

Received 15 February 2022 Accepted 29 March 2022

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; cobalt(II) complex; (–)-5,6-pinenebipyridine; hydrogen bonding.

CCDC reference: 2163153

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of di-*µ*-chlorido-bis{chlorido[(–)-5,6-pinenebipyridine]cobalt(II)} aquadichlorido-[(–)-5,6-pinenebipyridine]cobalt(II)

Massimo Varisco,^a Aurelien Crochet^b and Olimpia Mamula Steiner^a*

^aUniversity of Applied Sciences of Western Switzerland, HES-SO, HEIA-FR, Boulevard de Pérolles 80, CH-1700 Fribourg, Switzerland, and ^bUniversité de Fribourg, Département de Chimie, Chemin du Musée 9, CH-1700 Fribourg, Switzerland. *Correspondence e-mail: olimpia.mamulasteiner@hefr.ch

The crystal structure of $[Co_2Cl_4(C_{17}H_{18}N_2)_2][CoCl_2(C_{17}H_{18}N_2)(H_2O)]$ or $[Co(L)Cl(\mu-Cl)]_2[Co(L)(Cl)_2(OH_2)]$, where L is the enantiopure bidentate ligand (-)-5,6-pinenebipyridine $(C_{17}H_{18}N_2)$, has been determined. Crystals suitable for X-ray structure analysis were obtained by slow evaporation of an ethanolic solution containing equimolar amounts of L and $CoCl_2 \cdot 6H_2O$. The Co^{II} cations all have a coordination number of five, and in each case the coordination polyhedron is a trigonal bipyramid. The Co-N bonds lengths range from 2.037 (7) to 2.195 (7) Å, and Co-Cl bonds lengths range from 2.284 (2) to 2.509 (2) Å. The asymmetric unit contains two discrete complexes, one dinuclear and the other mononuclear. Between the two molecules, two types of intermolecular interactions have been evidenced: $\pi - \pi$ stackings involving the bipyridine units, and $O-H \cdots Cl$ hydrogen bonds between the hydrogen atoms of the aqua ligand coordinating to the mononuclear complex and the nonbridging chlorido ligand coordinating to the dinuclear molecule. These interactions lead to a two-dimensional supramolecular arrangement parallel to the *ab* plane.

1. Chemical context

Single-molecule magnets (SMMs) are metal–organic compounds that are superparamagnetic below a blocking temperature. It is important to note that this type of magnetism has a molecular origin, instead of the more traditional bulk-originated magnetism (Zhu *et al.*, 2013). Below the blocking temperature, a SMM exhibits magnetic hysteresis. In order to obtain a coordination compound behaving as an SMM, a paramagnetic metal cation has to be used, for example Co^{II} (Lang *et al.*, 2019). Moreover, the use of chiral ligands for these paramagnetic metal cations can lead to predetermination of their chirality and thus to the synthesis of 5,6-pinene bipyridine (C₁₇H₁₈N₂; *L*) and their derivatives have the ability to predetermine the chirality of *d* and *f* metal cations (Lama *et al.*, 2008; Mamula & von Zelewsky, 2003).

Figure 1

The molecular structures of the two complexes present in (1), with the $O-H\cdots Cl$ hydrogen bond shown as a dashed line. Displacement ellipsoids are set at the 30% probability level. Carbon-bound hydrogen atoms are omitted for clarity.

Within a current project we are investigating the metal complexes obtained with paramagnetic metal cations, *i.e.* Co^{II} , and report here the crystal structure of $[\text{Co}(L)\text{Cl})_{2}[\text{Co}(L)(\text{Cl})_{2}(\text{OH}_{2})]$ (1).

2. Structural commentary

The asymmetric unit of (1) comprises two discrete complexes (Fig. 1). The dinuclear complex possess two bidentate terminal (-)-5,6-pinenebipyridine ligands coordinated by two distinct Co^{II} cations (Co1, Co2) *via* their nitrogen atoms. The two Co^{II} cations are linked by two bridging chlorido ligands (Cl2, Cl3). Each coordination sphere is completed by two additional terminal chlorido ligands (Cl1, Cl4), leading to a coordination number of 5 in each case. The mononuclear complex (Co3) also features a Co^{II} cation with a coordination number of 5. In this case, one bidentate (-)-5,6-pinenebipyridine, two terminal chlorido ligands (Cl5; Cl6) and an aqua ligand bind to the Co^{II} cation. The two types of complexes interact via an O- $H \cdots Cl$ hydrogen bond (indicated with a dashed line in Fig. 1; Table 1) between one hydrogen atom belonging to the aqua ligand of the mononuclear complex and a terminal chlorido ligand belonging to the dinuclear complex. The other hydrogen atom of the water molecule forms another hydrogen bond with a dinuclear complex belonging to a neighbouring molecule (vide infra).

The geometric parameters for the trigonal-bipyramidal coordination environments are similar for the three Co^{II} cations. In order to compare their coordination polyhedra, the values for the parameter τ were calculated. For a perfect trigonal-bipyramidal arrangement τ is 1, and for a perfect square-pyramidal arrangement τ is 0 (Addison *et al.*, 1984). The polyhedron around the cation in the mononuclear complex (Co3 in Fig. 2) is the closest to trigonal-bipyramidal ($\tau = 0.78$). However, those of the cations of the dinuclear complex are not so different ($\tau = 0.69$ for Co1, $\tau = 0.64$ for Co2, see Fig. 2).

Table 1		_	
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \text{O1-H1}A\cdots\text{Cl1} \\ \text{O1-H1}B\cdots\text{Cl4}^{\text{i}} \end{array}$	0.84 (10)	2.37 (10)	3.194 (7)	166 (9)
	0.87 (10)	2.43 (10)	3.260 (7)	161 (9)

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

The Co-N bond lengths are between 2.037 (7) and 2.195 (7) Å, the Co-Cl bonds lengths are between 2.284 (2) and 2.509 (2) Å and the Co-O bond length is 2.160 (6) Å, which are all within the expected ranges (Bernhardt & Lawrance, 2003).

3. Supramolecular features

In the crystal, hydrogen-bonding interactions occur between the dinuclear and mononuclear complexes, leading to a supramolecular zigzag chain extending parallel to the b axis

Figure 2

The trigonal-bipyramidal coordination spheres of the Co^{II} cations in (*a*) the dinuclear complex and (*b*) the mononuclear complex. Non-coordinating atoms are omitted for clarity.

Figure 3

Hydrogen bonds (blue dotted lines) forming an infinite supramolecular chain. Carbon-bound hydrogen atoms are omitted for clarity. [Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$; (iii) x, -1 + y, z.]

(Fig. 3). The hydrogen atoms of the aqua ligand of the mononuclear complex form hydrogen bonds with the terminal chlorido ligands belonging to the dinuclear complex. The bond lengths and angles (Table 1), are in the expected ranges for this type of interaction (Steiner, 2002).

This arrangement is stabilized by π - π stacking interactions, which are responsible for the cohesion of the structure by forming layers of alternating dinuclear and mononuclear complexes extending parallel to the *ab* plane (Fig. 4). Neighbouring dinuclear complexes are connected *via* π - π interactions between the bipyridine units whereby two π - π

Figure 4

 π - π stacking interactions shown as dotted black lines. [Symmetry codes: (ii) $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$; (v) -1 + x, y, z; (vi) 1 + x, y, z; (vii) $-x, -\frac{1}{2} + y, \frac{1}{2} - z$.]

