

Received 12 January 2022 Accepted 1 February 2022

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India

Keywords: crystal structure; fluoroquinolone; ciprofloxacin; dihydroxybenzoic acid; salt cocrystal; antibiotic.

CCDC references: 2098049; 2098403

Supporting information: this article has supporting information at journals.iucr.org/e

Ciprofloxacin salt and salt co-crystal with dihydroxybenzoic acids

Yuda Prasetya Nugraha,^a* Haruki Sugiyama^{b,c} and Hidehiro Uekusa^d

^aDepartment of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia, ^bResearch and Education Center for Natural Sciences, Keio University, Hiyoshi, 4-1-1, Kohoku, Yokohama 223-8521, Japan, ^cDepartment of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan, and ^dDepartment of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo 152-8551, Japan. *Correspondence e-mail: yudapn@itb.ac.id

The crystal structure of two multi-component crystals of ciprofloxacin [systematic name: 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid], a fluoroquinolone antibiotic, namely, ciprofloxacin 2,6-dihydroxybenzoate salt, $C_{17}H_{19}FN_3O_3^+ \cdot C_7H_5O_4^-$, (I), and ciprofloxacin hydro-chloride-3,5-dihydroxybenzoic-water (1/1/1), $C_{17}H_{19}FN_3O_3^+ \cdot Cl^- \cdot C_7H_6O_4 \cdot H_2O$, (II), were determined. In (I) and (II), the ciprofloxacin cations are connected *via* head-to-tail $N-H \cdots O$ hydrogen bonding. Both structures show an alternating layered arrangement between ciprofloxacin and dihydroxybenzoic acid.

1. Chemical context

Ciprofloxacin

2. Structural commentary

The design and exploration of multi-component crystals of active pharmaceutical ingredients (APIs) have gained increasing interest over recent decades. The formation of multi-component crystals, i.e. salts and co-crystals through a crystal-engineering approach has been continuously demonstrated as a versatile tool to improve the physicochemical properties of APIs (Kavanagh et al., 2019; Putra & Uekusa, 2020; Thakur & Thakuria, 2020). Recently, the co-crystallization of salt APIs or salt co-crystal formation has been increasingly studied. Salt co-crystallization has been utilized to suppress hydrate formation of salt APIs (Nugraha & Uekusa, 2018; Fujito et al., 2021). As a part of our study of salt cocrystals of APIs, we investigated multi-component crystals of ciprofloxacin. Ciprofloxacin is a Biopharmaceutics Classification System (BCS) class IV fluoroquinolone antibiotic that is widely used therapeutically as the free base and the hydrochloride salt (Olivera et al., 2011).

Compound (I) was obtained as an anion-exchange product between ciprofloxacin hydrochloride and 2,6-dihydrobenzoic acid in solution. 2,6-Dihydroxybenzoic acid (2,6HBA) is a

2,6-dihydroxybenzoic acid

3,5-dihydroxybenzoic acid

research communications

Figure 1

Displacement ellipsoid (50% probability level) drawing with the atomic labelling scheme for compound (I) showing the hydrogen bonds within the selected asymmetric unit.

relatively strong carboxylic acid with a pK_a of 1.30 (Gdaniec et al., 1994; Habibi-yangjeh et al., 2005). Compound (I) crystallizes in the monoclinic space group $P2_1/c$. The asymmetric unit consists of one ciprofloxacin cation and one 2,6HBA anion (Fig. 1). The C-O distances of the ciprofloxacin carboxylic group *i.e.*, 1.218 (3) and 1.325 (3) Å indicate that it exists as the neutral carboxylic form. However, in 2,6HBA, the C-O distances are very similar *i.e.*, 1.263 (4) and 1.267 (3) Å due to resonance stabilization in the carboxylate anion (Childs et al., 2007; Aakeröy et al., 2006). As a result, the piperazinyl group of ciprofloxacin is protonated. Therefore, compound (I) is a salt. The formation of a salt is well-predicted by the pK_a rule (Cruz-Cabeza, 2012). The pK_a of ciprofloxacin are 6.18 and 8.73 for the carboxylic acid and the piperazinyl ring, respectively (Sun et al., 2002). Therefore, salt formation is expected because the $\Delta p K_a$ between the piperazinyl ring of ciprofloxacin and the carboxylic acid of 2,6HBA is greater than 4. Similar behaviour is observed in the salicylate salt of ciprofloxacin (Surov et al., 2019; Nugrahani et al., 2020).

Compound (II) crystallizes in the non-centrosymmetric P1 space group despite the lack of a chiral centre. The asymmetric unit comprises one ciprofloxacin cation, one chloride anion and one 3,5HBA molecule, as shown in Fig. 2. In addition, one water molecule is incorporated into the crystal lattice. An anion-exchange reaction during crystallization did not occur in this system. Compared to 2,6HBA, the coformer is a weaker acid with a pK_a of 4.04 (Habibi-yangjeh *et al.*, 2005). Contrary to the previous structures, the coformer exists as a neutral molecule in the crystal. The carboxylic C18—O4 and C18—O5 distances of 2,6HBA are 1.320 (4) and 1.216 (4) Å, respec-

Figure 2

Displacement ellipsoid (50% probability level) drawing with the atomic labelling scheme for compound (II) showing the hydrogen bonds within the selected asymmetric unit.

Figure 3 Molecular overlay of ciprofloxacin cation in compounds (I) (red) and (II) (blue). Hydrogen atoms are omitted for clarity.

tively, confirming its neutral state. Additionally, the carboxylic C1-O1 and C1-O2 distances of ciprofloxacin, *i.e.* 1.227 (4) and 1.314 (4) Å, respectively, also confirm the neutral state of this moiety. On the other hand, the piperazinyl group is protonated. Hence, compound (II) is a salt co-crystal monohydrate of ciprofloxacin.

Compounds (I) and (II) exhibit similar conformations, as shown in Fig. 3. The molecular conformation of the ciprofloxacin molecule is governed by intramolecular O2– $H2\cdotsO3$ and C14– $H14A\cdotsF1$ hydrogen bonding (Tables 1 and 2). In both structures, the piperazinium ring exhibits a chair conformation. The main difference is the relative orientation between the piperazinium moiety and the quinolone ring. The C7–N2–C14–C15 torsion angles are 97.0 (2) and –167.8 (2)°, respectively, for compounds (I) and (II).

3. Supramolecular features

In compound (I), the carboxylate anion of 2,6HBA acts as a hydrogen-bond donor for intramolecular hydrogen bonds involving two hydroxyl groups, namely $O6-H6\cdots O5$ and $O7-H7\cdots O4$. The protonated nitrogen atom N3 of the piperazinyl ring is involved in the formation of trifurcated hydrogen bonds with O4, O5, and O6 of the coformer. These charge-assisted hydrogen bonds, *i.e.* N3-H3 $B\cdots$ O4, N3-

Figure 4

Intermolecular hydrogen-bonding motifs in (I) showing infinite chains along the a-axis direction formed by ciprofloxacin and 2,6HBA (red). Hydrogen atoms are omitted for clarity.

H3B···O5, and N3—H3A···O6, form an infinite chain structure along the *a*-axis direction (Table 1, Fig. 4). The chains are connected to the adjacent ciprofloxacin molecule through head-to-tail N3—H3A···O1 hydrogen bonding. The crystal packing of (I) is shown in Fig. 5. Along the *a*-axis, centrosymmetric pairs of ciprofloxacin molecules are stacked by π - π interactions. The distance between the centroids of symmetryrelated C4–C9 rings is 3.4986 (11) Å. This arrangement leads to the formation of a columnar packing arrangement. Interestingly, a similar packing feature was observed in the 1.75

Figure 5

Packing motifs of (I) viewed along (a) the a axis and (b) the c axis highlighting the alternating layers of ciprofloxacin and the coformer.

