)
N2—E	81	1.549 (6)		C29—C30		1.411 (9)
N3—N	J4	1.359 (4)		C29—C34		1.455 (7)
N3—C	241	1.330 (6)		C30—H30		0.9500
N4—C	243	1.340 (6)		C30—C31		1.348 (11)
N4—E	81	1.538 (6)		C31—H31		0.9500
N5—N	16	1.346 (5)		C31 - C32		1.422 (10)
N5—C	235	1.326 (6)		C32—H32		0.9500
N6—C	237	1.343 (6)		C32—C33		1.374 (8)
N6—E	81	1.542 (7)		С33—Н33		0.9500
N7—C	248	1.312 (7)		C33—C34		1.407 (8)
N7—C	249	1.452 (9)		С35—Н35		0.9500
N7—C	250	1.431 (10)	C35—C36		1.374 (9)
C1—C	2	1.421 (5)	,	С36—Н36		0.9500
C1—C	245	1.507 (5)		C36—C37		1.380 (10)
С2—С	23	1.413 (5)		С37—Н37		0.9500
С2—С	24	1.495 (5)		C38—H38		0.9500
С3—С	244	1.522 (6)		C38—C39		1.374 (6)
C4—C	25	1.409 (6)		С39—Н39		0.9500
C4—C	217	1.402 (6)		C39—C40		1.387 (5)
С5—С	26	1.408 (7)		C40—H40		0.9500
С5—С	210	1.445 (6)		C41—H41		0.9500
С6—Н	16	0.9500		C41—C42		1.383 (7)
С6—С	27	1.370 (7)		С42—Н42		0.9500
С7—Н	17	0.9500		C42—C43		1.374 (7)
С7—С	28	1.427 (10)	С43—Н43		0.9500
С8—Н	18	0.9500	,	C44—H44A		0.9800
C8—C	29	1.335 (10)	C44—H44B		0.9800
С9—Н	19	0.9500	,	C44—H44C		0.9800

C9—C10	1.423 (9)	C45—H45A	0.9800
C10—C11	1.377 (9)	C45—H45B	0.9800
C11—H11	0.9500	C45—H45C	0.9800
C11—C12	1.372 (9)	C46—H46A	0.9800
C12—C13	1.430 (9)	C46—H46B	0.9800
C12—C17	1.436 (6)	C46—H46C	0.9800
С13—Н13	0.9500	С47—Н47А	0.9800
C13—C14	1.347 (11)	C47—H47B	0.9800
C14—H14	0.9500	C47—H47C	0.9800
C14—C15	1,409 (11)	C48—H48	0.9500
С15—Н15	0.9500	C49—H49A	0.9800
C15—C16	1.366 (8)	C49—H49B	0.9800
C16—H16	0.9500	C49—H49C	0.9800
C16—C17	1 429 (7)	C50—H50A	0.9800
C18 - C19	1.409(5)	C50—H50B	0.9800
C18 - C47	1 513 (5)	C50 - H50D	0.9800
C19-C20	1.013(5) 1.402(5)	B1—H1	1 0000
C19 - C20	1.402(5)		1.0000
01)-021	1.512 (5)		
01—Fu1—05	75.01 (11)	C22_C21_C19	118 8 (4)
01—Fu1—N1	145 99 (10)	$C_{22} = C_{21} = C_{19}$	110.0(4) 1211(4)
01—Eu1—N3	143.55(10) 142.63(10)	C_{34} C_{21} C_{12}	121.1(4) 120.0(4)
O1—Eu1—N5	118 84 (11)	C_{21} C_{22} C_{21} C_{22} C_{27}	120.0(4) 1100(5)
$O_2 = E_{\rm H} = O_1$	70.86(0)	$C_{21} = C_{22} = C_{21}$	119.9(3) 122.8(4)
02 - Eu1 - 01	145.67(0)	$C_{23} = C_{22} = C_{21}$	122.0(4) 117.2(5)
02 = Eu1 = 03	143.07(9) 86.42(12)	$C_{23} = C_{22} = C_{27}$	117.5(5)
02 - Eu1 - 04	100,01,(12)	$C_{22} = C_{23} = C_{23}$	110.0 122.2(5)
