

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 18 January 2022
Accepted 31 January 2022

Edited by J. T. Mague, Tulane University, USA

Keywords: crystal structure; cobalt thioantimonate; layered structure; hydrogen bonding.

CCDC reference: 2146891

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Synthesis and crystal structure of poly[[di- μ_{3}-tetra-thioantimonato-tris[(cyclam)cobalt(II)]] acetonitrile disolvate dihydrate] (cyclam = 1,4,8,11-tetraazacyclotetradecane)

Christian Näther, Felix Danker and Wolfgang Bensch*

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, D-24118 Kiel, Germany. *Correspondence e-mail: wbensch@ac.uni-kiel.de

Reaction of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with cyclam (cyclam $=1,4,8,11$-tetraazacyclotetradecane) and $\mathrm{Na}_{3} \mathrm{SbS}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (Schlippesches salt) in a mixture of acetonitrile and water leads to the formation of crystals of the title compound with the composition $\left\{\left[\mathrm{Co}_{3}\left(\mathrm{SbS}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)_{3}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ or $\left\{\left[(\mathrm{Co} \text {-cyclam })_{3^{-}}\right.\right.$ $\left.\left(\mathrm{SbS}_{4}\right)_{2}\right] \cdot 2$ (acetonitrile) $\left.\cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$. The crystal structure of the title compound consists of three crystallographically independent [Co-cyclam] ${ }^{2+}$ cations, which are located on centers of inversion, one $\left[\mathrm{SbS}_{4}\right]^{3-}$ anion, one water and one acetonitrile molecule that occupy general positions. The acetonitrile molecule is disordered over two orientations and was refined using a split model. The $\mathrm{Co}^{\mathrm{II}}$ cations are coordinated by four N atoms of the cyclam ligand and two trans- S atoms of the tetrathioantimonate anion within slightly distorted octahedra. The unique $\left[\mathrm{SbS}_{4}\right]^{3-}$ anion is coordinated to all three crystallographically independent $\mathrm{Co}^{\mathrm{II}}$ cations and this unit, with its symmetry-related counterparts, forms rings composed of six Co-cyclam cations and six tetrathioantimonate anions that are further condensed into layers. These layers are perfectly stacked onto each other so that channels are formed in which acetontrile solvate molecules that are hydrogen bonded to the anions are embedded. The water solvate molecules are located between the layers and are connected to the cyclam ligands and the $\left[\mathrm{SbS}_{4}\right]^{3-}$ anions via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding.

1. Chemical context

Inorganic-organic chalcogenidometallates are an important class of compounds and many such compounds have been reported in the literature (Sheldrick \& Wachhold, 1988; Bensch et al., 1997; Dehnen \& Melullis, 2007; Wang et al., 2016; Zhou, 2016; Zhu \& Dai, 2017; Nie et al., 2017). A large part of this family of compounds consists of thioantimonates, which exhibit a variety of coordination numbers that can lead to networks of different dimensionality (Jia et al., 2004; Powell et al., 2005; Spetzler et al., 2004; Zhang et al., 2007; Liu \& Zhou, 2011; Engelke et al., 2004; Puls et al., 2006). Moreover, some of them have potential for applications, for example in the field of superionic conductors (Zhou et al., 2019) or as photoconductive materials (Pienack et al., 2008a). For these reasons, we have explored such compounds over many years (Schaefer et al., 2003; Stähler et al., 2001; Schur et al., 1998, 2001; Kiebach et al., 2004; Spetzler et al., 2004; Lühmann et al., 2008; Pienack et al., 2008b). In the beginning, we synthesized new thioantimonates using elemental antimony, sulfur and amine molecules under solvothermal conditions but later we found that
many of these compounds are also available under solvothermal conditions if Schlippesches salt $\left(\mathrm{Na}_{3} \mathrm{SbS}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}\right)$ or NaSbS_{3} are used as reactants (Anderer et al., 2014, 2016; Danker et al., 2020). In this case, different SbS_{x} species are present in solution, because Schlippesches salt is unstable and forms different reactive species such as $\left[\mathrm{SbS}_{3} \mathrm{O}\right]^{3-}, \mathrm{HS}^{-}$, $\left[\mathrm{S}_{2} \mathrm{O}_{3}\right]^{2-}$ or $\left[\mathrm{SbS}_{4}\right]^{3-}$ anions (Rammelsberg, 1841; Long \& Bowen, 1970; Mosselmanns et al., 2000; Planer-Friedrich \& Scheinost, 2011; Planer-Friedrich \& Wilson, 2012; Anderer et al., 2014). In addition, a variety of complex redox and condensation reactions occur, generating polymeric thioantimonate(III) anions, which are found in the structures of the reaction products. To prevent the reduction of Sb^{V} to $\mathrm{Sb}^{\mathrm{III}}$, a different synthesis strategy is required and the reaction temperature must be reduced to slow down the decomposition of Schlippesches salt. Using an aqueous solution of $\mathrm{Na}_{3} \mathrm{SbS}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ and adding a solution of late transition-metal cations leads to immediate precipitation of sulfides or hydroxides, even when chelating amine molecules are added. To solve the problem we developed a two-solution strategy: an organic solution contains the transition-metal cations and the chelating amine molecule and a second solution comprises Schlippesches salt. In the organic solution, the transitionmetal complex is already generated in situ and mixing the two solutions leads to nucleation and successive growth of the product. A challenge is the integration of transition-metal cations into a thioantimonate(V) network, despite the $\left[\mathrm{SbS}_{4}\right]^{3-}$ anion offering four possible binding sites. In the course of this project we became interested in cyclam (cyclam $=1,4,8,11$-tetraazacyclotetradecane), which is a tetradentate ligand. This means that in an octahedral coordination of a transition-metal cation, two coordination sites are provided to which thioantimonate (V) anions can coordinate, which, depending on the nature of the anion, can lead to the formation of the desired thioantimonate (V) networks.