Table	1				
Hydro	gen-bond	geometry	(Å,	°) for	(I).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
α μ α	0.94	1 72	2512(2)	155
$02-H2\cdots03$	0.84	1./3	2.512 (2)	155
$N3-H3A\cdotsO1^{1}$	0.91	2.38	2.977 (2)	123
$N3-H3A\cdots O6$	0.91	2.09	2.890 (2)	146
$N3-H3B\cdots O4^{ii}$	0.91	2.18	2.897 (3)	136
$N3-H3B\cdots O5^{ii}$	0.91	2.24	3.090 (3)	155
C11-H11···O3 ⁱⁱⁱ	1.00	2.46	3.239 (3)	134
$C12-H12A\cdots O4^{iv}$	0.99	2.54	3.374 (3)	141
$C13-H13A\cdots O7^{v}$	0.99	2.51	3.193 (3)	126
$C14 - H14A \cdots F1$	0.99	2.13	2.831 (2)	126
$C15 - H15B \cdots O1^{iii}$	0.99	2.33	3.282 (3)	161
$C17 - H17A \cdots O5^{ii}$	0.99	2.60	3.408 (3)	139
$O6-H6\cdots O5$	0.84	1.77	2.520 (3)	148
$O7-H7\cdots O4$	0.84	1.85	2.508 (4)	134
$C21 - H21 \cdots O4^{ii}$	0.95	2.54	3.488 (3)	178

Symmetry codes: (i) x, y, z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) $x - 1, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) x - 1, y, z - 1.

hydrate of ciprofloxacin salicylate (Nugrahani *et al.*, 2020). In addition, compound (I) shows a layered structure with alternating ciprofloxacin and 2,6HBA layers along the b axis.

The supramolecular features of compound (II) are similar to those observed in compound (I). Ciprofloxacin cations are interconnected through head-to-tail $N3-H3A\cdots$ O1 hydrogen bonds (Table 2), forming an infinite chain arrangement. The chloride ion and water molecule are involved in an extensive hydrogen-bond network bridging ciprofloxacin and 3,5HBA (Fig. 6*a*). Interestingly, compound (II) also shows a layered arrangement of ciprofloxacin and the coformer (Fig. 6*b*).

Figure 6

Intermolecular hydrogen-bonding motifs in (II) highlighting the role of the chloride ion and water molecule in bridging ciprofloxacin and 3,5HBA (blue). Hydrogen atoms are omitted for clarity. (*b*) The crystal packing of (II) showing the alternating layered arrangement.

research communications

Table 2					
Hydrogen-bond geometry	(Å,	°)	for	(II).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O2−H2···O3	0.84	1.78	2.551 (3)	152
$N3-H3A\cdotsO1^{i}$	0.91	1.75	2.652 (3)	172
$N3-H3B\cdots Cl1$	0.91	2.30	3.106 (3)	148
$C10-H10\cdots F1^{ii}$	0.95	2.46	3.158 (4)	130
$C12-H12B\cdots O7^{iii}$	0.99	2.47	3.435 (4)	166
$C14-H14B\cdots F1$	0.99	2.27	2.927 (3)	123
$C16-H16B\cdots Cl1^{iv}$	0.99	2.78	3.609 (3)	142
$O4-H4\cdots Cl1$	0.84	2.28	3.082 (2)	160
$O6-H6\cdots Cl1^{v}$	0.84	2.40	3.232 (2)	170
$O7 - H7 \cdots O8$	0.84	1.96	2.769 (3)	161
$O8-H8A\cdots Cl1^{i}$	0.88 (6)	2.51 (6)	3.362 (3)	164 (4)
$O8-H8B\cdots O5^{vi}$	0.82 (6)	2.05 (6)	2.865 (4)	170 (5)

Symmetry codes: (i) x, y + 1, z - 1; (ii) x, y - 1, z; (iii) x - 1, y - 1, z + 1; (iv) x - 1, y, z; (v) x, y + 1, z; (vi) x, y, z - 1.

4. Database survey

Several crystal structures of ciprofloxacin salts with benzoic acid derivatives have been reported, including salts with salicylic acid (Surov *et al.*, 2019; Nagalapalli & Yaga Bheem, 2014; CSD refcode family DOFWUT), 4-hydroxybenzoic acid (Surov *et al.*, 2020; CSD refcode PUNMUJ), 4-aminobenzoic acid (Surov *et al.*, 2020; CSD refcode PUNMIX) and gallic acid (Surov *et al.*, 2020; CSD refcode PUNMOD). A search for salt

Table 3 Experimental details. co-crystals of ciprofloxacin hydrochloride yielded one reported crystal structure, a co-crystal of ciprofloxacin hydrochloride with 4-hydroxybenzoic acid (Martínez-Alejo *et al.*, 2014; CSD refcode XOHTUL). Compound (II) was also disclosed in a patent without any structural information (Rojas *et al.*, 2016).

5. Synthesis and crystallization

Single crystals of (I) and (II) were obtained by preparing a saturated solution of equimolar ciprofloxacin hydrochloride and the respective coformer in methanol/water (1:1) at room temperature. The saturated solution was allowed to slowly evaporate at room temperature. A suitable single crystal was selected and measured for structure determination.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined using a riding model and their displacement parameters ($U_{\rm iso}$) were fixed to $1.2U_{\rm eq}$ of the parent carbon or nitrogen atom and $1.5U_{\rm eq}$ for hydroxyl groups.

1		
	(I)	(II)
Crystal data		
Chemical formula	$C_{17}H_{19}FN_3O_3^+ C_7H_5O_4^-$	$C_{17}H_{19}FN_3O_3^+ \cdot C_7H_6O_4 \cdot Cl^- \cdot H_2O_5$
M_r	485.46	539.93
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, P1
Temperature (K)	93	93
a, b, c (Å)	7.9722 (5), 21.2705 (11), 13.0860 (7)	7.2165 (2), 8.8298 (4), 10.1184 (3)
α, β, γ (°)	90, 101,805 (6), 90	92,997 (3), 95,219 (2), 111,557 (4)
$V(A^3)$	2172.1 (2)	594.60 (4)
Z	4	1
Radiation type	Cu Κα	Cu <i>Kα</i>
$\mu ({\rm mm}^{-1})$	0.98	2.00
Crystal size (mm)	$0.23 \times 0.05 \times 0.04$	$0.28 \times 0.2 \times 0.05$
Data collection		
Diffractometer	XtaLAB Synergy R, DW system, HyPix	XtaLAB Synergy R, DW system, HyPix
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2020)	Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T_{\min}, \hat{T}_{\max}	0.919, 1.000	0.839, 1.000
No. of measured, independent and observed reflections	15936, 4378, 3601 (?)	16358, 4420, 4323 $[I > 2\sigma(I)]$
Rint	0.038	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.630	0.625
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.139, 1.04	0.034, 0.094, 1.12
No. of reflections	4378	4420
No. of parameters	319	344
No. of restraints	0	3
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.34, -0.41	0.25, -0.47
Absolute structure	_ ^	Flack x determined using 1889 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	_	0.011 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020).

Acknowledgements

The authors thank the Materials Analysis Division of the Open Facility Center at the Tokyo Institute of Technology for the research facilities.

References

- Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.
- Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.
- Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362-6365.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fujito, T., Oshima, T., Higashi, K., Ueda, K., Ito, M., Masu, H., Noguchi, S. & Moribe, K. (2021). *Cryst. Growth Des.* https://doi.org/ 10.1021/acs.cgd.1c01050.
- Gdaniec, M., Gilski, M. & Denisov, G. S. (1994). Acta Cryst. C50, 1622–1626.
- Habibi-yangjeh, A., Danandeh-jenagharad, M. & Nooshyar, M. (2005). Bull. Korean Chem. Soc. 26, 2007–2016.
- Kavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). Drug Discovery Today, 24, 796–804.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Martínez-Alejo, J. M., Domínguez-Chávez, J. G., Rivera-Islas, J., Herrera-Ruiz, D., Höpfl, H., Morales-Rojas, H. & Senosiain, J. P. (2014). Cryst. Growth Des. 14, 3078–3095.

Nagalapalli, R. & Yaga Bheem, S. (2014). J. Crystallogr. pp. 1-5.