Figure 5

Schematic representation of the two-dimensional arrangement in the crystal structure of (1). [Symmetry codes: (iv) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (v) -1 + x, y, z.]

interactions are established between the two pyridine rings annelated to the pinene moiety and the two 'free pyridines' (the pinene-free pyridine rings of the pinene-bipyridine ligands). The distances between the aromatic centroids are 3.793 (5) Å (slippage 0.987 Å) and 3.940 (5) Å (slippage 1.278 Å). The two pinene bipyridine ligands belonging to neighbouring dinuclear complexes are connected *via* their 'free' pyridine entity to the 'free' pyridine entities of the pinenebipyridine ligands of the mononuclear complexes. The distances [3.625 (5) Å with a slippage of 1.137 Å, and 3.718 (5) Å with a slippage of 1.503 Å] are typical for these kinds of interactions (Robin & Fromm, 2006).

Considering all the intermolecular interactions (hydrogen bonds and π - π stackings), the two-dimensional supramolecular arrangement can be drawn schematically as shown in Fig. 5.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.42, September 2021; Groom et al., 2016) revealed no cobalt complexes containing the ligand (-) or (+)-5,6-pinenebipyridine (nor 4,5-pinenebipyridine). However, a few mononuclear complexes with ligands containing the 5.6pinenebipyridine moiety in their skeleton have been reported. A tetrahedral Co^{II} complex, UCUFAZ, containing a bidentate bipyridine ligand analogue to the ligand L but containing two pinene groups, has been characterized (Lötscher et al., 2001). Two tridentate ligands, UKITOX and UKIVAL (Suhr et al., 2002), composed of 2,2':6',2" terpyridine containing two pinene groups annelated to the terminal pyridine rings, coordinated by a Co^{II} cation together with two chloride anions to form a complex whose geometry is pseudo-trigonal-bipyramidal. Finally, Yeung et al. (2009) used terpyridine ligands from the same family as the ones of Suhr et al. and obtained similar structures (XUDHOU and XUDJEM).

5. Synthesis and crystallization

A pink solution of $CoCl_2 \cdot 6H_2O$ (238 mg, 1 mmol) in ethanol (4 ml) was added to a colourless solution containing L

Table 2Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Stoe IPDS 2T Diffractometer Absorption correction Integration (X-RED32; Stoe, 2016) $T_{\rm min},\,T_{\rm max}$ 0.176, 0.523 No. of measured, independent and 40552, 8979, 7084 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.129 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.602 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.053, 0.138, 1.07 No. of reflections 8979 No. of parameters 617 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³) 0.63, -0.51Absolute structure Flack x determined using 2418 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013). Absolute structure parameter -0.042(4)

[Co₂Cl₄(C₁₇H₁₈N₂)₂]-

Orthorhombic, $P2_12_12_1$

8.5470 (4), 22.0971 (9),

26.9407 (12)

 $0.21 \times 0.11 \times 0.05$

1158.50

5088.1 (4)

200

4 Cu Kα

10.82

[CoCl₂(C₁₇H₁₈N₂)(H₂O)]

Computer programs: X-AREA and X-RED32 (Stoe, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

(250 mg, 1 mmol) in ethanol (20 ml) and stirred for a few minutes. A fraction of the total volume of the resulting blue solution (about 3 ml) was transferred into a test tube and left to evaporate slowly under ambient conditions. Within a few days, violet single crystals were harvested.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were placed in geometrically idealized positions (C-H = 0.95-1.00 Å) while those attached to O were positioned from a difference-Fourier map, then refined for a few cycles to ensure that reasonable displacement parameters could be achieved. Their coordinates were adjusted to give O-H = 0.87 Å. All hydrogen atoms were refined using a riding model with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.

Acknowledgements

The authors thank Mathias Oguey for their contribution to the crystallization experiments.

Funding information

Funding for this research was provided by: Haute école Spécialisée de Suisse Occidentale.

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bernhardt, P. V. & Lawrance, G. A. (2003). *Comprehensive Coordination Chemistry II*, vol. 6, ch. 6.1 *Cobalt*. Amsterdam: Elsevier Pergamon.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lama, M., Mamula, O., Kottas, G. S., De Cola, L., Stoeckli-Evans, H. & Shova, S. (2008). *Inorg. Chem.* **47**, 8000–8015.
- Lang, W.-J., Kurmoo, M. & Zeng, M.-H. (2019). Inorg. Chem. 58, 7236–7242.
- Liu, M.-J., Yuan, J., Wang, B.-L., Wu, S.-T., Zhang, Y.-Q., Liu, C.-M. & Kou, H.-Z. (2018). Cryst. Growth Des. 18, 7611–7617.
- Lötscher, D., Rupprecht, S., Collomb, P., Belser, P., Viebrock, H., von Zelewsky, A. & Burger, P. (2001). *Inorg. Chem.* **40**, 5675–5681.
- Mamula, O. (2003). Coord. Chem. Rev. 242, 87–95.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Robin, Y. A. & Fromm, K. M. (2006). *Coord. Chem. Rev.* **250**, 2127–2157.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
- Stoe (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Suhr, D., Lötscher, D., Stoeckli-Evans, H. & von Zelewsky, A. (2002). Inorg. Chim. Acta, **341**, 17–24.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yeung, C.-T., Sham, K.-C., Lee, W.-S., Wong, W.-T., Wong, W.-Y. & Kwong, H.-L. (2009). *Inorg. Chim. Acta*, **362**, 326–3273.
- Zhu, Y.-Y., Cui, C., Zhang, Y.-Q., Jia, J.-H., Guo, X., Gao, C., Qian, K., Jiang, S.-D., Wang, B.-W., Wang, Z.-M. & Gao, S. (2013). *Chem. Sci.* 4, 1802–1806.

Acta Cryst. (2022). E78, 464-467 [https://doi.org/10.1107/S2056989022003589]

Crystal structure of di-µ-chlorido-bis{chlorido[(-)-5,6-pinenebipyridine]cobalt(II)} aquadichlorido[(-)-5,6-pinenebipyridine]cobalt(II)

Massimo Varisco, Aurelien Crochet and Olimpia Mamula Steiner

Computing details

Data collection: *X-AREA* (Stoe, 2016); cell refinement: *X-AREA* (Stoe, 2016); data reduction: *X-RED32* (Stoe, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *PLATON* (Spek, 2020) and *publCIF* (Westrip, 2010).

Di-µ-chlorido-bis{chlorido[(-)-5,6-pinenebipyridine]cobalt(II)} aquadichlorido[(-)-5,6-pinenebipyridine]cobalt(II)

Crystal data

```
[Co_2Cl_4(C_{17}H_{18}N_2)_2][CoCl_2(C_{17}H_{18}N_2)(H_2O)]

M_r = 1158.50

Orthorhombic, P2_12_12_1

a = 8.5470 (4) Å

b = 22.0971 (9) Å

c = 26.9407 (12) Å

V = 5088.1 (4) Å<sup>3</sup>

Z = 4

F(000) = 2380
```

Data collection

Stoe IPDS 2T diffractometer Radiation source: Genix-Cu, 3D, microfocus Multilayer optic monochromator Detector resolution: 6.67 pixels mm⁻¹ rotation method, ω scans Absorption correction: integration (*X*-*Red32*; Stoe, 2016) $T_{\min} = 0.176, T_{\max} = 0.523$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.138$ S = 1.078979 reflections 617 parameters 0 restraints $D_{\rm x} = 1.512 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54186 \text{ Å}$ Cell parameters from 32247 reflections $\theta = 2.6-68.1^{\circ}$ $\mu = 10.82 \text{ mm}^{-1}$ T = 200 KPrism, violet $0.21 \times 0.11 \times 0.05 \text{ mm}$

