Crystal structure and Hirshfeld surface analysis of 5-acetyl-2-amino-4-(4-bromophenyl)-6-oxo-1phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile

Ibrahim G. Mamedov,^a Victor N. Khrustalev,^{b,c} Mehmet Akkurt,^d Anton P. Novikov,^b Ayten R. Asgarova,^a Khatira N. Aliyeva^a and Anzurat A. Akobirshoeva^e*

^aDepartment of Chemistry, Baku State University, 23 Z. Khalilov str., Az, 1148 Baku, Azerbaijan, ^bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay str., Moscow, 117198, Russian Federation, ^cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russian Federation, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eAcad. Sci. Republ. Tajikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova str., 736002, Khorog, Gbao, Tajikistan. *Correspondence e-mail: anzurat2003@mail.ru

using an inversion twin. Its asymmetric unit comprises two crystallographically independent molecules (A and B) being the stereoisomers. Both molecules are linked by pairs of N-H···O hydrogen bonds, forming a dimer with an $R_2^2(16)$ ring motif. The dimers are connected by further $N-H\cdots O$ and $N-H\cdots N$ hydrogen bonds, forming chains along the c-axis direction $C-Br\cdots\pi$ interactions between these chains contribute to the stabilization of the molecular packing. Hirshfeld surface analysis showed that the most important contributions to the crystal packing are from H...H, C...H/H...C, O...H/H...O, $Br \cdots H/H \cdots Br$ and $N \cdots H/H \cdots N$ interactions.

1. Chemical context

Nitrogen-based heterocycles are an important class of organic molecules that are used extensively in different branches of chemistry (Yadigarov et al., 2009; Abdelhamid et al., 2011; Magerramov et al., 2018; Yin et al., 2020; Khalilov et al., 2021). In particular, the synthesis of heterocyclic systems comprising a bioactive pyridine core with a broad spectrum of biological activities is noteworthy (Mamedov et al., 2020; Wojcicka & Redzicka, 2021). On the other hand, the pyridine ring is an essential part of diverse natural products, such as nicotinic acid, nicotinamide, vitamin B₃ and diverse alkaloids (Aida et al., 2009). In the framework of our ongoing structural studies (Safarova et al., 2019; Naghiyev et al., 2020, 2021a,b; Maharramov et al., 2021), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 5-acetyl-2amino-4-(4-bromophenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydro-

The crystal structure of the title compound, C₂₀H₁₆BrN₃O₂, was determined

pyridine-3-carbonitrile. CH_2

Received 24 January 2022 Accepted 1 February 2022

Edited by A. V. Yatsenko, Moscow State University, Russia

Keywords: crystal structure; tetrahydropyridine; hydrogen bonds; dimers; C—Br $\cdots \pi$ contacts; Hirshfeld surface analysis.

CCDC reference: 2149629

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN O ACCESS

<u>(i)</u>

research communications

Figure 1

Asymmetric unit of the title compounds showing two crystallographically independent molecules, A and B. Displacement ellipsoids are drawn at the 30% probability level. The intermolecular N-H···O hydrogen bonds are drawn with dashed lines.

2. Structural commentary

The title compound crystallizes in the monoclinic space group Pc with Z = 4, and with two molecules, A and B, in the asymmetric unit (Fig. 1). These molecules are stereoisimers with an R,R absolute configurations at C3 and C4 in molecule A, whereas the corresponding atoms in B, C23 and C24, have an S configuration. In both molecules, the conformation of the central dihydropyridine ring is close to screw-boat [the puckering parameters (Cremer & Pople, 1975) are $\theta = 63.9 (11)^\circ$, $\varphi = 148.9 (12)^\circ$ in A and $\theta = 115.1 (11)^\circ$, $\varphi = 339.4 (12)^\circ$ in B]. In molecule A, the phenyl (C7–C12) and bromophenyl (C14–C19) rings form dihedral angles of 64.0 (4) and 86.3 (4)°, respectively, with the mean plane of the central dihydropyridine ring. In molecule B, the corresponding dihedral space of Φ and Φ

Figure 2

A general view of the N-H···O and N-H···N hydrogen bonds in the structure of the title compound.

Table 1		
Hydrogen-bond geometry	∕ (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N6-H6A\cdotsO2^{i}$	0.90	1.87	2.766 (9)	175
N6−H6B···O21	0.90	2.31	3.115 (9)	149
$C18-H18\cdots N40^{ii}$	0.95	2.46	3.256 (12)	141
$C23-H23\cdots N40^{iii}$	1.00	2.47	3.426 (11)	161
$N26-H26A\cdots O1$	0.90	1.99	2.784 (9)	146
$N26-H26B\cdots N20^{iv}$	0.90	2.43	3.139 (10)	136

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) x, y - 1, z; (iii) $x, -y + 2, z + \frac{1}{2}$; (iv) $x, -y + 1, z - \frac{1}{2}$.

dral angles are 77.2 (4) and 83.9 (4)°. The acetyl groups in both molecules are almost planar [largest deviations of 0.005 (8) and 0.035 (8) Å for atoms C1 (*A*) and C23 (*B*), respectively] and they make the dihedral angles of 89.5 (5) and 87.7 (5)° with the mean planes of the dihydropyridine rings in these molecules.

3. Supramolecular features

Strong N6-H6B···O21 and N26-H26A···O1 hydrogen bonds (Fig. 1, Table 1) link molecules A and B into dimers with an $R_2^2(16)$ ring motif (Bernstein *et al.*, 1995). These dimers are additionally stabilized by C=O·· π interactions [O21···Cg2 = 3.620 (8) Å, C21=O21···Cg2 = 110.8 (6)°, O1···Cg5 = 3.748 (8) Å, C1=O1···Cg5 = 125.1 (6)°, where Cg2 and Cg5 are the centroids of the C7-C12 phenyl ring in molecule A and the C27-C32 phenyl ring in molecule B, respectively]. The dimers are connected by N-H···O and N-H···N hydrogen bonds with an $R_3^3(14)$ ring motif into chains along the *c*-axis direction (Table 1; Figs. 2, 3, 4 and 5). C-Br·· π interactions

Figure 3

The crystal packing of the title compound viewed down the *a* axis, showing chains running along the *c*-axis direction formed through $N - H \cdots O$ and $N - H \cdots N$ hydrogen bonds.

