

Received 30 March 2022 Accepted 19 April 2022

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: crystal structure; piperazine; benzoate anion; biological activity.

CCDC references: 2167424; 2167423; 2167422; 2167421; 2167420; 2167419

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of six 4-(4-nitrophenyl)piperazin-1-ium salts

Ninganayaka Mahesha,^a Haruvegowda Kiran Kumar,^a Hemmige S. Yathirajan,^a Sabine Foro,^b Mohammed S. M. Abdelbaky^c and Santiago Garcia-Granda^c*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and ^cDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain. *Correspondence e-mail: sgg@uniovi.es

Six piperazinium salts, namely 4-(4-nitrophenyl)piperazin-1-ium 4-bromobenzoate dihydrate, C₁₀H₁₄N₃O₂⁺·C₇H₄BrO₂⁻·2H₂O, (I), 4-(4-nitrophenyl)piperazin-1-ium 4-iodobenzoate dihydrate, C₁₀H₁₄N₃O₂⁺·C₇H₄IO₂⁻·2H₂O, (II), 4-(4nitrophenyl)piperazin-1-ium 4-hydroxybenzoate monohydrate, $C_{10}H_{14}N_3O_2^+$. $C_7H_5O_3 - H_2O_1$ (III), 4-(4-nitrophenyl)piperazin-1-ium 4-methylbenzoate monohydrate, C₁₀H₁₄N₃O₂⁺·C₈H₇O₂⁻·H₂O, (IV), 4-(4-nitrophenyl)piperazin-1-ium 4-methoxybenzoate hemihydrate, $2C_{10}H_{14}N_3O_2^+ \cdot 2C_8H_7O_3^- \cdot H_2O_1$, (V), and 4-(4nitrophenyl)piperazin-1-ium 4-ethoxybenzoate, $2C_{10}H_{14}N_3O_2^+ \cdot 2C_9H_9O_3^-$, (VI), have been synthesized and their crystal structures solved by single-crystal X-ray diffraction, revealing that all of them crystallize in the triclinic space group P_1 except for (V), which crystallizes in the monoclinic space group $P2_1/c$ and has a disordered nitro group. Compounds (I) and (II) are isostructural. The crystal packing of (I)-(V) is constructed from organic chains formed by a combination of hydrogen bonds of type $N-H\cdots O$ and/or $O-H\cdots O$ and other weak interactions of type C-H···O and/or C-H··· π , forming sheets, whereas (VI) shows a cationic and anionic-based layer structure.

1. Chemical context

Piperazines and substituted piperazines are important pharmacophores that can be found in many biologically active compounds used to treat a number of different diseases (Berkheij, 2005) as antifungal (Upadhayaya *et al.*, 2004), antibacterial, anti-malarial and anti-psychotic agents (Choudhary *et al.*, 2006). A valuable insight into advances on the antimicrobial activity of piperazine derivatives was given by Kharb *et al.* (2012). Piperazines are among the most important building blocks in current drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier *et al.*, 2004; Bogatcheva *et al.*, 2006). Pharmacological and toxicological information for piperazine derivatives is reviewed by Elliott (2011).

4-Nitrophenylpiperazinium chloride monohydrate has been used as an intermediate in the synthesis of anticancer drugs, transcriptase inhibitors and antifungal reagents and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007). The inclusion behaviours of 4-sulfonatocalix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitrophenyl)piperazine (NPP) were investigated by UV spectroscopy and fluorescence spectroscopy at different pH values (Zhang *et al.*, 2014). The design, synthesis and biological profiling of arylpiperazine-based scaffolds for the manage-

research communications

ment of androgen-sensitive prostatic disorders was reported by Gupta et al. (2016). 4-Nitrophenylpiperazine was the starting material in the synthesis and biological evaluation of novel piperazine-containing hydrazone derivatives (Kaya et al., 2016). The crystal structure of 4-nitrophenyl piperazinium chloride monohydrate was reported by Lu (2007) and that of 4,6-dimethoxypyrimidin-2-amine-1-(4-nitrophenyl)piperazine (1:1) by Wang et al. (2014) while Aveni et al. (2019) described the synthesis and crystal structure of a Schiff base, 5-methyl-2-{[4-(4-nitrophenyl)piperazin-1-yl]methyl}phenol is published. NMR-based investigations of acyl-functionalized piperazines concerning their conformational behaviour in solution has been studied and the crystal structures of 1-(4-fluorobenzoyl)-4-(4-nitrophenyl)piperazine, 1-(4-bromobenzoyl)-4-(4-nitrophenyl)piperazine and 1-(3-bromobenzoyl)-4-(4-nitrophenyl)piperazine have been reported (Wodtke et al., 2018). We have recently reported the crystal structures of some salts of 4-methoxyphenylpiperazine (Kiran Kumar et al., 2019) and also 2-methoxyphenylpiperazine (Harish Chinthal et al., 2020), as well as some salts of piperazine derivatives (Archana et al., 2021).

Figure 1

The independent components of compound (I) showing the atomlabelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

In view of the importance of piperazines in general and the use of 4-nitrophenylpiperazine in particular, the present paper reports the crystal structures of some salts of 4-nitrophenylpiperazine with organic acids. The crystal structures of 4-(4-nitrophenyl)piperazin-1-ium 4-bromobenzoate dihydrate (I), 4-(4-nitrophenyl)piperazin-1-ium 4-iodobenzoate dihydrate (II), 4-(4-nitrophenyl)piperazin-1-ium 4-hydroxybenzoate monohydrate (III), 4-(4-nitrophenyl)piperazin-1-ium

Figure 2

The independent components of compound (II) showing the atomlabelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

research communications

The independent components of compound (III) showing the atomlabelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

4-methylbenzoate monohydrate (IV), 4-(4-nitrophenyl)piperazin-1-ium 4-methoxybenzoate hemihydrate (V) and 4-(4nitrophenyl)piperazin-1-ium 4-ethoxybenzoate (VI) are reported herein.

2. Structural commentary

The asymmetric units of the title salts are shown in Figs. 1–6. They include 1:1 dihydrated salts [(I), (II)], 1:1 monohydrated salts [(III), (IV)], 2:2 monohydrated salt (V) and solvent-free

Figure 4

The independent components of compound (IV) showing the atomlabelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

Figure 5

The independent components of compound (V) showing the atomlabelling scheme and the hydrogen bonds, drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

2:2 salt (VI). Compounds (I) and (II) are isostructural. In all salts, the cation is common and consists of a protonated chairshaped piperazine ring (N1/N2/C7-C10), which makes dihedral angles of 10.91 (1), 12.13 (1), 14.82 (6), 3.11 (8), 5.73 (1) and 13.08 (9)°, respectively, for compounds (I)-(VI) with the nitrobenzene moiety (N3/O1/O2/C1-C6) and exhibits a maximum deviation from its mean plane at atom N2 of -0.253(2), 0.254(2), 0.288(2), 0.278(2), 0.241(3) and 0.303 (3) Å in (I)-(VI), respectively. The piperazine rings of the additional cations (N4/N5/C25-C28) in compounds (V) and (VI) have the same conformation, making dihedral angles of 64.53 (1) and 21.70 (1) $^{\circ}$, respectively, with the nitrobenzene moieties (N6/O6/O7/C19-C25). Within the cations, the benzene rings are almost planar, with maximum deviations from mean plane ranging from -0.016 (3) Å at atom C20 for (VI) to 0.003 (2) Å at atom C4 for (III). The *p*-nitro substituent groups deviate significantly from planes of the benzene rings in all compounds except the (C1-C6) ring of (VI). The anions of the title salts are formed from a benzoate anion with different *p*-substituents for each compound that deviate significantly from planarity, with maximum deviations of 0.045 (1) Å at Br1 for (I), 0.063 (1) Å at I1 for (II), -0.021 (2) Å at hydroxyl atom O3 for (III), -0.010 (1) Å at methyl atom C18 for (IV), -0.033(1) and 0.034(1) Å at methoxy atoms O5 and O10 for (V) and -0.025(2) and -0.013 (2) Å at ethoxy atoms O5 and O10 for (VI).

The independent components of compound (VI) showing the atomlabelling scheme Displacement ellipsoids are drawn at the 50% probability level.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

, , ,				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H21\cdots O5^{i}$	0.85 (2)	1.99 (2)	2.810 (3)	162 (3)
$N2-H22\cdots O6^{n}$	0.83 (2)	1.91 (2)	2.707 (3)	160 (3)
C3−H3···O1 ⁱⁱⁱ	0.93	2.59	3.260 (4)	130
$C13-H13\cdots O4^{iv}$	0.93	2.57	3.483 (3)	166
$C15-H15\cdots O2^{v}$	0.93	2.47	3.269 (4)	144
$O5-H1W \cdot \cdot \cdot O3^{vi}$	0.80(2)	1.97 (2)	2.759 (2)	169 (3)
$O5-H2W \cdot \cdot \cdot O3^{i}$	0.80(2)	2.00(2)	2.772 (2)	161 (3)
$O6-H4W \cdot \cdot \cdot O4$	0.82 (2)	2.03 (2)	2.832 (3)	166 (3)
$O6-H3W \cdots O4^{vii}$	0.78 (2)	1.99 (2)	2.760 (3)	169 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y + 1, z; (iii) -x + 2, -y + 2, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z + 1; (vi) x, y - 1, z; (vii) -x, -y + 1, -z.

3. Supramolecular features

In the crystal structures of the two isomorphous salts (I) and (II), the ions are arranged in chains perpendicular to the *a*-axis

Figure 7

(a) A general view of the main intermolecular interactions $(N-H\cdots O)$ and $O-H\cdots O$ and (b) the molecular packing of (I) with hydrogen bonds shown as dashed lines.

Table 2				
Hydrogen-bond geometry	(Å,	°)	for	(II).

, , ,		. ,		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H21\cdots O5^{i}$	0.86 (2)	1.99 (2)	2.825 (4)	164 (4)
$N2 - H22 \cdot \cdot \cdot O6^{n}$	0.85 (2)	1.88 (2)	2.702 (3)	163 (4)
$C_3 = H_3 \cdots O_1$ $C_{13} = H_{13} \cdots O_4^{iv}$	0.95	2.59	3.275 (4) 3.526 (4)	151
$C15-H15\cdots O2^{v}$	0.93	2.49	3.311 (4)	147
$O5-H1W\cdots O3^{vi}$	0.81 (2)	1.96 (2)	2.756 (3)	170 (4)
$O5-H2W\cdots O3^{1}$	0.81 (2)	1.96 (2)	2.753 (3)	166 (4)
$O6-H4W\cdots O4$	0.80(2)	2.08(2)	2.836 (3)	160(4)
$00-H3W\cdots04^{m}$	0.80 (2)	1.95 (2)	2.728 (3)	105 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y + 1, z; (iii) -x + 2, -y + 2, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z + 1; (vi) x, y - 1, z; (vii) -x, -y + 1, -z.

direction. The water molecules play an essential role in holding the chains together, forming complex sheets in the bc plane (Figs. 7 and 8, Tables 1 and 2). The cations and anions in

(a) A general view of the main intermolecular interactions $(N-H\cdots O)$ and $O-H\cdots O$ in (II) and (b) the molecular packing of (II) with hydrogen bonds shown as dashed lines.

research communications

Table 3	
Hydrogen-bond geometry (Å, $^{\circ}$) for (III).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H21···O5	0.89 (2)	1.93 (2)	2.819 (2)	177 (3)
$N2-H22\cdots O4^{i}$	0.94(2)	1.65 (2)	2.583 (2)	177 (3)
O3−H17···O6	0.85(2)	1.82 (2)	2.669 (2)	177 (3)
$O6-H1W \cdot \cdot \cdot O5^{ii}$	0.83(2)	1.95 (2)	2.768 (2)	169 (3)
$O6-H2W \cdot \cdot \cdot O1^{iii}$	0.83 (2)	2.11 (2)	2.944 (2)	178 (3)

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x, -y + 1, -z + 1; (iii) -x, -y, -z.

(III) are linked through strong $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, forming chains along the [011] direction (Fig. 9*a*, Table 3). These chains are further linked *via* the water molecules and C9-H9A···O3 interactions, generating a three-dimensional supramolecular architecture along the *a* axis (Fig. 9*b*). The structure of (IV) is constructed from double

Figure 9

(a) A general view of the main intermolecular interactions $(N-H\cdots O)$ and $O-H\cdots O$ in (III) and (b) the molecular packing of (III) with hydrogen bonds shown as dashed lines.

Table 4	
Hydrogen-bond geometry (Å, $^{\circ}$) for (IV).	

Cg3 is the centroids of the C11–C16 ring.

0		0		
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H21···O4 ⁱ	0.89 (2)	1.93 (2)	2.811 (3)	167 (4)
$N2 - H22 \cdots O3^{n}$ $C3 - H3 \cdots O1^{iii}$	0.91 (2) 0.93	1.81 (2) 2.54	2.717 (3) 3.427 (4)	177 (4) 161
$C9-H9A\cdots O5^{iv}$	0.97	2.31	3.113 (3)	140
$O5-H1W\cdots O4^{4}$ $O5-H2W\cdots O3$	0.84(2) 0.85(2)	1.92(2) 1.94(2)	2.756 (3) 2.772 (3)	171 (4) 164 (4)
$C6-H6\cdots Cg3^{v}$	0.93	2.93	3.590 (3)	129

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y, -z + 1; (iv) -x + 2, -y + 1, -z; (v) x + 1, y - 1, z.

chains running along the [101] direction. Each chain is formed by linking the molecules through a combination of $N-H \cdots O$, $O-H \cdots O$ and $C-H \cdots O$ interactions (Fig. 10*a*, Table 4); the resulting double chains are symmetrically related by an inversion center and are connected via N2-H21···O4 and $C7-H7A\cdots O4$ interactions. These hydrated double chains are weakly linked into sheets lying in the bc plane by C- $H \cdots \pi$ (arene) interactions (Fig. 10b). The supramolecular assembly of compound (V), which has a disordered nitro group, is built up of N2-H22N···O11, O11-H11O···O4 and N5-H51...O9 hydrogen bonds linking the ions into organic chains running parallel to the [010] direction (Fig. 11a, Table 5). The chains are further connected cooperatively through other interactions of type $N-H\cdots O$, generating a multilayer network along the b-axis direction (Fig. 11b). In compound (VI), a set of N-H···O, C-H···O and C-H··· π interactions (Fig. 12a, Table 6) link the molecules into cationic and anionic layers running parallel to the *b*-axis direction and join these layer motifs, generating the complete molecular structure along the a axis (Fig. 12b).

Figure 10

(a) A general view of the main intermolecular interactions $(N-H\cdots O)$ and $O-H\cdots O$ in (IV) and (b) the molecular packing of (IV) with hydrogen bonds shown as dashed lines.

Table 5Hydrogen-bond geometry (Å, °) for (V).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C7-H7B\cdots O7^{i}$	0.97	2.54	3.451 (5)	157
$C9-H9B\cdots O4^{ii}$	0.97	2.31	3.270 (5)	169
C20-H20···O9	0.93	2.53	3.461 (5)	174
$C25-H25A\cdots O2a^{iii}$	0.97	2.5	3.206 (10)	130
$C25-H25A\cdots O2'b^{iii}$	0.97	2.49	3.212 (11)	131
$C27 - H27A \cdots O7^{i}$	0.97	2.58	3.548 (5)	175
C28-H28B···O9	0.97	2.55	3.489 (5)	164
C36-H36C···O1′b ⁱⁱ	0.96	2.49	3.395 (14)	158
$N2-H21N \cdot \cdot \cdot O8^{iv}$	0.88(2)	1.83 (2)	2.697 (4)	166 (4)
$N2-H21N \cdots O9^{iv}$	0.88 (2)	2.57 (3)	3.196 (4)	129 (3)
$N2-H22N \cdot \cdot \cdot O11^{v}$	0.88(2)	1.89 (2)	2.758 (5)	169 (4)
$N5-H51N\cdots O9^{vi}$	0.87 (2)	1.93 (2)	2.778 (5)	164 (4)
$N5-H52N\cdots O3^{vii}$	0.91 (2)	1.82 (2)	2.724 (5)	171 (4)
O11−H110···O4	0.84 (2)	1.83 (2)	2.663 (4)	176 (4)
$O11-H12O\cdots O8^{v}$	0.84 (2)	1.92 (2)	2.754 (4)	173 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iv) -x, -y + 1, -z; (v) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (vi) x, y - 1, z; (vii) x - 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

(b)

Figure 11

(a) A general view of the main intermolecular interactions $(N-H\cdots O)$ and $O-H\cdots O$ in (V) and (b) the molecular packing of (V) with hydrogen bonds shown as dashed lines.

Table 6 Hydrogen-bond geometry (Å, °) for (VI).

Cg2 and Cg6 are the centroids of the C1–C6 and C30–C35 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H31N \cdots O3^{i}$	0.94(2)	1.68 (2)	2.613 (3)	172 (5)
$N2-H31N\cdots O4^{i}$	0.94(2)	2.51 (4)	3.157 (3)	127 (4)
$N2-H32N\cdots O9^{ii}$	0.90(2)	1.96 (2)	2.843 (3)	171 (5)
$N5-H61N\cdotsO8^{i}$	0.91 (2)	1.78 (2)	2.686 (3)	175 (5)
$N5-H61N\cdotsO9^{i}$	0.91(2)	2.59 (4)	3.174 (3)	122 (4)
$N5-H62N\cdots O4^{iii}$	0.90 (2)	1.83 (2)	2.708 (3)	165 (5)
$C22-H22\cdots O2^{iv}$	0.93	2.6	3.502 (5)	165
$C27 - H27B \cdots O9^{i}$	0.97	2.59	3.215 (3)	123
$C28 - H28B \cdots O7^{v}$	0.97	2.65	3.410 (4)	135
$C29-H29B\cdotsO1^{i}$	0.97	2.53	3.249 (4)	131
C35−H35····O4 ⁱⁱⁱ	0.93	2.52	3.263 (3)	137
$C10-H10A\cdots Cg6$	0.97	2.82	3.746 (3)	159
$C29-H29A\cdots Cg2$	0.97	2.76	3.556 (3)	139

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y - 1, z; (iii) x, y + 1, z; (iv) -x, -y + 1, -z + 1; (v) -x, -y + 2, -z + 1.

(b)

Figure 12

(a) A general view of the main intermolecular interactions (N-H···O, O-H···O and C-H···O) in (VI) and (b) the molecular packing of (VI) with hydrogen bonds shown as dashed lines.

research communications

Table 7Experimental details.

