

Received 3 February 2022 Accepted 15 February 2022

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; tetrahydropyridine; hydrogen bonds; dimers; Hirshfeld surface analysis.

CCDC reference: 2152191

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 2-amino-4-(4-methoxyphenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile

Khammed A. Asadov,^a Victor N. Khrustalev,^{b,c} Ekaterina V. Dobrokhotova,^b Mehmet Akkurt,^d Afet T. Huseynova,^a Anzurat A. Akobirshoeva^e* and Elnur Z. Huseynov^a

^aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, ^bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, ^cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^eAcad Sci Republ Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan. *Correspondence e-mail: anzurat2003@mail.ru

The central tetrahydropyridine ring of the title compound, $C_{19}H_{17}N_3O_2$, adopts a screw-boat conformation. In the crystal, strong $C-H\cdots O$ and $N-H\cdots N$ hydrogen bonds form dimers with $R_2^2(14)$ and $R_2^2(12)$ ring motifs, respectively, between consecutive molecules along the *c*-axis direction. Intermolecular N- $H\cdots O$ and $C-H\cdots O$ hydrogen bonds connect these dimers, forming a threedimensional network. $C-H\cdots \pi$ interactions and $\pi-\pi$ stacking interactions contribute to the stabilization of the molecular packing. A Hirshfeld surface analysis indicates that the contributions from the most prevalent interactions are $H\cdots H$ (47.1%), $C\cdots H/H\cdots C$ (20.9%), $O\cdots H/H\cdots O$ (15.3%) and $N\cdots H/$ $H\cdots N$ (11.4%).

1. Chemical context

Carbon–carbon and carbon–nitrogen bond-forming reactions represent an important synthetic class in organic chemistry (Yadigarov *et al.*, 2009; Abdelhamid *et al.*, 2011; Yin *et al.*, 2020; Khalilov *et al.*, 2021). Notably, pyridine derivatives are widely applied in the discovery of biologically active molecules and multifunctional materials (Magerramov *et al.*, 2018; Sherman & Murugan, 2015; Mamedov *et al.*, 2020). On the other hand, the tetrahydropyridine moiety is an essential part of diverse biologically active compounds, food additives and natural products (Mateeva *et al.*, 2005).

In the framework of ongoing structural studies (Safavora *et al.*, 2019; Naghiyev *et al.*, 2020; 2021*a,b*; Maharramov *et al.*, 2021), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 2-amino-4-(4-meth-oxyphenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

2. Structural commentary

The title compound (Fig. 1) crystallizes in the monoclinic space group $P2_1/n$ with Z = 4. The central N1/C2–C6 tetrahydropyridine ring of the molecule adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975) $Q_T = 0.503$ (2) Å, $\theta = 66.1$ (2)°, $\varphi = 153.3$ (2)°. The C7– C12 phenyl ring, which is attached to N1, is in an equatorial position and makes a dihedral angle of 54.43 (9)° with the mean plane of the tetrahydropyridine ring. The C13–C18 methoxyphenyl ring, which is attached to C4, is in an axial position. The dihedral angle between the C7–C12 phenyl and C13–C18 methoxyphenyl rings is 68.61 (10)°.

Figure 2

A general view of the N-H···N, N-H···O and C-H···O hydrogen bonds in the crystal packing of the title compound [symmetry codes: (i) -x, -y, -z + 1; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z; (vi) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$].

Table 1	
Hydrogen-bond geometry (Å, °).	

Cg3 is the centroid of the C13–C18 benzene ring of the methoxyphenyl group.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3C\cdots N2^{i}$	0.91 (2)	2.10 (2)	2.996 (2)	166 (2)
$N3-H3D\cdots O2^{ii}$	0.91(2)	2.48 (2)	3.152 (2)	131.0 (19)
C11-H11···O1 ⁱⁱⁱ	0.95	2.55	3.210 (3)	127
$C14-H14\cdots O1^{iv}$	0.95	2.48	3.199 (2)	133
$C10-H10\cdots Cg3^{iii}$	0.95	2.99	3.813 (3)	146
$C18-H18\cdots Cg3^{v}$	0.95	2.87	3.716 (2)	150