40552 measured reflections 8979 independent reflections 7084 reflections with $I > 2\sigma(I)$ $R_{int} = 0.129$ $\theta_{max} = 68.1^\circ, \ \theta_{min} = 2.6^\circ$ $h = -10 \rightarrow 9$ $k = -25 \rightarrow 26$ $l = -31 \rightarrow 31$

Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0437P)^2 + 12.2194P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.63$ e Å⁻³ $\Delta \rho_{\min} = -0.51 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00083 (12) Absolute structure: Flack *x* determined using 2418 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013). Absolute structure parameter: -0.042 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.59450 (15)	0.33142 (6)	0.21719 (5)	0.0261 (3)
Co2	0.36326 (15)	0.20357 (6)	0.25146 (5)	0.0272 (3)
Co3	0.34642 (15)	0.50356 (6)	0.35583 (5)	0.0276 (3)
H1A	0.494 (12)	0.473 (4)	0.271 (4)	0.041*
H1B	0.518 (12)	0.535 (5)	0.281 (4)	0.041*
Cl1	0.4747 (3)	0.41998 (10)	0.19496 (8)	0.0416 (6)
Cl2	0.5387 (2)	0.23709 (9)	0.18204 (8)	0.0335 (5)
C13	0.4013 (3)	0.30157 (10)	0.27947 (8)	0.0361 (5)
Cl4	0.4998 (3)	0.11977 (10)	0.27565 (8)	0.0373 (5)
C15	0.4083 (3)	0.40985 (10)	0.38590 (9)	0.0416 (5)
C16	0.4811 (3)	0.58759 (10)	0.38148 (8)	0.0398 (5)
01	0.5059 (7)	0.4990 (3)	0.2938 (2)	0.0365 (14)
N1	0.7658 (8)	0.3446 (3)	0.2702 (3)	0.0269 (15)
N2	0.7995 (8)	0.3417 (3)	0.1717 (3)	0.0263 (15)
N3	0.1742 (8)	0.1839 (3)	0.2083 (2)	0.0279 (16)
N4	0.1745 (8)	0.1953 (3)	0.3063 (2)	0.0272 (15)
N5	0.1534 (8)	0.5088 (3)	0.3085 (3)	0.0286 (15)
N6	0.1529 (7)	0.5121 (3)	0.4079 (2)	0.0247 (15)
C1	0.7377 (10)	0.3510 (4)	0.3188 (3)	0.032 (2)
H1	0.633294	0.348141	0.330610	0.038*
C2	0.8577 (12)	0.3618 (4)	0.3522 (3)	0.041 (2)
H2	0.835136	0.366735	0.386451	0.049*
C3	1.0110 (11)	0.3653 (4)	0.3355 (3)	0.034 (2)
Н3	1.094813	0.371669	0.358029	0.041*
C4	1.0386 (10)	0.3593 (4)	0.2854 (3)	0.032 (2)
H4	1.142196	0.362691	0.272955	0.039*
C5	0.9144 (10)	0.3483 (3)	0.2528 (3)	0.0258 (17)
C6	0.9352 (8)	0.3422 (3)	0.1989 (3)	0.0223 (17)
C7	1.0783 (10)	0.3370 (4)	0.1769 (3)	0.0303 (19)
H7	1.170105	0.335479	0.196705	0.036*
C8	1.0903 (10)	0.3339 (4)	0.1254 (3)	0.0313 (19)
H8	1.189342	0.329634	0.109810	0.038*
C9	0.9546 (10)	0.3371 (4)	0.0976 (3)	0.0292 (18)
C10	0.8095 (9)	0.3408 (4)	0.1224 (3)	0.0251 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C11	0.6631 (10)	0.3451 (4)	0.0912 (3)	0.032 (2)
H11A	0.605315	0.382354	0.100103	0.038*
H11B	0.594716	0.310019	0.098448	0.038*
C12	0.7014 (10)	0.3461 (4)	0.0360 (3)	0.033(2)
H12	0.609579	0.350497	0.013238	0.040*
C13	0.8383(11)	0 3905 (4)	0.0265 (3)	0.037(2)
H13A	0.840412	0.425698	0.049239	0.037 (2)
H13B	0.848812	0.403466	-0.008566	0.044*
C14	0.040012	0.3382(4)	0.0000000	0.044
U14	1.054115	0.3362 (4)	0.0417(3)	0.033(2)
П14 С15	1.034113	0.330437	0.024234	0.040°
	0.8196 (11)	0.2943 (4)	0.0222(3)	0.034(2)
C16	0.8006 (11)	0.2322 (4)	0.04/3 (3)	0.036 (2)
HI6A	0.708187	0.211769	0.033864	0.054*
H16B	0.787762	0.237847	0.083197	0.054*
H16C	0.893754	0.207563	0.040997	0.054*
C17	0.8308 (12)	0.2847 (5)	-0.0338 (3)	0.044 (2)
H17A	0.918498	0.257568	-0.041212	0.066*
H17B	0.847684	0.323695	-0.050272	0.066*
H17C	0.733323	0.266590	-0.045969	0.066*
C18	0.1847 (10)	0.1732 (4)	0.1592 (3)	0.0292 (19)
H18	0.283740	0.176303	0.143423	0.035*
C19	0.0552 (10)	0.1578 (4)	0.1312 (3)	0.034 (2)
H19	0.066389	0.149282	0.096842	0.041*
C20	-0.0916(10)	0.1547 (4)	0.1534 (3)	0.033(2)
H20	-0.182621	0.145898	0.134516	0.040*
C21	-0.1003(10)	0 1649 (4)	0 2038 (3)	0.0318(19)
H21	-0 197951	0.161697	0 220489	0.038*
C22	0.0331(9)	0.1797(4)	0.220109	0.0264(18)
C22	0.0307(9)	0.1797(4) 0.1907(4)	0.2302(3)	0.0204(18)
C24	-0.1050(10)	0.1907(4) 0.1030(4)	0.2070(3)	0.0274(10)
U24	0.1030 (10)	0.1930 (4)	0.3122 (3)	0.034(2)
H24	-0.203972	0.188420	0.290598	0.041*
C25	-0.0950 (11)	0.2022 (4)	0.3632 (3)	0.038 (2)
H25	-0.187522	0.205081	0.382585	0.045*
C26	0.0491 (10)	0.2071 (4)	0.3854 (3)	0.0314 (19)
C27	0.1835 (9)	0.2034 (4)	0.3552 (3)	0.0273 (18)
C28	0.3411 (11)	0.2064 (5)	0.3802 (3)	0.040 (2)
H28A	0.401156	0.240988	0.366747	0.048*
H28B	0.400354	0.168884	0.373056	0.048*
C29	0.3229 (12)	0.2137 (4)	0.4364 (3)	0.040 (2)
H29	0.423458	0.217251	0.455186	0.048*
C30	0.2034 (12)	0.2649 (5)	0.4465 (4)	0.045 (2)
H30A	0.201003	0.296958	0.420834	0.054*
H30B	0.209118	0.282349	0.480339	0.054*
C31	0.0764 (12)	0.2152 (4)	0.4400 (3)	0.040 (2)
H31	-0.019252	0.219355	0.461137	0.047*
C32	0.2033 (12)	0.1683 (5)	0.4587 (4)	0.042(2)
C33	0 1953 (14)	0 1045 (5)	0 4379 (4)	0.053(3)
H33A	0.291683	0.082708	0 446264	0.079*
11337	0.291005	0.002/00	0.770207	0.019