Figure 4

The crystal packing of the title compound viewed down the *b* axis, showing chains running along the *c* axis formed through $N-H\cdots O$ and $N-H\cdots N$ hydrogen bonds.

Figure 5

The crystal packing of the title compound viewed down the *c* axis, with intermolecular $N-H\cdots O$, $C-H\cdots N$ and $N-H\cdots N$ hydrogen bonds.

Table 2					
Summary of short interatomic contacts ((Å`) in the	title	com	pound.

Contact	Distance	Symmetry operation
O2···H30	2.63	$x - 1, -y + 1, z - \frac{1}{2}$
$O1 \cdot \cdot \cdot H26A$	1.99	<i>x</i> , <i>y</i> , <i>z</i>
H13C···H16	2.46	x + 1, y, z
$O2 \cdot \cdot \cdot H6A$	1.87	$x, -y + 1, z - \frac{1}{2}$
$H18 \cdot \cdot \cdot N40$	2.46	x, y - 1, z
N20···H26 <i>B</i>	2.43	$x, -y + 1, z + \frac{1}{2}$
C9···Br2	3.377 (10)	$x-1, -y+2, z-\frac{1}{2}$
H13 <i>C</i> ···O22	2.79	$x, -y + 1, z - \frac{1}{2}$
C16· · · H36	2.86	$x - 1, y - 1, z^2$
$H11 \cdot \cdot \cdot H26A$	2.47	x - 1, y, z
O21···H31	2.84	x - 1, y, z
H23···N40	2.47	$x, -y + 2, z + \frac{1}{2}$
H31···O21	2.84	x + 1, y, z

are also observed $[Br1\cdots Cg6^{\nu} = 3.407 (4) \text{ Å}, C17 - Br1\cdots Cg6^{\nu} = 145.2 (3)^{\circ};$ symmetry code (v) -1 + x, 1 - y, $-\frac{1}{2} + z$; Cg6 is the centroid of the C34–C39 ring]. Together with the other intermolecular contacts given in Table 2, these interactions contribute to the stabilization of the molecular packing, forming a three-dimensional network (Figs. 6 and 7).

4. Hirshfeld surface analysis

To visualize the intermolecular interactions for both independent molecules A and B, CrystalExplorer17 (Turner et al., 2017) was used to generate Hirshfeld surfaces and corresponding two-dimensional fingerprint plots. The d_{norm} mappings were performed in the range of -0.6596 to 1.4042 arbitrary units for molecule A and -0.5436 to 1.4926 arbitrary units for molecule B. Bright red circles on the d_{norm} surfaces

Figure 6 The C–Br··· π and C=O··· π interactions in the structure of the title compound viewed down the *a* axis.

research communications

Figure 7

A view of the C-Br $\cdots \pi$ and C=O $\cdots \pi$ interactions in the structure of the title compound viewed down the *b* axis.

(Fig. 8a,b,c,d) indicate regions of N-H···O interactions. The N-H···N and C-H···N interactions (Tables 1 and 2) also cause red spots on the Hirshfeld surfaces.

The fingerprint plots (Fig. 9) reveal that while the $H \cdots H$ interactions make the greatest contributions (Table 3), as would be expected for a molecule with such a predominance

Figure 8

Front and back views of the Hirshfeld surfaces mapped over d_{norm} for molecule A(a, b) and molecule B(c, d).

Tab	e	3	
	· •	<u> </u>	

Percentage	contributions	of	interatomic	contacts	to	the	Hirshfeld
surfaces of 1	molecules A and	d <i>B</i>	of the title c	ompound			

Contact	Contribution for A	Contribution for B
H···H	32.8	33.8
$C \cdots H/H \cdots C$	19.6	18.9
$O \cdots H/H \cdots O$	17.2	13.5
$Br \cdots H/H \cdots Br$	10.6	11.3
$N \cdot \cdot \cdot H/H \cdot \cdot \cdot N$	9.4	14.0
$Br \cdot \cdot \cdot C/C \cdot \cdot \cdot Br$	4.8	4.6
$N \cdots O / O \cdots N$	2.1	_
$C \cdots O / O \cdots C$	1.4	1.3
$Br \cdots O/O \cdots Br$	0.8	0.9
$C \cdots C$	0.7	0.7
$N{\cdots}N$	0.5	0.4
$Br{\cdots}N/N{\cdots}Br$	0.1	0.6

Figure 9

The two-dimensional fingerprint plots [(a) for molecule A and (b) for molecule B], showing all interactions and those delineated into H···H, C···H/H···C, O···H/H···O, Br···H/H···Br, N···H/H···N interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surfaces.

Table 4	
Experimental details.	
Crystal data	
Chemical formula	C20H16BrN2O2
M.	410.26
Crystal system, space group	Monoclinic. Pc
Temperature (K)	100
a, b, c (Å)	9.5889 (7), 13.2144 (10), 14.4529 (10)
β (°)	103.9395 (18)
$V(Å^3)$	1777.4 (2)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	2.33
Crystal size (mm)	$0.05 \times 0.04 \times 0.03$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON-III CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
Tmin Tmar	0.818, 0.926
No. of measured, independent and	34410, 10756, 5403
observed $[I > 2\sigma(I)]$ reflections	, ,
R _{int}	0.099
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.132, 0.98
No. of reflections	10756
No. of parameters	471
No. of restraints	2
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.50, -0.66
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.473 (14)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

of H atoms, $C \cdots H/H \cdots C$, $O \cdots H/H \cdots O$, $Br \cdots H/H \cdots Br$ and $N \cdots H/H \cdots N$ contacts are also substantial. Table 3 gives the contributions of the other, less significant contacts. The fact that the same type of interactions provide different contributions to the Hirshfeld surface for molecules *A* and *B* can be attributed to the different environments of these molecules in the crystalline state.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom *et al.*, 2016) for the tetrahydropyridine unit gave 1340 hits, and some of which, namely OZAKOS (Naghiyev *et al.*, 2021*c*), JEBREQ (Mohana *et al.*, 2017), JEBRAM (Mohana *et al.*, 2017), SETWUK (Suresh *et al.*, 2007) and SETWOE (Suresh *et al.*, 2007) closely resemble the title compound.