Symmetry codes: (i) -x, -y, -z + 1; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

3. Supramolecular features

As shown in Fig. 2, strong intermolecular C11-H11···O1 and N3-H3C···N2 hydrogen bonds (Table 1) form dimers with $R_2^2(14)$ and $R_2^2(12)$ ring motifs (Bernstein *et al.*, 1995), respectively, between adjacent molecules along the *c*-axis direction. These dimers are connected by N3-H3D···O2 and C14-H14···O1 hydrogen bonds, forming a three-dimensional network (Table 1; Fig. 3). Furthermore, C-H··· π [C10-H10···Cg3ⁱⁱⁱ and C18-H18···Cg3^v; symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; Cg3 is the centroid of the C13-C18 methoxyphenyl ring; Table 1] and π - π stacking interactions [Cg2···Cg2ⁱⁱⁱ = 3.8918 (15) Å and slippage = 1.551 Å; Cg2 is the centroid of the C7-C12 phenyl ring] contribute to the stabilization of the molecular packing (Figs. 4 and 5).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed and the associated two dimensional fingerprint plots generated using

The crystal packing of the title compound, viewed along the *b* axis, showing the $N-H\cdots N$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds as dashed lines.

Figure 4

A general view of the C-H··· π interactions and π - π stacking interactions in the crystal packing of the title compound [symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (v) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$].

Crystal Explorer 17 (Turner et al., 2017). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional d_{norm} surface plotted over a fixed colour scale mapped over the range -0.4835 (red) to 1.8469 (blue) a.u. The d_{norm} mapping indicates that strong hydrogenbonding interactions, such as $N-H\cdots N$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Tables 1 and 2), appear to be the

The crystal packing of the title compound, viewed along the *b* axis, showing the $C-H\cdots\pi$ interactions and $\pi-\pi$ stacking interactions as dashed lines.

primary interactions in the structure, seen as a bright-red area in the Hirshfeld surface (Fig. 6).

The Hirshfeld surface mapped over electrostatic potential (Spackman *et al.*, 2008) is shown in Fig. 7. The blue regions indicate positive electrostatic potential (hydrogen-bond

View of the three-dimensional Hirshfeld surface of the title compound, showing the hydrogen-bonding interactions, plotted over electrostatic potential energy in the range -0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms, corresponding to positive and negative potentials.

Table 2 Summary of short interatomic contacts (Å) in the title compound.

Contact	Distance	Symmetry operation
O1···H14	2.48	x, 1 + y, z
H11···O1	2.55	1 - x, 1 - y, 1 - z
$N2 \cdot \cdot \cdot H17$	2.70	$\frac{1}{2} - x, -\frac{1}{2} + y, \frac{3}{2} - z$
$O2 \cdot \cdot \cdot H3D$	2.48 (2)	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$
$H3C \cdot \cdot \cdot N2$	2.10 (3)	-x, -y, 1-z
C20···C6	3.318 (3)	-x, 1-y, 1-z

donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

The two-dimensional fingerprint plots are illustrated in Fig. 8. $H \cdots H$ contacts comprise 47.1% of the total interactions (Fig. 8*b*), followed by $C \cdots H/H \cdots C$ (Fig. 8*c*; 20.9%), $O \cdots H/H \cdots O$ (Fig. 8*d*; 15.3%) and $N \cdots H/H \cdots N$ (Fig. 8*e*; 11.4%).

(a)

All...All

2.

2.2

2.0

1.8

1.

(e)

2.6

2.4

2.2

2.0

1.8

1.

d

N...H/H...N

(d) 0...H/H...0

Figure 8 (*a*) The full two-dimensional fingerprint plot for the title compound and those delineated into (*b*) $H \cdots H$ (47.1%), (*c*) $C \cdots H/H \cdots C$ (20.9%), (*d*) $O \cdots H/H \cdots O$ (15.3%) and (*e*) $N \cdots H/H \cdots N$ (11.4%) contacts.

d

The percentage contributions of the C···C, C···N/N···C and N···N contacts are negligible, at 3.1, 1.4 and 0.8%, respectively. The predominance of H···H, C···H/H···C, O···H/H···C and N···H/H···N contacts indicate that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar *et al.*, 2015).