	(I)	(II)	(III)
Crustel date		()	()
Crystal data	C = U = N O + C U = O = O U O	C H N O + C H O = 2H O	$C = U = N O^{+} C = U O^{-} U O^{-}$
Chemical formula	$C_{10}H_{14}N_3O_2 \cdot C_7H_4BIO_2 \cdot 2H_2O$	$C_{10}H_{14}N_{3}O_{2} + C_{7}H_{4}IO_{2} + 2H_{2}O_{401,29}$	$C_{10}H_{14}N_{3}O_{2} + C_{7}H_{5}O_{3} + H_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O$
M _r	444.28	491.28	303.37
Crystal system, space group	Iriclinic, PI	Iriclinic, PI	Iriclinic, PI
Temperature (K)	293	293	293
a, b, c (A)	7.738 (1), 9.320 (1), 13.949 (2)	7.7652 (4), 9.2852 (5), 13.930 (1)	9.636 (1), 10.301 (1), 10.867 (1)
α, β, γ (°)	94.46 (1), 95.04 (1), 104.71 (2)	94.985 (5), 95.331 (5), 104.875 (6)	103.90 (1), 108.32 (1), 112.96 (1)
$V(A^3)$	964.0 (2)	960.09 (10)	857.80 (17)
			2
Radiation type (-1)		Μο Κα	
$\mu (\text{mm}^{-1})$	2.17	1.71	0.11
Crystal size (mm)	$0.48 \times 0.44 \times 0.24$	$0.48 \times 0.48 \times 0.2$	$0.50 \times 0.32 \times 0.24$
Data collection			
Diffractometer	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur
Absorption correction	Multi-scan (CrysAlis RED;	Multi-scan (CrysAlis RED;	Multi-scan (CrysAlis RED;
•	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.367, 0.422	0.458, 0.711	0.959, 0.974
No. of measured, independent and	6123, 3536, 2520	6331, 3518, 2952	5342, 3140, 2342
observed $[I > 2\sigma(I)]$ reflections			
R _{int}	0.019	0.017	0.013
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.602	0.602	0.602
Refinement			
$R[F^2 > 2\sigma(F^2)] w R(F^2) S$	0.037 0.104 1.04	0.029.0.069.1.03	0.043 0.106 1.05
No of reflections	3528	3513	3135
No. of parameters	262	262	251
No of restraints	6	6	5
H-atom treatment	H atoms treated by a mixture of	H atoms treated by a mixture of	H atoms treated by a mixture of
II-atom treatment	independent and constrained	independent and constrained	independent and constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.50, -0.51	0.54, -0.66	0.19, -0.19
	(IV)	(V)	(VI)
Crystal data			
Chemical formula	$C H N O^+ C H O^- H O$	$2C H N O^{+} 2C H O^{-} H O$	$C H N O^+ C H O^-$
M	361 39	736 77	373.4
Crystal system space group	Triclinic $P\overline{1}$	Monoclinic $P2_1/c$	Triclinic $P\overline{1}$
Temperature (K)	293	293	293
a h c (Å)	61136(5)76965(7)19708(2)	15808(1)75198(7)31020(2)	7,874(1),9,263(1),27,996(3)
$\alpha, \beta, \gamma(\circ)$	79 577 (8) 87 162 (8) 86 699 (8)	90 92 561 (7) 90	81 030 (6) 85 675 (6) 68 229 (5)
$V(A^3)$	909 79 (15)	3683.8 (5)	1872 8 (4)
Z	2	4	4
Radiation type	 Μο Κα	Μο Κα	Μο <i>Κα</i>
$\mu (\text{mm}^{-1})$	0.10	0.1	0.10
Crystal size (mm)	$0.48 \times 0.26 \times 0.02$	$0.5 \times 0.36 \times 0.36$	$0.44 \times 0.32 \times 0.08$
Data collection			
Diffractometer	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur
Absorption correction	Multi-scan (CrysAlis RED;	Multi-scan (CrysAlis RED;	Multi-scan (CrysAlis RED;
	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.970, 0.998	0.958, 0.965	0.963, 0.992
No. of measured, independent and	5980, 3347, 1911	15326, 6718, 2602	13344, 6868, 3803
observed $[I > 2\sigma(I)]$ reflections			
R _{int}	0.019	0.066	0.027
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.602	0.602	0.602
Refinement			
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.053 0.138 1.01	0.074 0.169 1.00	0.061 0.137 1.05
No. of reflections	3343	6715	6858
No. of parameters	248	507	501
No. of restraints	4	45	16
H-atom treatment	H atoms treated by a mixture of	H atoms treated by a mixture of	H atoms treated by a mixture of
	independent and constrained refinement	independent and constrained refinement	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.20, -0.16	0.27, -0.18	0.23, -0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), Mercury (Macrae et al., 2020), SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

4. Database survey

A search of the Cambridge Structural Database (Version 2020.3, last update February 2022; Groom et al., 2016) for the phenyl piperazinium cation and para substituent benzoate anion involved in the reported six salts gave the following hits, 4-(4-methoxyphenyl)piperazin-1-ium 4-fluorobenzoate monohydrate, 4-(4-methoxyphenyl)piperazin-1-ium 4-chlorobenzoate monohydrate and 4-(4-methoxyphenyl)piperazin-1ium 4-bromobenzoate monohydrate (FOVPOY, FOVPUE and FOVQAL; Kiran Kumar et al., 2019) and 4-(4-methoxyphenyl)piperazin-1-ium 4-iodobenzoate monohydrate (KUJ-PUD; Kiran Kumar et al., 2020). They exhibit a methoxy group as a substituent in the phenyl piperazinium cation rather than a nitro group as in the title compounds (I)-(VI) and they also crystallize as monohydrates similar to compounds (III)-(V). Although the title compounds (I) and (II) have halogen-based anions and chain-based structures, they are not isostructural with the above compounds, the crystal structures of which are based on differently sized chains of rings formed via a combination of hydrogen bonds of type $N-H \cdots O$ and O- $H \cdots O$ and other weak interactions of type $C - H \cdots O$ and C -H... π to form sheets. In 4-(4-methoxyphenyl)piperazin-1-ium 4-aminobenzoate monohydrate (IHIMEU; Kiran Kumar et al., 2020) the presence of an amino substituent on the anion, which acts as both a donor and an acceptor of hydrogen bonds, makes the supramolecular assembly of this compound more complex than for the compounds reported herein.

5. Synthesis and crystallization

Synthesis:

For the synthesis of salts (I)–(VI), a solution of commercially available (from Sigma–Aldrich) 4-nitrophenylpiperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) and ethyl acetate (10 ml), *viz.*4-bromobenzoic acid (97 mg, 0.483 mol) for (I), 4-iodobenzoic acid (120 mg, 0.483 mol) for (II), 4-hydroxybenzoic acid (67 mg, 0.483 mol) for (III), 4-methylbenzoic acid (66 mg, 0.483 mol) for (IV), 4-methoxybenzoic acid (73 mg, 0.483 mol) for (V) and 4-ethoxybenzoicacid (80 mg, 0.483 mol) for (VI). The corresponding solutions were stirred for 15 minutes at room temperature and allowed to stand at the same temperature. The products obtained were subjected to crystallization.

Crystallization: Crystallization was carried out using the slow evaporation technique. X-ray quality crystals were formed on slow evaporation in a week for all compounds, where ethanol:ethylacetate (1:1) was used for crystallization. The corresponding melting points were 430–432 K (I), 453–455 K (II), 446–448 K (III), 398–400 K (IV), 413–415 K (V) and 408–410 K (VI).

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 7. C-bound H atoms were positioned with idealized geometry and refined using a riding model with C-H = 0.93 Å (aromatic), 0.96 Å (methyl) or 0.97 Å (methylene). The H atoms on the N atom were located in a difference map and later restrained to N-H = 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 U_{eq} (C-aromatic, C-methylene, N) or 1.5 U_{eq} (C-methyl) times those of the parent atom. For the disordered nitro group in (V), the component atoms were restrained to have the same U^{ij} components and the occupancy ratio is 0.519 (6):0.481 (6).

Funding information

NM is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years. SGG gratefully acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (PID2020–113558RB-C41) and Gobierno del Principado de Asturias (AYUD/2021/50997).

References

- Archana, S. D., Kumar, H. K., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2021). Acta Cryst. E77, 1135–1139.
- O. Ayeni, A., M. Watkins, G. & C. Hosten, E. (2019). Bull. Chem. Soc. Eth. 33, 341.
- Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). *Tetrahedron Lett.* 46, 2369– 2371.
- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.
- Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). *Bioorg. Med. Chem. Lett.* 14, 4763–4766.
- Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). *Bioorg. Med. Chem.* 14, 1819–1826.
- Elliott, S. (2011). Drug Test. Anal. 3, 430-438.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). *Med. Chem. Commun.* 7, 2111–2121.
- Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.
- Kaya, B., Ozkay, Y., Temel, H. E. & &Kaplancikli, Z. A. (2016). J. Chem. Art. ID, pp. 5878410 http://dx.doi.org/10.1155/2016/5878410.
- Kharb, R., Bansal, K. & Sharma, A. K. (2012). *Der Pharma Chem.* 4, 2470–2488.
- Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.
- Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E75, 488–495.
- Lu, Y.-X. (2007). Acta Cryst. E63, o3611.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Oxford Diffraction (2009). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Spek, A. L. (2020). Acta Cryst. E76, 1-11.

- Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). *Bioorg. Med. Chem.* **12**, 2225–2238.
- Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. New Cryst. Struct. 229, 97–98.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

- Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). *RSC Adv.* **8**, 40921–40933.
- Zhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta Part A, **132**, 44–51.

Acta Cryst. (2022). E78, 510-518 [https://doi.org/10.1107/S2056989022004157]

Crystal structures of six 4-(4-nitrophenyl)piperazin-1-ium salts

Ninganayaka Mahesha, Haruvegowda Kiran Kumar, Hemmige S. Yathirajan, Sabine Foro, Mohammed S. M. Abdelbaky and Santiago Garcia-Granda

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure:
SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020). Software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b), *PLATON* (Spek, 2020) and *publCIF* (Westrip, 2010) for (I), (II), (III), (V), (VI); *SHELXL2014* (Sheldrick, 2015b), *PLATON* (Spek, 2020) and *publCIF* (Westrip, 2010) for (IV).

4-(4-Nitrophenyl)piperazin-1-ium 4-bromobenzoate dihydrate (I)

Crystal data

 $\begin{array}{l} {\rm C}_{10}{\rm H}_{14}{\rm N}_{3}{\rm O}_{2}^{+}{\rm \cdot}{\rm C}_{7}{\rm H}_{4}{\rm Br}{\rm O}_{2}^{-}{\rm \cdot}{\rm 2}{\rm H}_{2}{\rm O}\\ M_{r}=444.28\\ {\rm Triclinic}, P\overline{\rm I}\\ {\rm Hall \ symbol: \ -P\ 1}\\ a=7.738\ (1)\ {\rm \mathring{A}}\\ b=9.320\ (1)\ {\rm \mathring{A}}\\ c=13.949\ (2)\ {\rm \mathring{A}}\\ \alpha=94.46\ (1)^{\circ}\\ \beta=95.04\ (1)^{\circ}\\ \gamma=104.71\ (2)^{\circ}\\ V=964.0\ (2)\ {\rm \mathring{A}}^{3} \end{array}$

Data collection

Oxford Diffraction Xcalibur diffractometer ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.367, T_{\max} = 0.422$ 6123 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.104$ S = 1.043528 reflections 262 parameters Z = 2 F(000) = 456 $D_x = 1.531 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6123 reflections $\theta = 3.0-25.3^{\circ}$ $\mu = 2.17 \text{ mm}^{-1}$ T = 293 K Prism, yellow $0.48 \times 0.44 \times 0.24 \text{ mm}$

3536 independent reflections 2520 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 8$ $k = -6 \rightarrow 11$ $l = -16 \rightarrow 16$

6 restraints 0 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: structureinvariant direct methods Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0623P)^2]$	$\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.9273 (3)	0.7891 (3)	0.53814 (19)	0.0873 (8)	
02	0.6916 (3)	0.6357 (3)	0.57409 (17)	0.0767 (6)	
N1	0.3360 (2)	1.0060 (2)	0.29246 (14)	0.0392 (5)	
N2	0.1306 (3)	1.1025 (2)	0.13987 (16)	0.0433 (5)	
N3	0.7641 (3)	0.7395 (3)	0.53118 (17)	0.0537 (6)	
C1	0.4412 (3)	0.9374 (2)	0.34950 (16)	0.0353 (5)	
C2	0.6297 (3)	0.9791 (3)	0.35426 (19)	0.0462 (6)	
H2	0.685335	1.050743	0.316027	0.055*	
C3	0.7335 (3)	0.9160 (3)	0.4144 (2)	0.0479 (6)	
Н3	0.858174	0.947226	0.418128	0.057*	
C4	0.6524 (3)	0.8067 (3)	0.46921 (17)	0.0401 (6)	
C5	0.4678 (3)	0.7621 (3)	0.46618 (18)	0.0460 (6)	
Н5	0.414057	0.688671	0.503722	0.055*	
C6	0.3636 (3)	0.8264 (3)	0.40761 (18)	0.0430 (6)	
H6	0.239197	0.796118	0.406198	0.052*	
C7	0.4258 (3)	1.1047 (3)	0.2239 (2)	0.0479 (6)	
H7A	0.454966	1.044787	0.17075	0.058*	
H7B	0.537417	1.169773	0.256358	0.058*	
C8	0.3088 (3)	1.1978 (3)	0.1846 (2)	0.0493 (7)	
H8A	0.29158	1.266385	0.236558	0.059*	
H8B	0.368224	1.256083	0.136469	0.059*	
C9	0.0406 (3)	1.0114 (3)	0.2121 (2)	0.0495 (6)	
H9A	-0.074749	0.948618	0.182599	0.059*	
H9B	0.01919	1.076165	0.265103	0.059*	
C10	0.1561 (3)	0.9148 (3)	0.2506 (2)	0.0462 (6)	
H10A	0.097528	0.858526	0.29974	0.055*	
H10B	0.168666	0.844357	0.1984	0.055*	
Br1	0.91659 (5)	0.45794 (4)	0.33416 (3)	0.08360 (18)	
O3	0.4483 (2)	0.78822 (19)	0.01696 (15)	0.0543 (5)	
O4	0.2197 (2)	0.63974 (18)	0.07787 (14)	0.0505 (5)	
C11	0.5153 (3)	0.6356 (2)	0.13620 (18)	0.0350 (5)	
C12	0.6851 (3)	0.6376 (3)	0.10986 (19)	0.0431 (6)	
H12	0.71881	0.674975	0.052451	0.052*	
C13	0.8046 (3)	0.5846 (3)	0.1680 (2)	0.0499 (7)	
H13	0.916747	0.583844	0.149142	0.06*	

C14	0.7551 (3)	0.5332 (3)	0.2538 (2)	0.0466 (6)	
C15	0.5891 (3)	0.5325 (3)	0.28271 (19)	0.0459 (6)	
H15	0.55828	0.499101	0.341588	0.055*	
C16	0.4690 (3)	0.5821 (2)	0.22315 (19)	0.0424 (6)	
H16	0.35572	0.579557	0.241532	0.051*	
C17	0.3848 (3)	0.6919 (2)	0.07250 (19)	0.0391 (6)	
05	0.7579 (2)	0.01738 (19)	0.02770 (14)	0.0468 (4)	
06	0.0305 (3)	0.3352 (2)	0.06917 (16)	0.0581 (5)	
H21	0.143 (4)	1.051 (3)	0.0892 (17)	0.07*	
H22	0.075 (4)	1.160 (3)	0.118 (2)	0.07*	
H1W	0.674 (3)	-0.053 (3)	0.031 (2)	0.07*	
H2W	0.720 (4)	0.088 (3)	0.018 (2)	0.07*	
H4W	0.095 (4)	0.421 (2)	0.080 (2)	0.07*	
H3W	-0.041 (4)	0.331 (3)	0.0257 (18)	0.07*	

Atomic displacement parameters (\mathring{A}^2)

	I 711	I 722	I 733	1/12	1713	I /23
			0 100 (0)			0.0407.(15)
01	0.0490 (13)	0.0892 (16)	0.122 (2)	0.0142 (11)	-0.0189 (13)	0.0497 (15)
02	0.0701 (14)	0.0858 (15)	0.0809 (16)	0.0235 (12)	-0.0004 (12)	0.0500 (13)
N1	0.0347 (10)	0.0406 (11)	0.0417 (11)	0.0091 (8)	-0.0042 (9)	0.0124 (9)
N2	0.0459 (12)	0.0431 (12)	0.0435 (13)	0.0189 (10)	-0.0065 (10)	0.0088 (10)
N3	0.0542 (15)	0.0524 (13)	0.0551 (14)	0.0173 (11)	-0.0090 (12)	0.0161 (11)
C1	0.0396 (13)	0.0344 (12)	0.0327 (13)	0.0132 (10)	-0.0010 (10)	0.0026 (10)
C2	0.0378 (14)	0.0518 (15)	0.0515 (16)	0.0111 (11)	0.0047 (12)	0.0229 (12)
C3	0.0361 (13)	0.0503 (15)	0.0583 (17)	0.0125 (11)	-0.0001 (12)	0.0145 (13)
C4	0.0441 (14)	0.0411 (13)	0.0363 (13)	0.0156 (11)	-0.0037 (11)	0.0060 (11)
C5	0.0489 (15)	0.0463 (14)	0.0429 (15)	0.0100 (11)	0.0016 (12)	0.0177 (11)
C6	0.0339 (12)	0.0498 (14)	0.0455 (15)	0.0093 (11)	0.0025 (11)	0.0145 (12)
C7	0.0416 (14)	0.0450 (14)	0.0524 (16)	0.0036 (11)	-0.0082 (12)	0.0166 (12)
C8	0.0558 (16)	0.0385 (13)	0.0499 (16)	0.0096 (12)	-0.0116 (13)	0.0117 (11)
C9	0.0392 (14)	0.0603 (16)	0.0517 (16)	0.0187 (12)	-0.0040 (12)	0.0138 (13)
C10	0.0354 (13)	0.0487 (14)	0.0530 (16)	0.0077 (11)	-0.0030 (12)	0.0159 (12)
Brl	0.0734 (3)	0.0942 (3)	0.0856 (3)	0.0319 (2)	-0.02375 (19)	0.0272 (2)
O3	0.0418 (10)	0.0434 (10)	0.0808 (13)	0.0119 (8)	0.0005 (9)	0.0298 (9)
O4	0.0291 (9)	0.0497 (10)	0.0727 (13)	0.0090 (7)	0.0003 (8)	0.0169 (9)
C11	0.0330 (12)	0.0242 (11)	0.0468 (14)	0.0078 (9)	-0.0007 (11)	0.0021 (10)
C12	0.0403 (14)	0.0432 (13)	0.0504 (16)	0.0160 (11)	0.0087 (12)	0.0125 (11)
C13	0.0345 (13)	0.0548 (15)	0.0659 (19)	0.0194 (11)	0.0057 (13)	0.0145 (14)
C14	0.0443 (15)	0.0381 (13)	0.0548 (17)	0.0096 (11)	-0.0109 (13)	0.0102 (12)
C15	0.0500 (16)	0.0433 (14)	0.0403 (15)	0.0053 (11)	-0.0007(12)	0.0082 (11)
C16	0.0376 (13)	0.0378 (13)	0.0499 (16)	0.0068 (10)	0.0051 (12)	0.0034 (11)
C17	0.0375 (13)	0.0266 (11)	0.0533 (16)	0.0108 (10)	-0.0010 (11)	0.0032 (11)
05	0.0370 (10)	0.0413 (10)	0.0619 (12)	0.0103 (7)	-0.0023(9)	0.0133 (9)
O6	0.0491 (12)	0.0429 (10)	0.0816 (15)	0.0141 (8)	-0.0142 (10)	0.0195 (10)
	、					~ /

Geometric parameters (Å, °)

01—N3	1.222 (3)	C8—H8B	0.97	
O2—N3	1.217 (3)	C9—C10	1.516 (3)	
N1—C1	1.391 (3)	С9—Н9А	0.97	
N1—C7	1.474 (3)	C9—H9B	0.97	
N1-C10	1.477 (3)	C10—H10A	0.97	
N2—C9	1.476 (4)	C10—H10B	0.97	
N2—C8	1.490 (3)	Br1—C14	1.906 (2)	
N2—H21	0.850 (17)	O3—C17	1.264 (3)	
N2—H22	0.833 (18)	O4—C17	1.257 (3)	
N3—C4	1.454 (3)	C11—C16	1.388 (3)	
C1—C2	1.405 (3)	C11—C12	1.391 (3)	
C1—C6	1.410 (3)	C11—C17	1.506 (3)	
С2—С3	1.376 (3)	C12—C13	1.385 (3)	
С2—Н2	0.93	C12—H12	0.93	
C3—C4	1.377 (4)	C13—C14	1.374 (4)	
С3—Н3	0.93	C13—H13	0.93	
C4—C5	1.378 (4)	C14—C15	1.378 (4)	
C5—C6	1.372 (3)	C15—C16	1.382 (3)	
С5—Н5	0.93	C15—H15	0.93	
С6—Н6	0.93	C16—H16	0.93	
С7—С8	1.502 (3)	O5—H1W	0.802 (17)	
С7—Н7А	0.97	O5—H2W	0.802 (17)	
С7—Н7В	0.97	O6—H4W	0.823 (17)	
C8—H8A	0.97	O6—H3W	0.778 (18)	
C1—N1—C7	117.46 (19)	N2—C8—H8B	109.4	
C1—N1—C10	117.30 (18)	C7—C8—H8B	109.4	
C7—N1—C10	112.08 (19)	H8A—C8—H8B	108	
C9—N2—C8	109.8 (2)	N2—C9—C10	110.3 (2)	
C9—N2—H21	113 (2)	N2—C9—H9A	109.6	
C8—N2—H21	110 (2)	С10—С9—Н9А	109.6	
C9—N2—H22	115 (2)	N2—C9—H9B	109.6	
C8—N2—H22	106 (2)	С10—С9—Н9В	109.6	
H21—N2—H22	102 (3)	H9A—C9—H9B	108.1	
O2—N3—O1	122.4 (2)	N1-C10-C9	111.3 (2)	
O2—N3—C4	118.8 (2)	N1-C10-H10A	109.4	
O1—N3—C4	118.8 (2)	C9—C10—H10A	109.4	
N1-C1-C2	121.5 (2)	N1-C10-H10B	109.4	
N1-C1-C6	121.4 (2)	C9—C10—H10B	109.4	
C2—C1—C6	117.1 (2)	H10A—C10—H10B	108	
C3—C2—C1	121.2 (2)	C16—C11—C12	118.6 (2)	
С3—С2—Н2	119.4	C16—C11—C17	120.5 (2)	
C1—C2—H2	119.4	C12—C11—C17	120.9 (2)	
C2—C3—C4	119.9 (2)	C13—C12—C11	120.9 (2)	
С2—С3—Н3	120	C13—C12—H12	119.5	
С4—С3—Н3	120	C11—C12—H12	119.5	