In OZAKOS (space group: Pc), the molecular conformation of the title compound is stabilized by an intramolecular $O-H\cdots O$ hydrogen bond, forming an S(6) ring motif. In the crystal, molecules are linked by intermolecular $N-H\cdots N$ and $C-H\cdots N$ hydrogen bonds, and $N-H\cdots \pi$ and $C-H\cdots \pi$ interactions, forming a three-dimensional network.

In both the related salts, JEBREQ (space group: $P\overline{1}$) and JEBRAM (space group: $P\overline{1}$), the N atom in the 1-position of

the pyrimidine ring is protonated. In the hydrated salt JEBREQ, the presence of the water molecule prevents the formation of the familiar $R_2^2(8)$ ring motif. Instead, an expanded ring [*i.e.* $R_2^3(8)$] is formed involving the sulfonate group, the pyrimidinium cation and the water molecule. Both salts form a supramolecular homosynthon $[R_2^2(8)$ ring motif] through N-H···N hydrogen bonds. The molecular structures are further stabilized by π - π stacking, and C=O··· π , C-H···O and C-H···Cl interactions. It appears that the protonation state of the pyrimidine ring influences the intermolecular interactions within the crystal lattice to a substantial extent. In JEBRAM, the protonated N atom and the amino group of the anion through N-H···O hydrogen bonds, forming a heterosynthon with an $R_2^2(8)$ ring motif.

The polysubstituted pyridines, SETWUK (space group: $P2_1/n$) and SETWOE (space group: $P2_1/c$), adopt nearly planar structures. The crystal structure of SETWUK is stabilized by intermolecular C-H···F and C-H··· π interactions. The C-H···F bond generates a linear chain with a C(14) motif. The crystal structure of SETWOE is stabilized by intermolecular C-H···O and C-H··· π interactions. The C-H···O hydrogen bonds generate rings with $R_2^2(14)$ and $R_2^2(20)$ motifs. In addition, in SETWOE and SETWUK, intramolecular O-H···O interactions are found, which generate an S(6) graph-set motif. No significant aryl-aryl or π - π interactions exist in these structures. All this bears some resemblance to the title compound.

6. Synthesis and crystallization

To a solution of 2-(4-bromobenzylidene)malononitrile (1.19 g; 5.1 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (25 mL), piperidine (2–3 drops) was added and the mixture was stirred at room temperature for 48 h. Then 15 mL of methanol were removed by rotary evaporation from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 66%; m.p. 536–537 K).

¹H NMR (300 MHz, DMSO- d_6 , m.h.): 2.29 (*s*, 3H, CH₃– C=O); 4.15 (*d*, 1H, CH-Ar); 4.34 (*d*, 1H, CH–C=O); 5.98 (*s*, 2H, NH₂); 7.12–7.35 (*m*, 5H, 5CH_{ar}); 7.40 (*d*, 2H, 2CH_{ar}); 7.61 (*d*, 2H, 2CH_{ar}).

¹³C NMR (75 MHz, DMSO- d_6 , m.h.): 27.86 (CH₃–C=O), 37.94 (CH–Ar), 57.24 (=C_{quat}), 62.41 (CH–C=O), 117.21 (CN), 121.25 (Br-Car), 127.67 (CH_{ar}), 128.19 (2CH_{ar}), 129.58 (2CH_{ar}), 130.15 (2CH_{ar}), 130.74 (2CH_{ar}), 136.98 (C_{ar}), 140.37 (C_{ar}), 154.14 (=C_{quat}), 166.20 (N–C=O), 202.55 (C=O).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically (N-H = 0.90 Å, C-H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(C-$ methyl).

Acknowledgements

Authors' contributions are as follows. Conceptualization and methodology, IGM; investigation, MA and APN; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and ARA; visualization, MA and IGM; funding acquisition, VNK and IGM; resources, AAA, VNK and KNA; supervision, IGM and MA.

Funding information

This work was supported by the Baku State University, and RUDN University Strategic Academic Leadership Program.

References

- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). *Acta Cryst.* E67, 0744.
- Aida, W., Ohtsuki, T., Li, X. & Ishibashi, M. (2009). Tetrahedron, 65, 369–373.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. **344**, 117761.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). *Russ. J. Org. Chem.* **54**, 1731–1734.
- Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Engineer. Appl. Sci. 1, 5-11.

- Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). *Mendeleev Commun.* **30**, 498–499.
- Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). *Acta Cryst.* C73, 536–540.
- Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). *Molecules*, **25**, 2235–2248.
- Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021*a*). *Acta Cryst.* E77, 195–199.
- Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021c). *Acta Cryst.* E77, 930–934.
- Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021*b*). *Acta Cryst.* E77, 512–515.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, 0141–0144.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.
- Wojcicka, A. & Redzicka, A. (2021). Pharmaceuticals, 14, 354.
- Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). *Russ. J. Org. Chem.* 45, 1856–1858.
- Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.

Acta Cryst. (2022). E78, 291-296 [https://doi.org/10.1107/S2056989022001232]

Crystal structure and Hirshfeld surface analysis of 5-acetyl-2-amino-4-(4-bromophenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile

Ibrahim G. Mamedov, Victor N. Khrustalev, Mehmet Akkurt, Anton P. Novikov, Ayten R. Asgarova, Khatira N. Aliyeva and Anzurat A. Akobirshoeva

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2021); cell refinement: *CrysAlis PRO* (Rigaku OD, 2021); data reduction: *CrysAlis PRO* (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

5-Acetyl-2-amino-4-(4-bromophenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile

Crystal data

 $C_{20}H_{16}BrN_{3}O_{2}$ $M_{r} = 410.26$ Monoclinic, *Pc* a = 9.5889 (7) Å b = 13.2144 (10) Å c = 14.4529 (10) Å $\beta = 103.9395 (18)^{\circ}$ $V = 1777.4 (2) \text{ Å}^{3}$ Z = 4

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.818$, $T_{\max} = 0.926$ 34410 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.132$ S = 0.9810756 reflections 471 parameters 2 restraints F(000) = 832 $D_x = 1.533 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3126 reflections $\theta = 2.7-24.0^{\circ}$ $\mu = 2.33 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.05 \times 0.04 \times 0.03 \text{ mm}$