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom *et al.*, 2016) found four compounds with the 6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine unit that are similar to the title compound, *viz*. 5-acetyl-2-amino-4-(4-bromophenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile (I) (YAXQAT; Mamedov *et al.*, 2022), 2-amino-4-(2,6-dichlorophenyl)-5-(1-hydroxyethyl-idene)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile (II) (OZAKOS, Naghiyev *et al.*, 2021*c*), methyl 6-oxo-4-phenyl-2-[(*Z*)-2-(pyridin-2-yl)ethenyl]-1,4,5,6-tetrahydropyridine-3-carboxylate (III) (PEDFEL, Smits *et al.*, 2012) and ethyl 5-ethoxymethylene-2-methyl-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (IV) (VAGXAD, Novoa de Armas *et al.*, 2003).

Compound (I) crystallizes in the monoclinic space group Pc with Z = 4, and with two molecules, A and B, in the asymmetric unit. These molecules are stereoisomers with an R,R absolute configuration at C3 and C4 in molecule A, whereas the corresponding atoms in B, C23 and C24, have an S configuration. In both molecules, the conformation of the central dihydropyridine ring is close to screw-boat. The molecular conformation is stabilized by N-H···O hydrogen bonds, forming a dimer with an $R_2^2(16)$ ring motif. Both molecules of the dimers are connected by intermolecular N-H···O and N-H···N hydrogen bonds with an $R_2^3(14)$ ring motif into chains along the *c*-axis direction. Furthermore C-Br··· π and C=O··· π stacking interactions between these ribbons contribute to the stabilization of the molecular packing.

Compound (II) crystallizes in the monoclinic space group $P2_1/c$ with Z = 4 and the asymmetric unit comprises one molecule. The central tetrahydropyridine ring is almost planar with a maximum deviation of 0.074 (3) Å for C4. The phenyl and dichlorophenyl rings are at an angle of 21.28 (15)°. They form dihedral angles of 86.10 (15) and 87.17 (14)°, respectively, with the central tetrahydropyridine ring. A strong intramolecular O2-H2···O1 hydrogen bond stabilizes the molecular conformation of the molecule, creating an *S*(6) ring motif. In the crystal, molecules are linked by intermolecular N-H··· π and C-H··· π interactions, forming a three-dimensional network.

In molecule (III) (monoclinic space group $P2_1/c$, Z = 4), the *cis* configuration of the pyridinyl-vinyl fragment is stabilized by a strong intramolecular N-H···N hydrogen bond. The phenyl and pyridine rings are inclined to one another by 77.3 (1)°. In the crystal, inversion dimers are present *via* pairs of C-H···O hydrogen bonds and are further linked by C-H···O hydrogen bonds and C-H··· π interactions.

For compound (IV) (monoclinic space group C2/c, Z = 8), the molecules form dimers by means of a pair of N-H···O hydrogen bonds. The 2(1*H*)-pyridone ring displays a screwboat conformation.

6. Synthesis and crystallization

To a solution of 2-(4-methoxybenzylidene)malononitrile (0.94 g; 5.1 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (25 mL), 3-4 drops of piperidine were added and the mixture was stirred at 328–333 K for 10 min and was kept at room temperature for 48 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 61%; m.p. 471–472 K).

¹H NMR (300 MHz, DMSO- d_6 , ppm.): 2.80 (dd-dd, 1H, CH₂); 3.19 (dd-dd, 1H, CH₂); 3.82 (s, 3H, OCH₃); 3.93 (t, 1H, CH); 5.85 (s, 2H, NH₂); 7.15–7.58 (m, 9H, 2Ar – H). ¹³C NMR (75 MHz, DMSO- d_6 , ppm.): 36.06 (CH – Ar), 40.42 (CH₂), 53.78 (OCH₃), 59.05 (C_{quat.}), 112.89 (2CH_{ar}), 121.21 (CN), 128.61 (CH_{ar.}), 128.88 (2CH_{ar.}), 130.44 (2CH_{ar.}), 130.51 (2CH_{ar.}), 136.06 (C_{ar. quat.}), 137.02 (C_{ar. quat.}), 154.59 (C_{ar. quat.}), 155.18 (C_{quat.}), 168.82 (N – C=O).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms bonded to nitrogen were located in a difference-Fourier map, and only their positional parameters were refined $[N3-H3C = 0.91 (2) \text{ and } N3-H3D = 0.91 (2) \text{ Å with } U_{iso}(H) = 1.2U_{eq}(N)]$. C-bound H atoms were positioned geometrically, with C-H = 0.95-1.00 Å, and were refined with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C-\text{methyl})$.