$O_2 = E_{\rm H} = O_3$	109.01(12) 140.28(10)	$C_{24} = C_{23} = C_{22}$	122.5 (3)
$O_2 = E_{11} = N_1$	140.36(10) 70.25(11)	$C_{24} = C_{23} = H_{23}$	120.0
O_2 —Eu1—N5	79.55 (11)	$C_{23} = C_{24} = H_{24}$	120.0
02 - Eul - NS	72.80 (11)	$C_{23} = C_{24} = C_{23}$	120.1 (7)
$O_3 = E_1 = O_1$	79.81 (9)	C25—C24—H24	120.0
$O_3 = E_1 = O_5$	79.12 (10)	C24—C25—H25	119.9
O3—Eu1—N1	/3.13 (9)	$C_{26} = C_{25} = C_{24}$	120.3 (6)
O_3 —Eu1—N3	117.69 (11)	C26—C25—H25	119.9
O3—Eu1—N5	139.36 (10)	C25—C26—H26	119.1
O4—Eu1—O1	80.32 (11)	$C_{25} = C_{26} = C_{27}$	121.8 (5)
04—Eu1—03	/1.10 (9)	C27—C26—H26	119.1
04—Eu1—05	144.11 (10)	$C_{26} = C_{27} = C_{22}$	118.2 (6)
O4—Eu1—NI	109.05 (11)	C28—C27—C22	119.1 (5)
O4—Eu1—N3	75.70 (10)	C28—C27—C26	122.7 (5)
O4—Eu1—N5	143.07 (11)	С27—С28—Н28	118.6
O5—Eul—NI	79.92 (11)	C27—C28—C29	122.8 (4)
O5—Eu1—N3	137.76 (10)	С29—С28—Н28	118.6
O5—Eul—N5	72.66 (11)	C28—C29—C30	123.2 (6)
N3—Eul—N1	70.18 (10)	C28—C29—C34	119.0 (5)
N3—Eu1—N5	70.74 (11)	C30—C29—C34	117.8 (6)
N5—Eu1—N1	73.60 (11)	С29—С30—Н30	119.4
C1—O1—Eu1	137.5 (2)	C31—C30—C29	121.2 (6)

C3—O2—Eu1	139.3 (3)	С31—С30—Н30	119.4
C18—O3—Eu1	135.7 (2)	C30—C31—H31	118.9
C20—O4—Eu1	135.2 (3)	C30—C31—C32	122.3 (6)
C48—O5—Eu1	134.9 (3)	С32—С31—Н31	118.9
N2—N1—Eu1	125.2 (2)	С31—С32—Н32	121.1
C40—N1—Eu1	128.1 (3)	C33—C32—C31	117.9 (7)
C40—N1—N2	105.9 (3)	С33—С32—Н32	121.1
N1—N2—B1	121.4 (3)	С32—С33—Н33	118.9
C38—N2—N1	110.1 (3)	C32—C33—C34	122.3 (6)
C38—N2—B1	128.4 (3)	С34—С33—Н33	118.9
N4—N3—Eu1	125.2 (2)	C21—C34—C29	119.1 (5)
C41—N3—Eu1	128.2 (3)	C21—C34—C33	122.3 (4)
C41—N3—N4	106.1 (3)	C33—C34—C29	118.6 (5)
N3—N4—B1	122.4 (3)	N5—C35—H35	124.6
C43—N4—N3	109.8 (3)	N5—C35—C36	110.9 (6)
C43—N4—B1	127.7 (4)	С36—С35—Н35	124.6
N6—N5—Eu1	125.4 (2)	С35—С36—Н36	127.6
C35—N5—Eu1	126.3 (3)	C35—C36—C37	104.8 (5)
C35—N5—N6	106.6 (4)	С37—С36—Н36	127.6
N5—N6—B1	121.6 (3)	N6—C37—C36	107.8 (5)
C37—N6—N5	109.9 (4)	N6—C37—H37	126.1
C37—N6—B1	128.4 (4)	С36—С37—Н37	126.1
C48—N7—C49	119.4 (7)	N2—C38—H38	125.8
C48—N7—C50	122.5 (6)	N2-C38-C39	108.5 (4)
C50—N7—C49	118.0 (7)	С39—С38—Н38	125.8
01	125.6 (4)	С38—С39—Н39	127.7
01-C1-C45	116.1 (3)	C38—C39—C40	104.5 (4)
C2-C1-C45	118.2 (3)	С40—С39—Н39	127.7