- Nugraha, Y. P. & Uekusa, H. (2018). CrystEngComm, 20, 2653-2662.
- Nugrahani, I., Tjengal, B., Gusdinar, T., Horikawa, A. & Uekusa, H. (2020). Crystals, 10, 1–19.
- Olivera, M. E., Manzo, R. H., Junginger, H. E., Midha, K. K., Shah, V. P., Stavchansky, S., Dressman, J. B. & Barends, D. M. (2011). J. *Pharm. Sci.* **100**, 22–33.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Putra, O. D. & Uekusa, H. (2020). Advances in Organic Crystal Chemistry, pp. 153–184. Singapore: Springer Singapore.
- Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rojas, H. M., Chávez, J. G. D., Höpfl, D. H. R., Alejo, J. M. M. & Peláez, J. P. S. (2016). Solid forms of antibiotics. United States Patent and Trademark Office.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sun, J., Sakai, S., Tauchi, Y., Deguchi, Y., Chen, J., Zhang, R. & Morimoto, K. (2002). *Eur. J. Pharm. Biopharm.* 54, 51–58.
- Surov, A. O., Vasilev, N. A., Churakov, A. V., Stroh, J., Emmerling, F. & Perlovich, G. L. (2019). Cryst. Growth Des. 19, 2979–2990.
- Surov, A. O., Vasilev, N. A., Voronin, A. P., Churakov, A. V., Emmerling, F. & Perlovich, G. L. (2020). *CrystEngComm*, 22, 4238– 4249.
- Thakur, T. S. & Thakuria, R. (2020). Cryst. Growth Des. 20, 6245–6265.

Acta Cryst. (2022). E78, 259-263 [https://doi.org/10.1107/S2056989022001177]

Ciprofloxacin salt and salt co-crystal with dihydroxybenzoic acids

Yuda Prasetya Nugraha, Haruki Sugiyama and Hidehiro Uekusa

Computing details

For both structures, data collection: *CrysAlis PRO* (Rigaku OD, 2020); cell refinement: *CrysAlis PRO* (Rigaku OD, 2020); data reduction: *CrysAlis PRO* (Rigaku OD, 2020); program(s) used to solve structure: *SHELXT2018/2* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *Mercury* (Macrae *et al.*, 2020).

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I)

Crystal data

 $C_{17}H_{19}FN_{3}O_{3}^{+}C_{7}H_{5}O_{4}^{-}$ $M_{r} = 485.46$ Monoclinic, $P2_{1}/c$ a = 7.9722 (5) Å b = 21.2705 (11) Å c = 13.0860 (7) Å $\beta = 101.805$ (6)° V = 2172.1 (2) Å³ Z = 4

Data collection

XtaLAB Synergy R, DW system, HyPix diffractometer Radiation source: Rotating-anode X-ray tube, Rigaku XtaLAB Synergy-R Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.139$ S = 1.034378 reflections 319 parameters 0 restraints Primary atom site location: dual F(000) = 1016 $D_x = 1.485 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4777 reflections $\theta = 4.0-72.0^{\circ}$ $\mu = 0.98 \text{ mm}^{-1}$ T = 93 KBlock, colourless $0.23 \times 0.05 \times 0.04 \text{ mm}$

 $T_{\text{min}} = 0.919, T_{\text{max}} = 1.000$ 15936 measured reflections 4378 independent reflections $R_{\text{int}} = 0.038$ $\theta_{\text{max}} = 76.3^{\circ}, \theta_{\text{min}} = 4.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -17 \rightarrow 26$ $l = -15 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.062P)^2 + 1.4432P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.41$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.05295 (16)	0.41493 (5)	0.67770 (9)	0.0377 (3)	
01	0.4436 (2)	0.54707 (8)	0.16888 (11)	0.0432 (4)	
O2	0.3833 (2)	0.44645 (7)	0.18852 (11)	0.0402 (4)	
H2	0.347742	0.424196	0.232696	0.060*	
O3	0.28730 (19)	0.41034 (7)	0.35014 (11)	0.0362 (3)	
N1	0.3471 (2)	0.59129 (8)	0.46044 (12)	0.0314 (4)	
N2	0.0934 (2)	0.53783 (8)	0.75639 (13)	0.0328 (4)	
N3	0.2572 (3)	0.58568 (8)	0.95730 (14)	0.0395 (4)	
H3A	0.356800	0.595565	1.002153	0.047*	
H3B	0.169225	0.594851	0.989447	0.047*	
C1	0.4001 (3)	0.50538 (10)	0.22173 (15)	0.0354 (5)	
C2	0.3602 (3)	0.51643 (10)	0.32635 (15)	0.0327 (4)	
C3	0.3006 (2)	0.46647 (10)	0.38290 (15)	0.0326 (4)	
C4	0.2566 (2)	0.48427 (10)	0.48093 (15)	0.0316 (4)	
C5	0.1856 (3)	0.44006 (9)	0.54010 (15)	0.0327 (4)	
Н5	0.172151	0.397574	0.517532	0.039*	
C6	0.1363 (3)	0.45781 (9)	0.62931 (15)	0.0321 (4)	
C7	0.1580 (2)	0.51970 (9)	0.67053 (15)	0.0313 (4)	
C8	0.2342 (2)	0.56281 (9)	0.61296 (15)	0.0314 (4)	
H8	0.256130	0.604419	0.638611	0.038*	
C9	0.2786 (2)	0.54598 (9)	0.51851 (15)	0.0303 (4)	
C10	0.3838 (3)	0.57567 (10)	0.36771 (15)	0.0329 (4)	
H10	0.428110	0.607231	0.329187	0.040*	
C11	0.3814 (3)	0.65431 (9)	0.50290 (16)	0.0338 (4)	
H11	0.471754	0.657418	0.568093	0.041*	
C12	0.2333 (3)	0.69888 (10)	0.49555 (18)	0.0418 (5)	
H12A	0.232822	0.727421	0.555245	0.050*	
H12B	0.118861	0.684208	0.459028	0.050*	
C13	0.3671 (3)	0.70946 (10)	0.43140 (17)	0.0407 (5)	
H13A	0.334605	0.701423	0.355393	0.049*	
H13B	0.448510	0.744615	0.451562	0.049*	
C14	0.1041 (3)	0.49851 (10)	0.84970 (16)	0.0357 (5)	
H14A	0.115360	0.453863	0.830791	0.043*	
H14B	-0.002908	0.502959	0.876377	0.043*	
C15	0.2556 (3)	0.51692 (9)	0.93462 (16)	0.0340 (4)	
H15A	0.250824	0.493237	0.999094	0.041*	
H15B	0.363113	0.505307	0.912586	0.041*	
C16	0.2411 (3)	0.62529 (10)	0.86112 (16)	0.0364 (5)	
H16A	0.344474	0.620481	0.830902	0.044*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H16B	0.229875	0.670139	0.878811	0.044*	
C17	0.0831 (3)	0.60408 (10)	0.78271 (15)	0.0327 (4)	
H17A	-0.020076	0.611142	0.812303	0.039*	
H17B	0.071566	0.629659	0.718442	0.039*	
04	1.1188 (2)	0.66620 (11)	1.0984 (2)	0.0830 (8)	
05	0.8981 (3)	0.62083 (8)	0.99400 (18)	0.0683 (6)	
O6	0.5971 (2)	0.63810 (8)	1.02051 (13)	0.0476 (4)	
H6	0.675991	0.625422	0.991803	0.071*	
07	1.0721 (3)	0.74339 (12)	1.23479 (19)	0.0809 (8)	
H7	1.128472	0.712831	1.218955	0.121*	
C18	0.9592 (3)	0.65706 (12)	1.0688 (2)	0.0531 (7)	
C19	0.8411 (3)	0.68834 (9)	1.12632 (16)	0.0336 (4)	
C20	0.6639(3)	0.67641 (10)	1.10169 (16)	0.0332 (4)	
C21	0.5540 (3)	0.70341 (11)	1.1582 (2)	0.0447 (5)	
H21	0.434867	0.694228	1.142088	0.054*	
C22	0.6208 (4)	0.74400 (12)	1.2386 (2)	0.0593 (8)	
H22	0.545515	0.763145	1.277098	0.071*	
C23	0.7929 (5)	0.75756 (13)	1.2647 (2)	0.0625 (8)	
H23	0.835717	0.785656	1.320376	0.075*	
C24	0.9025 (3)	0.72996 (12)	1.20927 (18)	0.0475 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0444 (7)	0.0350 (6)	0.0334 (6)	-0.0065 (5)	0.0070 (5)	-0.0004 (5)
01	0.0555 (10)	0.0466 (9)	0.0264 (7)	0.0049 (7)	0.0058 (7)	0.0000 (7)
O2	0.0470 (9)	0.0437 (9)	0.0280 (7)	0.0011 (7)	0.0030 (6)	-0.0068 (6)
O3	0.0384 (8)	0.0360 (8)	0.0312 (7)	0.0019 (6)	0.0003 (6)	-0.0065 (6)
N1	0.0347 (9)	0.0338 (9)	0.0239 (8)	0.0014 (7)	0.0017 (7)	0.0003 (6)
N2	0.0370 (9)	0.0345 (9)	0.0254 (8)	-0.0019 (7)	0.0030 (7)	-0.0007 (7)
N3	0.0477 (10)	0.0353 (9)	0.0290 (9)	0.0021 (8)	-0.0074 (8)	-0.0025 (7)
C1	0.0360 (11)	0.0418 (11)	0.0255 (10)	0.0036 (9)	-0.0008(8)	-0.0026 (9)
C2	0.0300 (10)	0.0390 (11)	0.0260 (9)	0.0034 (8)	-0.0014 (8)	-0.0031 (8)
C3	0.0288 (9)	0.0364 (10)	0.0288 (10)	0.0040 (8)	-0.0033 (8)	-0.0031 (8)
C4	0.0290 (9)	0.0370 (10)	0.0254 (9)	0.0016 (8)	-0.0022 (7)	-0.0011 (8)
C5	0.0331 (10)	0.0313 (10)	0.0298 (10)	0.0020 (8)	-0.0024 (8)	-0.0035 (8)
C6	0.0304 (10)	0.0340 (10)	0.0293 (10)	-0.0024 (8)	-0.0001 (8)	0.0016 (8)
C7	0.0300 (9)	0.0360 (10)	0.0253 (9)	0.0006 (8)	-0.0002 (7)	-0.0010 (8)
C8	0.0308 (10)	0.0337 (10)	0.0265 (9)	0.0011 (8)	-0.0017 (7)	-0.0016 (8)
С9	0.0297 (10)	0.0345 (10)	0.0242 (9)	0.0027 (8)	-0.0001 (7)	0.0005 (8)
C10	0.0332 (10)	0.0387 (11)	0.0249 (9)	0.0031 (8)	0.0014 (8)	0.0011 (8)
C11	0.0398 (11)	0.0325 (10)	0.0282 (10)	-0.0005 (8)	0.0053 (8)	-0.0009(8)
C12	0.0457 (12)	0.0372 (11)	0.0420 (12)	0.0049 (9)	0.0074 (10)	-0.0010 (9)
C13	0.0538 (13)	0.0345 (11)	0.0328 (11)	0.0025 (9)	0.0067 (9)	0.0015 (9)
C14	0.0406 (11)	0.0380 (11)	0.0275 (10)	-0.0058 (9)	0.0047 (8)	0.0008 (8)
C15	0.0385 (11)	0.0330 (10)	0.0283 (10)	0.0013 (8)	0.0018 (8)	-0.0005 (8)
C16	0.0410 (11)	0.0326 (10)	0.0321 (10)	0.0006 (8)	-0.0011 (9)	-0.0021 (8)
C17	0.0335 (10)	0.0359 (10)	0.0269 (9)	0.0020 (8)	0.0017 (8)	-0.0010 (8)