Acknowledgements

Authors' contributions are as follows. Conceptualization, KAA and EZH; methodology, EZH and KAA; investigation, KAA, MA and EVD; writing (original draft), MA and KAA; writing (review and editing of the manuscript), MA and EZH; visualization, MA, EZH and KAA; funding acquisition, VNK, ATH and AAA; resources, AAA, VNK and KAA; supervision, KAA and MA.

Funding information

This work was supported by the Baku State University and the Ministry of Science and Higher Education of the Russian Federation.

References

- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, 0744.
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	C ₁₉ H ₁₇ N ₃ O ₂
Mr	319.36
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.910 (3), 6.3200 (13), 21.170 (4)
β (°)	106.48 (3)
$V(Å^3)$	1656.3 (7)
Z	4
Radiation type	Synchrotron, $\lambda = 0.80246$ Å
$\mu \text{ (mm}^{-1})$	0.11
Crystal size (mm)	$0.40\times0.15\times0.07$
Data collection	
Diffractometer	Ravonix SX165 CCD
Absorption correction	Multi-scan (SCALA:Evans, 2006)
T_{min} T_{max}	0.950, 0.985
No. of measured, independent and	26143, 3603, 3125
observed $[I > 2\sigma(I)]$ reflections	· · ·
R _{int}	0.049
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.643
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.143, 1.05
No. of reflections	3603
No. of parameters	225
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.29, -0.27

Computer programs: *Marccd* (Doyle, 2011), *iMosflm* (Battye et al., 2011), *SHELXT* (Sheldrick, 2015a), *SHELXL* (Sheldrick, 2015b), *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2020).

- Doyle, R. A. (2011). *Marccd software manual*. Rayonix LLC, Evanston, IL 60201, USA.
- Evans, P. (2006). Acta Cryst. D62, 72-82.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
- Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). *Russ. J. Org. Chem.* 54, 1731– 1734.
- Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Engineer. Appl. Sci. 1, 5–11.
- Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). *Mendeleev Commun.* 30, 498–499.
- Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). *Acta Cryst.* E78, 291–296.
- Mateeva, N. N., Winfield, L. L. & Redda, K. K. (2005). Curr. Med. Chem. 12, 551–571.
- Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). *Molecules*, 25, 2235–2248.
- Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021*a*). *Acta Cryst.* E77, 195–199.

- Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021*c*). *Acta Cryst.* E77, 930–934.
- Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021*b*). *Acta Cryst.* E77, 512–515.
- Novoa de Armas, H., Peeters, O. M., Blaton, N. M., De Ranter, C. J., Suárez Navarro, M., Verdecia Reyes, Y., Ochoa Rodríguez, E. & Salfrán, E. (2003). *Acta Cryst.* E**59**, o230–o231.
- Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Sherman, A. R. & Murugan, R. (2015). Adv. Heterocycl. Chem. 14, 227–269.
- Smits, R., Belyakov, S., Vigante, B. & Duburs, G. (2012). *Acta Cryst.* E68, 03489.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). *CrystEngComm*, **10**, 377–388.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.
- Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). *Russ. J. Org. Chem.* 45, 1856–1858.
- Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.

supporting information

Acta Cryst. (2022). E78, 330-335 [https://doi.org/10.1107/S205698902200175X]

Crystal structure and Hirshfeld surface analysis of 2-amino-4-(4-methoxy-phenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile

Khammed A. Asadov, Victor N. Khrustalev, Ekaterina V. Dobrokhotova, Mehmet Akkurt, Afet T. Huseynova, Anzurat A. Akobirshoeva and Elnur Z. Huseynov