C3—C4—C5	120.6 (2)	C14—C13—C12	119.0 (2)
C3—C4—N3	119.2 (2)	C14—C13—H13	120.5
C5—C4—N3	120.2 (2)	C12—C13—H13	120.5
C6—C5—C4	119.8 (2)	C13—C14—C15	121.4 (2)
С6—С5—Н5	120.1	C13—C14—Br1	119.7 (2)
С4—С5—Н5	120.1	C15—C14—Br1	118.9 (2)
C5—C6—C1	121.4 (2)	C14—C15—C16	119.2 (2)
С5—С6—Н6	119.3	C14—C15—H15	120.4
С1—С6—Н6	119.3	C16—C15—H15	120.4
N1—C7—C8	111.5 (2)	C15—C16—C11	120.9 (2)
N1—C7—H7A	109.3	C15—C16—H16	119.6
С8—С7—Н7А	109.3	C11—C16—H16	119.6
N1—C7—H7B	109.3	O4—C17—O3	124.3 (2)
С8—С7—Н7В	109.3	O4—C17—C11	117.8 (2)
H7A—C7—H7B	108	O3—C17—C11	117.9 (2)
N2—C8—C7	111.17 (19)	H1W—O5—H2W	108 (3)
N2—C8—H8A	109.4	H4W—O6—H3W	109 (3)
С7—С8—Н8А	109.4		
C7—N1—C1—C2	10.7 (3)	C9—N2—C8—C7	58.1 (3)
C10—N1—C1—C2	148.9 (2)	N1—C7—C8—N2	-55.1 (3)
C7—N1—C1—C6	-171.5 (2)	C8—N2—C9—C10	-58.5 (3)
C10—N1—C1—C6	-33.3 (3)	C1—N1—C10—C9	165.8 (2)
N1—C1—C2—C3	176.8 (2)	C7—N1—C10—C9	-53.9 (3)
C6—C1—C2—C3	-1.1 (4)	N2-C9-C10-N1	56.8 (3)
C1—C2—C3—C4	2.0 (4)	C16—C11—C12—C13	1.3 (3)
C2—C3—C4—C5	-1.6 (4)	C17—C11—C12—C13	-179.4 (2)
C2-C3-C4-N3	179.0 (2)	C11—C12—C13—C14	-1.7 (4)
O2—N3—C4—C3	-174.9 (3)	C12—C13—C14—C15	0.4 (4)
O1—N3—C4—C3	5.0 (4)	C12-C13-C14-Br1	179.36 (19)
O2—N3—C4—C5	5.7 (4)	C13—C14—C15—C16	1.2 (4)
O1—N3—C4—C5	-174.4 (3)	Br1-C14-C15-C16	-177.75 (18)
C3—C4—C5—C6	0.5 (4)	C14—C15—C16—C11	-1.6 (3)
N3—C4—C5—C6	179.9 (2)	C12—C11—C16—C15	0.4 (3)
C4—C5—C6—C1	0.3 (4)	C17—C11—C16—C15	-178.9 (2)
N1—C1—C6—C5	-177.9 (2)	C16—C11—C17—O4	-26.9 (3)
C2-C1-C6-C5	0.0 (4)	C12—C11—C17—O4	153.8 (2)
C1—N1—C7—C8	-166.7 (2)	C16—C11—C17—O3	153.3 (2)
C10—N1—C7—C8	53.0 (3)	C12—C11—C17—O3	-26.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H21…O5 ⁱ	0.85 (2)	1.99 (2)	2.810 (3)	162 (3)
N2—H22···O6 ⁱⁱ	0.83 (2)	1.91 (2)	2.707 (3)	160 (3)
С3—Н3…О1 ^{ііі}	0.93	2.59	3.260 (4)	130
C13—H13…O4 ^{iv}	0.93	2.57	3.483 (3)	166
C15—H15…O2 ^v	0.93	2.47	3.269 (4)	144

O5—H1 <i>W</i> ···O3 ^{vi}	0.80 (2)	1.97 (2)	2.759 (2)	169 (3)
O5—H2 <i>W</i> ···O3 ⁱ	0.80 (2)	2.00 (2)	2.772 (2)	161 (3)
O6—H4 <i>W</i> ···O4	0.82 (2)	2.03 (2)	2.832 (3)	166 (3)
O6—H3 <i>W</i> ····O4 ^{vii}	0.78 (2)	1.99 (2)	2.760 (3)	169 (3)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z; (iii) -x+2, -y+2, -z+1; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1; (vi) x, y-1, z; (vi) -x, -y+1, -z.

4-(4-Nitrophenyl)piperazin-1-ium 4-iodobenzoate dihydrate (II)

Crystal data

$C_{10}H_{14}N_{3}O_{2}^{+}\cdot C_{7}H_{4}IO_{2}^{-}\cdot 2H_{2}O$	Z = 2
$M_r = 491.28$	F(000) = 492
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.699 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.7652 (4) Å	Cell parameters from 6331 reflections
b = 9.2852 (5) Å	$\theta = 2.6 - 25.4^{\circ}$
c = 13.930(1) Å	$\mu = 1.71 \text{ mm}^{-1}$
$\alpha = 94.985 \ (5)^{\circ}$	T = 293 K
$\beta = 95.331 \ (5)^{\circ}$	Prism, brown
$\gamma = 104.875 \ (6)^{\circ}$	$0.48 \times 0.48 \times 0.2 \text{ mm}$
$V = 960.09 (10) \text{ Å}^3$	
Data collection	
Oxford Diffraction Xcalibur	3518 independent reflections
diffractometer	2952 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.017$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
(CrysAlis RED; Oxford Diffraction, 2009)	$h = -8 \rightarrow 9$
$T_{\min} = 0.458, T_{\max} = 0.711$	$k = -11 \rightarrow 9$
6331 measured reflections	$l = -14 \rightarrow 16$
Refinement	

Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0319P)^2 + 0.5892P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.9211 (3)	0.7945 (3)	0.5327 (2)	0.0765 (8)	
O2	0.6869 (3)	0.6415 (3)	0.5706 (2)	0.0702 (7)	
N1	0.3324 (3)	1.0055 (2)	0.29012 (17)	0.0344 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N2	0.1277 (3)	1.1016 (3)	0.13972 (19)	0.0404 (6)
N3	0.7583 (4)	0.7448 (3)	0.52680 (19)	0.0471 (6)
C1	0.4369 (3)	0.9384 (3)	0.34660 (19)	0.0311 (6)
C2	0.6239 (4)	0.9794 (3)	0.3495 (2)	0.0421 (7)
H2	0.678241	1.049839	0.310458	0.051*
C3	0.7273 (4)	0.9175 (3)	0.4087 (2)	0.0434 (7)
H3	0.851637	0.947138	0.411003	0.052*
C4	0.6475 (4)	0.8107 (3)	0.4653 (2)	0.0348 (6)
C5	0.4638 (4)	0.7665 (3)	0.4644 (2)	0.0407 (7)
Н5	0.411197	0.694461	0.502907	0.049*
C6	0.3609 (4)	0.8297 (3)	0.4063 (2)	0.0390 (7)
H6	0.236893	0.800552	0.405831	0.047*
C7	0.4203 (4)	1.1048 (3)	0.2222 (2)	0.0412 (7)
H7A	0.448427	1.044706	0.168453	0.049*
H7B	0.532139	1.170403	0.255077	0.049*
C8	0.3038 (4)	1.1984 (3)	0.1836 (2)	0.0439 (7)
H8A	0.287569	1.267775	0.236	0.053*
H8B	0.361796	1.256375	0.135285	0.053*
C9	0.0381 (4)	1.0095 (4)	0.2115 (2)	0.0456 (7)
H9A	-0.07676	0.945606	0.181239	0.055*
H9B	0.016429	1.074515	0.264773	0.055*
C10	0.1531 (4)	0.9144 (3)	0.2497 (2)	0.0413 (7)
H10A	0.096206	0.859686	0.299686	0.05*
H10B	0.163241	0.841846	0.19758	0.05*
I1	0.92211 (3)	0.44728 (3)	0.33815 (2)	0.05798 (10)
03	0.4459 (3)	0.7894 (2)	0.01595 (18)	0.0503 (6)
04	0.2183 (3)	0.6411 (2)	0.07685 (16)	0.0463 (5)
C11	0.5106 (3)	0.6368 (3)	0.1340 (2)	0.0321 (6)
C12	0.6798 (4)	0.6390 (3)	0.1072 (2)	0.0387 (7)
H12	0.71341	0.676998	0.050132	0.046*
C13	0.7975 (4)	0.5851 (3)	0.1648 (2)	0.0411 (7)
H13	0.909115	0.584052	0.146196	0.049*
C14	0.7470 (4)	0.5326 (3)	0.2509 (2)	0.0376 (7)
C15	0.5813 (4)	0.5331 (3)	0.2798 (2)	0.0398 (7)
H15	0.550434	0.499714	0.338523	0.048*
C16	0.4631 (4)	0.5834 (3)	0.2208 (2)	0.0378 (7)
H16	0.350345	0.581695	0.238875	0.045*
C17	0.3825 (4)	0.6931 (3)	0.0705 (2)	0.0356 (6)
05	0.7577 (3)	0.0174 (2)	0.02906 (17)	0.0446 (5)
06	0.0304 (3)	0.3341 (3)	0.06807 (19)	0.0529 (6)
H21	0.144 (5)	1.051 (4)	0.0882 (19)	0.063*
H22	0.076 (4)	1.162 (3)	0.116 (3)	0.063*
H1W	0.671 (4)	-0.051 (3)	0.032 (3)	0.063*
H2W	0.711 (5)	0.084 (3)	0.022 (3)	0.063*
H4W	0.100 (4)	0.414 (3)	0.080 (3)	0.063*
H3W	-0.052 (4)	0.326 (4)	0.027 (2)	0.063*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0437 (15)	0.0752 (18)	0.108 (2)	0.0122 (13)	-0.0192 (14)	0.0400 (16)
02	0.0633 (16)	0.0754 (18)	0.0786 (18)	0.0200 (13)	0.0033 (13)	0.0469 (15)
N1	0.0300 (12)	0.0321 (13)	0.0391 (13)	0.0054 (10)	-0.0037 (10)	0.0090 (10)
N2	0.0420 (14)	0.0388 (15)	0.0413 (15)	0.0159 (11)	-0.0066 (12)	0.0072 (11)
N3	0.0496 (17)	0.0450 (16)	0.0461 (15)	0.0151 (13)	-0.0076 (13)	0.0084 (13)
C1	0.0328 (14)	0.0280 (14)	0.0316 (14)	0.0093 (11)	-0.0008 (11)	0.0009 (11)
C2	0.0340 (15)	0.0433 (17)	0.0496 (18)	0.0067 (13)	0.0047 (13)	0.0196 (14)
C3	0.0279 (15)	0.0464 (18)	0.0548 (19)	0.0086 (13)	-0.0010 (13)	0.0115 (15)
C4	0.0369 (15)	0.0344 (15)	0.0332 (15)	0.0118 (12)	-0.0029 (12)	0.0049 (12)
C5	0.0422 (17)	0.0417 (17)	0.0383 (16)	0.0087 (13)	0.0047 (13)	0.0139 (13)
C6	0.0292 (14)	0.0443 (17)	0.0430 (17)	0.0073 (12)	0.0016 (12)	0.0118 (13)
C7	0.0353 (15)	0.0389 (17)	0.0459 (17)	0.0034 (13)	-0.0040 (13)	0.0148 (14)
C8	0.0483 (18)	0.0350 (16)	0.0447 (17)	0.0078 (14)	-0.0075 (14)	0.0095 (13)
C9	0.0354 (16)	0.055 (2)	0.0479 (18)	0.0160 (14)	-0.0023 (14)	0.0103 (15)
C10	0.0297 (15)	0.0401 (17)	0.0524 (18)	0.0071 (13)	-0.0035 (13)	0.0110 (14)
I1	0.05063 (15)	0.06217 (17)	0.06139 (16)	0.01852 (11)	-0.01269 (10)	0.01870 (11)
03	0.0370 (11)	0.0400 (12)	0.0758 (16)	0.0088 (9)	0.0016 (11)	0.0276 (11)
04	0.0283 (11)	0.0460 (12)	0.0629 (14)	0.0073 (9)	-0.0016 (10)	0.0134 (10)
C11	0.0290 (14)	0.0241 (14)	0.0415 (16)	0.0059 (11)	-0.0004 (12)	0.0023 (12)
C12	0.0376 (16)	0.0394 (16)	0.0431 (17)	0.0138 (13)	0.0088 (13)	0.0119 (13)
C13	0.0315 (15)	0.0436 (17)	0.0516 (19)	0.0157 (13)	0.0044 (13)	0.0082 (14)
C14	0.0336 (15)	0.0306 (15)	0.0458 (17)	0.0078 (12)	-0.0064 (13)	0.0047 (13)
C15	0.0421 (17)	0.0365 (16)	0.0373 (16)	0.0043 (13)	0.0025 (13)	0.0068 (13)
C16	0.0288 (14)	0.0356 (16)	0.0471 (17)	0.0062 (12)	0.0048 (13)	0.0018 (13)
C17	0.0328 (15)	0.0241 (14)	0.0475 (17)	0.0073 (12)	-0.0011 (13)	-0.0012 (12)
05	0.0345 (11)	0.0374 (13)	0.0610 (14)	0.0094 (9)	-0.0027 (10)	0.0111 (11)
06	0.0442 (13)	0.0383 (12)	0.0735 (17)	0.0097 (10)	-0.0123 (11)	0.0164 (12)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—N3	1.222 (3)	C8—H8B	0.97	
O2—N3	1.221 (3)	C9—C10	1.503 (4)	
N1-C1	1.376 (3)	С9—Н9А	0.97	
N1-C10	1.462 (3)	C9—H9B	0.97	
N1—C7	1.469 (4)	C10—H10A	0.97	
N2—C8	1.473 (4)	C10—H10B	0.97	
N2—C9	1.479 (4)	I1—C14	2.090 (3)	
N2—H21	0.859 (18)	O3—C17	1.257 (3)	
N2—H22	0.850 (18)	O4—C17	1.257 (3)	
N3—C4	1.440 (4)	C11—C16	1.391 (4)	
C1—C2	1.400 (4)	C11—C12	1.395 (4)	
C1—C6	1.410 (4)	C11—C17	1.493 (4)	
С2—С3	1.361 (4)	C12—C13	1.377 (4)	
С2—Н2	0.93	C12—H12	0.93	
C3—C4	1.378 (4)	C13—C14	1.386 (4)	

С3—Н3	0.93	C13—H13	0.93
C4—C5	1.378 (4)	C14—C15	1.385 (4)
C5—C6	1.357 (4)	C15—C16	1.372 (4)
C5H5	0.93	C15H15	0.93
	0.93		0.93
	0.93	C10—H10	0.93
C/C8	1.502 (4)	O5—HIW	0.805 (18)
C7—H7A	0.97	O5—H2W	0.805 (18)
С7—Н7В	0.97	O6—H4W	0.795 (18)
C8—H8A	0.97	O6—H3W	0.800 (18)
C1 N1 C10	1172(2)	NO CO LIND	100.6
CI = NI = CIO	117.2(2)	$N_2 = C_0 = H_{0}D$	109.0
CI—NI—C/	117.8(2)	C/C8H8B	109.6
C10—N1—C7	112.8 (2)	H8A—C8—H8B	108.1
C8—N2—C9	110.6 (2)	N2—C9—C10	110.3 (2)
C8—N2—H21	108 (3)	N2—C9—H9A	109.6
C9—N2—H21	115 (3)	C10—C9—H9A	109.6
C8—N2—H22	104 (3)	N2—C9—H9B	109.6
C0 N2 H22	107(3)	C_{10} C_{0} H0B	109.6
$C_{2} = N_{2} = 1122$	110(3)		109.0
H21—N2—H22	101 (3)	H9A—C9—H9B	108.1
02—N3—01	122.5 (3)	NIC10C9	111.5 (2)
O2—N3—C4	119.1 (3)	N1C10H10A	109.3
O1—N3—C4	118.4 (3)	C9—C10—H10A	109.3
N1-C1-C2	121.1 (2)	N1-C10-H10B	109.3
N1—C1—C6	121.5 (2)	C9—C10—H10B	109.3
$C^{2}-C^{1}-C^{6}$	1174(2)	H10A—C10—H10B	108
$C_2 C_1 C_0$	117.4(2) 120.0(3)	C_{16} C_{11} C_{12}	1105(3)
$C_2 = C_2 = C_1$	120.9 (5)	C16 - C11 - C12	119.5(3)
C3—C2—H2	119.6		120.4 (2)
C1—C2—H2	119.6	C12—C11—C17	120.1 (2)
C2—C3—C4	119.9 (3)	C13—C12—C11	120.4 (3)
С2—С3—Н3	120.1	C13—C12—H12	119.8
С4—С3—Н3	120.1	C11—C12—H12	119.8
C5—C4—C3	121.2 (3)	C12—C13—C14	119.0 (3)
C5-C4-N3	1195(3)	C12—C13—H13	120.5
C_{2} C_{4} N_{2}	119.3(3)	C14 $C13$ $H13$	120.5
C_{3}	119.3(3)	C14 - C13 - 1113	120.3
C6-C5-C4	118.9 (5)		121.4 (3)
С6—С5—Н5	120.5	C15—C14—II	119.1 (2)
C4—C5—H5	120.5	C13—C14—I1	119.6 (2)
C5—C6—C1	121.8 (3)	C16—C15—C14	119.2 (3)
С5—С6—Н6	119.1	C16—C15—H15	120.4
С1—С6—Н6	119.1	C14—C15—H15	120.4
N1	111.9(2)	C15—C16—C11	120.5(3)
N1 C7 H7A	100.2	C15 $C16$ $H16$	110.8
$C^{0} C^{7} U^{7}$	109.2	$C_{11} = C_{10} = H_{10}$	117.0
$L_0 - L_1 - H_1 A$	109.2		119.8
NI - C - H B	109.2	04—C17—O3	125.0 (3)
С8—С7—Н7В	109.2	O4—C17—C11	116.9 (2)
H7A—C7—H7B	107.9	O3—C17—C11	118.1 (2)
N2	110.2 (2)	H1W—O5—H2W	101 (4)
N2—C8—H8A	109.6	H4W—O6—H3W	117 (4)
			. /

С7—С8—Н8А	109.6		
C10—N1—C1—C2	148.6 (3)	C9—N2—C8—C7	58.1 (3)
C7—N1—C1—C2	8.9 (4)	N1—C7—C8—N2	-54.7 (3)
C10—N1—C1—C6	-33.7 (4)	C8—N2—C9—C10	-58.5 (3)
C7—N1—C1—C6	-173.4 (3)	C1—N1—C10—C9	165.8 (3)
N1—C1—C2—C3	177.1 (3)	C7—N1—C10—C9	-52.6 (3)
C6—C1—C2—C3	-0.8 (4)	N2-C9-C10-N1	55.3 (4)
C1—C2—C3—C4	1.3 (5)	C16—C11—C12—C13	1.6 (4)
C2—C3—C4—C5	-1.0 (5)	C17—C11—C12—C13	-179.0 (3)
C2—C3—C4—N3	179.3 (3)	C11—C12—C13—C14	-1.7 (4)
O2—N3—C4—C5	6.3 (4)	C12—C13—C14—C15	0.1 (4)
O1—N3—C4—C5	-173.9 (3)	C12—C13—C14—I1	179.0 (2)
O2—N3—C4—C3	-173.9 (3)	C13—C14—C15—C16	1.6 (4)
O1—N3—C4—C3	5.8 (4)	I1—C14—C15—C16	-177.4 (2)
C3—C4—C5—C6	0.1 (5)	C14-C15-C16-C11	-1.6 (4)
N3—C4—C5—C6	179.8 (3)	C12-C11-C16-C15	0.0 (4)
C4—C5—C6—C1	0.4 (5)	C17—C11—C16—C15	-179.3 (3)
N1-C1-C6-C5	-178.0 (3)	C16—C11—C17—O4	-26.0 (4)
C2-C1-C6-C5	-0.1 (4)	C12—C11—C17—O4	154.6 (3)
C1—N1—C7—C8	-166.2 (2)	C16—C11—C17—O3	153.1 (3)
C10—N1—C7—C8	52.5 (3)	C12—C11—C17—O3	-26.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H21…O5 ⁱ	0.86 (2)	1.99 (2)	2.825 (4)	164 (4)
N2—H22…O6 ⁱⁱ	0.85 (2)	1.88 (2)	2.702 (3)	163 (4)
C3—H3…O1 ⁱⁱⁱ	0.93	2.59	3.275 (4)	131
C13—H13…O4 ^{iv}	0.93	2.62	3.526 (4)	166
C15—H15···O2 ^v	0.93	2.49	3.311 (4)	147
O5—H1 <i>W</i> ···O3 ^{vi}	0.81 (2)	1.96 (2)	2.756 (3)	170 (4)
O5—H2W···O3 ⁱ	0.81 (2)	1.96 (2)	2.753 (3)	166 (4)
O6—H4 <i>W</i> ···O4	0.80 (2)	2.08 (2)	2.836 (3)	160 (4)
O6—H3 <i>W</i> ····O4 ^{vii}	0.80 (2)	1.95 (2)	2.728 (3)	165 (4)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+2, -*y*+2, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*, *y*-1, *z*; (vii) -*x*, -*y*+1, -*z*.