O4	0.0390 (10)	0.0790 (14)	0.140 (2)	0.0173 (9)	0.0391 (12)	0.0559 (15)
05	0.1042 (17)	0.0351 (9)	0.0862 (15)	0.0002 (10)	0.0675 (13)	-0.0015 (10)
06	0.0513 (10)	0.0531 (10)	0.0356 (8)	-0.0164 (8)	0.0027 (7)	-0.0101 (7)
07	0.0613 (12)	0.0922 (16)	0.0708 (14)	-0.0414 (11)	-0.0296 (11)	0.0281 (13)
C18	0.0488 (14)	0.0374 (13)	0.082 (2)	0.0124 (10)	0.0340 (14)	0.0259 (13)
C19	0.0320 (10)	0.0335 (10)	0.0344 (10)	-0.0010 (8)	0.0048 (8)	0.0063 (8)
C20	0.0342 (10)	0.0347 (10)	0.0296 (10)	-0.0019 (8)	0.0036 (8)	0.0007 (8)
C21	0.0394 (12)	0.0431 (12)	0.0547 (14)	0.0024 (10)	0.0172 (10)	0.0040 (11)
C22	0.096 (2)	0.0364 (13)	0.0590 (16)	-0.0030 (13)	0.0477 (16)	-0.0036 (11)
C23	0.108 (2)	0.0474 (14)	0.0343 (12)	-0.0330 (15)	0.0198 (14)	-0.0087 (11)
C24	0.0525 (14)	0.0496 (13)	0.0341 (11)	-0.0194 (11)	-0.0056 (10)	0.0104 (10)

Geometric parameters (Å, °)

F1—C6	1.359 (2)	C12—H12A	0.9900
01—C1	1.218 (3)	C12—H12B	0.9900
O2—H2	0.8400	C12—C13	1.503 (3)
O2—C1	1.325 (3)	C13—H13A	0.9900
O3—C3	1.265 (2)	C13—H13B	0.9900
N1—C9	1.405 (3)	C14—H14A	0.9900
N1—C10	1.347 (3)	C14—H14B	0.9900
N1—C11	1.455 (3)	C14—C15	1.516 (3)
N2—C7	1.383 (3)	C15—H15A	0.9900
N2—C14	1.468 (3)	C15—H15B	0.9900
N2—C17	1.457 (3)	C16—H16A	0.9900
N3—H3A	0.9100	C16—H16B	0.9900
N3—H3B	0.9100	C16—C17	1.521 (3)
N3—C15	1.492 (3)	C17—H17A	0.9900
N3—C16	1.498 (3)	C17—H17B	0.9900
C1—C2	1.486 (3)	O4—C18	1.267 (3)
C2—C3	1.431 (3)	O5—C18	1.263 (4)
C2—C10	1.369 (3)	O6—H6	0.8400
C3—C4	1.448 (3)	O6—C20	1.358 (3)
C4—C5	1.408 (3)	O7—H7	0.8400
C4—C9	1.400 (3)	O7—C24	1.355 (3)
С5—Н5	0.9500	C18—C19	1.479 (3)
C5—C6	1.359 (3)	C19—C20	1.406 (3)
C6—C7	1.420 (3)	C19—C24	1.409 (3)
С7—С8	1.402 (3)	C20—C21	1.382 (3)
С8—Н8	0.9500	C21—H21	0.9500
C8—C9	1.400 (3)	C21—C22	1.381 (4)
C10—H10	0.9500	С22—Н22	0.9500
C11—H11	1.0000	C22—C23	1.375 (5)
C11—C12	1.501 (3)	С23—Н23	0.9500
C11—C13	1.490 (3)	C23—C24	1.376 (4)
C1—O2—H2	109.5	C13—C12—H12B	117.8
C9—N1—C11	119.24 (16)	C11—C13—C12	60.21 (15)
	× /		× /