Computing details

Data collection: *Marccd* (Doyle, 2011); cell refinement: *iMosflm* (Battye *et al.*, 2011); data reduction: *iMosflm* (Battye *et al.*, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

2-Amino-4-(4-methoxyphenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile

Crystal data

 $C_{19}H_{17}N_{3}O_{2}$ $M_{r} = 319.36$ Monoclinic, $P2_{1}/n$ a = 12.910 (3) Å b = 6.3200 (13) Å c = 21.170 (4) Å $\beta = 106.48$ (3)° V = 1656.3 (7) Å³ Z = 4

Data collection

Rayonix SX165 CCD diffractometer /f scan Absorption correction: multi-scan (Scala;Evans, 2006) $T_{min} = 0.950, T_{max} = 0.985$ 26143 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.143$ S = 1.053603 reflections 225 parameters 0 restraints F(000) = 672 $D_x = 1.281 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.80246 \text{ Å}$ Cell parameters from 600 reflections $\theta = 2.4-30.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.40 \times 0.15 \times 0.07 \text{ mm}$

3603 independent reflections 3125 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 31.1^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -16 \rightarrow 16$ $k = -8 \rightarrow 7$ $l = -27 \rightarrow 27$

Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.059P)^2 + 1.3785P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.033 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.33220 (11)	0.8608 (2)	0.55256 (7)	0.0332 (3)	
O2	0.55206 (12)	0.1472 (3)	0.79862 (7)	0.0413 (4)	
N1	0.24126 (11)	0.5628 (2)	0.50951 (7)	0.0269 (3)	
N2	-0.03015 (13)	0.1368 (3)	0.56257 (8)	0.0321 (4)	
N3	0.12078 (12)	0.3027 (3)	0.45307 (8)	0.0300 (4)	
H3C	0.0857 (18)	0.177 (4)	0.4520 (11)	0.036*	
H3D	0.1458 (19)	0.336 (4)	0.4183 (12)	0.036*	
C2	0.26361 (14)	0.7307 (3)	0.55371 (9)	0.0272 (4)	
C3	0.19790 (14)	0.7407 (3)	0.60221 (9)	0.0287 (4)	
H3A	0.1284	0.8122	0.5814	0.034*	
H3B	0.2372	0.8254	0.6409	0.034*	
C4	0.17589 (14)	0.5196 (3)	0.62495 (9)	0.0277 (4)	
H4	0.1221	0.5339	0.6506	0.033*	
C5	0.12391 (13)	0.3942 (3)	0.56355 (9)	0.0268 (4)	
C6	0.15916 (13)	0.4149 (3)	0.50888 (9)	0.0262 (4)	
C7	0.30690 (13)	0.5355 (3)	0.46514 (9)	0.0279 (4)	
C8	0.31570 (15)	0.6969 (3)	0.42287 (9)	0.0338 (4)	
H8	0.2765	0.8249	0.4215	0.041*	
C9	0.38256 (17)	0.6690 (4)	0.38261 (11)	0.0408 (5)	
H9	0.3906	0.7800	0.3541	0.049*	
C10	0.43779 (17)	0.4806 (4)	0.38357 (11)	0.0421 (5)	
H10	0.4827	0.4624	0.3554	0.051*	
C11	0.42768 (16)	0.3194 (4)	0.42533 (10)	0.0379 (5)	
H11	0.4651	0.1898	0.4256	0.045*	
C12	0.36267 (15)	0.3466 (3)	0.46698 (9)	0.0314 (4)	
H12	0.3564	0.2370	0.4964	0.038*	
C13	0.27801 (14)	0.4188 (3)	0.66992 (9)	0.0266 (4)	
C14	0.32417 (14)	0.2403 (3)	0.65102 (9)	0.0274 (4)	
H14	0.2927	0.1822	0.6085	0.033*	
C15	0.41514 (15)	0.1438 (3)	0.69241 (9)	0.0298 (4)	
H15	0.4443	0.0197	0.6787	0.036*	
C16	0.46259 (15)	0.2306 (3)	0.75379 (9)	0.0316 (4)	
C17	0.41891 (15)	0.4125 (3)	0.77340 (9)	0.0333 (4)	
H17	0.4520	0.4735	0.8153	0.040*	
C18	0.32761 (15)	0.5043 (3)	0.73205 (9)	0.0301 (4)	
H18	0.2980	0.6273	0.7460	0.036*	