4-(4-Nitrophenyl)piperazin-1-ium 4-hydroxybenzoate monohydrate (III)

Crystal data	
$C_{10}H_{14}N_{3}O_{2}^{+}\cdot C_{7}H_{5}O_{3}^{-}\cdot H_{2}O$	$\gamma = 112.96 (1)^{\circ}$
$M_r = 363.37$	V = 857.80 (17) Å ³
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 384
a = 9.636 (1) Å	$D_{\rm x} = 1.407 {\rm ~Mg} {\rm ~m}^{-3}$
b = 10.301 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 10.867 (1) Å	Cell parameters from 5342 reflections
$\alpha = 103.90 \ (1)^{\circ}$	$\theta = 2.6 - 25.3^{\circ}$
$\beta = 108.32 \ (1)^{\circ}$	$\mu = 0.11 \mathrm{~mm^{-1}}$

T = 293 KRod, yellow

Dulu collection	
Oxford Diffraction Xcalibur diffractometer ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{min} = 0.959, T_{max} = 0.974$ 5342 measured reflections	3140 independent reflections 2342 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 11$ $l = -13 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.106$ S = 1.05 3135 reflections 251 parameters 5 restraints 0 constraints Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0386P)^2 + 0.3231P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å ⁻³ $\Delta\rho_{min} = -0.19$ e Å ⁻³ Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}Extinction coefficient: 0.032 (3)

 $0.50 \times 0.32 \times 0.24 \text{ mm}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3138 (2)	0.37000 (19)	0.65529 (18)	0.0346 (4)	
C2	0.1431 (2)	0.2527 (2)	0.57638 (19)	0.0418 (4)	
H2	0.068235	0.250847	0.613904	0.05*	
C3	0.0843 (2)	0.1407 (2)	0.4450 (2)	0.0434 (5)	
H3	-0.029409	0.063818	0.39416	0.052*	
C4	0.1942 (2)	0.1428 (2)	0.38907 (19)	0.0411 (4)	
C5	0.3624 (2)	0.2553 (2)	0.4636 (2)	0.0483 (5)	
H5	0.436252	0.255393	0.42532	0.058*	
C6	0.4208 (2)	0.3670 (2)	0.5942 (2)	0.0472 (5)	
H6	0.53484	0.443048	0.64379	0.057*	
C7	0.5230 (2)	0.6338 (2)	0.8284 (2)	0.0453 (5)	
H7A	0.489341	0.67826	0.763471	0.054*	
H7B	0.611237	0.616548	0.817407	0.054*	
C8	0.5933 (2)	0.7472 (2)	0.9784 (2)	0.0493 (5)	
H8A	0.643572	0.71093	1.044494	0.059*	
H8B	0.681545	0.846719	0.99504	0.059*	
C9	0.3302 (3)	0.6143 (2)	0.9836 (2)	0.0457 (5)	
H9A	0.242868	0.625614	1.002896	0.055*	

H9B	0.381743	0.579404	1.050389	0.055*
C10	0.2514 (2)	0.4953 (2)	0.83370 (19)	0.0403 (4)
H10A	0.176601	0.394834	0.82667	0.048*
H10B	0.183115	0.521491	0.76885	0.048*
C11	0.1749 (2)	0.5843 (2)	0.29147 (19)	0.0418 (5)
C12	0.2469 (3)	0.7413 (2)	0.3258 (2)	0.0495 (5)
H12	0.262285	0.778209	0.258209	0.059*
C13	0.2959 (2)	0.8431 (2)	0.4597 (2)	0.0438 (5)
H13	0.344454	0.94863	0.481898	0.053*
C14	0.2738 (2)	0.7906 (2)	0.56226 (18)	0.0364 (4)
C15	0.2004 (2)	0.6329 (2)	0.52544 (19)	0.0395 (4)
H15	0.18337	0.595519	0.592378	0.047*
C16	0.1520 (2)	0.5299 (2)	0.39188 (19)	0.0410 (4)
H16	0.104259	0.424435	0.369591	0.049*
C17	0.3293 (2)	0.9024 (2)	0.7080 (2)	0.0440 (5)
N1	0.37669 (18)	0.48418 (16)	0.78933 (15)	0.0372 (4)
N2	0.4599 (2)	0.76559 (19)	1.00415 (18)	0.0479 (4)
N3	0.1322 (2)	0.02537 (19)	0.25010 (18)	0.0518 (4)
01	0.2282 (2)	0.04014 (19)	0.19537 (17)	0.0759 (5)
O2	-0.0112 (2)	-0.08579 (18)	0.19233 (16)	0.0715 (5)
03	0.1311 (2)	0.48813 (18)	0.15852 (15)	0.0637 (4)
O4	0.3985 (2)	1.04290 (17)	0.73256 (16)	0.0744 (5)
05	0.30323 (18)	0.85085 (16)	0.79750 (14)	0.0547 (4)
O6	-0.0679 (3)	0.1917 (2)	0.09903 (19)	0.0809 (6)
H21	0.412 (3)	0.796 (3)	0.941 (2)	0.097*
H22	0.513 (3)	0.838 (3)	1.099 (2)	0.097*
H17	0.070 (3)	0.394 (2)	0.143 (3)	0.097*
H1W	-0.140 (3)	0.168 (3)	0.129 (3)	0.097*
H2W	-0.112 (3)	0.128 (3)	0.015 (2)	0.097*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0348 (10)	0.0343 (9)	0.0377 (10)	0.0187 (8)	0.0167 (8)	0.0173 (8)
C2	0.0357 (10)	0.0427 (10)	0.0444 (11)	0.0159 (8)	0.0211 (8)	0.0168 (9)
C3	0.0356 (10)	0.0380 (10)	0.0439 (11)	0.0113 (8)	0.0148 (8)	0.0145 (9)
C4	0.0463 (11)	0.0347 (9)	0.0373 (10)	0.0191 (8)	0.0175 (8)	0.0119 (8)
C5	0.0429 (11)	0.0481 (11)	0.0505 (12)	0.0215 (9)	0.0255 (9)	0.0120 (10)
C6	0.0315 (10)	0.0440 (11)	0.0514 (12)	0.0139 (8)	0.0177 (9)	0.0081 (9)
C7	0.0379 (10)	0.0401 (10)	0.0487 (11)	0.0133 (8)	0.0209 (9)	0.0137 (9)
C8	0.0459 (11)	0.0395 (11)	0.0468 (11)	0.0154 (9)	0.0160 (9)	0.0117 (9)
С9	0.0590 (12)	0.0451 (11)	0.0434 (11)	0.0277 (10)	0.0295 (10)	0.0231 (9)
C10	0.0429 (10)	0.0421 (10)	0.0420 (10)	0.0213 (9)	0.0239 (9)	0.0211 (9)
C11	0.0398 (10)	0.0443 (11)	0.0361 (10)	0.0170 (9)	0.0194 (8)	0.0133 (9)
C12	0.0595 (13)	0.0525 (12)	0.0441 (11)	0.0248 (10)	0.0315 (10)	0.0269 (10)
C13	0.0494 (11)	0.0392 (10)	0.0482 (11)	0.0207 (9)	0.0274 (9)	0.0224 (9)
C14	0.0357 (9)	0.0405 (10)	0.0381 (10)	0.0210 (8)	0.0190 (8)	0.0183 (8)
C15	0.0410 (10)	0.0440 (10)	0.0378 (10)	0.0201 (8)	0.0208 (8)	0.0223 (9)

C16	0.0409 (10)	0.0356 (10)	0.0423 (11)	0.0151 (8)	0.0194 (8)	0.0167 (8)
C17	0.0482 (11)	0.0462 (12)	0.0409 (11)	0.0255 (9)	0.0218 (9)	0.0180 (9)
N1	0.0349 (8)	0.0348 (8)	0.0385 (8)	0.0157 (7)	0.0170 (7)	0.0130 (7)
N2	0.0616 (11)	0.0410 (9)	0.0425 (10)	0.0259 (8)	0.0257 (9)	0.0168 (8)
N3	0.0575 (11)	0.0430 (10)	0.0443 (10)	0.0214 (9)	0.0209 (9)	0.0124 (8)
01	0.0806 (12)	0.0662 (11)	0.0599 (10)	0.0220 (9)	0.0434 (9)	0.0052 (8)
O2	0.0600 (10)	0.0523 (9)	0.0564 (10)	0.0087 (8)	0.0163 (8)	0.0010 (8)
O3	0.0759 (11)	0.0545 (9)	0.0430 (8)	0.0171 (8)	0.0337 (8)	0.0121 (7)
O4	0.1147 (14)	0.0416 (9)	0.0554 (10)	0.0278 (9)	0.0450 (10)	0.0145 (7)
O5	0.0721 (10)	0.0620 (9)	0.0425 (8)	0.0375 (8)	0.0324 (7)	0.0259 (7)
06	0.0936 (14)	0.0547 (10)	0.0652 (11)	0.0142 (10)	0.0484 (10)	0.0041 (8)

Geometric parameters (Å, °)

C1—N1	1.392 (2)	C10—H10A	0.97
C1—C6	1.397 (2)	C10—H10B	0.97
C1—C2	1.402 (2)	C11—O3	1.360 (2)
C2—C3	1.371 (3)	C11—C16	1.379 (3)
С2—Н2	0.93	C11—C12	1.382 (3)
C3—C4	1.373 (3)	C12—C13	1.374 (3)
С3—Н3	0.93	C12—H12	0.93
C4—C5	1.373 (3)	C13—C14	1.389 (2)
C4—N3	1.446 (2)	C13—H13	0.93
C5—C6	1.365 (3)	C14—C15	1.383 (2)
С5—Н5	0.93	C14—C17	1.494 (3)
С6—Н6	0.93	C15—C16	1.378 (2)
C7—N1	1.468 (2)	C15—H15	0.93
С7—С8	1.501 (3)	C16—H16	0.93
C7—H7A	0.97	C17—O4	1.250 (2)
С7—Н7В	0.97	C17—O5	1.260 (2)
C8—N2	1.470 (3)	N2—H21	0.893 (17)
C8—H8A	0.97	N2—H22	0.935 (17)
C8—H8B	0.97	N3—O2	1.221 (2)
C9—N2	1.476 (2)	N3—O1	1.230 (2)
C9—C10	1.507 (3)	O3—H17	0.850 (17)
С9—Н9А	0.97	O6—H1W	0.832 (17)
С9—Н9В	0.97	O6—H2W	0.834 (17)
C10—N1	1.467 (2)		
N1—C1—C6	120.65 (15)	N1-C10-H10B	108.9
N1-C1-C2	122.40 (15)	C9—C10—H10B	108.9
C6—C1—C2	116.95 (16)	H10A—C10—H10B	107.8
C3—C2—C1	121.37 (17)	O3—C11—C16	122.11 (17)
С3—С2—Н2	119.3	O3—C11—C12	118.10 (17)
C1—C2—H2	119.3	C16—C11—C12	119.78 (17)
C2—C3—C4	119.60 (17)	C13—C12—C11	120.14 (18)
С2—С3—Н3	120.2	C13—C12—H12	119.9
С4—С3—Н3	120.2	C11—C12—H12	119.9

5 5 02 (16) 42 (16) 55 (16) 51 (17) 2 2 60 (17) 2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) 67 (15)
5 5 02 (16) 42 (16) 55 (16) 51 (17) 2 2 60 (17) 2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) 67 (15)
02 (16) 42 (16) 55 (16) 51 (17) 2 60 (17) 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) 67 (15)
 42 (16) 42 (16) 55 (16) 51 (17) 2 2 60 (17) 2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) 67 (15)
42 (10) 55 (16) 51 (17) 2 2 60 (17) 2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) 67 (15)
33 (16) 51 (17) 2 60 (17) 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) (7, (15))
2 2 60 (17) 2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14)
2 2 60 (17) 2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) 67 (15)
2 60 (17) 2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) 67 (15)
60 (17) 2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) 67 (15)
2 2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) (7 (15)
2 14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14) (7 (15)
14 (18) 82 (17) 04 (17) 66 (14) 79 (14) 73 (14)
82 (17) 04 (17) 66 (14) 79 (14) 73 (14)
04 (17) 66 (14) 79 (14) 73 (14)
66 (14) 79 (14) 73 (14)
79 (14) 73 (14)
73 (14)
(7(15))
07(15)
1 (18)
9 (18)
2 (17)
8 (17)
(2)
24 (17)
43(17)
32(17)
2(19)
(3)
(3)
34(17)
3)
. <i>3)</i> 00 (18)
(3)
(3)
(3)
03(18)
31(17)
5 (2)
(2)
1.19 (18)
12 (15)
8 (2)
0(2)
5.25 (16)
5.25 (16) (2)
5.25 (16) (2) (2)
5.25 (16) (2) (2) 7 (2)

C13—C14—C15—C16	0.8 (3)	C5—C4—N3—O2	170.3 (2)
C17—C14—C15—C16	-178.76 (17)	C3—C4—N3—O1	171.61 (19)
C14—C15—C16—C11	-0.8 (3)	C5—C4—N3—O1	-8.3 (3)

Hydrogen-bond geometry (Å, °)

D—H…A	D—H	H···A	$D \cdots A$	D—H···A	
N2—H21…O5	0.89 (2)	1.93 (2)	2.819 (2)	177 (3)	
V2—H22…O4 ⁱ	0.94 (2)	1.65 (2)	2.583 (2)	177 (3)	
D3—H17…O6	0.85 (2)	1.82 (2)	2.669 (2)	177 (3)	
D6—H1 <i>₩</i> ···O5 ⁱⁱ	0.83 (2)	1.95 (2)	2.768 (2)	169 (3)	
06—H2 <i>W</i> …O1 ⁱⁱⁱ	0.83 (2)	2.11 (2)	2.944 (2)	178 (3)	
N2—H22···O4 ⁱ D3—H17···O6 D6—H1 <i>W</i> ···O5 ⁱⁱ D6—H2 <i>W</i> ···O1 ⁱⁱⁱ	0.94 (2) 0.85 (2) 0.83 (2) 0.83 (2)	1.65 (2) 1.82 (2) 1.95 (2) 2.11 (2)	2.583 (2) 2.669 (2) 2.768 (2) 2.944 (2)	177 (3) 177 (3) 169 (3) 178 (3)	

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*, -*z*.

4-(4-Nitrophenyl)piperazin-1-ium 4-methylbenzoate monohydrate (IV)

Crystal data

$C_{10}H_{14}N_{3}O_{2}^{+} \cdot C_{8}H_{7}O_{2}^{-} \cdot H_{2}O$ $M_{r} = 361.39$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 6.1136 (5) Å b = 7.6965 (7) Å c = 19.708 (2) Å a = 79.577 (8)°	Z = 2 F(000) = 384 $D_x = 1.319 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5980 reflections $\theta = 3.1-25.4^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K
$\beta = 8/.162(8)^{\circ}$	Plate, yellow
$\gamma = 86.699 (8)^{\circ}$ V = 909.79 (15) Å ³	$0.48 \times 0.26 \times 0.02 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur	3347 independent reflections
diffractometer	1911 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.019$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
(CrysAlis RED; Oxford Diffraction, 2009)	$h = -5 \rightarrow 7$
$T_{\min} = 0.970, \ T_{\max} = 0.998$	$k = -8 \rightarrow 9$
5980 measured reflections	$l = -23 \rightarrow 21$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.138$ S = 1.013343 reflections 248 parameters 4 restraints 0 constraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.2441P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.7597 (5)	-0.1408 (4)	0.52918 (12)	0.1114 (9)	
02	1.0599 (5)	-0.2808 (4)	0.50875 (13)	0.1312 (11)	
N1	0.8270 (3)	0.0591 (2)	0.20408 (9)	0.0426 (5)	
N2	0.8376 (3)	0.2441 (3)	0.06365 (10)	0.0492 (5)	
N3	0.9029 (6)	-0.1858 (4)	0.48992 (13)	0.0795 (8)	
C1	0.8503 (4)	0.0072 (3)	0.27523 (12)	0.0421 (6)	
C2	0.6848 (5)	0.0416 (4)	0.32264 (13)	0.0620 (8)	
H2	0.559385	0.107832	0.306884	0.074*	
C3	0.7020 (5)	-0.0200 (4)	0.39241 (13)	0.0660 (8)	
Н3	0.58958	0.005008	0.423273	0.079*	
C4	0.8844 (5)	-0.1175 (4)	0.41582 (13)	0.0589 (7)	
C5	1.0511 (5)	-0.1516 (4)	0.37142 (15)	0.0698 (8)	
Н5	1.175889	-0.217226	0.388096	0.084*	
C6	1.0361 (4)	-0.0894 (4)	0.30170 (13)	0.0606 (8)	
H6	1.152207	-0.112351	0.271761	0.073*	
C7	0.6682 (4)	0.2049 (3)	0.18122 (12)	0.0490 (6)	
H7A	0.721093	0.313511	0.191295	0.059*	
H7B	0.530333	0.182601	0.207033	0.059*	
C8	0.6287 (4)	0.2287 (4)	0.10502 (12)	0.0546 (7)	
H8A	0.553149	0.128385	0.095886	0.066*	
H8B	0.535474	0.334375	0.091454	0.066*	
C9	0.9774 (4)	0.0810(3)	0.08466 (12)	0.0525 (7)	
H9A	1.113597	0.087916	0.057129	0.063*	
H9B	0.902753	-0.020822	0.076595	0.063*	
C10	1.0256 (4)	0.0595 (3)	0.15971 (12)	0.0499 (6)	
H10A	1.110342	-0.050791	0.173238	0.06*	
H10B	1.11409	0.155146	0.166426	0.06*	
03	0.2656 (3)	0.7140 (3)	0.07107 (9)	0.0598 (5)	
O4	0.0053 (3)	0.5296 (3)	0.11199 (9)	0.0620 (5)	
C11	0.2728 (4)	0.5764 (3)	0.18855 (12)	0.0399 (6)	
C12	0.4646 (4)	0.6537 (3)	0.19936 (13)	0.0484 (6)	
H12	0.533917	0.726876	0.162881	0.058*	
C13	0.5535 (4)	0.6230 (3)	0.26365 (14)	0.0575 (7)	
H13	0.68258	0.675862	0.269499	0.069*	
C14	0.4567 (5)	0.5162 (3)	0.31955 (14)	0.0562 (7)	
C15	0.2645 (4)	0.4395 (4)	0.30874 (14)	0.0584 (7)	
H15	0.195058	0.366932	0.345395	0.07*	
C16	0.1748 (4)	0.4689 (3)	0.24468 (13)	0.0496 (6)	
H16	0.045866	0.41565	0.238897	0.06*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C17	0.1749 (4)	0.6080 (3)	0.11893 (13)	0.0437 (6)	
C18	0.5550 (6)	0.4855 (4)	0.38973 (16)	0.0863 (10)	
H18A	0.442848	0.502929	0.424033	0.129*	
H18B	0.667715	0.567332	0.389742	0.129*	
H18C	0.617002	0.366684	0.400046	0.129*	
05	0.7006 (3)	0.7136 (5)	0.02422 (13)	0.1211 (12)	
H21	0.903 (6)	0.338 (4)	0.073 (2)	0.145*	
H22	0.807 (6)	0.256 (5)	0.0183 (11)	0.145*	
H1W	0.792 (5)	0.667 (5)	0.0534 (17)	0.145*	
H2W	0.576 (4)	0.720 (6)	0.045 (2)	0.145*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.145 (2)	0.132 (2)	0.0477 (14)	0.0055 (18)	0.0100 (15)	-0.0001 (14)
O2	0.153 (2)	0.155 (3)	0.0702 (17)	0.044 (2)	-0.0390 (17)	0.0148 (17)
N1	0.0427 (11)	0.0478 (12)	0.0358 (11)	0.0059 (9)	-0.0018 (9)	-0.0064 (9)
N2	0.0540 (13)	0.0562 (14)	0.0357 (11)	0.0002 (11)	-0.0042 (10)	-0.0041 (10)
N3	0.111 (2)	0.078 (2)	0.0469 (17)	-0.0053 (17)	-0.0113 (16)	-0.0005 (14)
C1	0.0489 (14)	0.0408 (14)	0.0377 (14)	0.0000 (11)	-0.0047 (11)	-0.0100 (11)
C2	0.0675 (17)	0.0685 (19)	0.0442 (16)	0.0202 (15)	0.0004 (13)	-0.0028 (14)
C3	0.083 (2)	0.072 (2)	0.0394 (16)	0.0130 (17)	0.0050 (14)	-0.0057 (14)
C4	0.085 (2)	0.0556 (17)	0.0352 (15)	0.0002 (16)	-0.0113 (14)	-0.0044 (13)
C5	0.0719 (19)	0.083 (2)	0.0515 (19)	0.0176 (17)	-0.0203 (15)	-0.0060 (16)
C6	0.0564 (16)	0.078 (2)	0.0448 (16)	0.0167 (15)	-0.0066 (13)	-0.0092 (14)
C7	0.0428 (14)	0.0616 (17)	0.0401 (14)	0.0080 (12)	-0.0034 (11)	-0.0050 (12)
C8	0.0441 (14)	0.0706 (18)	0.0468 (16)	0.0043 (13)	-0.0071 (12)	-0.0052 (13)
C9	0.0597 (16)	0.0579 (17)	0.0385 (15)	0.0061 (13)	0.0028 (12)	-0.0086 (12)
C10	0.0499 (15)	0.0558 (16)	0.0417 (15)	0.0138 (12)	-0.0008 (12)	-0.0080 (12)
03	0.0574 (11)	0.0779 (13)	0.0404 (10)	-0.0028 (10)	-0.0074 (8)	0.0006 (9)
O4	0.0577 (11)	0.0758 (13)	0.0557 (12)	-0.0102 (10)	-0.0167 (9)	-0.0143 (10)
C11	0.0404 (13)	0.0387 (13)	0.0413 (14)	0.0068 (11)	-0.0074 (11)	-0.0103 (11)
C12	0.0513 (15)	0.0449 (15)	0.0490 (16)	-0.0006 (12)	-0.0065 (12)	-0.0072 (12)
C13	0.0547 (16)	0.0533 (17)	0.0679 (19)	0.0004 (13)	-0.0224 (14)	-0.0158 (15)
C14	0.0707 (18)	0.0497 (16)	0.0498 (17)	0.0066 (14)	-0.0233 (14)	-0.0103 (13)
C15	0.0706 (18)	0.0570 (17)	0.0453 (16)	-0.0042 (14)	-0.0099 (13)	-0.0007 (13)
C16	0.0488 (15)	0.0518 (16)	0.0485 (16)	-0.0039 (13)	-0.0089 (12)	-0.0074 (13)
C17	0.0427 (14)	0.0473 (15)	0.0420 (15)	0.0071 (12)	-0.0042 (12)	-0.0121 (12)
C18	0.114 (3)	0.079 (2)	0.068 (2)	-0.003 (2)	-0.0467 (19)	-0.0066 (17)
05	0.0602 (14)	0.210 (3)	0.0697 (16)	-0.0101 (18)	-0.0093 (12)	0.0407 (18)