C10 N1 C0	110.00 (17)		1170
C10-N1-C9	119.88 (17)	C11—C13—H13A	117.8
C10 N1 $-C14$	120.80(17) 122.20(17)	C12 C12 H12A	117.8
$C_{-N2} = C_{14}$	123.30(17)	C12—C13—H13A	117.8
C/=N2=C17	120.67 (17)	C12—C13—H13B	117.8
C1/-N2-C14	110.55 (16)	HI3A—CI3—HI3B	114.9
$H_3A - N_3 - H_3B$	107.8	N2—C14—H14A	109.4
C15—N3—H3A	109.0	N2—C14—H14B	109.4
C15—N3—H3B	109.0	N2—C14—C15	111.36 (17)
C15—N3—C16	112.86 (16)	H14A—C14—H14B	108.0
C16—N3—H3A	109.0	C15—C14—H14A	109.4
C16—N3—H3B	109.0	C15—C14—H14B	109.4
O1—C1—O2	121.63 (19)	N3—C15—C14	111.86 (17)
O1—C1—C2	123.19 (19)	N3—C15—H15A	109.2
O2—C1—C2	115.18 (19)	N3—C15—H15B	109.2
C3—C2—C1	121.03 (18)	C14—C15—H15A	109.2
C10—C2—C1	118.14 (19)	C14—C15—H15B	109.2
C10—C2—C3	120.83 (19)	H15A—C15—H15B	107.9
O3—C3—C2	122.61 (19)	N3—C16—H16A	110.0
O3—C3—C4	121.90 (19)	N3—C16—H16B	110.0
C2—C3—C4	115.48 (18)	N3—C16—C17	108.50 (17)
C5—C4—C3	120.65 (18)	H16A—C16—H16B	108.4
C9—C4—C3	121.38 (19)	C17—C16—H16A	110.0
C9—C4—C5	117.95 (18)	C17—C16—H16B	110.0
С4—С5—Н5	119.8	N2-C17-C16	111.57 (16)
C6—C5—C4	120.40 (19)	N2—C17—H17A	109.3
С6—С5—Н5	119.8	N2-C17-H17B	109.3
F1—C6—C5	117.95 (18)	С16—С17—Н17А	109.3
F1—C6—C7	118 58 (18)	C16—C17—H17B	109.3
$C_{5}-C_{6}-C_{7}$	123 34 (19)	H17A—C17—H17B	108.0
$N_{2} - C_{7} - C_{6}$	123.34(19) 122.04(18)	C_{20} C	109.5
$N_{2} = C_{7} = C_{8}$	122.01(10) 121.89(18)	$C_{24} = 07 = H7$	109.5
C_{8} C_{7} C_{6}	115 79 (18)	04-C18-C19	109.5 118 7 (3)
C_{7} C_{8} H_{8}	110.75 (10)	$05 \ C18 \ 04$	110.7(3) 122.3(3)
C^{0} C^{8} C^{7}	119.2	05 - 018 - 04	122.3(3)
$C_{2} = C_{3} = C_{1}$	121.33 (19)	$C_{20} = C_{10} = C_{19}$	119.0(2)
C_{9} C_{0} N_{1}	119.2	$C_{20} = C_{19} = C_{18}$	121.1(2) 117.7(2)
C4 = C9 = N1	119.20(10) 120.80(10)	$C_{20} = C_{19} = C_{24}$	117.7(2)
$C^{2} = C^{2} = C^{3}$	120.89 (19)	$C_{24} = C_{19} = C_{18}$	121.2(2)
C8-C9-NI	119.91 (18)	06-020-021	120.12(19)
NI = C10 = U10	123.07 (19)	00-20-21	118.0(2)
NI = CI0 = HI0	118.5	$C_{21} = C_{20} = C_{19}$	121.3 (2)
C2—C10—H10	118.5	C20—C21—H21	120.7
NI-CII-HII	115.6	C22—C21—C20	118.7 (2)
N1—C11—C12	118.27 (18)	С22—С21—Н21	120.7
NI-C11-C13	120.07 (17)	C21—C22—H22	119.0
C12—C11—H11	115.6	C23—C22—C21	122.0 (2)
C13—C11—H11	115.6	C23—C22—H22	119.0
C13—C11—C12	60.32 (15)	C22—C23—H23	120.4
C11—C12—H12A	117.8	C22—C23—C24	119.3 (2)

C11—C12—H12B	117.8	C24—C23—H23	120.4
C11—C12—C13	59.47 (14)	O7—C24—C19	119.6 (3)
H12A—C12—H12B	115.0	O7—C24—C23	119.3 (3)
C13—C12—H12A	117.8	C23—C24—C19	121.1 (2)
F1—C6—C7—N2	-1.6 (3)	C9—C4—C5—C6	1.8 (3)
F1—C6—C7—C8	-175.68 (16)	C10—N1—C9—C4	2.8 (3)
O1—C1—C2—C3	176.50 (19)	C10—N1—C9—C8	-177.48 (18)
O1—C1—C2—C10	-4.2 (3)	C10-N1-C11-C12	102.8 (2)
O2—C1—C2—C3	-2.7 (3)	C10-N1-C11-C13	32.6 (3)
O2-C1-C2-C10	176.59 (18)	C10—C2—C3—O3	-175.52 (18)
O3—C3—C4—C5	-4.5 (3)	C10—C2—C3—C4	4.3 (3)
O3—C3—C4—C9	177.25 (17)	C11—N1—C9—C4	-175.72 (17)
N1-C11-C12-C13	-110.4 (2)	C11—N1—C9—C8	4.0 (3)
N1—C11—C13—C12	107.5 (2)	C11—N1—C10—C2	177.41 (18)
N2—C7—C8—C9	-171.43 (18)	C14—N2—C7—C6	42.6 (3)
N2-C14-C15-N3	52.0 (2)	C14—N2—C7—C8	-143.72 (19)
N3-C16-C17-N2	-58.5 (2)	C14—N2—C17—C16	61.2 (2)
C1—C2—C3—O3	3.8 (3)	C15—N3—C16—C17	53.4 (2)
C1—C2—C3—C4	-176.44 (17)	C16—N3—C15—C14	-51.4 (2)
C1-C2-C10-N1	178.08 (18)	C17—N2—C7—C6	-166.08 (18)
C2—C3—C4—C5	175.74 (17)	C17—N2—C7—C8	7.6 (3)
C2—C3—C4—C9	-2.5 (3)	C17—N2—C14—C15	-56.9 (2)
C3—C2—C10—N1	-2.6 (3)	O4—C18—C19—C20	-175.4 (2)
C3—C4—C5—C6	-176.56 (18)	O4—C18—C19—C24	3.0 (3)
C3—C4—C9—N1	-0.9 (3)	O5—C18—C19—C20	2.6 (3)
C3—C4—C9—C8	179.39 (18)	O5—C18—C19—C24	-179.0 (2)
C4—C5—C6—F1	173.48 (16)	O6—C20—C21—C22	-177.9 (2)
C4—C5—C6—C7	-2.5 (3)	C18—C19—C20—O6	-3.4 (3)
C5-C4-C9-N1	-179.21 (17)	C18—C19—C20—C21	177.1 (2)
C5—C4—C9—C8	1.1 (3)	C18—C19—C24—O7	2.3 (3)
C5—C6—C7—N2	174.32 (18)	C18—C19—C24—C23	-178.0 (2)
C5—C6—C7—C8	0.2 (3)	C19—C20—C21—C22	1.6 (3)
C6—C7—C8—C9	2.7 (3)	C20—C19—C24—O7	-179.2 (2)
C7—N2—C14—C15	97.0 (2)	C20—C19—C24—C23	0.5 (3)
C7—N2—C17—C16	-93.5 (2)	C20—C21—C22—C23	-0.9 (4)
C7—C8—C9—N1	176.92 (17)	C21—C22—C23—C24	0.0 (4)
C7—C8—C9—C4	-3.4 (3)	C22—C23—C24—O7	179.9 (2)
C9—N1—C10—C2	-1.1 (3)	C22—C23—C24—C19	0.2 (4)
C9—N1—C11—C12	-78.7 (2)	C24—C19—C20—O6	178.08 (19)
C9—N1—C11—C13	-148.89 (19)	C24—C19—C20—C21	-1.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A	
O2—H2…O3	0.84	1.73	2.512 (2)	155	
N3—H3A···O1 ⁱ	0.91	2.38	2.977 (2)	123	
N3—H3A…O6	0.91	2.09	2.890 (2)	146	

Acta Cryst. (2022). E78, 259-263

N3—H3 <i>B</i> ···O4 ⁱⁱ	0.91	2.18	2.897 (3)	136
N3—H3 <i>B</i> ···O5 ⁱⁱ	0.91	2.24	3.090 (3)	155
С11—Н11…ОЗ ^{ііі}	1.00	2.46	3.239 (3)	134
C12—H12A····O4 ^{iv}	0.99	2.54	3.374 (3)	141
С13—Н13А…О7 ^v	0.99	2.51	3.193 (3)	126
C14—H14A…F1	0.99	2.13	2.831 (2)	126
C15—H15 <i>B</i> ···O1 ⁱⁱⁱ	0.99	2.33	3.282 (3)	161
C17—H17 <i>A</i> ···O5 ⁱⁱ	0.99	2.60	3.408 (3)	139
O6—H6…O5	0.84	1.77	2.520 (3)	148
O7—H7…O4	0.84	1.85	2.508 (4)	134
C21—H21···O4 ⁱⁱ	0.95	2.54	3.488 (3)	178

Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x-1, -y+3/2, z-1/2; (v) x-1, y, z-1.