H33B	0.183686	0.106261	0.401750	0.079*
H33C	0.105422	0.083267	0.452311	0.079*
C34	0.2119 (15)	0.1650 (6)	0.5151 (4)	0.060 (3)
H34A	0.122910	0.141598	0.527733	0.091*
H34B	0.208541	0.205985	0.528978	0.091*
H34C	0.309717	0.145238	0.525017	0.091*
C35	0.1575 (11)	0.5104 (4)	0.2590 (3)	0.035 (2)
H35	0.256420	0.508368	0.243038	0.043*
C36	0.0247 (11)	0.5150 (4)	0.2297 (3)	0.040 (2)
H36	0.032768	0.515822	0.194525	0.048*
C37	-0.1175 (11)	0.5183 (5)	0.2523 (4)	0.041 (2)
H37	-0.210136	0.521652	0.233001	0.049*
C38	-0.1261 (11)	0.5167 (4)	0.3032 (4)	0.039 (2)
H38	-0.224616	0.519085	0.319403	0.047*
C39	0.0098 (9)	0.5117 (4)	0.3307 (3)	0.0284 (18)
C40	0.0108 (9)	0.5097 (4)	0.3862 (3)	0.0278 (18)
C41	-0.1264 (10)	0.5042 (4)	0.4130 (3)	0.0321 (19)
H41	-0.224508	0.501035	0.396664	0.039*
C42	-0.1172 (10)	0.5036 (4)	0.4646 (3)	0.0318 (19)
H42	-0.209570	0.499709	0.483986	0.038*
C43	0.0268 (10)	0.5086 (4)	0.4875 (3)	0.0291 (18)
C44	0.1613 (10)	0.5124 (4)	0.4574 (3)	0.0291 (19)
C45	0.3188 (10)	0.5155 (4)	0.4826 (3)	0.036 (2)
H45A	0.373290	0.553019	0.472336	0.043*
H45B	0.383375	0.480620	0.472063	0.043*
C46	0.3010 (11)	0.5148 (4)	0.5391 (3)	0.036 (2)
H46	0.400691	0.518064	0.558356	0.043*
C47	0.1712 (11)	0.5602 (4)	0.5540 (3)	0.035 (2)
H47A	0.162442	0.595626	0.531732	0.042*
H47B	0.174588	0.572696	0.589298	0.042*
C48	0.0517 (10)	0.5089 (4)	0.5428 (3)	0.033 (2)
H48	-0.044342	0.507588	0.564008	0.040*
C49	0.1861 (12)	0.4632 (4)	0.5563 (3)	0.034 (2)
C50	0.1942 (13)	0.4021 (4)	0.5297 (4)	0.045 (2)
H50A	0.292556	0.381758	0.538188	0.067*
H50B	0.189308	0.408512	0.493756	0.067*
H50C	0.105855	0.376814	0.540143	0.067*
C51	0.1961 (13)	0.4523 (5)	0.6124 (4)	0.048 (3)
H51A	0.107222	0.427388	0.622993	0.072*
H51B	0.193296	0.491166	0.629808	0.072*
H51C	0.293984	0.431247	0.620174	0.072*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0219 (7)	0.0243 (7)	0.0321 (7)	0.0015 (5)	-0.0018 (6)	-0.0016 (6)
Co2	0.0223 (7)	0.0276 (7)	0.0317 (7)	0.0009 (6)	-0.0020 (6)	0.0015 (6)
Co3	0.0202 (7)	0.0290 (7)	0.0335 (7)	0.0008 (6)	-0.0011 (6)	-0.0008 (6)

Acta Cryst. (2022). E78, 464-467

C11	0.0492 (14)	0.0341 (11)	0.0416 (12)	0.0167 (10)	-0.0021 (11)	0.0008 (9)
Cl2	0.0325 (11)	0.0299 (10)	0.0382 (11)	-0.0058 (9)	0.0089 (9)	-0.0055 (9)
C13	0.0336 (11)	0.0342 (11)	0.0404 (11)	-0.0040 (9)	0.0092 (10)	-0.0076 (9)
Cl4	0.0370 (12)	0.0346 (11)	0.0402 (12)	0.0098 (9)	-0.0051 (10)	0.0038 (9)
C15	0.0469 (13)	0.0316 (11)	0.0463 (13)	0.0114 (10)	0.0015 (11)	0.0020 (10)
C16	0.0375 (12)	0.0360 (11)	0.0460 (13)	-0.0144 (10)	-0.0018 (10)	-0.0004 (10)
01	0.027 (3)	0.040 (4)	0.042 (4)	0.001 (3)	0.004 (3)	-0.006 (3)
N1	0.022 (4)	0.029 (4)	0.029 (4)	-0.004 (3)	-0.001 (3)	0.002 (3)
N2	0.024 (4)	0.023 (4)	0.032 (4)	-0.002(3)	0.000 (3)	-0.001 (3)
N3	0.031 (4)	0.023 (3)	0.030 (4)	0.002 (3)	0.001 (3)	0.001 (3)
N4	0.024 (4)	0.027 (4)	0.031 (4)	0.002 (3)	0.001 (3)	0.004 (3)
N5	0.027 (4)	0.026 (4)	0.033 (4)	0.000 (3)	0.003 (3)	0.001 (3)
N6	0.012 (3)	0.029 (4)	0.033 (4)	0.004 (3)	0.003 (3)	0.000 (3)
C1	0.031 (5)	0.037 (5)	0.028 (5)	-0.005 (4)	-0.003 (4)	-0.002 (4)
C2	0.052 (6)	0.044 (5)	0.027 (5)	-0.008 (5)	-0.004 (5)	0.001 (4)
C3	0.037 (5)	0.027 (4)	0.037 (5)	-0.005 (4)	-0.017 (4)	-0.005 (4)
C4	0.023 (4)	0.034 (5)	0.039 (5)	-0.003 (4)	-0.010 (4)	-0.005 (4)
C5	0.027 (4)	0.017 (4)	0.033 (4)	-0.001 (3)	-0.003 (4)	-0.002 (3)
C6	0.010 (4)	0.022 (4)	0.035 (4)	-0.001 (3)	-0.002 (3)	0.000 (3)
C7	0.020 (4)	0.031 (4)	0.039 (5)	-0.001 (4)	-0.006 (4)	-0.003 (4)
C8	0.016 (4)	0.035 (5)	0.043 (5)	-0.006 (4)	0.001 (4)	-0.003 (4)
C9	0.025 (4)	0.029 (4)	0.034 (5)	-0.002 (4)	-0.001 (4)	-0.003 (4)
C10	0.017 (4)	0.027 (4)	0.031 (4)	0.009 (3)	0.000 (3)	-0.002 (4)
C11	0.024 (4)	0.042 (5)	0.029 (4)	0.002 (4)	-0.001 (4)	0.003 (4)
C12	0.030 (5)	0.034 (5)	0.034 (5)	0.011 (4)	-0.009 (4)	0.005 (4)
C13	0.034 (5)	0.040 (5)	0.036 (5)	0.002 (4)	0.005 (4)	0.013 (4)
C14	0.025 (5)	0.039 (5)	0.035 (5)	0.005 (4)	0.006 (4)	0.003 (4)
C15	0.034 (5)	0.037 (5)	0.030 (4)	0.008 (4)	-0.007 (4)	0.003 (4)
C16	0.038 (5)	0.030 (5)	0.039 (5)	-0.002 (4)	-0.004 (4)	-0.001 (4)
C17	0.039 (6)	0.057 (7)	0.036 (5)	0.008 (5)	-0.003 (4)	0.004 (5)
C18	0.025 (4)	0.028 (4)	0.034 (5)	-0.005 (4)	-0.001 (4)	0.001 (4)
C19	0.030 (5)	0.035 (5)	0.037 (5)	-0.006 (4)	-0.002 (4)	-0.001 (4)
C20	0.026 (4)	0.029 (5)	0.045 (5)	-0.005 (4)	-0.011 (4)	0.003 (4)
C21	0.017 (4)	0.043 (5)	0.036 (5)	-0.004 (4)	0.000 (4)	0.005 (4)
C22	0.018 (4)	0.029 (4)	0.032 (4)	-0.001 (3)	0.003 (4)	0.007 (3)
C23	0.017 (4)	0.031 (4)	0.035 (5)	-0.001 (3)	-0.005 (4)	0.004 (4)
C24	0.021 (4)	0.037 (5)	0.044 (5)	0.004 (4)	0.005 (4)	0.000 (4)
C25	0.029 (5)	0.040 (5)	0.044 (5)	0.003 (4)	0.009 (4)	0.004 (4)
C26	0.031 (5)	0.025 (4)	0.039 (5)	0.004 (4)	0.000 (4)	0.008 (4)
C27	0.022 (4)	0.032 (4)	0.028 (4)	0.003 (4)	0.002 (4)	0.001 (4)
C28	0.026 (5)	0.057 (6)	0.035 (5)	0.000 (4)	-0.006 (4)	0.002 (5)
C29	0.041 (6)	0.047 (6)	0.031 (5)	0.004 (5)	-0.002 (4)	0.000 (4)
C30	0.055 (7)	0.042 (6)	0.040 (6)	0.000 (5)	-0.001 (5)	0.000 (5)
C31	0.045 (6)	0.038 (5)	0.036 (5)	0.012 (4)	0.005 (4)	-0.002 (4)
C32	0.045 (6)	0.044 (6)	0.037 (5)	0.005 (5)	0.004 (5)	0.007 (5)
C33	0.067 (8)	0.038 (6)	0.052 (6)	0.013 (5)	-0.010 (6)	0.011 (5)
C34	0.063 (8)	0.078 (8)	0.041 (6)	0.004 (7)	0.000 (6)	0.015 (6)
C35	0.027 (5)	0.046 (6)	0.033 (5)	0.004 (4)	0.004 (4)	0.003 (4)