10756 independent reflections 5403 reflections with $I > 2\sigma(I)$ $R_{int} = 0.099$ $\theta_{max} = 30.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -18 \rightarrow 18$ $l = -20 \rightarrow 20$

Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0401P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.66 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$ Extinction correction: SHELXL, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0039 (3) Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.473 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	-0.05184 (9)	0.02892 (6)	0.27044 (7)	0.0328 (2)	
N1	0.3304 (7)	0.5094 (5)	0.4197 (5)	0.0194 (15)	
C1	0.6385 (9)	0.4260 (6)	0.3992 (6)	0.0216 (19)	
O1	0.6581 (7)	0.5145 (5)	0.4155 (5)	0.0456 (19)	
C2	0.3768 (9)	0.4655 (6)	0.3455 (6)	0.0219 (18)	
O2	0.3284 (7)	0.4954 (4)	0.2642 (4)	0.0273 (14)	
C3	0.4864 (9)	0.3816 (6)	0.3708 (6)	0.0211 (18)	
Н3	0.4792	0.3389	0.3127	0.025*	
C4	0.4547 (9)	0.3140 (6)	0.4498 (6)	0.0221 (19)	
H4	0.5405	0.2699	0.4736	0.026*	
C5	0.4402 (9)	0.3820 (6)	0.5310 (6)	0.0229 (19)	
C6	0.3781 (9)	0.4741 (6)	0.5141 (6)	0.0213 (18)	
N6	0.3596 (7)	0.5398 (5)	0.5816 (5)	0.0219 (15)	
H6A	0.3529	0.5257	0.6413	0.026*	
H6B	0.3534	0.6055	0.5646	0.026*	
C7	0.2213 (9)	0.5898 (6)	0.3983 (6)	0.0212 (18)	
C8	0.2595 (10)	0.6844 (7)	0.3737 (7)	0.031 (2)	
H8	0.3538	0.6970	0.3663	0.037*	
C9	0.1581 (10)	0.7610 (7)	0.3600 (7)	0.036 (2)	
Н9	0.1814	0.8267	0.3416	0.044*	
C10	0.0223 (11)	0.7409 (8)	0.3732 (7)	0.036 (2)	
H10	-0.0463	0.7940	0.3661	0.044*	
C11	-0.0144 (11)	0.6464 (7)	0.3963 (6)	0.035 (2)	
H11	-0.1089	0.6334	0.4031	0.042*	
C12	0.0861 (10)	0.5691 (7)	0.4099 (6)	0.030 (2)	
H12	0.0620	0.5030	0.4269	0.036*	
C13	0.7611 (10)	0.3551 (6)	0.4072 (7)	0.034 (2)	
H13A	0.7314	0.2868	0.4207	0.050*	
H13B	0.8413	0.3770	0.4591	0.050*	
H13C	0.7915	0.3546	0.3472	0.050*	
C14	0.3267 (9)	0.2446 (6)	0.4069 (6)	0.0213 (17)	
C15	0.1891 (10)	0.2670 (6)	0.4115 (7)	0.029 (2)	
H15	0.1720	0.3262	0.4445	0.034*	
C16	0.0740 (10)	0.2057 (6)	0.3695 (6)	0.029 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H16	-0.0213	0.2229	0.3717	0.034*
C17	0.1025 (10)	0.1185 (6)	0.3240 (6)	0.026 (2)
C18	0.2390 (10)	0.0940 (6)	0.3159 (7)	0.029 (2)
H18	0.2561	0.0350	0.2828	0.035*
C19	0.3494 (10)	0.1581 (6)	0.3576 (6)	0.026 (2)
H19	0.4441	0.1428	0.3525	0.031*
C20	0.4925(10)	0 3499 (6)	0.6274 (7)	0.024(2)
N20	0.5390 (9)	0.3255(6)	0.0271(7) 0.7052(5)	0.021(2) 0.0335(19)
Br2	1.05193(11)	1 25495 (8)	0.62011(8)	0.0309(1))
N2	0.6616 (7)	0.7734(5)	0.52011(0)	0.0220(16)
C21	0.3521(10)	0.7731(3) 0.8636(7)	0.5959 (6)	0.0220(10)
021	0.3329(8)	0.0030(7) 0.7728(5)	0.5959(0) 0.6051(5)	0.020(2)
C22	0.5525(0)	0.7728(5) 0.8245(6)	0.6505 (6)	0.0703(10)
022	0.6000 (10)	0.8245(0) 0.8015(4)	0.0303(0) 0.7343(4)	0.027(2)
C23	0.0430(7)	0.8013(4)	0.7343(4) 0.6148(6)	0.0303(13) 0.0238(10)
U23	0.5025 (9)	0.9077(0)	0.0148 (0)	0.0238 (19)
П23 С24	0.5119	0.9300	0.0070	0.029°
0.24	0.3288 (9)	0.9625 (0)	0.3200 (0)	0.0226 (19)
H24	0.4424	1.0048	0.4993	0.027*
C25	0.5389 (9)	0.8820 (6)	0.4542 (6)	0.0230 (19)
C26	0.6117 (9)	0.7941 (6)	0.4838 (6)	0.0210 (18)
N26	0.6426 (8)	0.7245 (5)	0.4234 (5)	0.0279 (17)
H26A	0.6602	0.6614	0.4466	0.034*
H26B	0.6454	0.7409	0.3634	0.034*
C27	0.7687 (10)	0.6958 (6)	0.6136 (6)	0.0234 (19)
C28	0.7276 (10)	0.6009 (6)	0.6383 (7)	0.030 (2)
H28	0.6293	0.5858	0.6336	0.036*
C29	0.8324 (11)	0.5287 (7)	0.6698 (7)	0.040 (3)
H29	0.8056	0.4632	0.6865	0.048*
C30	0.9761 (11)	0.5507 (6)	0.6776 (7)	0.033 (2)
H30	1.0476	0.5007	0.6998	0.040*
C31	1.0139 (11)	0.6444 (7)	0.6530 (7)	0.035 (2)
H31	1.1123	0.6590	0.6575	0.042*
C32	0.9120 (10)	0.7187 (6)	0.6216 (6)	0.028 (2)
H32	0.9398	0.7842	0.6059	0.034*
C33	0.2270 (11)	0.9361 (7)	0.5651 (8)	0.041 (3)
H33A	0.2541	1.0027	0.5936	0.061*
H33B	0.1440	0.9103	0.5862	0.061*
H33C	0.2021	0.9422	0.4955	0.061*
C34	0.6606 (8)	1.0327 (6)	0.5511 (6)	0.0188 (17)
C35	0.7743 (10)	1.0222 (7)	0.5076 (6)	0.028 (2)
H35	0.7720	0.9690	0.4630	0.034*
C36	0.8913 (10)	1.0875 (7)	0.5276 (7)	0.029 (2)
H36	0.9687	1.0787	0.4980	0.035*
C37	0.8931 (10)	1.1659 (6)	0.5917 (6)	0.026(2)
C38	0.7802 (10)	1.1788 (6)	0.6350 (6)	0.027 (2)
H38	0.7820	1.2325	0.6789	0.033*
C39	0.6654 (10)	1.1133 (6)	0.6139 (6)	0.025 (2)
H39	0.5874	1.1232	0.6429	0.030*