In this context, we have reported on two new polymeric thioantimonates with the composition $\left[(\mathrm{Cu} \text {-cyclam })_{3}\left(\mathrm{SbS}_{4}\right)_{2}\right]$-$20 \mathrm{H}_{2} \mathrm{O}$ and $\left[(\mathrm{Zn} \text {-cyclam })_{3}\left(\mathrm{SbS}_{4}\right)_{2}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Danker et al., 2021). In the crystal structure of the Cu compound, the copper cations are sixfold coordinated by the four N atoms of the cyclam ligand and two trans-sulfur atoms of the $\left[\mathrm{SbS}_{4}\right]^{3-}$ anions within slightly distorted octahedra. The copper cations are linked by the anions into rings by corner-sharing SbS_{4} and $\mathrm{CuN}_{4} \mathrm{~S}_{2}$ units, which are condensed into layers. These layers
are stacked in such a way that large pores are formed. Between the layers, water molecules are embedded. At first glance, the arrangement of the building blocks in the crystal structure of the Zn compound looks similar, but in this case the $\mathrm{Zn}^{\mathrm{II}}$ cation is disordered above and below the N_{4} plane in a 1:1 ratio, which means that it is in a fivefold coordination of the four N atoms of the cyclam ligand and one S atom of the $\left[\mathrm{SbS}_{4}\right]^{3-}$ anions in a square-pyramidal geometry. The structural difference between the Cu and Zn coordinations was reproduced by DFT calculations (Danker et al., 2021). In the course of our systematic work we tried to prepare a similar compound with cobalt using the same synthetic approach. This led to crystals of the title compound, which were characterized by single-crystal X-ray diffraction.

2. Structural commentary

The asymmetric unit of the title compound consists of three crystallographically independent $\mathrm{Co}^{\mathrm{II}}$ cations and three independent cyclam ligands that are located on centers of inversion, as well as one $\left[\mathrm{SbS}_{4}\right]^{3-}$ anion, one water and one acetonitrile molecule that occupy general positions (Fig. 1). The acetonitrile molecule is disordered over two orientations and was refined using a split model (see Refinement). The $\mathrm{Co}^{\mathrm{II}}$ cations are six-coordinate being bound to the four N atoms of cyclam ligand that are located in the equatorial plane and two trans-S atoms of two inversion-related tetrathioantimonate anions that occupy the apical positions (Fig. 2). The $\mathrm{Co}-\mathrm{N}$ bond lengths are very similar for the three crystallographically independent $\mathrm{Co}^{\mathrm{II}}$ cations whereas significant differences are found for the $\mathrm{Co}-\mathrm{S}$ bond lengths (Table 1). These changes, however, do not correlate with the $\mathrm{Sb}-\mathrm{S}$ distances (Table 1). The angles around the Co centers prove that the octahedra are slightly distorted (see supporting information). The cyclam ligands are in the trans- $\operatorname{III}(S, S, R, R)$ configuration, which is the

Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity and the disordering of the acetonitrile ligands is shown with full and open bonds. Symmetry codes for the generation of equivalent atoms: (i) $-x+1,-y,-z+2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2,-y,-z+1$.

Table 1
Selected bond lengths (\AA).

Sb1-S4	$2.3195(13)$	S1-Co1	$2.7258(12)$
Sb1-S1	$2.3200(12)$	S2-Co2	$2.6932(11)$
Sb1-S3	$2.3221(12)$	S3-Co3	$2.7821(12)$
Sb1-S2	$2.3382(11)$		

most stable arrangement for the first row transition-metal cation-centered cyclam complexes (Bosnich et al., 1965).

The $\mathrm{Sb}-\mathrm{S}$ bond lengths in the tetrathioantimonate anion (Table 1) are comparable and correspond to those observed in other compounds with this anion. From the $\mathrm{S}-\mathrm{Sb}-\mathrm{S}$ bond angles it is obvious that the tetrahedron is only slightly distorted (see supporting information). The $\left[\mathrm{SbS}_{4}\right]^{3-}$ anion shows the rare tridentate coordination mode and is linked to each of the three crystallographically independent $\mathrm{Co}^{\mathrm{II}}$ cations and with inversion-related counterparts, forming rings

Figure 2
Crystal structure of the title compound with a view of the coordination sphere of the three crystallographically independent Co cations.

Figure 3
Crystal structure of the title compound with a view of an 24-membered ring composed of six Co cations and six $\left[\mathrm{SbS}_{4}\right]^{3-}$ anions.
composed of six $\left[\mathrm{SbS}_{4}\right]^{3-}$ anions and six $\left[\mathrm{Co}(\text { cyclam }]^{2+}\right.$ cations (Fig. 3). These rings are condensed into layers parallel to the $b c$ plane (Fig. 4). This layer topology is identical to that in

Figure 4
Crystal structure of the title compound with a view of the $\mathrm{Co}_{3}\left(\mathrm{SbS}_{4}\right)_{2}$ network along the crystallographic a axis. The cyclam ligands are not shown for clarity.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 2^{\mathrm{i}}$	1.00	2.48	$3.442(4)$	161
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 4^{\mathrm{ii}}$	0.99	2.95	$3.858(5)$	152
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 4$	1.00	2.49	$3.448(4)$	159
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{O} 1^{\mathrm{iii}}$	1.00	2.23	$3.151(6)$	153
$\mathrm{~N} 12-\mathrm{H} 12 \cdots \mathrm{~S} 3^{\text {iv }}$	1.00	2.43	$3.378(4)$	157
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{O} 1$	1.00	2.08	$2.920(6)$	141
$\mathrm{~N} 22-\mathrm{H} 22 \cdots \mathrm{~S} 1$	1.00	2.35	$3.290(4)$	156
$\mathrm{O} 1-\mathrm{H} 1 C \cdots \mathrm{~S} 2^{\text {iii }}$	0.84	2.49	$3.276(4)$	157
$\mathrm{O} 1-\mathrm{H} 1 D \cdots \mathrm{~S} 4^{\mathrm{v}}$	0.84	2.46	$3.280(4)$	166
$\mathrm{C} 32-\mathrm{H} 32 B \cdots \mathrm{~S} 4$	0.98	2.81	$3.71(4)$	154
$\mathrm{C} 32^{\prime}-\mathrm{H} 32 F \cdots \mathrm{~S} 4$	0.98	2.88	$3.85(5)$	172

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x+2,-y,-z+2$; (iii)
$-x+1,-y,-z+1$; (iv) $-x+1,-y+1,-z+1 ;$ (v) $-x+2,-y,-z+1$.
$\left[\mathrm{Cu}(\text { cyclam })_{3}\left[\mathrm{SbS}_{4}\right)_{2}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}$ but the two compounds are not isotypic (Danker et al., 2021). The layers are stacked perfectly onto each other, forming channels extending along the a-axis direction (Fig. 5).