C36	0.037 (5)	0.053 (6)	0.029 (5)	0.003 (5)	-0.005 (4)	0.001 (4)	
C37	0.026 (5)	0.060 (6)	0.037 (5)	-0.003 (4)	-0.004 (4)	0.000 (5)	
C38	0.021 (5)	0.053 (6)	0.044 (5)	0.000 (4)	-0.002 (4)	0.005 (4)	
C39	0.018 (4)	0.029 (4)	0.038 (5)	0.005 (3)	-0.001 (4)	0.003 (4)	
C40	0.020 (4)	0.025 (4)	0.038 (5)	0.004 (3)	0.002 (4)	0.000 (4)	
C41	0.023 (4)	0.032 (5)	0.042 (5)	0.002 (4)	0.002 (4)	0.000 (4)	
C42	0.024 (4)	0.028 (4)	0.043 (5)	-0.004 (4)	0.014 (4)	-0.004 (4)	
C43	0.028 (4)	0.024 (4)	0.036 (5)	-0.003 (4)	0.009 (4)	-0.002 (4)	
C44	0.027 (4)	0.027 (4)	0.033 (5)	0.003 (4)	0.002 (4)	0.001 (4)	
C45	0.024 (5)	0.045 (5)	0.038 (5)	-0.003 (4)	-0.001 (4)	-0.001 (4)	
C46	0.040 (5)	0.035 (5)	0.033 (5)	-0.003 (4)	0.001 (4)	0.000 (4)	
C47	0.035 (5)	0.029 (4)	0.040 (5)	-0.006 (4)	0.003 (4)	-0.010 (4)	
C48	0.027 (5)	0.035 (5)	0.037 (5)	-0.007 (4)	0.005 (4)	-0.007 (4)	
C49	0.044 (6)	0.024 (4)	0.033 (5)	-0.001 (4)	0.002 (4)	-0.002 (4)	
C50	0.055 (7)	0.027 (5)	0.052 (6)	0.004 (4)	-0.002 (5)	-0.008 (4)	
C51	0.060 (7)	0.047 (6)	0.037 (5)	-0.005 (5)	0.000 (5)	-0.001 (5)	

Geometric parameters (Å, °)

Co1—Cl1	2.288 (2)	С20—Н20	0.9500
Co1—Cl2	2.339 (2)	C20—C21	1.379 (12)
Co1—Cl3	2.445 (2)	C21—H21	0.9500
Co1—N1	2.066 (7)	C21—C22	1.382 (11)
Co1—N2	2.151 (7)	C22—C23	1.486 (11)
Co2—Cl2	2.509 (2)	C23—C24	1.379 (11)
Co2—Cl3	2.316 (2)	C24—H24	0.9500
Co2—Cl4	2.284 (2)	C24—C25	1.392 (12)
Co2—N3	2.037 (7)	C25—H25	0.9500
Co2—N4	2.195 (7)	C25—C26	1.374 (12)
Co3—Cl5	2.286 (3)	C26—C27	1.411 (11)
Co3—Cl6	2.291 (2)	C26—C31	1.501 (12)
Co3—O1	2.160 (6)	C27—C28	1.508 (12)
Co3—N5	2.089 (7)	C28—H28A	0.9900
Co3—N6	2.178 (6)	C28—H28B	0.9900
O1—H1A	0.84 (10)	C28—C29	1.531 (12)
O1—H1B	0.87 (10)	С29—Н29	1.0000
N1—C1	1.338 (11)	C29—C30	1.549 (14)
N1—C5	1.356 (10)	C29—C32	1.553 (14)
N2—C6	1.373 (10)	C30—H30A	0.9900
N2—C10	1.332 (10)	C30—H30B	0.9900
N3—C18	1.347 (10)	C30—C31	1.555 (14)
N3—C22	1.345 (10)	C31—H31	1.0000
N4—C23	1.365 (10)	C31—C32	1.581 (13)
N4—C27	1.330 (10)	C32—C33	1.519 (14)
N5—C35	1.334 (10)	C32—C34	1.525 (13)
N5—C39	1.366 (10)	С33—Н33А	0.9800
N6—C40	1.350 (10)	С33—Н33В	0.9800
N6—C44	1.333 (10)	С33—Н33С	0.9800