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride-3,5hydroxybenzoic acid-water (1/1/1) (II)

Crystal data

$C_{17}H_{19}FN_3O_3^+ \cdot C_7H_6O_4 \cdot Cl^- \cdot H_2O$	Z = 1
$M_r = 539.93$	F(000) = 282
Triclinic, P1	$D_{\rm x} = 1.508 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.2165 (2) Å	Cu $K\alpha$ radiation, $\lambda = 1.54184$ Å
b = 8.8298 (4) Å	Cell parameters from 10041 reflections
c = 10.1184 (3) Å	$\theta = 4.4 - 75.8^{\circ}$
$\alpha = 92.997 \ (3)^{\circ}$	$\mu = 2.00 \text{ mm}^{-1}$
$\beta = 95.219 \ (2)^{\circ}$	T = 93 K
$\gamma = 111.557 \ (4)^{\circ}$	Block, colourless
$V = 594.60 (4) Å^3$	$0.28 \times 0.2 \times 0.05 \text{ mm}$

Data collection

XtaLAB Synergy R, DW system, HyPix	$T_{\rm min} = 0.839, T_{\rm ma}$
diffractometer	16358 measured
Radiation source: Rotating-anode X-ray tube,	4420 independer
Rigaku XtaLAB Synergy-R	4323 reflections
Mirror monochromator	$R_{\rm int} = 0.035$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\rm max} = 74.5^{\circ}, \theta_{\rm min}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -10 \rightarrow 11$
(CrysAlisPro; Rigaku OD, 2020)	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.094$ S = 1.124420 reflections 344 parameters 3 restraints Primary atom site location: dual Hydrogen site location: mixed

x = 1.000reflections nt reflections with $I > 2\sigma(I)$ = 4.4°

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0589P)^2 + 0.0709P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.47 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack x determined using 1889 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et* al., 2013) Absolute structure parameter: 0.011 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.85144 (9)	0.46863 (8)	0.40663 (7)	0.02533 (17)	
F1	0.4599 (3)	0.5185 (2)	0.98137 (17)	0.0273 (4)	
01	0.3224 (3)	-0.3703 (3)	1.2978 (2)	0.0284 (5)	
O2	0.3642 (4)	-0.1499 (3)	1.4315 (2)	0.0294 (5)	
H2	0.379572	-0.051835	1.423817	0.044*	
03	0.3972 (3)	0.1143 (3)	1.3272 (2)	0.0280 (5)	
N1	0.2840 (4)	-0.1445 (3)	0.9603 (2)	0.0213 (5)	
N2	0.3796 (4)	0.3457 (3)	0.7334 (2)	0.0210 (5)	
N3	0.4407 (4)	0.4661 (3)	0.4778 (2)	0.0233 (5)	
H3A	0.412202	0.525266	0.413562	0.028*	
H3B	0.528778	0.423848	0.448534	0.028*	
C1	0.3370 (4)	-0.2274 (4)	1.3126 (3)	0.0249 (6)	
C2	0.3276 (4)	-0.1342 (4)	1.1970 (3)	0.0222 (6)	
C3	0.3655 (4)	0.0366 (4)	1.2138 (3)	0.0226 (6)	
C4	0.3687 (4)	0.1155 (4)	1.0907 (3)	0.0220 (6)	
C5	0.4158 (4)	0.2850 (4)	1.0937 (3)	0.0227 (6)	
Н5	0.444144	0.349621	1.176480	0.027*	
C6	0.4203 (4)	0.3556 (4)	0.9773 (3)	0.0214 (6)	
C7	0.3828 (4)	0.2667 (4)	0.8503 (3)	0.0202 (6)	
C8	0.3389 (4)	0.1003 (4)	0.8483 (3)	0.0212 (6)	
H8	0.314618	0.036841	0.765286	0.025*	
C9	0.3297 (4)	0.0241 (4)	0.9661 (3)	0.0204 (6)	
C10	0.2882 (4)	-0.2168 (4)	1.0730 (3)	0.0218 (6)	
H10	0.262685	-0.330555	1.066643	0.026*	
C11	0.2568 (4)	-0.2397 (4)	0.8324 (3)	0.0219 (6)	
H11	0.381927	-0.228926	0.791979	0.026*	
C12	0.0740 (5)	-0.2667 (4)	0.7366 (3)	0.0257 (6)	
H12A	0.087678	-0.270948	0.640183	0.031*	
H12B	-0.021768	-0.217677	0.763308	0.031*	
C13	0.0926 (5)	-0.4047 (4)	0.8124 (3)	0.0259 (6)	
H13A	0.007825	-0.440061	0.885206	0.031*	
H13B	0.117236	-0.493315	0.762121	0.031*	
C14	0.5686 (4)	0.4771 (4)	0.7139 (3)	0.0231 (6)	
H14A	0.667670	0.429259	0.691921	0.028*	
H14B	0.623427	0.549862	0.797431	0.028*	
C15	0.5351 (5)	0.5757 (4)	0.6022 (3)	0.0253 (6)	
H15A	0.447094	0.632955	0.628102	0.030*	
H15B	0.665144	0.659131	0.586453	0.030*	
C16	0.2536 (5)	0.3306 (4)	0.5001 (3)	0.0240 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H16A	0.198514	0.256713	0.417103	0.029*
H16B	0.152583	0.375766	0.523119	0.029*
C17	0.2940 (4)	0.2351 (4)	0.6112 (3)	0.0221 (6)
H17A	0.167365	0.147006	0.626540	0.027*
H17B	0.388812	0.184215	0.586309	0.027*
O4	0.8307 (4)	0.7243 (3)	0.2157 (2)	0.0292 (5)
H4	0.845149	0.674900	0.282288	0.044*
05	0.8281 (4)	0.9108 (3)	0.3721 (2)	0.0338 (5)
O6	0.9253 (4)	1.4048 (3)	0.1019 (2)	0.0282 (5)
H6	0.922943	1.426566	0.183393	0.042*
O7	0.7685 (4)	0.9471 (3)	-0.2173 (2)	0.0282 (5)
H7	0.769716	1.019031	-0.268691	0.042*
C18	0.8310 (5)	0.8689 (4)	0.2561 (3)	0.0245 (6)
C19	0.8373 (4)	0.9759 (4)	0.1448 (3)	0.0233 (6)
C20	0.8753 (4)	1.1395 (4)	0.1782 (3)	0.0230 (6)
H20	0.894255	1.180995	0.269053	0.028*
C21	0.8855 (4)	1.2429 (4)	0.0771 (3)	0.0230 (6)
C22	0.8531 (4)	1.1805 (4)	-0.0565 (3)	0.0229 (6)
H22	0.860643	1.250739	-0.125512	0.028*
C23	0.8099 (4)	1.0150 (4)	-0.0877 (3)	0.0231 (6)
C24	0.8048 (4)	0.9107 (4)	0.0123 (3)	0.0243 (6)
H24	0.779908	0.798399	-0.009350	0.029*
O8	0.7775 (4)	1.1327 (3)	-0.4306 (2)	0.0309 (5)
H8A	0.799 (7)	1.230 (7)	-0.457 (5)	0.046*
H8B	0.779 (7)	1.068 (7)	-0.492 (5)	0.046*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0315 (3)	0.0267 (3)	0.0219 (3)	0.0151 (3)	0.0052 (2)	0.0029 (2)
F1	0.0445 (10)	0.0200 (9)	0.0203 (8)	0.0152 (8)	0.0057 (7)	-0.0001 (7)
01	0.0376 (12)	0.0253 (12)	0.0242 (11)	0.0142 (9)	0.0011 (9)	0.0058 (9)
02	0.0419 (13)	0.0289 (12)	0.0176 (10)	0.0132 (10)	0.0032 (9)	0.0048 (8)
03	0.0426 (13)	0.0294 (12)	0.0144 (9)	0.0160 (10)	0.0048 (9)	0.0003 (8)
N1	0.0270 (12)	0.0220 (13)	0.0168 (12)	0.0117 (10)	0.0024 (9)	-0.0002 (9)
N2	0.0255 (12)	0.0232 (13)	0.0144 (11)	0.0097 (10)	0.0009 (9)	0.0008 (9)
N3	0.0303 (12)	0.0286 (13)	0.0173 (11)	0.0174 (10)	0.0047 (9)	0.0046 (10)
C1	0.0243 (14)	0.0325 (18)	0.0202 (14)	0.0131 (12)	0.0027 (11)	0.0050 (12)
C2	0.0238 (13)	0.0266 (15)	0.0179 (13)	0.0108 (11)	0.0036 (10)	0.0041 (12)
C3	0.0262 (14)	0.0272 (15)	0.0175 (14)	0.0131 (12)	0.0044 (11)	0.0038 (11)
C4	0.0234 (13)	0.0268 (15)	0.0177 (13)	0.0117 (11)	0.0035 (10)	0.0007 (11)
C5	0.0282 (14)	0.0232 (15)	0.0182 (13)	0.0117 (12)	0.0036 (10)	-0.0011 (11)
C6	0.0267 (14)	0.0176 (13)	0.0206 (14)	0.0094 (11)	0.0032 (11)	-0.0006 (11)
C7	0.0222 (13)	0.0228 (15)	0.0171 (13)	0.0105 (11)	0.0018 (10)	0.0016 (11)
C8	0.0239 (13)	0.0230 (15)	0.0167 (13)	0.0095 (11)	0.0021 (10)	-0.0023 (11)
C9	0.0210 (13)	0.0217 (14)	0.0188 (14)	0.0084 (10)	0.0030 (10)	0.0005 (11)
C10	0.0242 (13)	0.0215 (15)	0.0225 (14)	0.0112 (11)	0.0033 (11)	0.0050 (11)
C11	0.0291 (14)	0.0213 (14)	0.0173 (13)	0.0121 (12)	0.0024 (11)	-0.0009 (11)