3. Supramolecular features

Within the channels are embedded acetonitrile solvate molecules that are disordered and hydrogen bonded to the tetrathioantimonate anion (Fig. 5). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ angles are close to linear, indicating that this is a significant interaction (Table 2). Water molecules are located between the layers and are connected to the $\left[\mathrm{SbS}_{4}\right]^{3-}$ anions via intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding, which is classed as strong because the angles are close to linearity and relatively short $\mathrm{H} \cdots \mathrm{S}$ distances are observed (Table 2). These water molecules also act as acceptors for $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding to the cyclam ligands (Table 2). The layers are linked by additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds between the cyclam

Figure 5
Crystal structure of the title compound with a view in the a-axis direction with intermolecular hydrogen bonding shown as dashed lines. The disorder of the acetonitrile molecules is omitted for clarity.
ligands and the tetrathioantimonate anions. There are additional $\mathrm{H} \cdots \mathrm{S}$ contacts but at distances close to van der Waals contacts with angles ranging between about 110 and 125°.

4. Database survey

A search for structures of cobalt-centered cylam complexes in the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016) gave 152 hits, in four of which the cobalt cations are in an $\mathrm{N}_{4} \mathrm{~S}_{2}$ coordination. In one of these structures (Refcode: NIMVIQ; Zeisler et al., 2013), a thiostannate acts as anion but none of them contains thioantimonate anions. The same results are obtained if the search is expanded to any transition-metal cation. Therefore, only the Cu and Zn compounds mentioned above have been published (Danker et al., 2021).

However, 21 structures with $\mathrm{Co}^{\mathrm{II}}$ and tetrathioantimonate anions have been published and in two of these structures, the cobalt cations are linked to a tetrathioantimonate anion, viz. [Co(diethylenetriamine $\left.)_{2}\right][\mathrm{Co}(\operatorname{tris}(2-$ aminomethyl $)$ amine $)$ $\left.\mathrm{SbS}_{4}\right]_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Engelke et al., 2008) and $[\mathrm{Co}$ (diethylenetriamine $\left.)_{2}\right]\left[\mathrm{Co}\left(\text { tris(2-aminomethyl)amine) } \mathrm{SbS}_{4}\right]_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right.$ (Lichte, et al., 2009).

5. Synthesis and crystallization

Synthesis of $\mathrm{Na}_{3} \mathrm{SbS}_{4} \cdot \mathbf{9 \mathrm { H } _ { 2 } \mathrm { O }}$

$\mathrm{Na}_{3} \mathrm{SbS}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ was synthesized by adding 16.6 g (0.213 mol) of $\mathrm{Na}_{2} \mathrm{~S} \cdot x \mathrm{H}_{2} \mathrm{O}$ (technical grade, purchased from Acros Organics) to 58 mL of demineralized water. This solution was heated to 323 K for 1 h . Afterwards, 19.6 g (0.058 mol) of $\mathrm{Sb}_{2} \mathrm{~S}_{3}(98 \%$, purchased from Alfa Aesar) and $3.69 \mathrm{~g}(0.115 \mathrm{~mol})$ of sulfur (min. 99%, purchased from Alfa Aesar) were added and the reaction mixture was heated to 343 K for 6 h . The reaction mixture was filtered and the filtrate was stored overnight, leading to the formation of slightly yellow crystals, which were filtered off, washed with small amounts of water and dried under vacuum (yield about 30% based on $\mathrm{Sb}_{2} \mathrm{~S}_{3}$).

Synthesis of the title compound

$16 \mathrm{mg}(0.044 \mathrm{mmol})$ of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (purchased from Alfa Aesar) and $16 \mathrm{mg}(0.08 \mathrm{mmol})$ of cyclam (purchased from Strem Chemicals) were dissolved in 2 mL of acetonitrile (purchased from Merck). To this solution, a solution of 50 mg (0.14 mmol) of $\mathrm{Na}_{3} \mathrm{SbS}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ dissolved in 1 mL of $\mathrm{H}_{2} \mathrm{O}$ was added. Within 3d a few colorless crystals of the title compound were obtained, which were always contaminated with an additional and unknown phase that is amorphous to X-rays. This additional phase is also present if the reaction conditions are varied slightly. Therefore, one of the colorless crystals was selected for structure determination.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically. The C - and N -bound H atoms were

Table 3
Experimental details.
Crystal data
Chemical formula

M_{r}

Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

```
[Co
    2C2}\mp@subsup{\textrm{H}}{3}{}\textrm{N}\cdot2\mp@subsup{\textrm{H}}{2}{}\textrm{O
1395.90
Triclinic, P\overline{1}
200
8.7292 (3), 12.9680 (5), 13.8936 (5)
66.218 (3), 77.035 (3), 83.321 (3)
1401.93 (9)
1
Mo K\alpha
2.16
0.15 }\times0.10\times0.0
```

Stoe IPDS2
Numerical ($X-R E D$ and
X-SHAPE; Stoe, 2008)
0.649, 0.774
15304, 6098, 5078
0.030
0.639
$0.047,0.126,1.06$
6098
321
87
H -atom parameters constrained
$0.81,-1.56$

Computer programs: X-AREA (Stoe, 2008), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).
located in the difference map but were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ (1.5 for methyl H atoms) using a riding model. The O-bound H atoms were located in the difference map, their bond lengths were set to ideal values and finally they were refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ using a riding model. The acetontrile molecule is disordered over two orientations and was refined using a split model (ratio: 1:1) with restraints for the geometry and the components of the anisotropic displacement parameters.

Acknowledgements

Financial support by the state of Schleswig-Holstein is gratefully acknowledged.

References

Anderer, C., Delwa de Alarcón, N., Näther, C. \& Bensch, W. (2014). Chem. Eur. J. 20, 16953-16959.
Anderer, C., Näther, C. \& Bensch, W. (2016). Cryst. Growth Des. 16, 3802-3810.
Bensch, W., Näther, C. \& Schur, M. (1997). Chem. Commun. pp. 1773-1774.
Bosnich, B., Poon, C. K. \& Tobe, M. L. (1965). Inorg. Chem. 4, 11021108.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Danker, F., Engesser, T. A., Broich, D., Näther, C. \& Bensch, W. (2021). Dalton Trans. 50, 18107-18117.