C40	0.4888 (10)	0.8997 (6)	0.3553 (7)	0.025 (2)	
N40	0.4482 (10)	0.9142 (5)	0.2749 (6)	0.0307 (16)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0341 (5)	0.0228 (4)	0.0388 (5)	-0.0033 (5)	0.0036 (4)	-0.0037 (5)
N1	0.027 (4)	0.020 (3)	0.012 (3)	0.005 (3)	0.007 (3)	0.002 (3)
C1	0.027 (5)	0.016 (4)	0.025 (5)	0.002 (4)	0.013 (4)	-0.003 (3)
01	0.030 (4)	0.026 (4)	0.081 (5)	-0.002 (3)	0.013 (4)	-0.012 (4)
C2	0.025 (5)	0.017 (4)	0.026 (5)	-0.001 (4)	0.013 (4)	-0.005 (4)
O2	0.035 (4)	0.025 (3)	0.021 (3)	-0.001 (3)	0.006 (3)	0.004 (3)
C3	0.028 (5)	0.018 (4)	0.018 (4)	0.001 (4)	0.006 (4)	-0.005 (3)
C4	0.031 (5)	0.019 (4)	0.015 (4)	-0.002 (4)	0.004 (4)	0.001 (3)
C5	0.031 (5)	0.021 (4)	0.018 (4)	-0.001 (4)	0.008 (4)	0.001 (3)
C6	0.026 (5)	0.020 (4)	0.020 (4)	-0.004 (4)	0.010 (4)	-0.006 (4)
N6	0.031 (4)	0.021 (4)	0.015 (4)	-0.003 (3)	0.008 (3)	-0.001 (3)
C7	0.024 (5)	0.020 (4)	0.019 (4)	0.004 (3)	0.003 (4)	0.000 (3)
C8	0.027 (5)	0.023 (4)	0.043 (6)	-0.001 (4)	0.010 (5)	0.002 (4)
С9	0.039 (6)	0.031 (5)	0.035 (6)	0.012 (5)	0.000 (5)	0.003 (4)
C10	0.036 (6)	0.042 (6)	0.030 (6)	0.014 (5)	0.006 (5)	-0.005 (5)
C11	0.039 (6)	0.033 (5)	0.037 (6)	0.010 (5)	0.017 (5)	0.000 (4)
C12	0.026 (5)	0.030 (5)	0.033 (5)	0.002 (4)	0.008 (4)	0.005 (4)
C13	0.029 (5)	0.028 (5)	0.044 (6)	-0.001 (4)	0.010 (5)	-0.002 (4)
C14	0.024 (5)	0.019 (4)	0.021 (4)	0.000 (4)	0.006 (4)	0.002 (4)
C15	0.041 (6)	0.015 (4)	0.032 (5)	-0.002 (4)	0.012 (5)	0.000 (4)
C16	0.031 (5)	0.018 (4)	0.040 (6)	-0.003 (4)	0.014 (5)	-0.006 (4)
C17	0.027 (5)	0.025 (5)	0.023 (5)	-0.008 (4)	0.001 (4)	0.002 (4)
C18	0.031 (5)	0.020 (4)	0.037 (6)	0.002 (4)	0.008 (5)	-0.003 (4)
C19	0.022 (5)	0.030 (5)	0.029 (5)	-0.001 (4)	0.010 (4)	-0.007 (4)
C20	0.032 (5)	0.015 (4)	0.024 (5)	0.002 (4)	0.006 (4)	-0.001 (4)
N20	0.045 (5)	0.031 (4)	0.025 (5)	0.011 (4)	0.009 (4)	0.001 (3)
Br2	0.0417 (6)	0.0460 (6)	0.0350 (5)	-0.0143 (5)	0.0092 (4)	-0.0033 (5)
N2	0.020 (4)	0.017 (4)	0.026 (4)	0.006 (3)	0.000 (3)	0.002 (3)
C21	0.035 (6)	0.027 (5)	0.023 (5)	0.004 (4)	0.008 (4)	0.000 (4)
O21	0.051 (5)	0.026 (4)	0.048 (5)	-0.004 (3)	0.021 (4)	0.000 (3)
C22	0.038 (6)	0.016 (4)	0.025 (5)	-0.003 (4)	0.005 (4)	0.001 (4)
O22	0.044 (4)	0.025 (3)	0.023 (3)	0.003 (3)	0.008 (3)	0.003 (3)
C23	0.027 (5)	0.018 (4)	0.029 (5)	0.002 (4)	0.012 (4)	-0.003 (4)
C24	0.029 (5)	0.013 (4)	0.025 (5)	0.003 (4)	0.007 (4)	-0.001 (3)
C25	0.031 (5)	0.021 (4)	0.019 (4)	0.004 (4)	0.010 (4)	0.001 (4)
C26	0.028 (5)	0.013 (4)	0.023 (5)	0.001 (3)	0.007 (4)	-0.004 (3)
N26	0.034 (4)	0.022 (4)	0.030 (4)	0.006 (3)	0.011 (4)	0.000 (3)
C27	0.031 (5)	0.018 (4)	0.022 (5)	0.008 (4)	0.007 (4)	-0.001 (3)
C28	0.026 (5)	0.019 (4)	0.040 (6)	-0.002 (4)	0.003 (4)	0.006 (4)
C29	0.041 (6)	0.023 (5)	0.050 (6)	0.004 (5)	-0.001 (5)	0.012 (5)
C30	0.039 (6)	0.023 (5)	0.038 (6)	0.011 (4)	0.009 (5)	-0.001 (4)
C31	0.033 (6)	0.038 (6)	0.034 (6)	0.005 (4)	0.005(5)	-0.003(4)