C1—H1	0 9500	С34—Н34А	0 9800
C1-C2	1 385 (13)	C34—H34B	0.9800
C2—H2	0.9500	C34 - H34C	0.9800
C_2	1.387(14)	C35H35	0.9500
C3_H3	0.9500	C_{35} C_{36}	1 386 (13)
$C_3 = C_4$	1.375(12)	C36 H36	0.0500
$C_3 = C_4$	0.0500	C_{36} C_{37}	0.3500
C_{4}	1,200(12)	$C_{30} = C_{37}$	0.0500
$C_{+-}C_{-}$	1.399(12) 1.460(11)	$C_{37} - C_{38}$	0.3300
C_{5}	1.409(11) 1.264(11)	C_{28} U_{28}	1.374 (13)
	1.304 (11)	C38—F138	0.9300
C/-H/	0.9500	$C_{38} = C_{39}$	1.381(12)
C/-C8	1.391 (12)	C39—C40	1.496 (11)
C8—H8	0.9500		1.383 (11)
C8-C9	1.383 (12)	C41—H41	0.9500
C9—C10	1.411 (11)	C41—C42	1.392 (12)
C9—C14	1.506 (12)	C42—H42	0.9500
C10—C11	1.509 (11)	C42—C43	1.381 (12)
C11—H11A	0.9900	C43—C44	1.410 (11)
C11—H11B	0.9900	C43—C48	1.507 (12)
C11—C12	1.524 (12)	C44—C45	1.509 (12)
C12—H12	1.0000	C45—H45A	0.9900
C12—C13	1.549 (13)	C45—H45B	0.9900
C12—C15	1.571 (12)	C45—C46	1.531 (12)
C13—H13A	0.9900	C46—H46	1.0000
C13—H13B	0.9900	C46—C47	1.548 (13)
C13—C14	1.560 (12)	C46—C49	1.575 (13)
C14—H14	1.0000	C47—H47A	0.9900
C14—C15	1.573 (13)	C47—H47B	0.9900
C15—C16	1.538 (12)	C47—C48	1.556 (11)
C15—C17	1.527 (12)	C48—H48	1.0000
C16—H16A	0.9800	C48—C49	1.573 (13)
C16—H16B	0.9800	C49—C50	1.530 (12)
C16—H16C	0.9800	C49—C51	1.531 (13)
С17—Н17А	0.9800	C50—H50A	0.9800
С17—Н17В	0.9800	C50—H50B	0.9800
С17—Н17С	0.9800	C50—H50C	0.9800
C18—H18	0.9500	C51—H51A	0.9800
C18—C19	1.382 (12)	C51—H51B	0.9800
С19—Н19	0.9500	C51—H51C	0.9800
C19—C20	1.392 (12)		
Cl1—Co1—Cl2	124.40 (10)	C20—C21—C22	120.0 (8)
Cl1—Co1—Cl3	96.21 (9)	C22-C21-H21	120.0
Cl2— $Co1$ — $Cl3$	84.24 (8)	N3—C22—C21	122.1 (8)
N1—Co1—Cl1	112.2 (2)	N3—C22—C23	115.6 (7)
N1-Co1-Cl2	123.4 (2)	$C_{21} - C_{22} - C_{23}$	122.3 (7)
N1-Co1-Cl3	92.4(2)	N4—C23—C22	1150(7)
N1-Co1-N2	78 5 (3)	N4—C23—C24	1216(7)
	, (

N2—Co1—Cl1	97.2 (2)	C24—C23—C22	123.3 (7)
N2—Co1—Cl2	91.72 (19)	C23—C24—H24	120.4
N2—Co1—Cl3	166.0 (2)	C23—C24—C25	119.1 (8)
Cl3—Co2—Cl2	83.28 (8)	C25—C24—H24	120.4
Cl4—Co2—Cl2	98.44 (9)	C24—C25—H25	120.1
Cl4—Co2—Cl3	126.39 (10)	C26—C25—C24	119.8 (8)
N3—Co2—Cl2	96.4 (2)	C26—C25—H25	120.1
N3—Co2—Cl3	119.8 (2)	C25—C26—C27	118.3 (8)
N3—Co2—Cl4	113.3 (2)	C25—C26—C31	125.2 (8)
N3—Co2—N4	77.5 (3)	C27—C26—C31	116.5 (8)
N4—Co2—Cl2	164.91 (19)	N4—C27—C26	122.1 (7)
N4—Co2—Cl3	87.81 (19)	N4—C27—C28	120.0 (7)
N4—Co2—Cl4	96.65 (19)	C26—C27—C28	117.8 (7)
Cl5—Co3—Cl6	120.73 (10)	C27—C28—H28A	109.5
O1—Co3—Cl5	94.9 (2)	C27—C28—H28B	109.5
O1—Co3—Cl6	87.4 (2)	C27—C28—C29	110.9 (8)
O1—Co3—N6	169.3 (3)	H28A—C28—H28B	108.0
N5—Co3—Cl5	116.7 (2)	C29—C28—H28A	109.5
N5—Co3—Cl6	122.4 (2)	C29—C28—H28B	109.5
N5—Co3—O1	91.6 (3)	C28—C29—H29	114.9
N5—Co3—N6	77.8 (3)	C28—C29—C30	108.6 (8)
N6—Co3—Cl5	91.49 (19)	C28—C29—C32	112.4 (8)
N6—Co3—Cl6	96.71 (19)	С30—С29—Н29	114.9
Co1—Cl2—Co2	94.77 (8)	C30—C29—C32	88.3 (8)
Co2—Cl3—Co1	97.09 (9)	С32—С29—Н29	114.9
Co3—O1—H1A	121 (7)	С29—С30—Н30А	114.4
Co3—O1—H1B	109 (7)	С29—С30—Н30В	114.4
H1A—O1—H1B	111 (9)	C29—C30—C31	85.6 (7)
C1—N1—Co1	124.3 (6)	H30A—C30—H30B	111.5
C1—N1—C5	119.9 (7)	C31—C30—H30A	114.4
C5—N1—Co1	115.7 (5)	C31—C30—H30B	114.4
C6—N2—Co1	112.6 (5)	C26—C31—C30	107.6 (8)
C10—N2—Co1	128.3 (5)	С26—С31—Н31	116.2
C10—N2—C6	118.7 (7)	C26—C31—C32	109.9 (7)
C18—N3—Co2	123.0 (6)	С30—С31—Н31	116.2
C22—N3—Co2	118.5 (5)	C30—C31—C32	87.1 (7)
C22—N3—C18	118.5 (7)	С32—С31—Н31	116.2
C23—N4—Co2	112.3 (5)	C29—C32—C31	84.6 (7)
C27—N4—Co2	127.7 (5)	C33—C32—C29	119.2 (9)
C27—N4—C23	119.1 (7)	C33—C32—C31	117.4 (9)
C35—N5—Co3	126.2 (6)	C33—C32—C34	109.0 (9)
C35—N5—C39	117.4 (7)	C34—C32—C29	112.6 (9)
C39—N5—Co3	116.4 (5)	C34—C32—C31	112.4 (8)
C40—N6—Co3	113.6 (5)	С32—С33—Н33А	109.5
C44—N6—Co3	127.1 (6)	С32—С33—Н33В	109.5
C44—N6—C40	118.9 (7)	С32—С33—Н33С	109.5
N1—C1—H1	119.3	H33A—C33—H33B	109.5
N1—C1—C2	121.4 (8)	H33A—C33—H33C	109.5