Geometric parameters (Å, °)

01—N3	1.216 (3)	C9—C10	1.500 (3)	
O2—N3	1.204 (3)	С9—Н9А	0.97	
N1-C1	1.399 (3)	C9—H9B	0.97	
N1-C10	1.460 (3)	C10—H10A	0.97	
N1—C7	1.463 (3)	C10—H10B	0.97	

N2—C8	1.480 (3)	03—03	0.000(5)
N2—C9	1.483 (3)	O3—C17	1.259 (3)
N2—H21	0.892 (19)	O4—C17	1.254 (3)
N2—H22	0.908 (19)	C11—C12	1.387 (3)
N3—C4	1.468 (3)	C11—C16	1.389 (3)
C1—C2	1.390 (3)	C11—C17	1.498 (3)
C1—C6	1.391 (3)	C12—C13	1.379 (3)
C2—C3	1.378 (4)	C12—H12	0.93
C2—H2	0.93	C13—C14	1.380 (4)
C3—C4	1.360 (4)	C13—H13	0.93
C3—H3	0.93	C14—C15	1 387 (4)
C4—C5	1 356 (4)	C14—C18	1.509 (4)
C5-C6	1.377(4)	C15-C16	1.305(1)
С5—Н5	0.93	C15—H15	0.93
С6—Н6	0.93	C16—H16	0.93
C7—C8	1 509 (3)	C18—H18A	0.96
С7—Н7А	0.97	C18—H18B	0.96
C7H7B	0.97	C18—H18C	0.96
	0.97	05-H1W	0.90
C8—H8B	0.97	05 HIW 05 H2W	0.843(19)
	0.97	05—112 W	0.004 (17)
C1—N1—C10	117.39(18)	N2—C9—H9A	109.6
C1—N1—C7	117.37 (18)	С10—С9—Н9А	109.6
C10—N1—C7	113.94 (18)	N2—C9—H9B	109.6
C8—N2—C9	108.7 (2)	C10—C9—H9B	109.6
C8—N2—H21	107 (3)	H9A—C9—H9B	108.2
C9—N2—H21	110 (3)	N1—C10—C9	112.7 (2)
C8—N2—H22	109 (3)	N1—C10—H10A	109.1
C9—N2—H22	110 (3)	C9—C10—H10A	109.1
H21—N2—H22	112 (4)	N1—C10—H10B	109.1
02-N3-01	123.5 (3)	C9—C10—H10B	109.1
02 - N3 - C4	118.5 (3)	H10A—C10—H10B	107.8
01-N3-C4	117.9 (3)	03 - 03 - 017	0 (10)
$C_{2}-C_{1}-C_{6}$	116.8 (2)	C12-C11-C16	117.5 (2)
C2-C1-N1	121.7(2)	C12-C11-C17	121.2(2)
C6-C1-N1	121.7(2) 121.4(2)	C16-C11-C17	121.2(2)
$C_3 - C_2 - C_1$	121.6(3)	C13-C12-C11	121.2(2) 120.7(2)
$C_3 - C_2 - H_2$	119.2	C_{13} $-C_{12}$ $-H_{12}$	119.7
C1-C2-H2	119.2	C11-C12-H12	119.7
C4-C3-C2	119.6 (3)	C12-C13-C14	122.0 (2)
C4—C3—H3	120.2	C12—C13—H13	119
C2-C3-H3	120.2	C14—C13—H13	119
$C_{5}-C_{4}-C_{3}$	120.2	C13 - C14 - C15	117 3 (2)
C_{5} C_{4} N_{3}	119.3 (3)	C13 - C14 - C18	1213(3)
C3-C4-N3	1200(3)	C15-C14-C18	121.5(3) 121.4(3)
C_{4} C_{5} C_{6}	120.0(3) 1201(3)	C16-C15-C14	121.7(3) 121.7(3)
C4—C5—H5	119.9	C16-C15-H15	119.4
С6—С5—Н5	119.9	C14—C15—H15	119.4
	· · / · /		**/**

			1010(0)
C5—C6—C1	121.2 (2)	C15—C16—C11	121.3 (2)
С5—С6—Н6	119.4	C15—C16—H16	119.3
C1—C6—H6	119.4	C11—C16—H16	119.3
N1—C7—C8	112.6 (2)	O4—C17—O3	123.8 (2)
N1—C7—H7A	109.1	O4—C17—O3	123.8 (2)
С8—С7—Н7А	109.1	O3—C17—O3	0.0 (2)
N1—C7—H7B	109.1	O4—C17—C11	118.1 (2)
С8—С7—Н7В	109.1	O3—C17—C11	118.0 (2)
H7A—C7—H7B	107.8	O3—C17—C11	118.0 (2)
N2—C8—C7	111.1 (2)	C14—C18—H18A	109.5
N2—C8—H8A	109.4	C14—C18—H18B	109.5
С7—С8—Н8А	109.4	H18A—C18—H18B	109.5
N2—C8—H8B	109.4	C14—C18—H18C	109.5
C7—C8—H8B	109.4	H18A—C18—H18C	109.5
H8A—C8—H8B	108	H18B—C18—H18C	109.5
N2-C9-C10	110.1 (2)	H1W—O5—H2W	108 (4)
C10—N1—C1—C2	164.4 (2)	C8—N2—C9—C10	-60.7 (3)
C7—N1—C1—C2	22.9 (3)	C1—N1—C10—C9	168.3 (2)
C10—N1—C1—C6	-18.9 (3)	C7—N1—C10—C9	-48.9 (3)
C7—N1—C1—C6	-160.4 (2)	N2-C9-C10-N1	55.7 (3)
C6—C1—C2—C3	-1.2 (4)	C16—C11—C12—C13	0.3 (3)
N1—C1—C2—C3	175.6 (3)	C17—C11—C12—C13	-179.7 (2)
C1—C2—C3—C4	-0.3 (5)	C11—C12—C13—C14	-0.3 (4)
C2—C3—C4—C5	1.3 (5)	C12—C13—C14—C15	0.1 (4)
C2—C3—C4—N3	-179.1 (3)	C12—C13—C14—C18	-179.4 (3)
O2—N3—C4—C5	-5.0 (4)	C13—C14—C15—C16	0.1 (4)
O1—N3—C4—C5	173.8 (3)	C18—C14—C15—C16	179.6 (3)
O2—N3—C4—C3	175.5 (3)	C14—C15—C16—C11	-0.1 (4)
O1—N3—C4—C3	-5.7 (4)	C12—C11—C16—C15	-0.1 (4)
C3—C4—C5—C6	-0.8(5)	C17—C11—C16—C15	179.9 (2)
N3—C4—C5—C6	179.6 (3)	O3—O3—C17—O4	0.00 (14)
C4—C5—C6—C1	-0.8(5)	O3—O3—C17—C11	0.0 (2)
C2—C1—C6—C5	1.8 (4)	C12—C11—C17—O4	177.7 (2)
N1—C1—C6—C5	-175.0 (3)	C16—C11—C17—O4	-2.4(3)
C1—N1—C7—C8	-170.1(2)	C12—C11—C17—O3	-3.5(3)
C10—N1—C7—C8	47.0 (3)	C16—C11—C17—O3	176.4 (2)
C9—N2—C8—C7	59.5 (3)	C12—C11—C17—O3	-3.5 (3)
N1—C7—C8—N2	-52.7 (3)	C16—C11—C17—O3	176.4 (2)
	·· (-)		(=)

Hydrogen-bond geometry (Å, °)

*Cg*3 is the centroids of the C11–C16 ring.

<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
0.89 (2)	1.93 (2)	2.811 (3)	167 (4)
0.91 (2)	1.81 (2)	2.717 (3)	177 (4)
0.93	2.54	3.427 (4)	161
0.97	2.31	3.113 (3)	140
	<i>D</i> —H 0.89 (2) 0.91 (2) 0.93 0.97	D—H H···A 0.89 (2) 1.93 (2) 0.91 (2) 1.81 (2) 0.93 2.54 0.97 2.31	D—H H···A D···A 0.89 (2) 1.93 (2) 2.811 (3) 0.91 (2) 1.81 (2) 2.717 (3) 0.93 2.54 3.427 (4) 0.97 2.31 3.113 (3)

O5—H1 W ···O4 ⁱ	0.84 (2)	1.92 (2)	2.756 (3)	171 (4)
O5—H2 <i>W</i> ···O3	0.85 (2)	1.94 (2)	2.772 (3)	164 (4)
C6—H6… <i>Cg</i> 3 ^v	0.93	2.93	3.590 (3)	129

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z+1; (iv) -x+2, -y+1, -z; (v) x+1, y-1, z.

4-(4-Nitrophenyl)piperazin-1-ium 4-methoxybenzoate hemihydrate (V)

Crystal data

$2C_{10}H_{14}N_3O_2^+ \cdot 2C_8H_7O_3^- \cdot H_2O$	F(000) = 1560
$M_r = 736.77$	$D_{\rm x} = 1.328 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2899 reflections
a = 15.808 (1) Å	$\theta = 2.6 - 25.3^{\circ}$
b = 7.5198 (7) Å	$\mu=0.1~\mathrm{mm^{-1}}$
c = 31.020 (2) Å	T = 293 K
$\beta = 92.561 (7)^{\circ}$	Prism, orange
$V = 3683.8(5) \text{ Å}^3$	$0.5 \times 0.36 \times 0.36$ mm
Z = 4	
Data collection	
Oxford Diffraction Xcalibur	6718 independent reflections
diffractometer	2602 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.066$
Absorption correction: multi-scan	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
(CrysAlis RED; Oxford Diffraction, 2009)	$h = -19 \rightarrow 18$
$T_{\min} = 0.958, T_{\max} = 0.965$	$k = -9 \longrightarrow 8$

Refinement

15326 measured reflections

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.9198P]$
$wR(F^2) = 0.169$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
6715 reflections	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
507 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
45 restraints	Extinction correction: SHELXL2018/3
0 constraints	(Sheldrick 2015b),
Hydrogen site location: mixed	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
	Extinction coefficient: 0.0029 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $l = -37 \rightarrow 33$

Fractional atomic coordinates and	' isotropic or	equivalent i	isotropic	displacement	parameters	$(Å^2)$)
-----------------------------------	----------------	--------------	-----------	--------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.2115 (2)	0.2769 (5)	0.15386 (13)	0.0456 (11)	
C2	0.2042 (3)	0.2439 (6)	0.19789 (14)	0.0687 (14)	
H2	0.151236	0.21805	0.208209	0.082*	

C3	0.2734 (3)	0.2487 (7)	0.22634 (14)	0.0860 (16)
Н3	0.26712	0.22698	0.255532	0.103*
C4	0.3512 (3)	0.2855 (7)	0.21153 (15)	0.0702 (14)
C5	0.3613 (3)	0.3157 (6)	0.16906 (15)	0.0722 (14)
Н5	0.414916	0.339042	0.159279	0.087*
C6	0.2925 (3)	0.3119 (6)	0.14031 (13)	0.0598 (12)
H6	0.300335	0.333225	0.111231	0.072*
C7	0.1555 (2)	0.2450 (6)	0.07998 (12)	0.0599 (12)
H7A	0.166523	0.119002	0.076636	0.072*
H7B	0.205192	0.309359	0.07138	0.072*
C8	0.0813 (3)	0.2965 (6)	0.05086 (13)	0.0690 (13)
H8A	0.075136	0.42483	0.050937	0.083*
H8B	0.09152	0.259489	0.021595	0.083*
C9	-0.0117 (3)	0.2610 (6)	0.10976 (14)	0.0669 (13)
H9A	-0.062504	0.202151	0.118906	0.08*
H9B	-0.020149	0.38837	0.112112	0.08*
C10	0.0624 (2)	0.2059 (6)	0.13852 (12)	0.0631 (13)
H10A	0.052793	0.242915	0.16785	0.076*
H10B	0.066876	0.077208	0.138331	0.076*
C11	0.9721 (3)	0.2971 (6)	0.30361 (13)	0.0510(11)
C12	0.8980 (3)	0.2023 (6)	0.30443 (12)	0.0563 (12)
H12	0.888658	0.13067	0.328178	0.068*
C13	0.8365 (3)	0.2095 (6)	0.27110 (14)	0.0632 (13)
H13	0.78756	0.14142	0.272281	0.076*
C14	0.8487 (3)	0.3182 (6)	0.23643 (14)	0.0628 (12)
C15	0.9229 (3)	0.4129 (6)	0.23467 (13)	0.0649 (13)
H15	0.93208	0.484494	0.210883	0.078*
C16	0.9839 (3)	0.4028 (6)	0.26775 (14)	0.0626 (13)
H16	1.033592	0.46798	0.26601	0.075*
C17	1.0355 (3)	0.2887 (7)	0.34129 (16)	0.0608 (13)
C18	0.7146 (3)	0.2457 (8)	0.20218 (17)	0.118 (2)
H18C	0.681472	0.273815	0.176387	0.178*
H18B	0.725759	0.120242	0.20308	0.178*
H18A	0.684002	0.279268	0.226948	0.178*
C19	0.3816 (3)	0.5044 (6)	-0.09170 (13)	0.0503 (11)
C20	0.3778 (3)	0.6432 (6)	-0.06180 (13)	0.0582 (12)
H20	0.326082	0.697741	-0.057457	0.07*
C21	0.4478 (3)	0.6998 (6)	-0.03904 (13)	0.0603 (12)
H21	0.443054	0.790435	-0.018877	0.072*
C22	0.5251 (2)	0.6260 (6)	-0.04523 (13)	0.0499 (11)
C23	0.5330 (3)	0.4942 (6)	-0.07542 (14)	0.0610 (12)
H23	0.58581	0.445412	-0.080183	0.073*
C24	0.4629 (3)	0.4354 (6)	-0.09836 (13)	0.0623 (13)
H24	0.468943	0.347143	-0.119	0.075*
C25	0.3099 (3)	0.2720 (7)	-0.13618 (14)	0.0722 (14)
H25A	0.36547	0.248859	-0.147048	0.087*
H25B	0.269401	0.27516	-0.160582	0.087*
C26	0.2867 (3)	0.1245 (6)	-0.10589 (14)	0.0694 (13)

Н264	0 284623	0 011000	-0 121195	0.083*	
H26R	0.329107	0.115475	-0.082393	0.083*	
C27	0.329107 0.1998 (2)	0.3414 (6)	-0.06853(12)	0.003	
U27 H27A	0.1556 (2)	0.345068	-0.042968	0.07*	
H27R	0.142682	0.365292	-0.059877	0.07*	
C28	0.142002 0.2258(2)	0.303232	-0.10000(13)	0.07 0.0583 (12)	
U28 H28A	0.2238 (2)	0.4799 (0)	-0.124849	0.07*	
1120A 1120A	0.130099	0.480075	-0.086644	0.07*	
C20	0.224023 0.2315(2)	0.390201	0.080044 0.03520(12)	0.07°	
C29	0.2313(2) 0.3063(2)	0.8105(5)	0.03320(12) 0.03221(13)	0.0442(10)	
U20	0.3003 (2)	0.9094 (3)	0.05221 (15)	0.0517 (11)	
C31	0.319950	0.937242 0.0330 (6)	0.003701 0.06743(15)	0.002°	
U21	0.3009(2)	0.9330 (0)	0.00743 (13)	0.0397 (12)	
ПЭТ С22	0.411473 0.2412(3)	0.994102	0.004403 0.10717(15)	0.072°	
C32	0.3412(3)	0.8002(0)	0.10/1/(13)	0.0570(12)	
	0.2001 (3)	0.7752 (6)	0.11108 (13)	0.0590 (12)	
H33	0.251489	0.751519	0.137782	0.071^{*}	
C34	0.2130 (2)	0.7495 (5)	0.07521 (13)	0.0524 (11)	
H34	0.163238	0.685277	0.077981	0.063*	
C35	0.1734 (3)	0.7879 (6)	-0.00372 (14)	0.0459 (11)	
C36	0.3801 (3)	0.8360 (7)	0.18157 (17)	0.1098 (19)	
H36C	0.42611	0.863024	0.201777	0.165*	
H36B	0.329805	0.895356	0.190161	0.165*	
H36A	0.370656	0.709953	0.181018	0.165*	
N1	0.14171 (19)	0.2823 (4)	0.12508 (10)	0.0475 (9)	
N2	0.0026 (2)	0.2144 (5)	0.06465 (13)	0.0581 (10)	
N3	0.4265 (6)	0.2464 (13)	0.2410 (3)	0.075 (2)	0.519 (6)
N3′	0.4213 (6)	0.3345 (15)	0.2420 (3)	0.075 (2)	0.481 (6)
N4	0.3106 (2)	0.4437 (5)	-0.11425 (10)	0.0583 (10)	
N5	0.2034 (2)	0.1639 (5)	-0.08869 (12)	0.0612 (10)	
N6	0.5983 (2)	0.6796 (6)	-0.01867 (13)	0.0650 (11)	
01	0.4960 (7)	0.2571 (14)	0.2266 (4)	0.099 (2)	0.519 (6)
01′	0.4904 (8)	0.3633 (14)	0.2283 (4)	0.099 (2)	0.481 (6)
O2	0.4177 (6)	0.2116 (13)	0.2788 (3)	0.097 (2)	0.519 (6)
O2′	0.4086 (6)	0.3408 (15)	0.2797 (3)	0.097 (2)	0.481 (6)
O3	1.1003 (2)	0.3818 (4)	0.33942 (9)	0.0826 (10)	
O4	1.0196 (2)	0.1889 (4)	0.37194 (10)	0.0789 (10)	
05	0.7922 (2)	0.3398 (5)	0.20234 (9)	0.0895 (11)	
O6	0.58811 (19)	0.7838 (5)	0.01114 (11)	0.0827 (11)	
07	0.66853 (19)	0.6203 (5)	-0.02668 (10)	0.0881 (11)	
08	0.10807 (17)	0.6951 (4)	0.00037 (8)	0.0590 (8)	
O9	0.19207 (16)	0.8596 (4)	-0.03853 (9)	0.0593 (8)	
O10	0.40056 (18)	0.8950 (4)	0.13979 (10)	0.0790 (10)	
O11	1.00751 (19)	0.3517 (4)	0.44766 (10)	0.0649 (9)	
H21N	-0.0388 (19)	0.252 (5)	0.0468 (11)	0.078*	
H22N	0.007 (3)	0.099 (3)	0.0609 (12)	0.078*	
H51N	0.190 (2)	0.077 (4)	-0.0717 (11)	0.078*	
H52N	0.164 (2)	0.153 (6)	-0.1110 (9)	0.078*	
H11O	1.010 (3)	0.296 (5)	0.4244 (9)	0.078*	