C12	0.0317 (15)	0.0243 (15)	0.0213 (13)	0.0117 (12)	-0.0005 (12)	0.0006 (11)
C13	0.0329 (15)	0.0211 (15)	0.0242 (14)	0.0110 (12)	0.0038 (11)	-0.0004 (11)
C14	0.0281 (14)	0.0233 (15)	0.0183 (13)	0.0103 (12)	0.0021 (11)	0.0011 (11)
C15	0.0335 (15)	0.0240 (15)	0.0198 (14)	0.0116 (12)	0.0050 (11)	0.0040 (11)
C16	0.0291 (15)	0.0241 (15)	0.0192 (13)	0.0111 (12)	0.0006 (11)	0.0012 (11)
C17	0.0264 (14)	0.0242 (16)	0.0174 (13)	0.0121 (11)	0.0006 (10)	0.0006 (11)
O4	0.0432 (13)	0.0270 (12)	0.0240 (11)	0.0194 (10)	0.0077 (9)	0.0056 (9)
O5	0.0540 (14)	0.0318 (13)	0.0216 (11)	0.0224 (11)	0.0074 (10)	0.0025 (9)
06	0.0423 (12)	0.0214 (11)	0.0220 (10)	0.0133 (9)	0.0046 (9)	-0.0007 (8)
O7	0.0408 (12)	0.0264 (12)	0.0186 (10)	0.0140 (10)	0.0046 (9)	-0.0003 (9)
C18	0.0269 (14)	0.0271 (16)	0.0230 (14)	0.0137 (12)	0.0048 (11)	0.0025 (12)
C19	0.0240 (13)	0.0265 (16)	0.0216 (14)	0.0116 (11)	0.0039 (11)	0.0017 (12)
C20	0.0254 (13)	0.0255 (15)	0.0196 (13)	0.0117 (11)	0.0029 (11)	-0.0003 (11)
C21	0.0244 (13)	0.0205 (14)	0.0243 (14)	0.0092 (11)	0.0023 (11)	-0.0019 (11)
C22	0.0249 (14)	0.0247 (15)	0.0215 (14)	0.0115 (11)	0.0045 (11)	0.0035 (12)
C23	0.0240 (13)	0.0281 (16)	0.0187 (14)	0.0119 (12)	0.0023 (11)	-0.0010 (12)
C24	0.0261 (14)	0.0259 (15)	0.0232 (15)	0.0122 (12)	0.0058 (11)	-0.0007 (12)
08	0.0438 (13)	0.0286 (13)	0.0212 (11)	0.0146 (10)	0.0044 (9)	0.0017 (9)

Geometric parameters (Å, °)

F1—C6	1.357 (4)	C12—C13	1.513 (4)
01—C1	1.227 (4)	C13—H13A	0.9900
O2—H2	0.8400	C13—H13B	0.9900
O2—C1	1.314 (4)	C14—H14A	0.9900
O3—C3	1.263 (4)	C14—H14B	0.9900
N1—C9	1.397 (4)	C14—C15	1.517 (4)
N1-C10	1.339 (4)	C15—H15A	0.9900
N1-C11	1.463 (4)	C15—H15B	0.9900
N2C7	1.407 (4)	C16—H16A	0.9900
N2-C14	1.468 (4)	C16—H16B	0.9900
N2-C17	1.467 (4)	C16—C17	1.510 (4)
N3—H3A	0.9100	C17—H17A	0.9900
N3—H3B	0.9100	C17—H17B	0.9900
N3—C15	1.489 (4)	O4—H4	0.8400
N3—C16	1.484 (4)	O4—C18	1.320 (4)
C1—C2	1.475 (4)	O5—C18	1.216 (4)
C2—C3	1.428 (4)	O6—H6	0.8400
C2-C10	1.369 (4)	O6—C21	1.356 (4)
C3—C4	1.457 (4)	O7—H7	0.8400
C4—C5	1.406 (4)	O7—C23	1.372 (4)
C4—C9	1.407 (4)	C18—C19	1.501 (4)
С5—Н5	0.9500	C19—C20	1.385 (4)
C5—C6	1.358 (4)	C19—C24	1.395 (4)
С6—С7	1.419 (4)	C20—H20	0.9500
С7—С8	1.384 (4)	C20—C21	1.395 (4)
С8—Н8	0.9500	C21—C22	1.399 (4)
С8—С9	1.394 (4)	C22—H22	0.9500