Danker, F., Näther, C. \& Bensch, W. (2020). Acta Cryst. E76, 32-37.
Dehnen, S. \& Melullis, M. (2007). Coord. Chem. Rev. 251, 1259-1280.
Engelke, L., Näther, C., Leisner, P. \& Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 2959-2965.
Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. \& Möller, M. H. (2004). Z. Naturforsch. B. 59, 869-876.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. \& Gu, X. M. (2004). J. Solid State Chem. 177, 2477-2483.
Kiebach, R., Studt, F., Näther, C. \& Bensch, W. (2004). Eur. J. Inorg. Chem. pp. 2553-2556.
Lichte, J., Lühmann, H., Näther, C. \& Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 2021-2026.
Liu, X. \& Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268-1289.
Long, G. G. \& Bowen, L. H. (1970). Inorg. Nucl. Chem. Lett. 6, 837842.

Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. \& Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 16871695.

Mosselmans, J. F. W., Helz, G. R., Pattrick, R. A., Charnock, J. M. \& Vaughan, D. H. (2000). Appl. Geochem. 15, 879-889.
Nie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. \& Zhang, Q. (2017). Inorg. Chem. Front, 4, 945-959.

Pienack, N., Lehmann, S., Lühmann, H., El-Madani, M., Näther, C. \& Bensch, W. (2008b). Z. Anorg. Allg. Chem. 634, 2323-2329.
Pienack, N., Puls, A., Näther, C. \& Bensch, W. (2008a). Inorg. Chem. 47, 9606-9611.
Planer-Friedrich, B. \& Scheinost, A. C. (2011). Environ. Sci. Technol. 45, 6855-6863.
Planer-Friedrich, B. \& Wilson, N. (2012). Chem. Geol. 322-323, 1-10.
Powell, A. V., Thun, J. \& Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414-3419.
Puls, A., Näther, C. \& Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239-1243.
Rammelsberg, C. F. (1841). Ann. Phys. Chem. 52, 207.
Schaefer, M., Näther, C. \& Bensch, W. (2003). Solid State Sci. 5, 11351139.

Schur, M., Näther, C. \& Bensch, W. (2001). Z. Naturforsch. Teil B. 56, 79-84.
Schur, M., Rijnberk, H., Näther, C. \& Bensch, W. (1998). Polyhedron, 18, 101-107.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sheldrick, W. S. \& Wachhold, M. (1988). Coord. Chem. Rev. 176, 211322.

Spetzler, V., Rijnberk, H., Näther, C. \& Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142-148.
Stähler, R., Näther, C. \& Bensch, W. (2001). Acta Cryst. C57, 26-27.
Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Wang, K. Y., Feng, M. L., Huang, X. Y. \& Li, J. (2016). Coord. Chem. Rev. 322, 41-68.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zeisler, C., Näther, C. \& Bensch, W. (2013). CrystEngComm, 15, 8874-8876.
Zhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. \& Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606-1612.
Zhou, J. (2016). Coord. Chem. Rev. 315, 112-134.
Zhou, L., Assoud, A., Zhang, Q., Wu, X. \& Nazar, L. F. (2019). J. Am. Chem. Soc. 141, 19002-19013.
Zhu, Q. Y. \& Dai, J. (2017). Coord. Chem. Rev. 330, 95-109.

supporting information

Synthesis and crystal structure of poly[[di- μ_{3}-tetrathioantimonato-tris-
 [(cyclam)cobalt(II)]] acetonitrile disolvate dihydrate] (cyclam = 1,4,8,11-tetraazacyclotetradecane)

Christian Näther, Felix Danker and Wolfgang Bensch

Computing details

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[di- μ_{3}-tetrathioantimonato-tris[(cyclam)cobalt(II)]] acetonitrile disolvate dihydrate]

Crystal data

$\left[\mathrm{Co}_{3}\left(\mathrm{SbS}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)_{3}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
Z=1
$$

$M_{r}=1395.90$
Triclinic, $P \overline{1}$
$a=8.7292$ (3) Å
$b=12.9680(5) \AA$
$c=13.8936(5) \AA$
$\alpha=66.218(3)^{\circ}$
$\beta=77.035(3)^{\circ}$
$\gamma=83.321(3)^{\circ}$
$V=1401.93(9) \AA^{3}$
$F(000)=711$
$D_{\mathrm{x}}=1.653 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 15304 reflections
$\theta=1.6-27.0^{\circ}$
$\mu=2.16 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, red
$0.15 \times 0.10 \times 0.07 \mathrm{~mm}$

Data collection

Stoe IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
$T_{\text {min }}=0.649, T_{\text {max }}=0.774$
15304 measured reflections
6098 independent reflections
5078 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 16$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.126$
$S=1.06$
6098 reflections
321 parameters
Hydrogen site location: mixed
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.084 P)^{2}+0.1597 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.047$
$\Delta \rho_{\max }=0.81 \mathrm{e} \AA^{-3}$
87 restraints
$\Delta \rho_{\text {min }}=-1.56$ e \AA^{-3}

Extinction correction: SHELXL2016/6

(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0136 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Sb1	0.73888 (3)	0.19084 (2)	0.69041 (2)	0.03283 (12)	
S1	0.64905 (15)	0.01167 (10)	0.80137 (9)	0.0414 (3)	
S2	0.51359 (13)	0.30840 (9)	0.67415 (9)	0.0380 (3)	
S3	0.86596 (14)	0.19636 (10)	0.52265 (9)	0.0416 (3)	
S4	0.90553 (14)	0.24527 (12)	0.76901 (10)	0.0461 (3)	
Col	0.500000	0.000000	1.000000	0.0350 (2)	
N1	0.6290 (4)	-0.1388 (3)	1.0629 (3)	0.0392 (8)	
H1	0.583701	-0.171109	1.141506	0.047*	
C1	0.7871 (6)	-0.1025 (5)	1.0528 (4)	0.0461 (11)	
H1A	0.847663	-0.085872	0.979114	0.055*	
H1B	0.843932	-0.162998	1.103578	0.055*	
C2	0.7700 (6)	0.0016 (5)	1.0773 (4)	0.0465 (11)	
H2A	0.720658	-0.016978	1.153611	0.056*	
H2B	0.874555	0.032869	1.063722	0.056*	
N2	0.6701 (5)	0.0849 (3)	1.0071 (3)	0.0391 (8)	
H2	0.736736	0.114228	0.933522	0.047*	
C3	0.6268 (7)	0.1831 (4)	1.0369 (4)	0.0465 (11)	
H3A	0.723689	0.218535	1.033103	0.056*	
H3B	0.567730	0.157340	1.111845	0.056*	
C4	0.5275 (7)	0.2697 (4)	0.9642 (4)	0.0502 (12)	
H4A	0.584251	0.290889	0.889012	0.060*	
H4B	0.515488	0.338203	0.980459	0.060*	
C5	0.3653 (6)	0.2311 (4)	0.9738 (4)	0.0462 (11)	
H5A	0.309991	0.205729	1.049576	0.055*	
H5B	0.304013	0.295721	0.930767	0.055*	
Co2	0.500000	0.500000	0.500000	0.0342 (2)	
N11	0.3450 (4)	0.4238 (3)	0.4693 (3)	0.0375 (8)	
H11	0.350102	0.342674	0.518595	0.045*	
C11	0.1850 (5)	0.4666 (4)	0.5023 (4)	0.0422 (10)	
H11A	0.105455	0.411439	0.515475	0.051*	
H11B	0.160604	0.538662	0.445200	0.051*	
C12	0.1825 (5)	0.4840 (4)	0.6041 (4)	0.0422 (10)	
H12A	0.083455	0.523577	0.622556	0.051*	
H12B	0.188964	0.410337	0.664261	0.051*	
N12	0.3180 (4)	0.5518 (3)	0.5857 (3)	0.0370 (8)	