C32	0.035 (5)	0.022 (4)	0.028 (5)	0.006 (4)	0.009 (4)	0.002 (4)
C33	0.039 (6)	0.035 (5)	0.050(7)	0.006 (5)	0.015 (5)	0.004 (5)
C34	0.017 (4)	0.018 (4)	0.020 (4)	0.003 (3)	0.003 (3)	0.005 (3)
C35	0.037 (6)	0.022 (5)	0.025 (5)	0.003 (4)	0.009 (4)	0.001 (4)
C36	0.028 (5)	0.031 (5)	0.030 (5)	0.003 (4)	0.010 (4)	0.001 (4)
C37	0.031 (5)	0.020 (4)	0.026 (5)	-0.004(4)	0.003 (4)	0.003 (4)
C38	0.039 (6)	0.024 (4)	0.018 (5)	0.000 (4)	0.005 (4)	0.000 (4)
C39	0.031 (5)	0.017 (4)	0.025 (5)	0.004 (4)	0.004 (4)	0.002 (4)
C40	0.036 (5)	0.013 (4)	0.028 (5)	0.008 (4)	0.012 (4)	0.000 (4)
N40	0.039 (4)	0.027 (4)	0.030 (4)	0.010 (4)	0.014 (3)	0.008 (4)

Geometric parameters (Å, °)

Br1—C17	1.908 (9)	Br2—C37	1.890 (9)
N1—C2	1.383 (10)	N2—C26	1.400 (10)
N1-C6	1.410 (10)	N2—C22	1.403 (11)
N1—C7	1.470 (10)	N2—C27	1.447 (10)
C101	1.199 (9)	C21—O21	1.226 (10)
C1—C13	1.486 (12)	C21—C33	1.516 (12)
C1—C3	1.533 (12)	C21—C23	1.517 (12)
C2—O2	1.220 (10)	C22—O22	1.215 (10)
C2—C3	1.511 (11)	C22—C23	1.501 (11)
C3—C4	1.537 (11)	C23—C24	1.538 (11)
С3—Н3	1.0000	C23—H23	1.0000
C4—C5	1.510 (11)	C24—C25	1.509 (11)
C4—C14	1.538 (11)	C24—C34	1.541 (11)
C4—H4	1.0000	C24—H24	1.0000
C5—C6	1.351 (11)	C25—C26	1.369 (11)
C5—C20	1.428 (12)	C25—C40	1.414 (12)
C6—N6	1.349 (10)	C26—N26	1.350 (10)
N6—H6A	0.8999	N26—H26A	0.8993
N6—H6B	0.9000	N26—H26B	0.9000
С7—С8	1.374 (11)	C27—C32	1.384 (12)
C7—C12	1.374 (12)	C27—C28	1.387 (11)
C8—C9	1.385 (12)	C28—C29	1.380 (12)
С8—Н8	0.9500	C28—H28	0.9500
C9—C10	1.387 (13)	C29—C30	1.386 (14)
С9—Н9	0.9500	С29—Н29	0.9500
C10-C11	1.361 (13)	C30—C31	1.362 (12)
C10—H10	0.9500	C30—H30	0.9500
C11—C12	1.386 (12)	C31—C32	1.382 (12)
C11—H11	0.9500	C31—H31	0.9500
С12—Н12	0.9500	С32—Н32	0.9500
С13—Н13А	0.9800	C33—H33A	0.9800
C13—H13B	0.9800	С33—Н33В	0.9800
C13—H13C	0.9800	С33—Н33С	0.9800
C14—C15	1.370 (12)	C34—C35	1.391 (11)
C14—C19	1.391 (11)	C34—C39	1.392 (11)