C10—H10	0.9500	C22—C23	1.389 (5)
C11—H11	1.0000	C23—C24	1.398 (4)
C11—C12	1.499 (4)	C24—H24	0.9500
C11—C13	1.492 (4)	O8—H8A	0.88 (6)
C12—H12A	0.9900	O8—H8B	0.82 (6)
C12—H12B	0.9900		
C1—O2—H2	109.5	C11—C13—C12	59.9 (2)
C9—N1—C11	120.6 (2)	C11—C13—H13A	117.8
C10—N1—C9	119.9 (3)	C11—C13—H13B	117.8
C10—N1—C11	119.0 (3)	C12—C13—H13A	117.8
C7—N2—C14	115.7 (2)	C12—C13—H13B	117.8
C7—N2—C17	114.7 (2)	H13A—C13—H13B	114.9
C17—N2—C14	111.0 (2)	N2—C14—H14A	109.5
H3A—N3—H3B	108.0	N2—C14—H14B	109.5
C15—N3—H3A	109.3	N2-C14-C15	110.6 (2)
C15—N3—H3B	109.3	H14A—C14—H14B	108.1
C16—N3—H3A	109.3	C15—C14—H14A	109.5
C16—N3—H3B	109.3	C15—C14—H14B	109.5
C16—N3—C15	111.4 (2)	N3—C15—C14	110.2 (2)
O1—C1—O2	121.8 (3)	N3—C15—H15A	109.6
O1—C1—C2	121.2 (3)	N3—C15—H15B	109.6
O2—C1—C2	117.0 (3)	C14—C15—H15A	109.6
C3—C2—C1	121.3 (3)	C14—C15—H15B	109.6
C10—C2—C1	117.3 (3)	H15A—C15—H15B	108.1
C10—C2—C3	121.4 (3)	N3—C16—H16A	109.5
O3—C3—C2	122.5 (3)	N3—C16—H16B	109.5
O3—C3—C4	122.3 (3)	N3—C16—C17	110.7 (2)
C2—C3—C4	115.2 (3)	H16A—C16—H16B	108.1
C5—C4—C3	120.8 (3)	C17—C16—H16A	109.5
C5—C4—C9	118.6 (3)	C17—C16—H16B	109.5
C9—C4—C3	120.6 (3)	N2—C17—C16	109.4 (2)
C4—C5—H5	120.3	N2—C17—H17A	109.8
C6—C5—C4	119.5 (3)	N2—C17—H17B	109.8
С6—С5—Н5	120.3	C16—C17—H17A	109.8
F1—C6—C5	119.0 (3)	C16—C17—H17B	109.8
F1—C6—C7	117.8 (2)	H17A—C17—H17B	108.2
C5—C6—C7	123.2 (3)	C18—O4—H4	109.5
N2—C7—C6	120.4 (3)	С21—О6—Н6	109.5
C8—C7—N2	122.6 (3)	С23—О7—Н7	109.5
C8—C7—C6	116.9 (3)	O4—C18—C19	113.1 (3)
С7—С8—Н8	119.4	O5—C18—O4	123.1 (3)
C7—C8—C9	121.1 (3)	O5-C18-C19	123.8 (3)
С9—С8—Н8	119.4	C20-C19-C18	117.9 (3)
N1—C9—C4	119.8 (2)	C20-C19-C24	121.7 (3)
C8—C9—N1	119.6 (3)	C24—C19—C18	120.4 (3)
C8—C9—C4	120.7 (3)	С19—С20—Н20	120.3
N1—C10—C2	123.0 (3)	C19—C20—C21	119.3 (3)

N1—C10—H10	118.5	C21—C20—H20	120.3
C2-C10-H10	118.5	O6—C21—C20	122.8 (3)
N1—C11—H11	116.2	O6—C21—C22	117.1 (3)
N1—C11—C12	118.9 (3)	C20—C21—C22	120.1 (3)
N1—C11—C13	117.2 (2)	C21—C22—H22	120.2
C12—C11—H11	116.2	C_{23} C_{22} C_{21}	119.6 (3)
C13—C11—H11	116.2	C_{23} C_{22} H_{22}	120.2
C_{13} C_{11} C_{12}	60.8(2)	$07-C^{23}-C^{22}$	121.6(3)
C11 - C12 - H12A	117.8	$07 - C^{23} - C^{24}$	1173(3)
$C_{11} - C_{12} - H_{12}B$	117.8	C^{22} C^{23} C^{24}	1211(3)
C_{11} C_{12} C_{13}	59.4(2)	C19 - C24 - C23	121.1(3) 118 2 (3)
$H_{12} - C_{12} - H_{12}B$	115.0	C19 - C24 - C23	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.8	$C_{13} = C_{24} = H_{24}$	120.9
$C_{13} = C_{12} = H_{12R}$	117.8	$H_{2} = 0.24 - 1124$	120.9
C13—C12—III2B	117.0	Под—Оо—Пов	112 (3)
F1—C6—C7—N2	-2.4 (4)	C9—N1—C11—C13	-140.3 (3)
F1—C6—C7—C8	-178.8(3)	C9—C4—C5—C6	0.7 (4)
O1—C1—C2—C3	-173.3 (3)	C10—N1—C9—C4	-3.6(4)
O1—C1—C2—C10	4.3 (4)	C10—N1—C9—C8	175.5 (3)
O2—C1—C2—C3	5.9 (4)	C10—N1—C11—C12	117.4 (3)
O2—C1—C2—C10	-176.5(3)	C10—N1—C11—C13	47.5 (4)
O3—C3—C4—C5	2.6 (4)	C10—C2—C3—O3	178.2 (3)
O3—C3—C4—C9	-179.1(3)	C10—C2—C3—C4	-2.9(4)
N1—C11—C12—C13	-106.9(3)	C11—N1—C9—C4	-175.7 (2)
N1—C11—C13—C12	109.5 (3)	C11—N1—C9—C8	3.4 (4)
N2—C7—C8—C9	-175.5 (3)	C11—N1—C10—C2	175.1 (3)
N2-C14-C15-N3	-55.7 (3)	C14—N2—C7—C6	62.4 (4)
N3—C16—C17—N2	58.0 (3)	C14—N2—C7—C8	-121.4(3)
C1—C2—C3—O3	-4.2 (4)	C14—N2—C17—C16	-59.9 (3)
C1—C2—C3—C4	174.7 (3)	C15—N3—C16—C17	-56.1(3)
C1—C2—C10—N1	-177.1 (3)	C16—N3—C15—C14	54.5 (3)
C2—C3—C4—C5	-176.4(3)	C17—N2—C7—C6	-166.4(3)
C2—C3—C4—C9	2.0 (4)	C17—N2—C7—C8	9.8 (4)
C3—C2—C10—N1	0.5 (4)	C17—N2—C14—C15	59.2 (3)
C3—C4—C5—C6	179.1 (3)	O4—C18—C19—C20	-168.3(3)
C3—C4—C9—N1	1.1 (4)	O4—C18—C19—C24	11.9 (4)
C3—C4—C9—C8	-178.0(3)	O5—C18—C19—C20	11.1 (5)
C4—C5—C6—F1	178.0 (3)	O5—C18—C19—C24	-168.6(3)
C4—C5—C6—C7	-1.1 (5)	O6—C21—C22—C23	-179.4(3)
C5—C4—C9—N1	179.5 (3)	O7—C23—C24—C19	-177.1 (3)
C5—C4—C9—C8	0.4 (4)	C18—C19—C20—C21	178.9 (3)
C5—C6—C7—N2	176.7 (3)	C18—C19—C24—C23	179.2 (3)
C5—C6—C7—C8	0.3 (4)	C19—C20—C21—O6	-178.9(3)
C6—C7—C8—C9	0.8 (4)	C19—C20—C21—C22	1.4 (4)
C7—N2—C14—C15	-167.8 (2)	C20—C19—C24—C23	-0.5 (4)
C7—N2—C17—C16	166.7 (2)	C20—C21—C22—C23	0.3 (4)
C7—C8—C9—N1	179.7 (3)	C21—C22—C23—O7	177.1 (3)
C7—C8—C9—C4	-1.2 (4)	C21—C22—C23—C24	-2.2 (4)

C9—N1—C10—C2	2.9 (4)	C22—C23—C24—C19	2.3 (4)
C9—N1—C11—C12	-70.4 (4)	C24—C19—C20—C21	-1.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
02—H2···O3	0.84	1.78	2.551 (3)	152
N3—H3A···O1 ⁱ	0.91	1.75	2.652 (3)	172
N3—H3 <i>B</i> …Cl1	0.91	2.30	3.106 (3)	148
C10—H10…F1 ⁱⁱ	0.95	2.46	3.158 (4)	130
C12—H12 <i>B</i> ····O7 ⁱⁱⁱ	0.99	2.47	3.435 (4)	166
C14—H14 <i>B</i> …F1	0.99	2.27	2.927 (3)	123
C16—H16 <i>B</i> ····Cl1 ^{iv}	0.99	2.78	3.609 (3)	142
O4—H4…Cl1	0.84	2.28	3.082 (2)	160
O6—H6···Cl1 ^v	0.84	2.40	3.232 (2)	170
O7—H7···O8	0.84	1.96	2.769 (3)	161
O8—H8A····Cl1 ⁱ	0.88 (6)	2.51 (6)	3.362 (3)	164 (4)
O8—H8 <i>B</i> ⋯O5 ^{vi}	0.82 (6)	2.05 (6)	2.865 (4)	170 (5)

Symmetry codes: (i) *x*, *y*+1, *z*-1; (ii) *x*, *y*-1, *z*; (iii) *x*-1, *y*-1, *z*+1; (iv) *x*-1, *y*, *z*; (v) *x*, *y*+1, *z*; (vi) *x*, *y*, *z*-1.