H12	0.291146	0.630110	0.537533	0.044*	
C13	0.3355 (6)	0.5600 (4)	0.6854 (4)	0.0433 (10)	
H13A	0.348209	0.483093	0.739725	0.052*	
H13B	0.238416	0.594863	0.713526	0.052*	
C14	0.4744 (7)	0.6285 (5)	0.6695 (5)	0.0500 (12)	
H14A	0.471829	0.639111	0.736564	0.060*	
H14B	0.464296	0.703873	0.612383	0.060*	
C15	0.6317 (6)	0.5751 (4)	0.6397 (4)	0.0435 (10)	
H15A	0.717003	0.616669	0.643320	0.052*	
H15B	0.637578	0.496295	0.691914	0.052*	
Co3	1.000000	0.000000	0.500000	0.0441 (2)	
N21	0.8192 (5)	-0.0196 (3)	0.4448 (3)	0.0409 (9)	
H21	0.851395	-0.081969	0.418885	0.049*	
C21	0.6910 (6)	-0.0636 (5)	0.5384 (5)	0.0480 (11)	
H21A	0.610940	-0.097814	0.520863	0.058*	
H21B	0.639594	-0.001829	0.559812	0.058*	
C22	0.7616 (6)	-0.1511 (4)	0.6284 (4)	0.0484 (12)	
H22A	0.680551	-0.178519	0.694862	0.058*	
H22B	0.805027	-0.216022	0.609610	0.058*	
N22	0.8886 (5)	-0.0960 (3)	0.6442 (3)	0.0401 (9)	
H22	0.833782	-0.042725	0.677357	0.048*	
C23	0.9780 (7)	-0.1761 (4)	0.7226 (4)	0.0477 (12)	
H23A	1.027418	-0.235259	0.696736	0.057*	
H23B	0.904885	-0.213090	0.791464	0.057*	
C24	1.1039 (7)	-0.1201 (5)	0.7413 (4)	0.0549 (13)	
H24A	1.148426	-0.175116	0.802670	0.066*	
H24B	1.055165	-0.056814	0.761253	0.066*	
C25	1.2359 (6)	-0.0757 (5)	0.6455 (4)	0.0496 (12)	
H25A	1.320806	-0.049907	0.666612	0.060*	
H25B	1.279912	-0.137189	0.621601	0.060*	
O1	0.7600 (5)	-0.1823 (3)	0.3619 (3)	0.0554 (9)	
H1C	0.704099	-0.205901	0.333522	0.08 (2)*	
H1D	0.850839	-0.202701	0.339072	0.10 (3)*	
N31	0.748 (3)	0.4588 (19)	1.0545 (11)	0.116 (7)	0.5
C31	0.815 (5)	0.457 (4)	0.9743 (13)	0.101 (7)	0.5
C32	0.908 (4)	0.469 (4)	0.8707 (12)	0.090 (7)	0.5
H32A	0.899961	0.547550	0.820009	0.135*	0.5
H32B	0.869880	0.419111	0.844728	0.135*	0.5
H32C	1.018580	0.449588	0.876821	0.135*	0.5
N31'	0.814 (3)	0.4114 (18)	1.0734 (10)	0.112 (7)	0.5
C31'	0.833 (5)	0.452 (4)	0.9817 (11)	0.093 (7)	0.5
C32'	0.854 (5)	0.488 (4)	0.8670 (12)	0.122 (12)	0.5
H32D	0.943593	0.537807	0.831978	0.183*	0.5
H32E	0.758528	0.529186	0.843259	0.183*	0.5
H32F	0.873030	0.422251	0.847836	0.183*	0.5