C15—C16	1.386 (12)	C35—C36	1.389 (13)
С15—Н15	0.9500	С35—Н35	0.9500
C16-C17	1 386 (12)	C36—C37	1386(12)
C16—H16	0.9500	C36—H36	0.9500
C17 - C18	1 380 (12)	C_{37} $-C_{38}$	1.385(12)
C18 - C19	1 376 (12)	C_{38} C_{39}	1.305(12) 1.375(12)
C18 H18	0.9500	C38 H38	0.9500
	0.9500	C30 H30	0.9500
$\begin{array}{c} C19 \\ \hline \\ C20 \\ \hline \\ N20 \\ \hline \end{array}$	0.9500	C40 N40	1.140(11)
C20—N20	1.131 (11)	C+0-11+0	1.149 (11)
C2—N1—C6	121.4 (7)	C26—N2—C22	121.9 (7)
C2—N1—C7	119.0 (7)	C26—N2—C27	120.6 (7)
C6—N1—C7	119.4 (7)	C22—N2—C27	117.5 (7)
O1—C1—C13	121.1 (8)	O21—C21—C33	121.4 (9)
01	121.3 (8)	O21—C21—C23	121.1 (8)
C13—C1—C3	117.6 (7)	C33—C21—C23	117.4 (8)
02	119.5 (7)	022-022-N2	121.6 (8)
02-02-03	123.4(7)	022 - 022 - 023	1223(8)
N1-C2-C3	1171(7)	N2-C22-C23	1161(7)
$C^2 - C^3 - C^1$	110.2 (6)	$C^{22} - C^{23} - C^{21}$	108.4(7)
$C_2 = C_3 = C_4$	110.2(0) 110.8(7)	$C^{22} = C^{23} = C^{24}$	100.1(7) 113.3(7)
C1 - C3 - C4	111.6(7)	$C_{21} = C_{23} = C_{24}$	113.5(7)
C^2 — C^3 — H^3	108.0	C^{22} C^{23} H^{23}	107.8
C1 - C3 - H3	108.0	$C_{21} = C_{23} = H_{23}$	107.8
C4-C3-H3	108.0	C_{24} C_{23} H_{23}	107.8
$C_{5} - C_{4} - C_{3}$	107.7 (6)	$C_{24} = C_{23} = H_{23}$	107.3
$C_{5} = C_{4} = C_{5}^{14}$	107.7(0) 117.0(7)	$C_{25} = C_{24} = C_{25}$	107.2(0) 113 $4(7)$
C_{3} C_{4} C_{14}	117.0(7) 109.2(7)	C_{23} C_{24} C_{34} C_{34}	113.4(7) 112.5(7)
$C_5 = C_4 = C_{14}$	109.2 (7)	$C_{25} = C_{24} = C_{34}$	112.5 (7)
$C_3 = C_4 = H_4$	107.5	$C_{23} = C_{24} = H_{24}$	107.8
$C_{14} C_{4} H_{4}$	107.5	$C_{23} = C_{24} = H_{24}$	107.8
$C_{14} - C_{4} - 114$	107.5	$C_{24} = C_{24} = C_{124}$	107.8
$C_{0} = C_{3} = C_{20}$	110.7(0)	$C_{20} = C_{23} = C_{40}$	110.0(0)
$C_0 - C_3 - C_4$	120.9(6)	$C_{20} = C_{23} = C_{24}$	119.5(7)
N6 C6 C5	120.4(7) 125.2(9)	C40 - C25 - C24	121.3(7)
	123.5 (8)	$N_{20} = C_{20} = C_{23}$	123.4(8)
NO-CO-NI	114./(/)	$N_{20} = C_{20} = N_{2}$	110.2(7)
CS-CO-NI	119.9 (7)	C_{25} — C_{20} — N_2	120.3 (7)
$C_0 - N_0 - H_0 A$	127.7	C_{20} N_{20} H_{20} N_{20} H_{20} N_{20} N_{20} H_{20} N_{20} N	110.2
Co-No-HoB	115.8	C_{20} N_{20} H_{20B}	121.5
H0A - N0 - H0B	116.5	$H_{20}A - N_{20} - H_{20}B$	122.3
$C_8 = C_7 = C_{12}$	122.1 (8)	$C_{32} = C_{27} = C_{28}$	120.9 (8)
$C_8 = C_7 = N_1$	119.4 (8)	$C_{32} = C_{27} = N_2$	119.0 (8)
$C_1 = C_1 = C_1$	118.4 (/)	$C_{20} = C_{21} = N_{22}$	120.0(8)
$C_{1} = C_{2} = C_{2}$	118.7 (9)	(29 - (28 - (27)))	118.7 (9)
$C = C = H \delta$	120.6	C_{29} — C_{28} — H_{28}	120.6
	120.6	$C_2/-C_2 = H_2 =$	120.6
C8—C9—C10	119.4 (9)	C28—C29—C30	120.8 (9)
С8—С9—Н9	120.3	C28—C29—H29	119.6

С10—С9—Н9	120.3	С30—С29—Н29	119.6
C11—C10—C9	121.1 (9)	C31—C30—C29	119.4 (9)
C11—C10—H10	119.5	С31—С30—Н30	120.3
С9—С10—Н10	119.5	С29—С30—Н30	120.3
C10—C11—C12	120.0 (10)	C30—C31—C32	121.3 (9)
C10—C11—H11	120.0	C30—C31—H31	119.3
C12—C11—H11	120.0	C32—C31—H31	119.3
C7—C12—C11	118.7 (9)	C31—C32—C27	118.8 (8)
C7—C12—H12	120.7	С31—С32—Н32	120.6
C11—C12—H12	120.7	С27—С32—Н32	120.6
C1—C13—H13A	109.5	С21—С33—Н33А	109.5
C1—C13—H13B	109.5	С21—С33—Н33В	109.5
H13A—C13—H13B	109.5	H33A—C33—H33B	109.5
C1—C13—H13C	109.5	С21—С33—Н33С	109.5
H13A—C13—H13C	109.5	H33A—C33—H33C	109.5
H13B—C13—H13C	109.5	H33B—C33—H33C	109.5
C15—C14—C19	118.3 (8)	C35—C34—C39	117.7 (8)
C15—C14—C4	122.4 (7)	C_{35} — C_{34} — C_{24}	121.7(7)
C19—C14—C4	119.3 (7)	C39—C34—C24	120.5(7)
C14-C15-C16	121.8 (8)	C_{36} C_{35} C_{34}	120.2(7) 121.7(8)
C14—C15—H15	119.1	С36—С35—Н35	119.2
C16—C15—H15	119.1	C34—C35—H35	119.2
C15-C16-C17	117.8 (9)	C37—C36—C35	118.8 (9)
C15—C16—H16	121.1	С37—С36—Н36	120.6
C17—C16—H16	121.1	C35—C36—H36	120.6
C18 - C17 - C16	122.3 (8)	C_{38} C_{37} C_{36}	120.6 (9)
C18 - C17 - Br1	118.6 (7)	C38—C37—Br2	120.1(7)
$C_{16} - C_{17} - Br_{1}$	119.1 (7)	$C_{36} - C_{37} - Br_{2}$	119.3 (7)
C19—C18—C17	117.6 (8)	C39—C38—C37	119.5 (8)
C19—C18—H18	121.2	C39—C38—H38	120.2
С17—С18—Н18	121.2	С37—С38—Н38	120.2
C18 - C19 - C14	122.1 (8)	C_{38} C_{39} C_{34}	121.7 (8)
C18—C19—H19	119.0	C38—C39—H39	119.2
C14-C19-H19	119.0	C34—C39—H39	119.2
N20-C20-C5	177.7 (10)	N40-C40-C25	180.0 (14)
	1,,,,,(10)		10010 (11)
C6—N1—C2—O2	176.9 (8)	C26—N2—C22—O22	175.0 (8)
C7-N1-C2-O2	1.3 (11)	$C_{27} = N_{2} = C_{22} = O_{22}$	-3.7(12)
C6-N1-C2-C3	-3.0(11)	$C_{26} - N_{2} - C_{22} - C_{23}$	-4.0(11)
C7-N1-C2-C3	-178.6(7)	$C_{27} = N_{2} = C_{22} = C_{23}$	177.3 (7)
02-C2-C3-C1	94 4 (10)	022 - C22 - C23 - C21	-863(10)
N1 - C2 - C3 - C1	-85.7(9)	N_{2} C_{22} C_{23} C_{21}	92.7 (9)
02-C2-C3-C4	-1415(8)	022 - C22 - C23 - C24	149 1 (8)
N1-C2-C3-C4	38 4 (10)	N_{2} C_{22} C_{23} C_{24}	-31.9(10)
01-C1-C3-C2	13.1 (12)	021 - C21 - C23 - C22	-3.8(12)
C_{13} C_{1} C_{3} C_{2}	-167.8(7)	C_{33} C_{21} C_{23} C_{22}	176.2 (8)
01-C1-C3-C4	-110.6(10)	021 - C21 - C23 - C24	121.7(9)
$C_{13} - C_{1} - C_{3} - C_{4}$	68 5 (10)	C_{33} C_{21} C_{23} C_{24}	-58.3(10)
	00.0 (10)	0.55 0.21 0.25 0.24	50.5 (10)