H120	0.969 (2)	0.30	05 (5)	0.4618 (12)	0.078*	
Atomic d	lisplacement para	meters ($Å^2$)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.043 (3)	0.040 (3)	0.054 (3)	0.002 (2)	0.000 (2)	-0.002 (2)
C2	0.056 (3)	0.100 (4)	0.051 (3)	-0.008(3)	0.007 (3)	0.001 (3)
C3	0.073 (3)	0.145 (5)	0.039 (3)	-0.011 (4)	-0.005 (3)	0.004 (3)
C4	0.052 (3)	0.108 (4)	0.050 (3)	-0.009 (3)	-0.013 (2)	0.001 (3)
C5	0.052 (3)	0.107 (4)	0.057 (3)	-0.017 (3)	-0.001 (3)	0.005 (3)
C6	0.049 (3)	0.082 (4)	0.048 (3)	-0.005 (3)	-0.006(2)	0.009 (2)
C7	0.050 (3)	0.082 (3)	0.047 (3)	-0.009 (3)	-0.002 (2)	0.002 (2)
C8	0.064 (3)	0.077 (3)	0.064 (3)	-0.023 (3)	-0.018 (2)	0.017 (3)
C9	0.052 (3)	0.076 (4)	0.073 (4)	-0.003 (3)	-0.003 (2)	-0.015 (3)
C10	0.052 (3)	0.089 (4)	0.048 (3)	-0.013 (3)	0.000 (2)	-0.003 (2)
C11	0.055 (3)	0.049 (3)	0.049 (3)	0.004 (3)	0.004 (2)	0.002 (2)
C12	0.071 (3)	0.059 (3)	0.039 (3)	0.007 (3)	0.006 (2)	0.008 (2)
C13	0.058 (3)	0.074 (4)	0.058 (3)	-0.010 (3)	0.000 (2)	0.010 (3)
C14	0.064 (3)	0.071 (4)	0.051 (3)	0.007 (3)	-0.012 (3)	0.004 (3)
C15	0.068 (3)	0.070 (4)	0.056 (3)	-0.009 (3)	-0.004 (3)	0.018 (2)
C16	0.058 (3)	0.064 (3)	0.065 (3)	-0.009 (3)	0.000 (3)	0.009 (3)
C17	0.063 (3)	0.057 (4)	0.062 (3)	0.014 (3)	-0.010 (3)	-0.011 (3)
C18	0.103 (5)	0.148 (6)	0.100 (4)	-0.040 (4)	-0.047 (3)	0.023 (4)
C19	0.044 (3)	0.065 (3)	0.042 (3)	-0.002 (3)	0.007 (2)	0.009 (2)
C20	0.038 (3)	0.071 (3)	0.066 (3)	0.003 (3)	0.002 (2)	-0.004 (3)
C21	0.046 (3)	0.071 (3)	0.064 (3)	-0.002 (3)	0.008 (2)	-0.009(2)
C22	0.035 (3)	0.064 (3)	0.051 (3)	-0.007 (2)	0.002 (2)	0.009 (2)
C23	0.038 (3)	0.068 (3)	0.077 (3)	0.004 (3)	0.012 (2)	0.005 (3)
C24	0.050(3)	0.067 (3)	0.071 (3)	-0.003 (3)	0.015 (3)	-0.011 (2)
C25	0.063 (3)	0.100 (4)	0.054 (3)	-0.009 (3)	0.006 (2)	-0.023 (3)
C26	0.069 (3)	0.068 (4)	0.070 (3)	0.003 (3)	-0.008 (3)	-0.015 (3)
C27	0.049 (3)	0.070 (3)	0.054 (3)	-0.004 (3)	-0.003 (2)	-0.012 (3)
C28	0.042 (3)	0.063 (3)	0.069 (3)	-0.006 (2)	-0.008 (2)	0.001 (3)
C29	0.043 (2)	0.045 (3)	0.045 (3)	0.005 (2)	0.004 (2)	-0.003 (2)
C30	0.044 (3)	0.063 (3)	0.049 (3)	0.006 (2)	0.004 (2)	0.007 (2)
C31	0.044 (3)	0.071 (3)	0.064 (3)	-0.005 (2)	-0.005 (2)	-0.001 (3)
C32	0.053 (3)	0.064 (3)	0.053 (3)	0.012 (3)	-0.013 (3)	-0.008 (3)
C33	0.062 (3)	0.067 (3)	0.048 (3)	-0.001 (3)	-0.005 (2)	0.005 (2)
C34	0.052 (3)	0.055 (3)	0.050 (3)	-0.004 (2)	-0.002 (2)	0.006 (2)
C35	0.048 (3)	0.040 (3)	0.050 (3)	0.009 (2)	-0.005 (2)	-0.002 (2)
C36	0.117 (5)	0.125 (5)	0.083 (4)	0.008 (4)	-0.035 (3)	-0.004 (4)
N1	0.041 (2)	0.055 (2)	0.046 (2)	-0.0042 (18)	-0.0010 (17)	-0.0018 (17)
N2	0.055 (3)	0.047 (2)	0.070 (3)	-0.005 (2)	-0.0165 (19)	0.004 (2)
N3	0.072 (3)	0.081 (4)	0.070 (3)	-0.002 (3)	-0.004 (2)	-0.001 (3)
N3′	0.072 (3)	0.081 (4)	0.070 (3)	-0.002 (3)	-0.004 (2)	-0.001 (3)
N4	0.051 (2)	0.072 (3)	0.052 (2)	-0.005 (2)	0.0048 (19)	-0.002 (2)
N5	0.059 (3)	0.063 (3)	0.061 (3)	-0.012 (2)	-0.009 (2)	0.010 (2)
N6	0.048 (3)	0.084 (3)	0.064 (3)	-0.012 (3)	0.003 (2)	0.021 (2)

01	0.075 (3)	0.127 (7)	0.092 (3)	-0.011 (5)	-0.020 (2)	-0.001 (6)
01′	0.075 (3)	0.127 (7)	0.092 (3)	-0.011 (5)	-0.020 (2)	-0.001 (6)
02	0.097 (3)	0.131 (6)	0.062 (3)	-0.003 (5)	-0.015 (2)	0.001 (5)
O2′	0.097 (3)	0.131 (6)	0.062 (3)	-0.003 (5)	-0.015 (2)	0.001 (5)
03	0.073 (2)	0.088 (3)	0.084 (2)	-0.010 (2)	-0.0291 (18)	0.0096 (18)
04	0.106 (3)	0.069 (2)	0.060(2)	0.003 (2)	-0.0170 (18)	0.0134 (18)
05	0.082 (2)	0.115 (3)	0.070 (2)	-0.013 (2)	-0.0256 (19)	0.0253 (19)
06	0.072 (2)	0.110 (3)	0.066 (2)	-0.023 (2)	0.0016 (18)	-0.002 (2)
07	0.046 (2)	0.128 (3)	0.090 (2)	-0.001 (2)	0.0000 (18)	0.023 (2)
08	0.0548 (18)	0.061 (2)	0.060 (2)	-0.0126 (17)	-0.0085 (14)	0.0027 (15)
09	0.0639 (19)	0.066 (2)	0.0473 (19)	0.0027 (16)	-0.0024 (15)	0.0080 (15)
O10	0.072 (2)	0.102 (3)	0.061 (2)	0.0032 (19)	-0.0220 (18)	-0.0004 (19)
011	0.063 (2)	0.064 (2)	0.069 (2)	0.0012 (18)	0.0089 (17)	-0.0012 (17)

Geometric parameters (Å, °)

C1—N1	1.388 (4)	C21—H21	0.93
C1—C6	1.391 (5)	C22—C23	1.373 (5)
C1—C2	1.398 (5)	C22—N6	1.448 (5)
C2—C3	1.375 (6)	C23—C24	1.363 (5)
С2—Н2	0.93	С23—Н23	0.93
C3—C4	1.359 (6)	C24—H24	0.93
С3—Н3	0.93	C25—N4	1.459 (5)
C4—C5	1.354 (5)	C25—C26	1.509 (6)
C4—N3′	1.471 (10)	С25—Н25А	0.97
C4—N3	1.499 (9)	С25—Н25В	0.97
C5—C6	1.375 (5)	C26—N5	1.474 (5)
С5—Н5	0.93	C26—H26A	0.97
С6—Н6	0.93	С26—Н26В	0.97
C7—N1	1.453 (4)	C27—N5	1.476 (5)
C7—C8	1.499 (5)	C27—C28	1.499 (5)
C7—H7A	0.97	С27—Н27А	0.97
С7—Н7В	0.97	С27—Н27В	0.97
C8—N2	1.469 (5)	C28—N4	1.455 (4)
C8—H8A	0.97	C28—H28A	0.97
C8—H8B	0.97	C28—H28B	0.97
C9—N2	1.470 (5)	C29—C30	1.379 (5)
C9—C10	1.499 (5)	C29—C34	1.383 (5)
С9—Н9А	0.97	C29—C35	1.499 (5)
С9—Н9В	0.97	C30—C31	1.374 (5)
C10—N1	1.457 (4)	С30—Н30	0.93
C10—H10A	0.97	C31—C32	1.379 (5)
C10—H10B	0.97	С31—Н31	0.93
C11—C12	1.372 (5)	C32—O10	1.366 (4)
C11—C16	1.387 (5)	C32—C33	1.380 (5)
C11—C17	1.506 (6)	C33—C34	1.377 (5)
C12—C13	1.388 (5)	С33—Н33	0.93
C12—H12	0.93	С34—Н34	0.93

C13—C14	1.371 (5)	C35—O9	1.254 (4)
С13—Н13	0.93	C35—O8	1.258 (4)
C14—O5	1.363 (5)	C36—O10	1.421 (5)
C14—C15	1.375 (5)	С36—Н36С	0.96
C15—C16	1.378 (5)	С36—Н36В	0.96
С15—Н15	0.93	С36—Н36А	0.96
C16—H16	0.93	N2—H21N	0.884 (18)
C17—O3	1.245 (5)	N2—H22N	0.882 (18)
C17—O4	1.246 (5)	N3-01	1.208 (9)
C18—O5	1.416 (5)	N3—O2	1.213 (9)
C18—H18C	0.96	N3'	1 196 (9)
C18—H18B	0.96	N3'-01'	1210(10)
C18—H18A	0.96	N5—H51N	0.872(18)
C19—N4	1 374 (4)	N5—H52N	0.072(10) 0.910(18)
C19 - C20	1 399 (5)	N6-06	1 228 (4)
C19 - C20	1.399(3) 1 410(5)	N6-07	1.220(1) 1 232(4)
C_{20} C_{21}	1.354(5)	011H110	0.836(18)
$C_{20} = 0.21$	0.93	011H120	0.838(18)
$C_{20} = 1120$	1 363 (5)	011-11120	0.050 (10)
021 022	1.505 (5)		
N1 - C1 - C6	121 1 (4)	С22—С23—Н23	120.2
N1 - C1 - C2	121.1(4) 1224(4)	$C_{22} = C_{23} = C_{123}$	120.2 1219(4)
C_{6}	122.4(4) 1165(4)	C_{23} C_{24} C_{13} C_{24} C_{24} C_{13}	119
C_{3} C_{2} C_{1}	121.6(4)	C19 - C24 - H24	119
C_{3} C_{2} H_{2}	110.2	N4_C25_C26	110.9(3)
C_{1} C_{2} H_{2}	119.2	N4 - C25 - C20 $N4 - C25 - H25 \Delta$	109.5
$C_1 = C_2 = H_2$	119.2	$C_{25} = C_{25} = H_{25} \Lambda$	109.5
C4—C3—H3	119.0 (4)	N4_C25_H25B	109.5
C2_C3_H3	120.2	C26_C25_H25B	109.5
$C_2 - C_3 - H_3$	120.2 120.7 (4)	$H_{25} = C_{25} = H_{25} = H$	109.5
C_{5} C_{4} N_{3}'	117.8 (6)	N5_C26_C25	108 9 (4)
$C_3 = C_4 = N_3'$	120.0 (6)	N5 C26 H26A	100.9 (4)
$C_5 = C_4 = N_3$	120.0(0) 120.2(6)	C_{25} C_{26} H_{26A}	109.9
$C_3 = C_4 = N_3$	120.2(0) 1173(6)	N5 C26 H26B	109.9
$C_3 = C_4 = 103$	117.3(0) 120.2(4)	$C_{20} = C_{20} = H_{20}B$	109.9
$C_{4} = C_{5} = C_{6}$	120.2 (4)	H26A C26 H26B	109.9
C4-C5-H5	119.9	N5 C27 C28	108.3 100.5(3)
$C_{0} = C_{0} = C_{0}$	117.7	$N_{3} = C_{27} = C_{28}$	109.5 (5)
C_{5}	121.3 (4)	$N_{3} = C_{27} = H_{27} A$	109.8
C_{3}	119.3	$C_{20} - C_{27} - H_{27} - H$	109.8
C1 = C0 = H0	119.5	$N_{3} = C_{2} = H_{2} = H_{2}$	109.8
NI = C7 = U7A	112.3 (5)	$C_{20} = C_{27} = H_{27} = H_{27}$	109.8
NI = C = H/A	109.1	HZ/A = CZ/=HZ/B	108.2
10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	109.1	$\frac{1}{2} \frac{1}{2} \frac{1}$	110.5 (3)
$\mathbf{N} = \mathbf{U} - \mathbf{H} \mathbf{B}$	109.1	$IN4 - U2\delta - H2\delta A$	109.5
10 - 1 - 1 B	109.1	$U_2 / - U_2 \delta - H_2 \delta A$	109.5
$\Pi/A - U - \Pi/B$	107.0	$\Pi 4 - U_{20} - \Pi 2 \delta B$	109.5
N2 - C8 - C/	111.5 (3)	$U_2/-U_2 = H_2 B$	109.5
N2	109.3	H28A—C28—H28B	108.1

С7—С8—Н8А	109.3	C30—C29—C34	117.5 (4)
N2—C8—H8B	109.3	C30—C29—C35	120.9 (4)
C7—C8—H8B	109.3	C34—C29—C35	121.6 (4)
H8A—C8—H8B	108	C31—C30—C29	121.5 (4)
N2-C9-C10	110.5 (3)	C31—C30—H30	119.3
N2-C9-H9A	109.5	C29—C30—H30	119.3
C10—C9—H9A	109.5	C_{30} $-C_{31}$ $-C_{32}$	120.3 (4)
N2-C9-H9B	109.5	C_{30} C_{31} H_{31}	119.8
C10-C9-H9B	109.5	C_{32} C_{31} H_{31}	119.8
H9A_C9_H9B	108.1	010-032-031	115.6
N1-C10-C9	112 3 (3)	010 - 032 - 031	125.3(4)
N1-C10-H10A	109.1	$C_{31} - C_{32} - C_{33}$	123.3(4) 119 2 (4)
C9-C10-H10A	109.1	C_{34} C_{33} C_{32}	119.2(4) 119.6(4)
N1_C10_H10B	109.1	$C_{34} = C_{33} = H_{33}$	120.2
C9-C10-H10B	109.1	C32_C33_H33	120.2
H_{10A} C_{10} H_{10B}	107.9	$C_{32} = C_{33} = 1133$	120.2 121 8 (4)
C_{12} C_{11} C_{16}	107.9 117.2(4)	C_{33} C_{34} H_{34}	110 1
$C_{12} = C_{11} = C_{10}$	117.2(4) 120.2(4)	$C_{29} = C_{34} = H_{34}$	119.1
$C_{12} = C_{11} = C_{17}$	120.2(4) 122.5(4)	$C_{29} = C_{34} = 1134$	119.1 123.4(4)
$C_{10} = C_{11} = C_{17}$	122.3(4)	09 - 035 - 08	123.4(4)
$C_{11} = C_{12} = C_{13}$	122.4 (4)	09 - 035 - 029	110.2(4)
$C_{11} = C_{12} = H_{12}$	110.0	03 - 03 - 023	110.5 (4)
$C_{13} - C_{12} - H_{12}$	110.0 110.2(4)	010 - C36 + H26P	109.5
C14 - C13 - C12	119.5 (4)	U10—C30—H30В	109.5
С12 С12 Ц12	120.4	$H_{30} = C_{30} = H_{30} = H_{30}$	109.5
C12—C13—H13	120.4	010 - 0.30 - 0.436 A	109.5
05 - 014 - 015	124.7 (4)	$H_{36} = C_{36} = H_{36} = H_{36}$	109.5
05-014-015	116.0 (4)	H30B-C30-H30A	109.5
C13 - C14 - C15	119.3 (4)	CI_NI_C/	11/./ (3)
C14 - C15 - C16	120.7 (4)	CI = NI = CI0	118.2 (3)
С14—С15—Н15	119.6	C/=N1=C10	111.6 (3)
С16—С15—Н15	119.6	C8—N2—C9	110.2 (3)
C15—C16—C11	121.0 (4)	C8—N2—H21N	107 (3)
С15—С16—Н16	119.5	C9—N2—H21N	112 (3)
С11—С16—Н16	119.5	C8—N2—H22N	108 (3)
O3—C17—O4	124.6 (4)	C9—N2—H22N	112 (3)
03-C17-C11	117.5 (5)	H21N—N2—H22N	107 (4)
O4—C17—C11	117.9 (5)	O1—N3—O2	121.2 (11)
O5—C18—H18C	109.5	O1—N3—C4	118.2 (10)
O5—C18—H18B	109.5	O2—N3—C4	120.6 (9)
H18C—C18—H18B	109.5	02'—N3'—O1'	122.0 (11)
O5—C18—H18A	109.5	O2'—N3'—C4	119.0 (9)
H18C—C18—H18A	109.5	O1'—N3'—C4	119.0 (10)
H18B—C18—H18A	109.5	C19—N4—C28	121.8 (3)
N4—C19—C20	121.8 (4)	C19—N4—C25	121.4 (4)
N4—C19—C24	122.2 (4)	C28—N4—C25	108.6 (3)
C20—C19—C24	116.0 (4)	C26—N5—C27	112.8 (3)
C21—C20—C19	121.5 (4)	C26—N5—H51N	108 (3)
С21—С20—Н20	119.3	C27—N5—H51N	114 (3)