C2—C1—H1	1193	H33B_C33_H33C	109 5
C1 - C2 - H2	120.1	C32—C34—H34A	109.5
C1 - C2 - C3	119.9 (9)	C_{32} C_{34} H_{34B}	109.5
$C_{1} = C_{2} = C_{3}$	120.1	$C_{32} = C_{34} = H_{34}C_{34}$	109.5
C2_C3_H3	120.1	H344_C34_H34B	109.5
$C_2 = C_3 = C_3$	118 2 (8)	$H_{24A} = C_{24} = H_{24C}$	109.5
C4 = C3 = C2	118.3 (8)	$H_{24}^{} C_{24}^{} H_{24}^{} C_{24}^{} H_{24}^{$	109.5
C_{4}	120.0	N5 C25 U25	109.5
$C_3 = C_4 = H_4$	119.9	N5-C35-C26	110.5
$C_3 = C_4 = C_3$	120.1 (8)	$N_{3} = C_{33} = C_{30}$	123.4 (8)
C5-C4-H4	119.9	C36—C35—H35	118.3
NI-C5-C4	120.3 (8)	C35—C36—H36	120.7
NI-C5-C6	116.7 (7)	$C_{37} - C_{36} - C_{35}$	118.7 (8)
C4—C5—C6	123.0 (8)	С37—С36—Н36	120.7
N2—C6—C5	115.2 (7)	С36—С37—Н37	120.2
C7—C6—N2	121.6 (7)	C36—C37—C38	119.5 (9)
C7—C6—C5	123.2 (7)	С38—С37—Н37	120.2
С6—С7—Н7	119.9	С37—С38—Н38	120.3
C6—C7—C8	120.3 (8)	C37—C38—C39	119.5 (8)
С8—С7—Н7	119.9	С39—С38—Н38	120.3
С7—С8—Н8	120.8	N5—C39—C38	121.6 (8)
C9—C8—C7	118.5 (8)	N5—C39—C40	115.5 (7)
С9—С8—Н8	120.8	C38—C39—C40	122.8 (8)
C8—C9—C10	118.9 (8)	N6—C40—C39	116.0 (7)
C8—C9—C14	124.1 (8)	N6-C40-C41	122.6 (8)
C10—C9—C14	117.0 (7)	C41—C40—C39	121.4 (8)
N2—C10—C9	122.0 (7)	C40—C41—H41	120.8
N2—C10—C11	120.1 (7)	C40—C41—C42	118.4 (8)
C9—C10—C11	118.0 (7)	C42—C41—H41	120.8
C10—C11—H11A	109.3	C41—C42—H42	120.2
C10—C11—H11B	109.3	C43—C42—C41	119.6 (8)
C10—C11—C12	111.5 (7)	C43—C42—H42	120.2
H11A—C11—H11B	108.0	C42—C43—C44	118.4 (8)
C12—C11—H11A	109.3	C42—C43—C48	124.6 (7)
C12—C11—H11B	109.3	C44—C43—C48	117.0 (8)
C11—C12—H12	115.5	N6-C44-C43	122.0 (8)
$C_{11} - C_{12} - C_{13}$	109.5 (7)	N6-C44-C45	119.9 (7)
$C_{11} - C_{12} - C_{15}$	110.9 (7)	C43—C44—C45	118.1(7)
C13 - C12 - H12	115.5	C44— $C45$ — $H45A$	109.4
C_{13} C_{12} C_{15}	864(7)	C44—C45—H45B	109.1
C15 - C12 - H12	115.5	C44 - C45 - C46	1110(7)
C_{12} C_{12} C_{13} H_{13A}	114.1	H45A - C45 - H45B	108.0
C12_C13_H13R	114.1	C46 C45 H45A	100.0
C12 - C13 - C14	873(6)	C_{46} C_{45} H_{45} R_{45} H_{45} H_{45} R_{45} H_{45} H_{45} R_{45} H_{45} H	109.4
$\begin{array}{c} 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 $	111 3	$C_{40} - C_{43} - II_{43}D$ $C_{45} - C_{46} - U_{46}$	107.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111.J 117 1	$C_{45} = C_{46} = C_{47}$	110.0
C_{14} C_{13} H_{12} H_{12}	114.1	$C_{4J} = C_{40} = C_{4J}$	100.0(0) 111.2(7)
$C_{14} = C_{13} = \Pi_{13} D$	114.1	C47 = C46 = U46	111.2 (/)
$C_{2} = C_{14} = C_{13}$	100.7 (7)	C47 = C40 = H40	113.3
C9—C14—H14	110./	C4/C46C49	86.9 (7)

C9—C14—C15	109.8 (7)	C49—C46—H46	115.5
C13—C14—H14	116.7	C46—C47—H47A	114.1
C13—C14—C15	86.0 (7)	C46—C47—H47B	114.1
C15—C14—H14	116.7	C46—C47—C48	87.1 (7)
C12—C15—C14	86.0 (7)	H47A—C47—H47B	111.3
C16—C15—C12	118.5 (8)	C48—C47—H47A	114.1
C16—C15—C14	118.5 (7)	C48—C47—H47B	114.1
C17—C15—C12	112.0 (7)	C43—C48—C47	106.8 (7)
C17—C15—C14	111.8 (8)	C43—C48—H48	116.7
C17—C15—C16	108.5 (8)	C43—C48—C49	109.2 (7)
C15—C16—H16A	109.5	C47—C48—H48	116.7
C15—C16—H16B	109.5	C47—C48—C49	86.7 (7)
C15—C16—H16C	109.5	C49—C48—H48	116.7
H16A—C16—H16B	109.5	C48—C49—C46	85.5 (6)
H16A—C16—H16C	109.5	C50—C49—C46	118.3 (8)
H16B—C16—H16C	109.5	C50—C49—C48	119.4 (8)
С15—С17—Н17А	109.5	C50—C49—C51	108.7 (8)
C15—C17—H17B	109.5	C51—C49—C46	111.7 (8)
С15—С17—Н17С	109.5	C51—C49—C48	111.7 (8)
H17A—C17—H17B	109.5	С49—С50—Н50А	109.5
H17A—C17—H17C	109.5	C49—C50—H50B	109.5
H17B—C17—H17C	109.5	С49—С50—Н50С	109.5
N3—C18—H18	119.1	H50A-C50-H50B	109.5
N3—C18—C19	121.7 (8)	H50A—C50—H50C	109.5
C19—C18—H18	119.1	H50B—C50—H50C	109.5
C18—C19—H19	120.0	C49—C51—H51A	109.5
C18—C19—C20	120.0 (8)	C49—C51—H51B	109.5
С20—С19—Н19	120.0	С49—С51—Н51С	109.5
С19—С20—Н20	121.2	H51A—C51—H51B	109.5
C21—C20—C19	117.6 (8)	H51A—C51—H51C	109.5
С21—С20—Н20	121.2	H51B—C51—H51C	109.5
C20—C21—H21	120.0		
Co1—N1—C1—C2	-177.8(7)	C20—C21—C22—N3	-0.9(13)
Co1—N1—C5—C4	177.8 (6)	C20—C21—C22—C23	-179.6(8)
Co1—N1—C5—C6	-0.4 (9)	C21—C22—C23—N4	170.0 (8)
Co1—N2—C6—C5	-12.1 (8)	C21—C22—C23—C24	-6.6(13)
Co1—N2—C6—C7	167.6 (6)	C22 - N3 - C18 - C19	-0.4(12)
Co1—N2—C10—C9	-168.1(6)	C22—C23—C24—C25	178.5 (8)
Co1—N2—C10—C11	13.1 (11)	C23—N4—C27—C26	0.4 (12)
C_02 —N3—C18—C19	177.6 (6)	C_{23} N4 C_{27} C_{28}	177.9 (8)
C_{02} N3 $-C_{22}$ C21	-178.2(6)	C23—C24—C25—C26	-1.8(14)
Co2—N3—C22—C23	0.6 (9)	C24—C25—C26—C27	0.9 (13)
Co2—N4—C23—C22	11.9 (9)	C24—C25—C26—C31	-178.1 (8)
Co2—N4—C23—C24	-171.5 (7)	C25—C26—C27—N4	-0.1(13)
Co2—N4—C27—C26	168.7 (6)	C25—C26—C27—C28	-177.7(8)
Co2—N4—C27—C28	-13.8(12)	C25—C26—C31—C30	-135.5 (9)
Co3—N5—C35—C36	-178.8 (7)	C25—C26—C31—C32	131.2 (9)