C2—C3—C4—C5	-52.2 (9)	C22—C23—C24—C25	51.6 (9)
C1—C3—C4—C5	71.1 (9)	C21—C23—C24—C25	-71.1 (8)
C2-C3-C4-C14	75.8 (8)	C22—C23—C24—C34	-73.7 (9)
C1—C3—C4—C14	-160.9 (7)	C21—C23—C24—C34	163.5 (7)
C3—C4—C5—C6	36.6 (11)	C23—C24—C25—C26	-40.8 (10)
C14—C4—C5—C6	-86.8 (10)	C34—C24—C25—C26	83.9 (9)
C3—C4—C5—C20	-143.3 (8)	C23—C24—C25—C40	146.4 (8)
C14—C4—C5—C20	93.4 (10)	C34—C24—C25—C40	-88.9 (10)
C20—C5—C6—N6	-0.5 (14)	C40—C25—C26—N26	2.2 (13)
C4—C5—C6—N6	179.6 (8)	C24—C25—C26—N26	-170.8 (8)
C20—C5—C6—N1	177.6 (8)	C40-C25-C26-N2	-179.3 (8)
C4—C5—C6—N1	-2.3 (13)	C24—C25—C26—N2	7.7 (12)
C2—N1—C6—N6	161.5 (7)	C22—N2—C26—N26	-163.9 (7)
C7—N1—C6—N6	-22.9 (10)	C27—N2—C26—N26	14.7 (11)
C2—N1—C6—C5	-16.8 (12)	C22—N2—C26—C25	17.5 (12)
C7—N1—C6—C5	158.8 (8)	C27—N2—C26—C25	-163.9 (8)
C2—N1—C7—C8	-73.8 (10)	C26—N2—C27—C32	81.3 (10)
C6—N1—C7—C8	110.5 (9)	C22—N2—C27—C32	-100.0 (9)
C2—N1—C7—C12	110.5 (9)	C26—N2—C27—C28	-100.2 (10)
C6—N1—C7—C12	-65.2 (10)	C22—N2—C27—C28	78.4 (10)
C12—C7—C8—C9	-0.2 (14)	C32—C27—C28—C29	-1.0(14)
N1—C7—C8—C9	-175.7 (8)	N2-C27-C28-C29	-179.4 (8)
C7—C8—C9—C10	1.3 (14)	C27—C28—C29—C30	0.6 (15)
C8—C9—C10—C11	-2.2 (15)	C28—C29—C30—C31	-0.5 (16)
C9-C10-C11-C12	2.0 (15)	C29—C30—C31—C32	0.8 (15)
C8—C7—C12—C11	0.0 (14)	C30—C31—C32—C27	-1.2 (14)
N1—C7—C12—C11	175.6 (8)	C28—C27—C32—C31	1.3 (13)
C10—C11—C12—C7	-0.9 (14)	N2-C27-C32-C31	179.7 (8)
C5-C4-C14-C15	25.4 (12)	C25—C24—C34—C35	1.3 (11)
C3—C4—C14—C15	-97.2 (9)	C23—C24—C34—C35	123.2 (8)
C5—C4—C14—C19	-157.7 (8)	C25—C24—C34—C39	177.4 (7)
C3—C4—C14—C19	79.7 (9)	C23—C24—C34—C39	-60.7 (10)
C19—C14—C15—C16	0.6 (13)	C39—C34—C35—C36	1.9 (13)
C4—C14—C15—C16	177.5 (8)	C24—C34—C35—C36	178.1 (8)
C14—C15—C16—C17	1.6 (13)	C34—C35—C36—C37	-0.9 (14)
C15—C16—C17—C18	-2.9 (14)	C35—C36—C37—C38	0.0 (13)
C15—C16—C17—Br1	177.1 (7)	C35—C36—C37—Br2	179.7 (7)
C16—C17—C18—C19	1.9 (14)	C36—C37—C38—C39	-0.1 (13)
Br1-C17-C18-C19	-178.0 (7)	Br2—C37—C38—C39	-179.8 (6)
C17—C18—C19—C14	0.4 (14)	C37—C38—C39—C34	1.2 (13)
C15—C14—C19—C18	-1.6 (13)	C35—C34—C39—C38	-2.0 (12)
C4—C14—C19—C18	-178.7 (8)	C24—C34—C39—C38	-178.3 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N6—H6A···O2 ⁱ	0.90	1.87	2.766 (9)	175
N6—H6 <i>B</i> ···O21	0.90	2.31	3.115 (9)	149

C18—H18…N40 ⁱⁱ	0.95	2.46	3.256 (12)	141	
C23—H23…N40 ⁱⁱⁱ	1.00	2.47	3.426 (11)	161	
N26—H26A…O1	0.90	1.99	2.784 (9)	146	
N26—H26 <i>B</i> ···N20 ^{iv}	0.90	2.43	3.139 (10)	136	

Symmetry codes: (i) *x*, -*y*+1, *z*+1/2; (ii) *x*, *y*-1, *z*; (iii) *x*, -*y*+2, *z*+1/2; (iv) *x*, -*y*+1, *z*-1/2.