С19—С20—Н20	119.3	C26—N5—H52N	107 (3)
C20—C21—C22	121.0 (4)	C27—N5—H52N	112 (3)
C20—C21—H21	119.5	H51N—N5—H52N	103 (4)
C22—C21—H21	119.5	O6—N6—O7	122.1 (4)
C21—C22—C23	120.0 (4)	O6—N6—C22	118.5 (4)
C21—C22—N6	120.4 (4)	07—N6—C22	119.3 (4)
C^{23} C^{22} N6	1196(4)	$C_{14} - O_{5} - C_{18}$	1187(4)
C_{24} C_{23} C_{22}	119.6 (4)	$C_{32} = 010 = C_{36}$	116.7(4)
$C_{24} = C_{23} = C_{22}$	119.0 (4)	$H_{110} = 0.11 + 1.20$	100.7(4)
С24—С25—П25	120.2	HII0—011—HI20	108 (3)
	1762(4)	010 022 022 024	100 5 (4)
NI - CI - C2 - C3	-176.3(4)	010-032-033-034	-177.5 (4)
C6—C1—C2—C3	1.0 (6)	C31—C32—C33—C34	1.3 (6)
C1—C2—C3—C4	-0.3 (8)	C32—C33—C34—C29	-1.7 (6)
C2—C3—C4—C5	-0.7 (8)	C30—C29—C34—C33	0.7 (6)
C2—C3—C4—N3'	164.9 (6)	C35—C29—C34—C33	179.9 (4)
C2—C3—C4—N3	-165.5 (6)	C30—C29—C35—O9	-4.2 (5)
C3—C4—C5—C6	0.9 (8)	C34—C29—C35—O9	176.6 (3)
N3′—C4—C5—C6	-165.0 (6)	C30—C29—C35—O8	176.7 (3)
N3—C4—C5—C6	165.4 (6)	C34—C29—C35—O8	-2.5(5)
C4—C5—C6—C1	-0.2 (7)	C6-C1-N1-C7	27.3 (5)
N1-C1-C6-C5	176.6 (4)	C2-C1-N1-C7	-155.5(4)
C_{2} C_{1} C_{6} C_{5}	-0.7(6)	C6-C1-N1-C10	166 2 (4)
N1 - C7 - C8 - N2	-540(5)	$C_2 - C_1 - N_1 - C_{10}$	-166(6)
$N_2 = C_0 = C_{10} = N_1$	54.0 (5)	$C_2 = C_1 = N_1 = C_1$	-166.4(3)
$N_2 = C_3 = C_{10} = N_1$	50.1(5)	$C_{0} = C_{1} = N_{1} = C_{1}$	100.4(3)
C10 - C11 - C12 - C13	0.2(0)	$C_{0} = C_{1} = N_{1} = C_{1}$	32.2(4)
C17 - C11 - C12 - C13	1/8.1 (4)	C9—C10—N1—C1	165.3 (3)
C11—C12—C13—C14	-1.6 (7)	C9—C10—N1—C7	-53.4 (5)
C12—C13—C14—O5	-178.3 (4)	C7—C8—N2—C9	55.9 (5)
C12—C13—C14—C15	2.3 (7)	C10—C9—N2—C8	-56.8 (4)
O5—C14—C15—C16	179.0 (4)	C5—C4—N3—O1	5.9 (11)
C13—C14—C15—C16	-1.6 (7)	C3—C4—N3—O1	170.9 (8)
C14-C15-C16-C11	0.1 (7)	C5—C4—N3—O2	-176.8 (7)
C12—C11—C16—C15	0.6 (6)	C3—C4—N3—O2	-11.8 (11)
C17—C11—C16—C15	-177.3 (4)	C5—C4—N3'—O2'	166.2 (8)
C12—C11—C17—O3	-177.7 (4)	C3—C4—N3'—O2'	0.2 (12)
C16—C11—C17—O3	0.1 (6)	C5—C4—N3'—O1'	-15.5(12)
C12—C11—C17—O4	2.6 (6)	C3—C4—N3'—O1'	178.5 (9)
$C_{16} - C_{11} - C_{17} - O_{4}$	-1795(4)	$C_{20} - C_{19} - N_{4} - C_{28}$	-185(6)
N4-C19-C20-C21	178 6 (4)	C_{24} C_{19} N_{4} C_{28}	163.8(4)
C_{24} C_{19} C_{20} C_{21}	-36(6)	$C_{24} = C_{13} = N_4 = C_{23}$	-163.3(4)
$C_{24} = C_{19} = C_{20} = C_{21}$	1.6(6)	$C_{20} = C_{19} = N_{4} = C_{25}$	103.3(4)
C19 - C20 - C21 - C22	1.0(0)	C_{24} C_{19} N_{4} C_{10}	19.0(0)
$C_{20} = C_{21} = C_{22} = C_{23}$	1.1 (0)	C27-C28-N4-C19	-80.8 (5)
$C_{20} - C_{21} - C_{22} - N_{6}$	-1/5.8(4)	$C_2/-C_2$ N4-C25	61.9 (4)
C21—C22—C23—C24	-1.4 (6)	C26—C25—N4—C19	86.9 (4)
N6-C22-C23-C24	175.5 (4)	C26—C25—N4—C28	-61.9 (4)
C22—C23—C24—C19	-0.8 (6)	C25—C26—N5—C27	-54.1 (5)
N4—C19—C24—C23	-179.0 (4)	C28—C27—N5—C26	54.7 (4)
C20-C19-C24-C23	3.2 (6)	C21—C22—N6—O6	4.5 (6)

N4—C25—C26—N5	57.6 (5)	C23—C22—N6—O6	-172.4 (4)
N5—C27—C28—N4	-58 0 (4)	C21—C22—N6—O7	-175.1 (4)
C34—C29—C30—C31	0.8 (6)	C23—C22—N6—O7	8.0 (6)
C35—C29—C30—C31	-178.5 (4)	C13—C14—O5—C18	0.5 (7)
C29—C30—C31—C32	-1.2 (6)	C15—C14—O5—C18	179.9 (4)
C30—C31—C32—O10	179.1 (4)	C31—C32—O10—C36	176.8 (4)
C30—C31—C32—C33	0.2 (6)	C33—C32—O10—C36	-4.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H7 <i>B</i> ····O7 ⁱ	0.97	2.54	3.451 (5)	157
C9—H9 <i>B</i> ···O4 ⁱⁱ	0.97	2.31	3.270 (5)	169
С20—Н20…О9	0.93	2.53	3.461 (5)	174
C25—H25A···O2a ⁱⁱⁱ	0.97	2.5	3.206 (10)	130
C25—H25 <i>A</i> ···O2′b ⁱⁱⁱ	0.97	2.49	3.212 (11)	131
C27—H27A···O7 ⁱ	0.97	2.58	3.548 (5)	175
C28—H28 <i>B</i> ···O9	0.97	2.55	3.489 (5)	164
С36—Н36С…О1′Ъ ^{іі}	0.96	2.49	3.395 (14)	158
N2—H21 N ···O8 ^{iv}	0.88 (2)	1.83 (2)	2.697 (4)	166 (4)
N2—H21 <i>N</i> ···O9 ^{iv}	0.88 (2)	2.57 (3)	3.196 (4)	129 (3)
N2—H22 <i>N</i> ···O11 ^v	0.88 (2)	1.89 (2)	2.758 (5)	169 (4)
N5—H51 <i>N</i> ···O9 ^{vi}	0.87 (2)	1.93 (2)	2.778 (5)	164 (4)
N5—H52 <i>N</i> ···O3 ^{vii}	0.91 (2)	1.82 (2)	2.724 (5)	171 (4)
011—H11 <i>O</i> ···O4	0.84 (2)	1.83 (2)	2.663 (4)	176 (4)
O11—H12 <i>O</i> ···O8 ^v	0.84 (2)	1.92 (2)	2.754 (4)	173 (4)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*, -*y*+1/2, *z*-1/2; (iv) -*x*, -*y*+1, -*z*; (v) -*x*+1, *y*-1/2, -*z*+1/2; (vi) *x*, *y*-1, *z*; (vii) *x*-1, -*y*+1/2, *z*-1/2.

4-(4-Nitrophenyl)piperazin-1-ium 4-ethoxybenzoate (VI)

Crystal data

$C_{10}H_{14}N_3O_2^+ C_9H_9O_3^-$ $M_r = 373.4$ Triatical PI	Z = 4 F(000) = 792 $D_{1} = 1.224 \text{ M} \text{ m} \text{ m}^{-3}$
Hall symbol: -P 1 a = 7.874 (1) Å b = 9.263 (1) Å c = 27.996 (3) Å $a = 81.030 (6)^{\circ}$ $\beta = 85.675 (6)^{\circ}$ $\gamma = 68.229 (5)^{\circ}$	$D_x = 1.324$ Mg m ⁻² Mo Ka radiation, $\lambda = 0.71073$ Å Cell parameters from 4134 reflections $\theta = 2.4-28.0^{\circ}$ $\mu = 0.10$ mm ⁻¹ T = 293 K Plate, yellow $0.44 \times 0.32 \times 0.08$ mm
Data collection	
Oxford Diffraction Xcalibur diffractometer ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)	$T_{\min} = 0.963, T_{\max} = 0.992$ 13344 measured reflections 6868 independent reflections 3803 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

$\theta_{\rm max} = 25.4^\circ, \theta_{\rm min} = 2.4^\circ$	$k = -11 \rightarrow 10$
$h = -9 \rightarrow 5$	<i>l</i> = −33→33
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.061$	and constrained refinement
$wR(F^2) = 0.137$	$w = 1/[\sigma^2(F_o^2) + (0.0432P)^2 + 0.7484P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
6858 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
501 parameters	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
16 restraints	$\Delta ho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$
0 constraints	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	-0.3466 (3)	0.6545 (4)	0.40786 (9)	0.1126 (10)
O2	-0.1630 (3)	0.5811 (3)	0.46683 (9)	0.0901 (8)
N3	-0.1931 (4)	0.6107 (3)	0.42384 (10)	0.0667 (7)
N1	0.3914 (3)	0.5404 (2)	0.29014 (7)	0.0412 (5)
N2	0.6838 (3)	0.4199 (3)	0.22275 (9)	0.0486 (6)
C1	0.2485 (3)	0.5547 (3)	0.32330 (9)	0.0364 (6)
C2	0.0659 (4)	0.6276 (3)	0.30870 (10)	0.0452 (7)
H2	0.041054	0.663561	0.276117	0.054*
C3	-0.0759 (4)	0.6467 (3)	0.34138 (10)	0.0487 (7)
Н3	-0.195824	0.69631	0.330993	0.058*
C4	-0.0417 (4)	0.5927 (3)	0.38966 (10)	0.0470 (7)
C5	0.1352 (4)	0.5197 (3)	0.40558 (10)	0.0460 (7)
Н5	0.157333	0.483265	0.438246	0.055*
C6	0.2787 (4)	0.5009 (3)	0.37309 (10)	0.0430 (7)
H6	0.397837	0.451799	0.384052	0.052*
C7	0.5772 (3)	0.4477 (3)	0.30663 (10)	0.0473 (7)
H7A	0.588757	0.338899	0.315234	0.057*
H7B	0.597413	0.484321	0.33554	0.057*
C8	0.7216 (4)	0.4565 (4)	0.26954 (10)	0.0539 (8)
H8A	0.725864	0.561056	0.265102	0.065*
H8B	0.839991	0.382613	0.280859	0.065*
C9	0.5080 (4)	0.5395 (3)	0.20545 (10)	0.0528 (8)
H9A	0.482935	0.520499	0.174084	0.063*
H9B	0.516375	0.642512	0.201592	0.063*
C10	0.3546 (4)	0.5366 (4)	0.23985 (9)	0.0527 (8)
H10A	0.245506	0.626087	0.229683	0.063*
H10B	0.329888	0.442345	0.238274	0.063*

03	-0.0728 (3)	0.4331 (2)	0.15512 (7)	0.0578 (5)
04	0.1149 (2)	0.2978 (2)	0.21489 (7)	0.0532 (5)
05	0.6778 (3)	0.3001 (3)	0.03965 (7)	0.0734 (7)
C11	0.2434 (4)	0.3357 (3)	0.13647 (9)	0.0400 (6)
C12	0.4193 (4)	0.2483 (3)	0.15096 (10)	0.0518 (8)
H12	0.438717	0 198421	0.182667	0.062*
C13	0 5679 (4)	0.2321(4)	0.11995(10)	0.0572(8)
H13	0.685415	0 171644	0.130663	0.069*
C14	0 5409 (4)	0.3059(3)	0.07314(10)	0.0524 (8)
C15	0.3656(4)	0.3039(3)	0.07511(10) 0.05764(10)	0.0609 (9)
H15	0.3050 (4)	0.3230 (4)	0.02587	0.0009(9)
C16	0.340400 0.2102(4)	0.442238 0.4072(3)	0.02387	0.073
	0.2192(4)	0.4072 (3)	0.08898 (10)	0.0520 (8)
П10 С17	0.101321 0.0851 (4)	0.400037 0.2564(2)	0.078030 0.17148(10)	0.002°
C1/	0.0851(4)	0.3304 (3)	0.1/148(10)	0.0424(7)
	0.8615 (4)	0.2090 (4)	0.05351 (12)	0.0820 (11)
HI8A	0.8/4909	0.100553	0.064059	0.098*
HI8B	0.894362	0.249403	0.079923	0.098*
C19	0.9824 (5)	0.2199 (5)	0.01002 (14)	0.1126 (16)
H19A	1.106148	0.152009	0.017216	0.169*
H19B	0.976652	0.32615	0.001769	0.169*
H19C	0.941525	0.188565	-0.016723	0.169*
O6	0.1516 (4)	0.7336 (4)	0.60499 (10)	0.1157 (11)
07	0.1799 (4)	0.9508 (4)	0.61439 (10)	0.1162 (11)
N6	0.1845 (4)	0.8525 (5)	0.58929 (11)	0.0830 (10)
N4	0.2839 (3)	0.9838 (3)	0.38867 (8)	0.0490 (6)
N5	0.2937 (3)	1.0699 (3)	0.28629 (8)	0.0462 (6)
C20	0.2721 (4)	0.9472 (3)	0.43812 (10)	0.0459 (7)
C21	0.2534 (4)	0.8084 (4)	0.45928 (11)	0.0653 (9)
H21	0.259467	0.733784	0.439839	0.078*
C22	0.2260 (5)	0.7782 (4)	0.50814 (12)	0.0747 (10)
H22	0.211482	0.684754	0.521174	0.09*
C23	0.2199 (4)	0.8824 (5)	0.53759 (11)	0.0636 (9)
C24	0.2430 (5)	1.0184 (5)	0.51872 (13)	0.0783 (11)
H24	0.240692	1.089852	0.538938	0.094*
C25	0.2700(5)	1.0594(4)	0.46951 (12)	0.0711 (10)
H25	0.287119	1 143254	0 457048	0.085*
C26	0.3867(4)	1 0795 (3)	0.36697 (10)	0.0563 (8)
H26A	0.51213	1.0795 (9)	0.360971	0.0505(0)
H26R	0.3881	1 149872	0.389107	0.068*
C27	0.3030(4)	1.149072	0.309107	0.0539 (8)
U27	0.3030 (4)	1.1752 (5)	0.326783	0.0557(8)
1127A 1127D	0.180752	1.243008	0.320783	0.005*
П2/D С29	0.373320 0.1007(4)	1.234293	0.303927	0.003°
	0.1907 (4)	0.9701(3)	0.30890 (10)	0.0498 (7)
П20А 1120D	0.195508	0.89/190	0.20723	0.00*
П28В С20	0.004102	1.055801	0.314033	U.U6*
C29	0.2/14 (4)	0.8803 (3)	0.35626 (10)	0.0529 (8)
н29А	0.196135	0.822/51	0.3/1369	0.064*
H29B	0.392544	0.804857	0.35057	0.064*

08	-0.3777 (3)	0.8954 (2)	0.25237 (8)	0.0629 (6)
09	-0.3341 (3)	1.1185 (2)	0.25354 (7)	0.0569 (5)
O10	0.2958 (3)	0.8011 (3)	0.10557 (8)	0.0771 (7)
C30	-0.1331 (3)	0.9365 (3)	0.20503 (9)	0.0408 (6)
C31	-0.1058 (4)	0.8152 (3)	0.17834 (10)	0.0508 (7)
H31	-0.185001	0.760423	0.183038	0.061*
C32	0.0357 (4)	0.7741 (3)	0.14506 (11)	0.0555 (8)
H32	0.049421	0.694181	0.127006	0.067*
C33	0.1575 (4)	0.8517 (3)	0.13846 (10)	0.0511 (7)
C34	0.1341 (4)	0.9716 (3)	0.16508 (10)	0.0512 (7)
H34	0.215362	1.024354	0.161223	0.061*
C35	-0.0111 (4)	1.0121 (3)	0.19741 (10)	0.0463 (7)
H35	-0.027019	1.09415	0.214785	0.056*
C36	-0.2919 (4)	0.9871 (4)	0.23973 (10)	0.0478 (7)
C37	0.4280 (5)	0.8751 (5)	0.09807 (14)	0.0885 (12)
H37A	0.483742	0.868761	0.128435	0.106*
H37B	0.369923	0.984835	0.085011	0.106*
C38	0.5698 (6)	0.7907 (7)	0.06316 (18)	0.153 (2)
H38A	0.667443	0.830217	0.059976	0.229*
H38B	0.515701	0.807254	0.032204	0.229*
H38C	0.617246	0.680406	0.074893	0.229*
H31N	0.778 (5)	0.425 (6)	0.2007 (14)	0.183*
H32N	0.677 (7)	0.324 (3)	0.2290 (18)	0.183*
H61N	0.407 (4)	1.009 (5)	0.2766 (18)	0.183*
H62N	0.236 (6)	1.131 (5)	0.2599 (12)	0.183*

Atomic displacement parameters (\mathring{A}^2)

	I 711	I 722	I 733	I /12	I /13	I 723
	0	0	0	0	0	0
01	0.0514 (15)	0.173 (3)	0.0801 (19)	-0.0138 (17)	0.0103 (14)	0.0040 (18)
O2	0.0855 (17)	0.129 (2)	0.0445 (15)	-0.0320 (16)	0.0107 (13)	-0.0023 (14)
N3	0.0550 (18)	0.076 (2)	0.0573 (19)	-0.0143 (15)	0.0078 (15)	-0.0036 (15)
N1	0.0399 (13)	0.0448 (14)	0.0380 (13)	-0.0148 (11)	-0.0030 (10)	-0.0033 (11)
N2	0.0450 (14)	0.0536 (16)	0.0466 (15)	-0.0175 (13)	0.0038 (11)	-0.0089 (13)
C1	0.0440 (16)	0.0302 (15)	0.0369 (16)	-0.0153 (13)	-0.0019 (13)	-0.0053 (12)
C2	0.0486 (17)	0.0463 (17)	0.0378 (16)	-0.0152 (14)	-0.0064 (14)	-0.0001 (13)
C3	0.0392 (16)	0.0525 (19)	0.0513 (19)	-0.0132 (14)	-0.0007 (14)	-0.0071 (15)
C4	0.0488 (18)	0.0463 (18)	0.0441 (18)	-0.0167 (15)	0.0066 (14)	-0.0065 (14)
C5	0.0584 (19)	0.0406 (17)	0.0386 (16)	-0.0186 (15)	-0.0016 (14)	-0.0020 (13)
C6	0.0433 (16)	0.0381 (16)	0.0457 (17)	-0.0127 (13)	-0.0066 (14)	-0.0027 (13)
C7	0.0407 (16)	0.0543 (18)	0.0470 (18)	-0.0162 (14)	-0.0043 (13)	-0.0088 (14)
C8	0.0440 (17)	0.066 (2)	0.057 (2)	-0.0243 (15)	0.0013 (15)	-0.0150 (16)
C9	0.0544 (18)	0.0547 (19)	0.0451 (18)	-0.0186 (16)	0.0029 (14)	0.0005 (14)
C10	0.0452 (17)	0.068 (2)	0.0392 (17)	-0.0168 (15)	-0.0010 (13)	-0.0005 (15)
03	0.0458 (12)	0.0732 (15)	0.0477 (12)	-0.0181 (11)	0.0023 (10)	0.0009 (11)
O4	0.0585 (12)	0.0634 (13)	0.0375 (12)	-0.0259 (11)	0.0003 (9)	0.0022 (10)
05	0.0505 (13)	0.0959 (17)	0.0504 (13)	-0.0107 (12)	0.0086 (11)	0.0129 (12)
C11	0.0480 (17)	0.0392 (16)	0.0352 (15)	-0.0199 (14)	0.0001 (13)	-0.0026 (13)