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.03142 (17)	0.03401 (17)	0.02939 (17)	-0.00144 (10)	-0.00454 (10)	-0.00920 (11)
S1	0.0463 (6)	0.0347 (5)	0.0360 (6)	-0.0044 (4)	0.0013 (5)	-0.0103 (5)
S2	0.0336 (5)	0.0376 (5)	0.0357 (6)	0.0022 (4)	-0.0059 (4)	-0.0085 (4)
S3	0.0441 (6)	0.0424 (6)	0.0312 (5)	0.0026 (5)	-0.0021 (4)	-0.0111 (5)
S4	0.0384 (6)	0.0608 (7)	0.0406 (6)	-0.0107 (5)	-0.0073 (5)	-0.0189 (6)
Col	0.0331 (4)	0.0364 (4)	0.0342 (4)	-0.0022 (3)	-0.0069 (3)	-0.0119 (3)
N1	0.0383 (19)	0.041 (2)	0.0338 (19)	0.0015 (16)	-0.0068 (15)	-0.0103 (16)
C1	0.036 (2)	0.055 (3)	0.044 (3)	0.002 (2)	-0.0090 (19)	-0.016 (2)
C2	0.038 (2)	0.061 (3)	0.039 (3)	-0.008 (2)	-0.0099 (19)	-0.016 (2)
N2	0.040 (2)	0.045 (2)	0.0311 (18)	-0.0077 (16)	-0.0064 (15)	-0.0122 (16)
C3	0.060 (3)	0.043 (3)	0.041 (3)	-0.014 (2)	-0.007 (2)	-0.018 (2)
C4	0.065 (3)	0.040 (2)	0.040 (3)	-0.010 (2)	0.000 (2)	-0.013 (2)
C5	0.053 (3)	0.038 (2)	0.038 (2)	0.003 (2)	-0.001 (2)	-0.011 (2)
Co2	0.0295 (4)	0.0378 (4)	0.0331 (4)	-0.0022 (3)	-0.0049 (3)	-0.0118 (3)
N11	0.0363 (19)	0.0381 (19)	0.0348 (19)	-0.0025 (15)	-0.0086 (15)	-0.0095 (16)
C11	0.032 (2)	0.047 (3)	0.044 (3)	-0.0011 (18)	-0.0105 (19)	-0.013 (2)
C12	0.030 (2)	0.042 (2)	0.043 (3)	-0.0043 (17)	-0.0024 (18)	-0.006 (2)
N12	0.0352 (18)	0.0370 (18)	0.0337 (19)	0.0011 (15)	-0.0061 (15)	-0.0093 (15)
C13	0.044 (2)	0.048 (3)	0.035 (2)	0.003 (2)	-0.0039 (19)	-0.016 (2)
C14	0.057 (3)	0.050 (3)	0.046 (3)	-0.004 (2)	-0.008 (2)	-0.022 (2)
C15	0.049 (3)	0.043 (2)	0.043 (3)	-0.003 (2)	-0.015 (2)	-0.017 (2)
Co3	0.0412 (5)	0.0448 (5)	0.0438 (5)	-0.0033 (4)	-0.0067 (4)	-0.0149 (4)
N21	0.0363 (19)	0.042 (2)	0.046 (2)	0.0010 (16)	-0.0086 (16)	-0.0195 (18)
C21	0.035 (2)	0.055 (3)	0.058 (3)	-0.004 (2)	-0.006 (2)	-0.027 (3)
C22	0.046 (3)	0.044 (3)	0.052 (3)	-0.009 (2)	0.003 (2)	-0.020 (2)
N22	0.042 (2)	0.0364 (19)	0.037 (2)	-0.0024 (16)	-0.0023 (16)	-0.0117 (16)
C23	0.056 (3)	0.039 (2)	0.037 (2)	0.003 (2)	-0.002 (2)	-0.009 (2)
C24	0.067 (3)	0.060 (3)	0.042 (3)	0.011 (3)	-0.020 (3)	-0.022 (2)
C25	0.044 (3)	0.058 (3)	0.051 (3)	0.007 (2)	-0.019 (2)	-0.023 (2)
O1	0.054 (2)	0.060 (2)	0.061 (2)	-0.0025 (18)	-0.0136 (19)	-0.031 (2)
N31	0.150 (16)	0.126 (13)	0.073 (4)	-0.026 (10)	0.011 (6)	-0.052 (5)
C31	0.141 (15)	0.097 (11)	0.071 (4)	-0.041 (10)	0.014 (6)	-0.045 (5)
C32	0.117 (15)	0.094 (14)	0.066 (4)	-0.033 (11)	0.002 (6)	-0.041 (7)
N31'	0.162 (19)	0.106 (13)	0.070 (3)	-0.046 (12)	-0.019 (5)	-0.026 (5)
C31'	0.114 (13)	0.100 (13)	0.070 (3)	-0.052 (11)	-0.017 (5)	-0.026 (5)
C32'	0.18 (3)	0.12 (2)	0.070 (3)	-0.07 (2)	-0.020 (6)	-0.026 (5)

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Sb} 1 — \mathrm{~S} 4$	$2.3195(13)$	$\mathrm{N} 12-\mathrm{H} 12$	1.0000
$\mathrm{Sb} 1-\mathrm{S} 1$	$2.3200(12)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.510(8)$
$\mathrm{Sb} 1-\mathrm{S} 3$	$2.3221(12)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9900
$\mathrm{Sb} 1-\mathrm{S} 2$	$2.3382(11)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	0.9900
$\mathrm{~S} 1-\mathrm{Co} 1$	$2.7258(12)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.514(7)$
$\mathrm{S} 2-\mathrm{Co} 2$	$2.6932(11)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.9900

S3-Co3	2.7821 (12)
Col-N2 ${ }^{\text {i }}$	1.990 (4)
Col - N 2	1.990 (4)
Col-N1	1.993 (4)
$\mathrm{Col}-\mathrm{N} 1^{\text {i }}$	1.993 (4)
N1-C1	1.468 (6)
N1-C5 ${ }^{\text {i }}$	1.470 (7)
N1-H1	1.0000
$\mathrm{C} 1-\mathrm{C} 2$	1.504 (8)
C1-H1A	0.9900
C1-H1B	0.9900
$\mathrm{C} 2-\mathrm{N} 2$	1.481 (6)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900
N2-C3	1.476 (6)
N2-H2	1.0000
C3-C4	1.511 (8)
C3-H3A	0.9900
С3-H3B	0.9900
C4-C5	1.517 (8)
C4-H4A	0.9900
C4-H4B	0.9900
C5-H5A	0.9900
C5-H5B	0.9900
$\mathrm{Co} 2-\mathrm{N} 11{ }^{\text {ii }}$	1.975 (4)
Co2-N11	1.975 (4)
Co2-N12	1.985 (4)
$\mathrm{Co} 2-\mathrm{N} 12{ }^{\text {ii }}$	1.985 (4)
N11-C15ii	1.475 (6)
N11-C11	1.486 (6)
N11-H11	1.0000
C11-C12	1.514 (7)
C11-H11A	0.9900
C11-H11B	0.9900
C12-N12	1.470 (6)
C12-H12A	0.9900
C12-H12B	0.9900
N12-C13	1.474 (6)
$\mathrm{S} 4-\mathrm{Sb} 1-\mathrm{S} 1$	109.86 (5)
S4-Sb1-S3	110.64 (5)
S1-Sb1-S3	110.81 (5)
S4-Sb1-S2	110.32 (5)
$\mathrm{S} 1-\mathrm{Sb} 1-\mathrm{S} 2$	105.36 (4)
$\mathrm{S} 3-\mathrm{Sb} 1-\mathrm{S} 2$	109.73 (4)
Sb1-S1-Co1	112.07 (5)
Sb1-S2-Co2	122.01 (4)
Sb1-S3-Co3	119.94 (5)