Co3—N5—C39—C38	178.5 (7)	C26—C27—C28—C29	-0.5 (12)
Co3—N5—C39—C40	-1.0 (9)	C26—C31—C32—C29	79.7 (8)
Co3—N6—C40—C39	-9.5 (9)	C26—C31—C32—C33	-40.5 (12)
Co3—N6—C40—C41	169.1 (7)	C26—C31—C32—C34	-168.0 (9)
Co3—N6—C44—C43	-169.7 (6)	C27—N4—C23—C22	-178.0(7)
Co3—N6—C44—C45	9.0 (11)	C27—N4—C23—C24	-1.4(12)
N1—C1—C2—C3	-0.8 (14)	C27—C26—C31—C30	45.5 (10)
N1—C5—C6—N2	8.6 (10)	C27—C26—C31—C32	-47.8 (11)
N1—C5—C6—C7	-171.1(8)	C27—C28—C29—C30	-48.1 (11)
N2—C6—C7—C8	3.0 (13)	C27—C28—C29—C32	47.9 (11)
N2-C10-C11-C12	177.4 (7)	C28—C29—C30—C31	84.5 (8)
N3-C18-C19-C20	1.9 (13)	C28—C29—C32—C31	-81.3(9)
N3—C22—C23—N4	-8.8 (10)	C28—C29—C32—C33	37.2 (12)
N3—C22—C23—C24	174.6 (8)	C28—C29—C32—C34	166.6 (9)
N4—C23—C24—C25	2.1 (13)	C29—C30—C31—C26	-81.9 (8)
N4—C27—C28—C29	-178.1(8)	C29—C30—C31—C32	28.0 (7)
N5—C35—C36—C37	0.3 (15)	C30—C29—C32—C31	28.1 (7)
N5-C39-C40-N6	7.2 (11)	C30—C29—C32—C33	146.5 (9)
N5-C39-C40-C41	-171.4 (8)	C30—C29—C32—C34	-84.0 (9)
N6—C40—C41—C42	2.5 (12)	C30—C31—C32—C29	-28.0(7)
N6—C44—C45—C46	-179.6 (7)	C30—C31—C32—C33	-148.1(9)
C1—N1—C5—C4	-0.5(12)	C30—C31—C32—C34	84.3 (10)
C1—N1—C5—C6	-178.6 (7)	C31—C26—C27—N4	178.9 (8)
C1—C2—C3—C4	1.5 (13)	C31—C26—C27—C28	1.4 (11)
C2—C3—C4—C5	-1.7 (12)	C32—C29—C30—C31	-28.6 (7)
C3—C4—C5—N1	1.3 (12)	C35—N5—C39—C38	-0.6 (12)
C3—C4—C5—C6	179.3 (8)	C35—N5—C39—C40	179.9 (7)
C4—C5—C6—N2	-169.4 (7)	C35—C36—C37—C38	-0.3 (15)
C4—C5—C6—C7	10.8 (12)	C36—C37—C38—C39	-0.1(15)
C5—N1—C1—C2	0.3 (13)	C37—C38—C39—N5	0.6 (14)
C5—C6—C7—C8	-177.3(7)	C37—C38—C39—C40	-180.0(9)
C6—N2—C10—C9	3.4 (12)	C38—C39—C40—N6	-172.3(8)
C6—N2—C10—C11	-175.4(7)	C38—C39—C40—C41	9.2 (13)
C6—C7—C8—C9	0.9 (13)	C39—N5—C35—C36	0.1 (14)
C7—C8—C9—C10	-2.6(12)	C39—C40—C41—C42	-179.0(7)
C7—C8—C9—C14	176.0 (8)	C40—N6—C44—C43	1.8 (12)
C8—C9—C10—N2	0.4 (12)	C40—N6—C44—C45	-179.6 (8)
C8—C9—C10—C11	179.2 (8)	C40—C41—C42—C43	0.3 (12)
C8—C9—C14—C13	-132.5 (9)	C41—C42—C43—C44	-1.9 (12)
C8—C9—C14—C15	135.7 (9)	C41—C42—C43—C48	179.5 (8)
C9—C10—C11—C12	-1.4 (11)	C42—C43—C44—N6	0.9 (12)
C9—C14—C15—C12	78.5 (7)	C42—C43—C44—C45	-177.8(8)
C9—C14—C15—C16	-42.0 (10)	C42—C43—C48—C47	-135.9 (9)
C9—C14—C15—C17	-169.3 (7)	C42—C43—C48—C49	131.6 (9)
C10—N2—C6—C5	175.1 (7)	C43—C44—C45—C46	-0.9 (11)
C10—N2—C6—C7	-5.1 (12)	C43—C48—C49—C46	79.3 (7)
C10-C9-C14-C13	46.1 (10)	C43—C48—C49—C50	-40.7 (11)
C10—C9—C14—C15	-45.6 (10)	C43—C48—C49—C51	-169.1 (7)
	× /		× /

C10-C11-C12-C13	-45.3 (10)	C44—N6—C40—C39	177.9 (7)
C10-C11-C12-C15	48.3 (10)	C44—N6—C40—C41	-3.5 (12)
C11—C12—C13—C14	82.7 (8)	C44—C43—C48—C47	45.4 (10)
C11—C12—C15—C14	-81.4 (8)	C44—C43—C48—C49	-47.0 (10)
C11—C12—C15—C16	39.0 (11)	C44—C45—C46—C47	-46.5 (10)
C11—C12—C15—C17	166.7 (8)	C44—C45—C46—C49	47.6 (10)
C12—C13—C14—C9	-81.3 (8)	C45—C46—C47—C48	83.7 (8)
C12—C13—C14—C15	28.2 (6)	C45—C46—C49—C48	-81.6 (8)
C13—C12—C15—C14	28.0 (6)	C45—C46—C49—C50	39.5 (12)
C13—C12—C15—C16	148.5 (8)	C45—C46—C49—C51	166.8 (8)
C13—C12—C15—C17	-83.9 (8)	C46—C47—C48—C43	-81.3 (8)
C13—C14—C15—C12	-27.8 (6)	C46—C47—C48—C49	27.8 (6)
C13—C14—C15—C16	-148.3 (8)	C47—C46—C49—C48	27.4 (6)
C13—C14—C15—C17	84.3 (8)	C47—C46—C49—C50	148.5 (9)
C14—C9—C10—N2	-178.3 (8)	C47—C46—C49—C51	-84.2 (8)
C14—C9—C10—C11	0.5 (11)	C47—C48—C49—C46	-27.3 (6)
C15—C12—C13—C14	-28.2 (6)	C47—C48—C49—C50	-147.3 (8)
C18—N3—C22—C21	-0.1 (12)	C47—C48—C49—C51	84.3 (8)
C18—N3—C22—C23	178.7 (7)	C48—C43—C44—N6	179.6 (7)
C18—C19—C20—C21	-2.8 (13)	C48—C43—C44—C45	0.9 (11)
C19—C20—C21—C22	2.3 (13)	C49—C46—C47—C48	-27.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1 A ···Cl1 O1—H1 B ···Cl4 ⁱ	0.84 (10)	2.37 (10) 2 43 (10)	3.194 (7) 3.260 (7)	166 (9) 161 (9)
	0.07 (10)	2.45 (10)	5.200 (7)	101 (9)

Symmetry code: (i) -x+1, y+1/2, -z+1/2.