C1—C2—C4	120.3 (3)	N1—C40—C39	110.9 (4)
$C_{3}-C_{2}-C_{1}$	120.5 (3)	N1—C40—H40	124.5
C3—C2—C4	119.2 (3)	С39—С40—Н40	124.5
02-C3-C2	124.9 (4)	N3—C41—H41	124.5
O2—C3—C44	116.1 (4)	N3—C41—C42	111.0 (4)
C2—C3—C44	119.1 (4)	C42—C41—H41	124.5
C5—C4—C2	120.4 (4)	C41—C42—H42	127.7
C17—C4—C2	120.1 (4)	C43—C42—C41	104.6 (4)
C17—C4—C5	119.5 (4)	C43—C42—H42	127.7
C4—C5—C10	118.9 (5)	N4—C43—C42	108.5 (4)
C6—C5—C4	123.2 (4)	N4—C43—H43	125.7
C6—C5—C10	117.9 (5)	С42—С43—Н43	125.7
С5—С6—Н6	118.8	C3—C44—H44A	109.5
C7—C6—C5	122.3 (5)	C3—C44—H44B	109.5
С7—С6—Н6	118.8	C3—C44—H44C	109.5
С6—С7—Н7	120.5	H44A—C44—H44B	109.5
C6—C7—C8	119.0 (7)	H44A—C44—H44C	109.5
С8—С7—Н7	120.5	H44B—C44—H44C	109.5
С7—С8—Н8	119.7	C1—C45—H45A	109.5
C9—C8—C7	120.7 (6)	C1—C45—H45B	109.5

С9—С8—Н8	119.7	C1—C45—H45C	109.5
С8—С9—Н9	118.9	H45A—C45—H45B	109.5
C8—C9—C10	122.1 (6)	H45A—C45—H45C	109.5
С10—С9—Н9	118.9	H45B—C45—H45C	109.5
C9—C10—C5	118.0 (6)	C20—C46—H46A	109.5
C11—C10—C5	120.0 (5)	C20—C46—H46B	109.5
C11—C10—C9	122.0 (5)	C20—C46—H46C	109.5
C10—C11—H11	119.0	H46A—C46—H46B	109.5
C12—C11—C10	122.0 (4)	H46A—C46—H46C	109.5
C12—C11—H11	119.0	H46B—C46—H46C	109.5
C11—C12—C13	122.9 (5)	C18—C47—H47A	109.5
C11—C12—C17	119.0 (5)	C18—C47—H47B	109.5
C13—C12—C17	118.1 (6)	C18—C47—H47C	109.5
С12—С13—Н13	118.9	H47A—C47—H47B	109.5
C14—C13—C12	122.2 (6)	H47A—C47—H47C	109.5
C14—C13—H13	118.9	H47B—C47—H47C	109.5
C13—C14—H14	120.1	O5—C48—N7	124.7 (6)
C13—C14—C15	119.7 (6)	O5—C48—H48	117.6
C15—C14—H14	120.1	N7—C48—H48	117.6
C14—C15—H15	119.5	N7—C49—H49A	109.5
C16—C15—C14	120.9 (7)	N7—C49—H49B	109.5
C16—C15—H15	119.5	N7—C49—H49C	109.5
C15—C16—H16	119.5	H49A—C49—H49B	109.5
C15—C16—C17	121.1 (6)	H49A—C49—H49C	109.5
C17—C16—H16	119.5	H49B—C49—H49C	109.5
C4—C17—C12	120.6 (5)	N7—C50—H50A	109.5
C4—C17—C16	121.5 (4)	N7—C50—H50B	109.5
C16—C17—C12	117.9 (5)	N7—C50—H50C	109.5
O3—C18—C19	124.9 (3)	H50A—C50—H50B	109.5
O3—C18—C47	115.2 (3)	H50A—C50—H50C	109.5
C19—C18—C47	120.0 (3)	H50B—C50—H50C	109.5
C18—C19—C21	118.2 (3)	N2—B1—H1	109.9
C20—C19—C18	122.0 (3)	N4—B1—N2	109.6 (3)
C20—C19—C21	119.8 (3)	N4—B1—N6	109.7 (3)
O4—C20—C19	125.1 (3)	N4—B1—H1	109.9
O4—C20—C46	115.7 (4)	N6—B1—N2	107.9 (4)
C19—C20—C46	119.3 (3)	N6—B1—H1	109.9