C14-H14B	0.9900
C15-H15A	0.9900
C15-H15B	0.9900
Co3-N22	1.976 (4)
$\mathrm{Co3-N2} 2^{\text {iii }}$	1.976 (4)
Co3-N21	1.985 (4)
$\mathrm{Co3-N} 21{ }^{\text {iii }}$	1.985 (4)
N21-C21	1.472 (7)
$\mathrm{N} 21-\mathrm{C} 25^{\text {iii }}$	1.488 (6)
N21-H21	1.0000
C21-C22	1.506 (8)
C21-H21A	0.9900
C21-H21B	0.9900
C22-N22	1.486 (7)
$\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	0.9900
C22-H22B	0.9900
N22-C23	1.468 (6)
N22-H22	1.0000
C23-C24	1.506 (9)
C23-H23A	0.9900
C23-H23B	0.9900
C24-C25	1.510 (8)
C24-H24A	0.9900
C24-H24B	0.9900
C25-H25A	0.9900
C25-H25B	0.9900
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{C}$	0.8400
O1-H1D	0.8400
N31-C31	1.145 (15)
C31-C32	1.442 (17)
C32-H32A	0.9800
C32-H32B	0.9800
C32-H32C	0.9800
N31'- ${ }^{\prime} 31^{\prime}$	1.145 (15)
C31'-C32'	1.442 (16)
C32'-H32D	0.9800
C32'-H32E	0.9800
C32'-H32F	0.9800
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	108.4
C12-N12-C13	111.3 (4)
C12-N12-Co2	108.0 (3)
C13-N12-Co2	119.6 (3)
C12-N12-H12	105.6
C13-N12-H12	105.6
Co2-N12-H12	105.6
N12-C13-C14	112.7 (4)
N12-C13-H13A	109.0

$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Col-N2}$	180.00 (19)
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 1$	93.50 (17)
N2-Col-N1	86.50 (17)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Col} \mathrm{C}^{-} 1^{\text {i }}$	86.50 (17)
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	93.50 (17)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	180.0
N2 - $\mathrm{Co} 1-\mathrm{S} 1$	89.02 (12)
N2-Co1-S1	90.98 (12)
N1-Co1-S1	88.50 (12)
N1- ${ }^{\text {i }}$ Co1-S1	91.50 (12)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{S} 1^{\mathrm{i}}$	90.98 (12)
$\mathrm{N} 2-\mathrm{Col}-\mathrm{Sl}^{\text {i }}$	89.02 (12)
N1-Col-S ${ }^{\text {i }}$	91.50 (12)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{S} 1^{\mathrm{i}}$	88.50 (12)
S1-Co1-S1 ${ }^{\text {i }}$	180.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5{ }^{\text {i }}$	111.8 (4)
C1-N1-Co1	107.1 (3)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Col}$	119.1 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	106.0
C5i-N1-H1	106.0
Co1-N1-H1	106.0
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	108.2 (4)
N1-C1-H1A	110.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.1
N1-C1-H1B	110.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.1
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.4
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	107.9 (4)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.1
N2-C2-H2B	110.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.1
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	111.7 (4)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Co} 1$	118.9 (3)
C2-N2- Co 1	107.0 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$	106.2
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2$	106.2
$\mathrm{Co} 1-\mathrm{N} 2-\mathrm{H} 2$	106.2
N2-C3-C4	112.0 (4)
N2-C3-H3A	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.2
N2-C3-H3B	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.2
H3A-C3-H3B	107.9
C3-C4-C5	114.6 (4)
C3-C4-H4A	108.6
C5-C4-H4A	108.6

C14-C13-H13A	109.0
N12-C13-H13B	109.0
C14-C13-H13B	109.0
H13A-C13-H13B	107.8
C13-C14-C15	113.7 (4)
C13-C14-H14A	108.8
C15-C14-H14A	108.8
C13-C14-H14B	108.8
C15-C14-H14B	108.8
H14A-C14-H14B	107.7
N11ii-C15-C14	111.5 (4)
N11ii-C15-H15A	109.3
C14-C15-H15A	109.3
N11ii-C15-H15B	109.3
C14-C15-H15B	109.3
H15A-C15-H15B	108.0
N22-Co3-N22 ${ }^{\text {iii }}$	180.00 (19)
N22-Co3-N21	86.93 (17)
$\mathrm{N} 22^{\text {iii }}-\mathrm{Co3}-\mathrm{N} 21$	93.07 (17)
N22-Co3-N21 ${ }^{\text {iii }}$	93.07 (17)
$\mathrm{N} 22{ }^{\text {iii }}$-Co3- ${ }^{\text {C }} 1^{\text {iii }}$	86.93 (17)
$\mathrm{N} 21-\mathrm{Co3-N} 21{ }^{\text {iii }}$	180.0
N22-Co3-S3 ${ }^{\text {iii }}$	87.74 (11)
$\mathrm{N} 2 \mathrm{i}^{\text {iii - }} \mathrm{Co3}-\mathrm{S} 3{ }^{\text {iii }}$	92.26 (11)
N21-Co3-S3 ${ }^{\text {iii }}$	87.89 (12)
N2 ${ }^{\text {iii }}$-Co3-S3 ${ }^{\text {iii }}$	92.11 (12)
N22-Co3-S3	92.26 (11)
N22 ${ }^{\text {iii }}$-Co3-S3	87.74 (11)
N21-Co3-S3	92.11 (12)
N21 ${ }^{\text {iii }}$-Co3-S3	87.89 (12)
S3 ${ }^{\text {iii }}$-Co3-S3	180.00 (5)
$\mathrm{C} 21-\mathrm{N} 21-\mathrm{C} 25^{\text {iii }}$	111.9 (4)
C21-N21-Co3	106.4 (3)
C25iii-N21-Co3	119.8 (3)
C21-N21-H21	105.9
$\mathrm{C} 25^{\text {iiii- }} \mathrm{N} 21-\mathrm{H} 21$	105.9
$\mathrm{Co3-N} 21-\mathrm{H} 21$	105.9
N21-C21-C22	107.7 (4)
$\mathrm{N} 21-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	110.2
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	110.2
N21-C21-H21B	110.2
C22-C21-H21B	110.2
H21A-C21-H21B	108.5
N22-C22-C21	107.0 (4)
$\mathrm{N} 22-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	110.3
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	110.3
N22-C22-H22B	110.3
C21-C22-H22B	110.3