C12	0.0524 (18)	0.064 (2)	0.0362 (16)	-0.0234 (16)	-0.0022 (14)	0.0074 (14)
C13	0.0453 (17)	0.072 (2)	0.0455 (19)	-0.0155 (16)	-0.0029 (15)	0.0053 (16)
C14	0.0489 (18)	0.060(2)	0.0424 (18)	-0.0173 (16)	0.0060 (15)	-0.0001 (15)
C15	0.056 (2)	0.075 (2)	0.0327 (17)	-0.0089 (17)	0.0009 (15)	0.0090 (15)
C16	0.0458 (17)	0.0560 (19)	0.0431 (18)	-0.0091 (15)	-0.0006 (14)	0.0016 (15)
C17	0.0498 (18)	0.0416 (17)	0.0418 (18)	-0.0237 (15)	0.0000 (14)	-0.0054 (14)
C18	0.050 (2)	0.106 (3)	0.069 (2)	-0.014 (2)	0.0095 (17)	0.007 (2)
C19	0.058 (2)	0.154 (4)	0.088 (3)	-0.011 (2)	0.022 (2)	0.011 (3)
06	0.125 (3)	0.136 (3)	0.0580 (18)	-0.028 (2)	0.0049 (16)	0.0186 (18)
07	0.099 (2)	0.208 (3)	0.0619 (18)	-0.070 (2)	0.0107 (15)	-0.049 (2)
N6	0.0584 (19)	0.129 (3)	0.049 (2)	-0.022 (2)	0.0005 (15)	-0.010 (2)
N4	0.0744 (17)	0.0449 (14)	0.0381 (14)	-0.0343 (13)	-0.0005 (12)	-0.0046 (11)
N5	0.0553 (15)	0.0425 (15)	0.0435 (14)	-0.0231 (12)	0.0049 (12)	-0.0033 (12)
C20	0.0459 (16)	0.0463 (18)	0.0443 (18)	-0.0147 (14)	0.0001 (13)	-0.0083 (14)
C21	0.099 (3)	0.054 (2)	0.0440 (19)	-0.0301 (19)	0.0055 (17)	-0.0063 (16)
C22	0.101 (3)	0.070 (2)	0.047 (2)	-0.031 (2)	0.0048 (19)	0.0032 (18)
C23	0.0510 (19)	0.091 (3)	0.0396 (19)	-0.0177 (19)	-0.0027 (15)	-0.0030 (19)
C24	0.087 (3)	0.110 (3)	0.051 (2)	-0.041 (2)	0.0054 (19)	-0.038 (2)
C25	0.099 (3)	0.074 (2)	0.059 (2)	-0.049 (2)	0.0046 (19)	-0.0196 (19)
C26	0.071 (2)	0.058 (2)	0.0524 (19)	-0.0381 (17)	0.0000 (16)	-0.0085 (16)
C27	0.072 (2)	0.0427 (17)	0.0533 (19)	-0.0303 (16)	0.0104 (16)	-0.0060 (15)
C28	0.0607 (19)	0.0526 (18)	0.0439 (18)	-0.0310 (16)	0.0008 (14)	-0.0043 (14)
C29	0.077 (2)	0.0475 (18)	0.0436 (18)	-0.0344 (16)	-0.0019 (15)	-0.0032 (14)
08	0.0597 (13)	0.0531 (13)	0.0781 (15)	-0.0273 (11)	0.0142 (11)	-0.0062 (11)
09	0.0627 (13)	0.0524 (13)	0.0573 (13)	-0.0226 (11)	0.0088 (10)	-0.0129 (11)
O10	0.0744 (15)	0.0862 (17)	0.0732 (16)	-0.0304 (14)	0.0256 (13)	-0.0281 (13)
C30	0.0447 (16)	0.0366 (16)	0.0382 (16)	-0.0133 (13)	-0.0061 (13)	0.0021 (13)
C31	0.0524 (18)	0.0469 (18)	0.0559 (19)	-0.0229 (15)	-0.0043 (15)	-0.0020 (15)
C32	0.064 (2)	0.0469 (18)	0.056 (2)	-0.0192 (16)	-0.0013 (16)	-0.0139 (15)
C33	0.0507 (18)	0.0488 (18)	0.0463 (18)	-0.0113 (15)	0.0020 (14)	-0.0032 (15)
C34	0.0482 (17)	0.0498 (19)	0.058 (2)	-0.0232 (15)	0.0023 (15)	-0.0036 (16)
C35	0.0490 (17)	0.0437 (17)	0.0490 (18)	-0.0186 (14)	-0.0048 (14)	-0.0077 (14)
C36	0.0480 (18)	0.0481 (19)	0.0442 (18)	-0.0162 (15)	-0.0073 (14)	0.0022 (15)
C37	0.075 (3)	0.110 (3)	0.082 (3)	-0.040 (2)	0.025 (2)	-0.014 (2)
C38	0.122 (4)	0.205 (6)	0.147 (5)	-0.072 (4)	0.083 (4)	-0.079 (4)

Geometric parameters (Å, °)

01—N3	1.220 (3)	O6—N6	1.231 (4)	
O2—N3	1.213 (3)	O7—N6	1.223 (4)	
N3—C4	1.447 (3)	N6—C23	1.456 (4)	
N1—C1	1.384 (3)	N4—C20	1.378 (3)	
N1—C7	1.462 (3)	N4—C26	1.449 (3)	
N1-C10	1.467 (3)	N4—C29	1.452 (3)	
N2—C9	1.475 (3)	N5—C27	1.476 (4)	
N2—C8	1.481 (4)	N5—C28	1.486 (3)	
N2—H31N	0.937 (19)	N5—H61N	0.910 (19)	
N2—H32N	0.895 (19)	N5—H62N	0.896 (19)	

C1—C2	1.405 (3)	C20—C21	1.384 (4)
C1—C6	1.412 (3)	C20—C25	1.391 (4)
C2—C3	1.366 (4)	C21—C22	1.370 (4)
С2—Н2	0.93	C21—H21	0.93
C3—C4	1.376 (4)	C22—C23	1.349 (4)
С3—Н3	0.93	C22—H22	0.93
C4—C5	1.377 (4)	C23—C24	1.359 (5)
C5—C6	1 372 (3)	C^{24} C^{25}	1 381 (4)
C5—H5	0.93	C24—H24	0.93
С6—Н6	0.93	C25—H25	0.93
C7-C8	1 498 (3)	C25 1125 C26_C27	1.497(4)
C7H7A	0.97	C26—C27	0.97
C7 H7P	0.97	C26_H26R	0.97
	0.97	C20—1120B	0.97
	0.97	C27—H27A	0.97
	0.97	$C_2/-H_2/B$	0.97
	1.495 (3)	C_{28} C_{29}	1.498 (4)
C9—H9A	0.97	C28—H28A	0.97
С9—Н9В	0.97	C28—H28B	0.97
C10—H10A	0.97	С29—Н29А	0.97
C10—H10B	0.97	C29—H29B	0.97
O3—C17	1.261 (3)	O8—C36	1.264 (3)
O4—C17	1.253 (3)	O9—C36	1.252 (3)
O5—C14	1.365 (3)	O10—C33	1.363 (3)
O5—C18	1.426 (3)	O10—C37	1.431 (4)
C11—C12	1.375 (4)	C30—C35	1.372 (3)
C11—C16	1.383 (3)	C30—C31	1.387 (4)
C11—C17	1.499 (4)	C30—C36	1.500 (4)
C12—C13	1.379 (4)	C31—C32	1.376 (4)
C12—H12	0.93	C31—H31	0.93
C13—C14	1.373 (4)	C32—C33	1.383 (4)
С13—Н13	0.93	С32—Н32	0.93
C14—C15	1.378 (4)	C33—C34	1.381 (4)
C15—C16	1.374 (4)	C34—C35	1.378 (4)
C15—H15	0.93	C34—H34	0.93
C16—H16	0.93	С35—Н35	0.93
C18—C19	1.502 (4)	C37—C38	1,496 (5)
C18—H18A	0.97	С37—Н37А	0.97
C18—H18B	0.97	C37—H37B	0.97
C19—H19A	0.96	C38—H38A	0.96
C19—H19B	0.96	C38—H38B	0.96
C19—H19C	0.96	C38—H38C	0.96
	0.70	630 11300	0.90
O2—N3—O1	122.7 (3)	O7—N6—O6	123.5 (4)
O2—N3—C4	119.3 (3)	O7—N6—C23	118.2 (4)
O1—N3—C4	118.0 (3)	O6—N6—C23	118.2 (4)
C1—N1—C7	118.1 (2)	C20—N4—C26	121.3 (2)
C1—N1—C10	117.0 (2)	C20—N4—C29	121.3 (2)
C7—N1—C10	116.3 (2)	C26—N4—C29	111.9 (2)

C9—N2—C8	107.9 (2)	C27—N5—C28	110.0 (2)
C9—N2—H31N	110 (3)	C27—N5—H61N	112 (3)
C8—N2—H31N	108 (3)	C28—N5—H61N	110 (3)
C9—N2—H32N	111 (3)	C27—N5—H62N	108 (3)
C8—N2—H32N	106 (3)	C28—N5—H62N	110 (3)
H31N—N2—H32N	113 (4)	H61N—N5—H62N	107 (4)
N1—C1—C2	120.9 (2)	N4—C20—C21	121.8 (3)
N1—C1—C6	122.0 (2)	N4—C20—C25	122.0 (3)
C2—C1—C6	117.1 (2)	C21—C20—C25	116.2 (3)
C3—C2—C1	121.3 (3)	C22—C21—C20	121.6 (3)
C3—C2—H2	119.3	C22—C21—H21	119.2
C1-C2-H2	119.3	C20—C21—H21	119.2
$C^2 - C^3 - C^4$	120 1 (3)	C_{23} C_{22} C_{21}	120.9(3)
C2—C3—H3	120.1 (5)	C_{23} C_{22} H_{22}	119.6
C4-C3-H3	120	$C_{21} = C_{22} = H_{22}$	119.6
C_{3} C_{4} C_{5}	120 6 (3)	C^{22} C^{23} C^{24}	119.0 119.7(3)
$C_3 - C_4 - N_3$	119.6 (3)	$C_{22} = C_{23} = N_{6}$	120.8(4)
$C_5 - C_4 - N_3$	119.8 (3)	$C_{22} = C_{23} = N_6$	120.0(4) 119 5 (4)
C6-C5-C4	119.8 (3)	$C_{24} = C_{23} = 100$	119.9(4) 110.9(3)
C6 C5 H5	120.1	$C_{23} = C_{24} = C_{23}$	119.9 (3)
C_{4} C_{5} H_{5}	120.1	$C_{25} = C_{24} = H_{24}$	120
$C_{4} = C_{5} = C_{15}$	120.1 121.2(3)	$C_{25} = C_{24} = 1124$	120 121.6(3)
C5 C6 H6	121.2 (3)	$C_{24} = C_{25} = C_{20}$	121.0(3)
C_{1} C_{6} H_{6}	119.4	$C_{24} = C_{23} = H_{23}$	119.2
C1 - C0 - H0	119.4	С20—С25—Н25	119.2
NI = C7 = U7A	113.3 (2)	N4 = C26 = C27	110.5 (2)
NI = C = H/A	108.9	$N4 - C_{20} - H_{20}A$	109.5
C8 - C / - H / A	108.9	$C_2/-C_{20}$ -H26A	109.5
NI = C / = H / B	108.9	N4-C26-H26B	109.5
$C_8 - C_7 - H_7 B$	108.9	$C_2/-C_{20}$ -H26B	109.5
H/A - C/-H/B	107.7	H26A-C26-H26B	108.1
N2-C8-C7	110.9 (2)	N5-C27-C26	111.0 (2)
N2—C8—H8A	109.5	N5-C2/-H2/A	109.4
C/—C8—H8A	109.5	C26—C27—H27A	109.4
N2—C8—H8B	109.5	N5—C27—H27B	109.4
C/—C8—H8B	109.5	C26—C27—H27B	109.4
H8A—C8—H8B	108	H2/A - C2/-H2/B	108
N2-C9-C10	111.5 (2)	N5—C28—C29	111.1 (2)
N2—C9—H9A	109.3	N5—C28—H28A	109.4
С10—С9—Н9А	109.3	С29—С28—Н28А	109.4
N2—C9—H9B	109.3	N5—C28—H28B	109.4
С10—С9—Н9В	109.3	C29—C28—H28B	109.4
Н9А—С9—Н9В	108	H28A—C28—H28B	108
N1—C10—C9	113.7 (2)	N4—C29—C28	111.5 (2)
N1—C10—H10A	108.8	N4—C29—H29A	109.3
C9—C10—H10A	108.8	С28—С29—Н29А	109.3
N1—C10—H10B	108.8	N4—C29—H29B	109.3
C9—C10—H10B	108.8	C28—C29—H29B	109.3
H10A—C10—H10B	107.7	H29A—C29—H29B	108

C14—O5—C18	118.3 (2)	C33—O10—C37	118.5 (3)
C12—C11—C16	117.5 (2)	C35—C30—C31	117.1 (3)
C12—C11—C17	120.9 (2)	C35—C30—C36	120.9 (3)
C16—C11—C17	121.6 (3)	C31—C30—C36	122.0 (2)
C11—C12—C13	122.1 (3)	C32—C31—C30	121.5 (3)
C11—C12—H12	119	C32—C31—H31	119.2
C13—C12—H12	119	C30—C31—H31	119.2
C14—C13—C12	119.5 (3)	C31—C32—C33	120.0 (3)
C14—C13—H13	120.3	C31—C32—H32	120
C12—C13—H13	120.3	C33—C32—H32	120
05-C14-C13	1244(3)	010-033-034	120 1245(3)
05-C14-C15	1161(3)	010-033-032	1161(3)
C_{13} $-C_{14}$ $-C_{15}$	110.1(3) 1195(3)	C_{34} C_{33} C_{32}	110.1(3) 1194(3)
C_{16} $-C_{15}$ $-C_{14}$	120.2(3)	$C_{35} - C_{34} - C_{33}$	119.1(3) 119.2(3)
C_{16} $-C_{15}$ $-H_{15}$	119.9	$C_{35} - C_{34} - H_{34}$	120.4
C_{14} C_{15} H_{15}	119.9	C_{33} C_{34} H_{34}	120.4
C_{15} C_{16} C_{11}	119.9 121.2(3)	C_{30} C_{35} C_{34}	120.4 122.7(3)
C_{15} C_{16} H_{16}	121.2 (5)	C_{30} C_{35} H_{35}	112.7 (5)
C_{11} C_{16} H_{16}	119.4	C_{34} C_{35} H_{35}	118.6
$C_{11} = C_{10} = 110$	117.4 122.5(2)	$00 C_{26} O_{8}$	110.0 124.0(2)
04 - C17 - 03	123.3(2) 110.2(2)	09 - C36 - C30	124.0(3) 118.2(3)
04 - C17 - C11	119.3(3)	09 - 030 - 030	110.3(3)
05 - C18 - C10	117.3(2) 107.2(2)	03 - 03 - 030	117.7(3) 107.4(3)
05 - 018 - 019	107.3 (3)	010 - 037 - 038	107.4 (5)
05C18H18A	110.3	O10 - C37 - H37A	110.2
C19—C18—H18A	110.3	$C_{38} - C_{37} - H_{37A}$	110.2
05	110.3	010-037-0137B	110.2
C19—C18—H18B	110.3	C_{38} — C_{37} — H_{37B}	110.2
H18A—C18—H18B	108.5	$H_3/A - C_3/ - H_3/B$	108.5
C18—C19—H19A	109.5	$C_{3}/-C_{38}$ -H38A	109.5
C18—C19—H19B	109.5	C3/-C38-H38B	109.5
Н19А—С19—Н19В	109.5	H38A—C38—H38B	109.5
C18—C19—H19C	109.5	C37—C38—H38C	109.5
H19A—C19—H19C	109.5	H38A—C38—H38C	109.5
H19B—C19—H19C	109.5	H38B—C38—H38C	109.5
C7—N1—C1—C2	-1731(2)	C26—N4—C20—C21	-1497(3)
$C_{10} - N_{1} - C_{1} - C_{2}$	-26.5(3)	C29 - N4 - C20 - C21	2.0 (4)
C7 - N1 - C1 - C6	85(3)	$C_{26} = N_{4} = C_{20} = C_{25}$	333(4)
C10-N1-C1-C6	155.0(2)	C29—N4—C20—C25	-175.1(3)
N1-C1-C2-C3	-177.9(2)	N4—C20—C21—C22	-1743(3)
$C_{6} - C_{1} - C_{2} - C_{3}$	0.6(4)	C_{25} C_{20} C_{21} C_{22}	28(5)
C1 - C2 - C3 - C4	-0.7(4)	$C_{20} = C_{21} = C_{22} = C_{23}$	-13(5)
$C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}$	0.7(-7)	C_{21} C_{21} C_{22} C_{23} C_{24}	-0.7(5)
$C_2 = C_3 = C_4 = 0_3$	-1787(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	$177 \ 8 \ (3)$
02 - N3 - C4 - C3	$-170 \ 8 \ (3)$	07 - N6 - 022 - 022 - 100	$-170 \ $ (3)
01 - N3 - C4 - C3	96(4)	0^{-} N6-023-022	-34(5)
0^{2} N3 $-C4$ $-C5$	10.2(4)	0.0 - 1.0 - 0.23 - 0.22	-1.3(5)
02 - 13 - 04 - 05	-160 4 (2)	07 - 10 - 023 - 024	1.3(3) 175(2)
$\mathbf{U}_{1} = \mathbf{U}_{1} = \mathbf{U}_{1} = \mathbf{U}_{1}$	102.4 (3)	00 - 10 - 023 - 024	1/3.1(3)

C3—C4—C5—C6	0.2 (4)	C22—C23—C24—C25	0.9 (5)
N3—C4—C5—C6	179.2 (3)	N6-C23-C24-C25	-177.6 (3)
C4—C5—C6—C1	-0.2 (4)	C23—C24—C25—C20	0.8 (5)
N1—C1—C6—C5	178.3 (2)	N4—C20—C25—C24	174.6 (3)
C2-C1-C6-C5	-0.2 (4)	C21—C20—C25—C24	-2.6 (5)
C1—N1—C7—C8	-173.0 (2)	C20—N4—C26—C27	-148.9 (3)
C10—N1—C7—C8	40.3 (3)	C29—N4—C26—C27	57.0 (3)
C9—N2—C8—C7	62.2 (3)	C28—N5—C27—C26	56.4 (3)
N1-C7-C8-N2	-51.8 (3)	N4-C26-C27-N5	-57.5 (3)
C8—N2—C9—C10	-61.5 (3)	C27—N5—C28—C29	-54.8 (3)
C1—N1—C10—C9	173.4 (2)	C20—N4—C29—C28	150.1 (2)
C7—N1—C10—C9	-39.5 (3)	C26—N4—C29—C28	-55.8 (3)
N2-C9-C10-N1	50.3 (3)	N5-C28-C29-N4	54.6 (3)
C16—C11—C12—C13	0.5 (4)	C35—C30—C31—C32	-1.0 (4)
C17—C11—C12—C13	-177.6 (3)	C36—C30—C31—C32	177.1 (3)
C11—C12—C13—C14	0.4 (5)	C30—C31—C32—C33	1.6 (4)
C18—O5—C14—C13	1.3 (5)	C37—O10—C33—C34	0.7 (4)
C18—O5—C14—C15	-178.7 (3)	C37—O10—C33—C32	-178.7 (3)
C12—C13—C14—O5	178.9 (3)	C31—C32—C33—O10	178.6 (3)
C12—C13—C14—C15	-1.0 (5)	C31—C32—C33—C34	-0.8 (4)
O5-C14-C15-C16	-179.2 (3)	O10—C33—C34—C35	-179.8 (3)
C13—C14—C15—C16	0.7 (5)	C32—C33—C34—C35	-0.5 (4)
C14—C15—C16—C11	0.2 (5)	C31—C30—C35—C34	-0.3 (4)
C12—C11—C16—C15	-0.8 (4)	C36—C30—C35—C34	-178.5 (3)
C17—C11—C16—C15	177.3 (3)	C33—C34—C35—C30	1.1 (4)
C12—C11—C17—O4	2.7 (4)	C35—C30—C36—O9	15.2 (4)
C16—C11—C17—O4	-175.3 (2)	C31—C30—C36—O9	-162.9 (3)
C12—C11—C17—O3	-177.3 (3)	C35—C30—C36—O8	-166.4 (2)
C16—C11—C17—O3	4.6 (4)	C31—C30—C36—O8	15.5 (4)
C14—O5—C18—C19	178.7 (3)	C33—O10—C37—C38	176.2 (3)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg6 are the centroids of the C1–C6 and C30–C35 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H31 <i>N</i> ···O3 ⁱ	0.94 (2)	1.68 (2)	2.613 (3)	172 (5)
N2— $H31N$ ····O4 ⁱ	0.94 (2)	2.51 (4)	3.157 (3)	127 (4)
N2—H32 <i>N</i> ···O9 ⁱⁱ	0.90 (2)	1.96 (2)	2.843 (3)	171 (5)
N5—H61 N ···O8 ⁱ	0.91 (2)	1.78 (2)	2.686 (3)	175 (5)
N5—H61 <i>N</i> ···O9 ⁱ	0.91 (2)	2.59 (4)	3.174 (3)	122 (4)
N5—H62N····O4 ⁱⁱⁱ	0.90 (2)	1.83 (2)	2.708 (3)	165 (5)
C22—H22···O2 ^{iv}	0.93	2.6	3.502 (5)	165
C27—H27 <i>B</i> ···O9 ⁱ	0.97	2.59	3.215 (3)	123
C28—H28 <i>B</i> ····O7 ^v	0.97	2.65	3.410 (4)	135
C29—H29 <i>B</i> ···O1 ⁱ	0.97	2.53	3.249 (4)	131
C35—H35…O4 ⁱⁱⁱ	0.93	2.52	3.263 (3)	137

C10—H10 <i>A</i> ··· <i>Cg</i> 6	0.97	2.82	3.746 (3)	159	
C29—H29 <i>A</i> ··· <i>Cg</i> 2	0.97	2.76	3.556 (3)	139	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1, *y*-1, *z*; (iii) *x*, *y*+1, *z*; (iv) -*x*, -*y*+1, -*z*+1; (v) -*x*, -*y*+2, -*z*+1.