supporting information

C19	0.5911 (2)	-0.0507 (4)	0.78134 (12)	0.0535 (6)
H19A	0.6153	-0.0321	0.7418	0.080*
H19B	0.5329	-0.1558	0.7726	0.080*
H19C	0.6517	-0.0995	0.8178	0.080*
C20	0.03871 (13)	0.2533 (3)	0.56225 (9)	0.0268 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0328 (7)	0.0278 (7)	0.0408 (7)	-0.0063 (5)	0.0132 (6)	-0.0045 (6)
O2	0.0378 (7)	0.0485 (9)	0.0319 (7)	0.0068 (6)	0.0005 (6)	0.0031 (6)
N1	0.0262 (7)	0.0245 (7)	0.0304 (7)	-0.0025 (6)	0.0086 (6)	-0.0026 (6)
N2	0.0318 (8)	0.0294 (8)	0.0348 (8)	-0.0028 (6)	0.0093 (6)	0.0009 (7)
N3	0.0311 (8)	0.0297 (8)	0.0288 (8)	-0.0072 (6)	0.0079 (6)	-0.0025 (6)
C2	0.0272 (8)	0.0218 (8)	0.0310 (9)	0.0010 (6)	0.0058 (7)	0.0001 (7)
C3	0.0300 (8)	0.0248 (8)	0.0319 (9)	0.0000 (7)	0.0096 (7)	-0.0022 (7)
C4	0.0267 (8)	0.0268 (9)	0.0305 (9)	-0.0005 (7)	0.0098 (7)	-0.0023 (7)
C5	0.0240 (8)	0.0255 (8)	0.0300 (9)	-0.0003 (6)	0.0060 (6)	0.0015 (7)
C6	0.0233 (7)	0.0228 (8)	0.0303 (8)	-0.0006 (6)	0.0040 (6)	0.0003 (7)
C7	0.0243 (8)	0.0310 (9)	0.0278 (8)	-0.0053 (7)	0.0064 (6)	-0.0040 (7)
C8	0.0319 (9)	0.0351 (10)	0.0331 (9)	-0.0054 (8)	0.0072 (7)	0.0005 (8)
C9	0.0395 (10)	0.0479 (12)	0.0366 (10)	-0.0109 (9)	0.0135 (8)	0.0021 (9)
C10	0.0368 (10)	0.0531 (13)	0.0404 (11)	-0.0106 (9)	0.0173 (9)	-0.0088 (10)
C11	0.0304 (9)	0.0418 (11)	0.0426 (11)	-0.0044 (8)	0.0122 (8)	-0.0118 (9)
C12	0.0296 (9)	0.0313 (9)	0.0329 (9)	-0.0019 (7)	0.0083 (7)	-0.0033 (8)
C13	0.0279 (8)	0.0239 (8)	0.0286 (8)	-0.0032 (6)	0.0089 (7)	-0.0008 (7)
C14	0.0276 (8)	0.0259 (8)	0.0278 (8)	-0.0031 (7)	0.0067 (7)	-0.0011 (7)
C15	0.0308 (8)	0.0283 (9)	0.0312 (9)	0.0005 (7)	0.0105 (7)	0.0018 (7)
C16	0.0300 (9)	0.0356 (10)	0.0273 (9)	-0.0003 (7)	0.0047 (7)	0.0052 (7)
C17	0.0347 (9)	0.0368 (10)	0.0269 (9)	-0.0047 (8)	0.0063 (7)	-0.0033 (8)
C18	0.0342 (9)	0.0280 (9)	0.0290 (9)	-0.0020 (7)	0.0106 (7)	-0.0030 (7)
C19	0.0529 (13)	0.0586 (15)	0.0408 (12)	0.0229 (12)	0.0002 (10)	0.0033 (11)
C20	0.0264 (8)	0.0245 (8)	0.0280 (8)	0.0024 (7)	0.0054 (6)	0.0005 (7)