C3-C4-H4B	108.6	$\mathrm{H} 22 \mathrm{~A}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	108.6
C5-C4-H4B	108.6	C23-N22-C22	112.3 (4)
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.6	C23-N22-Co3	119.9 (3)
N1--C5-C4	112.6 (4)	$\mathrm{C} 22-\mathrm{N} 22-\mathrm{Co} 3$	106.9 (3)
N1- ${ }^{\text {i }}$ - $5-\mathrm{H} 5 \mathrm{~A}$	109.1	C23-N22-H22	105.6
C4-C5-H5A	109.1	C22-N22-H22	105.6
N1--C5-H5B	109.1	$\mathrm{Co} 3-\mathrm{N} 22-\mathrm{H} 22$	105.6
C4-C5-H5B	109.1	N22-C23-C24	112.5 (4)
H5A-C5-H5B	107.8	N22-C23-H23A	109.1
N11ii-Co2-N11	180.0	$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A}$	109.1
N11 ${ }^{\text {ii- }} \mathrm{Co} 2-\mathrm{N} 12$	93.73 (16)	$\mathrm{N} 22-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.1
N11-Co2-N12	86.27 (16)	$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	109.1
N11 ${ }^{\text {iii }}$ - $\mathrm{Co} 2-\mathrm{N} 12{ }^{\text {ii }}$	86.27 (16)	H23A-C23-H23B	107.8
$\mathrm{N} 11-\mathrm{Co} 2-\mathrm{N} 12{ }^{\text {ii }}$	93.73 (16)	C23-C24-C25	113.8 (5)
$\mathrm{N} 12-\mathrm{Co} 2-\mathrm{N} 12{ }^{\text {ii }}$	180.0	C23-C24-H24A	108.8
N11ii-Co2-S2 ${ }^{\text {ii }}$	86.16 (11)	C25-C24-H24A	108.8
N11-Co2-S2 ${ }^{\text {ii }}$	93.84 (11)	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~B}$	108.8
N12-Co2-S2 ${ }^{\text {ii }}$	91.31 (11)	C25-C24-H24B	108.8
$\mathrm{N} 12{ }^{\text {ii }}$ - $\mathrm{Co} 2-\mathrm{S} 2{ }^{\text {ii }}$	88.69 (11)	$\mathrm{H} 24 \mathrm{~A}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~B}$	107.7
N11ii-Co2-S2	93.84 (11)	N21 ${ }^{\text {iii }}$ - $\mathrm{C} 25-\mathrm{C} 24$	111.6 (4)
N11-Co2-S2	86.16 (11)	$\mathrm{N} 21{ }^{\text {iii }}$ - $\mathrm{C} 25-\mathrm{H} 25 \mathrm{~A}$	109.3
N12-Co2-S2	88.69 (11)	C24-C25-H25A	109.3
N12ii-Co2-S2	91.31 (11)	$\mathrm{N} 21{ }^{\text {iii }}$ - $\mathrm{C} 25-\mathrm{H} 25 \mathrm{~B}$	109.3
S2 ${ }^{\text {ii }}$ - $\mathrm{Co} 2-\mathrm{S} 2$	180.0	C24-C25-H25B	109.3
C15ii- ${ }^{\text {ii }} 11-\mathrm{C} 11$	111.4 (4)	H25A-C25-H25B	108.0
$\mathrm{C} 15{ }^{\text {ii- }}$ - $111-\mathrm{Co} 2$	118.1 (3)	$\mathrm{H} 1 \mathrm{C}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{D}$	102.1
C11-N11-Co2	108.6 (3)	N31-C31-C32	172 (5)
C15ii-N11-H11	106.0	C31-C32-H32A	109.4
C11-N11-H11	106.0	C31-C32-H32B	109.5
Co2-N11-H11	106.0	H32A-C32-H32B	109.5
N11-C11-C12	107.6 (4)	C31-C32-H32C	109.5
N11-C11-H11A	110.2	H32A-C32-H32C	109.5
C12-C11-H11A	110.2	H32B-C32-H32C	109.5
N11-C11-H11B	110.2	N31'-C31'-C32'	172 (5)
C12-C11-H11B	110.2	C31'-C32'-H32D	109.5
H11A-C11-H11B	108.5	C31'-C32'-H32E	109.5
N12-C12-C11	108.2 (4)	H32D-C32'-H32E	109.5
N12-C12-H12A	110.1	C31'-C32'-H32F	109.4
C11-C12-H12A	110.1	H32D-C32'-H32F	109.5
N12-C12-H12B	110.1	H32E-C32'-H32F	109.5
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	110.1		

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2,-y,-z+1$.

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~S} 2^{\mathrm{i}}$	1.00	2.48	$3.442(4)$	161

supporting information

$\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{~S} 4^{\text {iv }}$	0.99	2.95	$3.858(5)$	152
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{~S} 4$	1.00	2.49	$3.448(4)$	159
$\mathrm{~N} 11 — \mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{v}}$	1.00	2.23	$3.151(6)$	153
$\mathrm{~N} 12 — \mathrm{H} 12 \cdots \mathrm{~S} 3^{\mathrm{ii}}$	1.00	2.43	$3.378(4)$	157
$\mathrm{~N} 21 — \mathrm{H} 21 \cdots \mathrm{O} 1$	1.00	2.08	$2.920(6)$	141
$\mathrm{~N} 22 — \mathrm{H} 22 \cdots \mathrm{~S} 1$	1.00	2.35	$3.290(4)$	156
$\mathrm{O} 1 — \mathrm{H} 1 C \cdots \mathrm{~S} 2^{\mathrm{v}}$	0.84	2.49	$3.276(4)$	157
$\mathrm{O} 1 — \mathrm{H} 1 D \cdots \mathrm{~S} 4^{\mathrm{iii}}$	0.84	2.46	$3.280(4)$	166
$\mathrm{C} 32 — \mathrm{H} 32 B \cdots \mathrm{~S} 4$	0.98	2.81	$3.71(4)$	154
$\mathrm{C} 32^{\prime}-\mathrm{H} 32 F \cdots \mathrm{~S} 4$	0.98	2.88	$3.85(5)$	172

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2,-y,-z+1$; (iv) $-x+2,-y,-z+2$; (v) $-x+1,-y,-z+1$.