Geometric parameters (Å, °)

01—C2	1.214 (2)	С8—Н8	0.9500
O2—C16	1.375 (2)	C9—C10	1.385 (3)
O2—C19	1.434 (3)	С9—Н9	0.9500
N1-C2	1.390 (2)	C10—C11	1.379 (3)
N1-C6	1.410 (2)	C10—H10	0.9500
N1—C7	1.443 (2)	C11—C12	1.390 (3)
N2-C20	1.156 (2)	C11—H11	0.9500
N3—C6	1.346 (2)	C12—H12	0.9500
N3—H3C	0.91 (2)	C13—C14	1.387 (2)
N3—H3D	0.91 (2)	C13—C18	1.398 (3)
С2—С3	1.507 (2)	C14—C15	1.391 (3)
C3—C4	1.530 (2)	C14—H14	0.9500

supporting information

С3—НЗА	0.9900	C15—C16	1.383 (3)
С3—Н3В	0.9900	С15—Н15	0.9500
C4—C5	1.508 (2)	C16—C17	1.395 (3)
C4—C13	1.529 (2)	C17—C18	1.381 (3)
C4—H4	1.0000	С17—Н17	0.9500
C5—C6	1 365 (2)	C18—H18	0.9500
C_{5} C_{20}	1.300(2) 1 410(2)	C19—H19A	0.9800
C7 C8	1.110(2) 1.383(3)	C10 H10B	0.9800
C7 - C12	1.303(3)		0.9800
C^{2}	1.305(3)		0.9800
Co-C9	1.380 (3)		
C16—O2—C19	116.44 (16)	С8—С9—Н9	119.7
C2—N1—C6	121.62 (15)	C11—C10—C9	120.19 (19)
C2—N1—C7	118.78 (14)	С11—С10—Н10	119.9
C6-N1-C7	119 55 (14)	C9-C10-H10	119.9
C6-N3-H3C	122 5 (15)	C10-C11-C12	119.9 (2)
C6 N2 H3D	122.3(15)		119.9 (2)
	117.7(13)		120.0
$H_{3}C - N_{3} - H_{3}D$	110(2)	C12—C11—H11	120.0
OI = C2 = NI	121.14 (16)		119.35 (19)
01 - 02 - 03	122./1 (16)	C/=C12-H12	120.3
N1—C2—C3	116.16 (15)	СП—СІ2—НІ2	120.3
C2—C3—C4	111.53 (14)	C14—C13—C18	117.78 (17)
С2—С3—НЗА	109.3	C14—C13—C4	121.64 (16)
С4—С3—НЗА	109.3	C18—C13—C4	120.58 (16)
С2—С3—Н3В	109.3	C13—C14—C15	122.01 (17)
C4—C3—H3B	109.3	C13—C14—H14	119.0
НЗА—СЗ—НЗВ	108.0	C15—C14—H14	119.0
C5—C4—C13	114.33 (15)	C16—C15—C14	119.18 (17)
C5—C4—C3	106.59 (15)	C16—C15—H15	120.4
C13—C4—C3	111.84 (14)	C14—C15—H15	120.4
С5—С4—Н4	108.0	O2—C16—C15	123.92 (18)
C13—C4—H4	108.0	O2—C16—C17	116.22 (17)
C3—C4—H4	108.0	C15—C16—C17	119.86 (17)
C6—C5—C20	119.33 (16)	C18—C17—C16	120.13 (17)
C6—C5—C4	120.46 (15)	С18—С17—Н17	119.9
$C_{20} - C_{5} - C_{4}$	120 21 (16)	С16—С17—Н17	119.9
N3-C6-C5	124.45 (16)	C17 - C18 - C13	121.01 (18)
N3-C6-N1	116 48 (16)	C17 - C18 - H18	119 5
C5-C6-N1	110.40 (10)	C_{13} C_{18} H_{18}	119.5
C_{3}^{8} C_{7}^{7} C_{12}^{12}	117.07(10) 121.01(17)	$O_2 C_{10} H_{10A}$	100.5
$C_{0} = C_{1} = C_{12}$	121.01(17) 120.20(17)	$O_2 = C_{19} = H_{19} P_{19}$	109.5
$C_0 - C_7 - N_1$	120.29(17)		109.5
C12 - C7 - N1	118.68 (16)	H19A—C19—H19B	109.5
U = U = U = U = U = U = U = U = U = U =	118.95 (19)	U2	109.5
C/	120.5	H19A—C19—H19C	109.5
С9—С8—Н8	120.5	H19B—C19—H19C	109.5
C10—C9—C8	120.5 (2)	N2—C20—C5	178.6 (2)
С10—С9—Н9	119.7		

C6—N1—C2—O1	-177.75 (16)	C12—C7—C8—C9	-0.9 (3)
C7—N1—C2—O1	4.8 (3)	N1—C7—C8—C9	177.59 (17)
C6—N1—C2—C3	2.1 (2)	C7—C8—C9—C10	1.5 (3)
C7—N1—C2—C3	-175.40 (15)	C8—C9—C10—C11	-0.8 (3)
O1—C2—C3—C4	-143.36 (18)	C9—C10—C11—C12	-0.6 (3)
N1—C2—C3—C4	36.8 (2)	C8—C7—C12—C11	-0.4 (3)
C2—C3—C4—C5	-54.71 (18)	N1-C7-C12-C11	-178.91 (16)
C2-C3-C4-C13	70.92 (19)	C10—C11—C12—C7	1.1 (3)
C13—C4—C5—C6	-84.4 (2)	C5—C4—C13—C14	7.1 (2)
C3—C4—C5—C6	39.7 (2)	C3—C4—C13—C14	-114.15 (18)
C13—C4—C5—C20	95.23 (19)	C5-C4-C13-C18	-172.53 (16)
C3—C4—C5—C20	-140.67 (16)	C3—C4—C13—C18	66.2 (2)
C20—C5—C6—N3	-2.7 (3)	C18—C13—C14—C15	1.7 (3)
C4—C5—C6—N3	176.95 (17)	C4—C13—C14—C15	-177.99 (16)
C20—C5—C6—N1	177.30 (15)	C13—C14—C15—C16	-1.4 (3)
C4—C5—C6—N1	-3.1 (2)	C19—O2—C16—C15	-5.2 (3)
C2-N1-C6-N3	159.46 (16)	C19—O2—C16—C17	174.22 (19)
C7—N1—C6—N3	-23.1 (2)	C14—C15—C16—O2	179.53 (17)
C2—N1—C6—C5	-20.5 (2)	C14-C15-C16-C17	0.1 (3)
C7—N1—C6—C5	156.97 (16)	O2—C16—C17—C18	-178.57 (17)
C2—N1—C7—C8	-57.2 (2)	C15—C16—C17—C18	0.9 (3)
C6—N1—C7—C8	125.25 (18)	C16—C17—C18—C13	-0.6 (3)
C2—N1—C7—C12	121.29 (18)	C14—C13—C18—C17	-0.6 (3)
C6—N1—C7—C12	-56.3 (2)	C4—C13—C18—C17	179.03 (17)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 benzene ring of the methoxyphenyl group.

		H···A	D····A	D—H···A
<u>D—H···A</u>	<i>D</i> —H			
N3—H3C···N2 ⁱ	0.91 (2)	2.10 (2)	2.996 (2)	166 (2)
N3—H3 <i>D</i> ···O2 ⁱⁱ	0.91 (2)	2.48 (2)	3.152 (2)	131.0 (19)
C11—H11···O1 ⁱⁱⁱ	0.95	2.55	3.210 (3)	127
C14—H14····O1 ^{iv}	0.95	2.48	3.199 (2)	133
С10—Н10…Сд3 ^{ііі}	0.95	2.99	3.813 (3)	146
C18—H18···· <i>Cg</i> 3 ^v	0.95	2.87	3.716 (2)	150

Symmetry codes: (i) -x, -y, -z+1; (ii) x-1/2, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1/2, y+1/2, -z+3/2.