

Received 6 May 2022 Accepted 10 May 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: powder diffraction; density functional theory; terephthalate; hydroxide; cobalt; nickel; zinc.

CCDC references: 2171929; 2171928; 2171927; 2171926; 2171925; 2171924

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of dimetal terephthalate dihydroxides, $M_2(C_8H_4O_4)(OH)_2$ (*M* = Co, Ni, Zn) from powder diffraction data and DFT calculations

Emma L. Markun, Drew A. Jensen, Joshua D. Vegetabile and James A. Kaduk*

Department of Chemistry, North Central College, 131 S. Loomis, St., Naperville IL, 60540 , USA. *Correspondence e-mail: kaduk@polycrystallography.com

The crystal structure of poly[dihydroxido(μ_6 -terepthalato)dizinc], [Zn₂(C₈H₄O₄)(OH)₂]_n, was solved and refined using synchrotron powder data, and the structures of the isostructural Co and Ni analogues were refined using laboratory powder X-ray data. The structure of [Co₂(C₈H₄O₄)(OH)₂]_n has been reported previously in space group *C*2/*m*, which yields disordered terephthalate anions. Doubling the *c*-axis of that cell results in an ordered model in space group *C*2/*c*. The octahedral *M*O₆ coordination polyhedra of the metal cations share edges, forming chains running parallel to the *b*-axis direction. These chains share corners (hydroxyl groups), forming layers lying perpendicular to the *a*-axis direction.

1. Chemical context

Dicobalt terephthalate dihydroxide, $Co_2(C_8H_4O_4)(OH)_2$, was first prepared by Sherif (1970). A powder pattern was reported, but no unit cell or crystal structure were determined. The powder pattern from this reference is included in the Powder Diffraction File (Gates-Rector & Blanton, 2019) as entry 00-034-1897. A search of the nine peaks of this entry against the PDF-4 Organics 2022 database yielded no additional terephthalate compounds.

Approximately 20 years ago, one of us (JAK) solved and refined the structure of $Zn_2(C_8H_4O_4)(OH)_2$ using synchrotron powder data, first in a *C2/m* cell with disordered terephthalate anions. It then became apparent that if the *c*-axis were doubled, the systematic absences corresponded to space group *C2/c*. This doubled unit cell removed the disorder and yielded a more satisfactory refinement. This structure was deposited in the Cambridge Structural Database (Kaduk, 2016; refcode PUCYAO01), but never otherwise published or discussed. Since that time, another polymorph of $Zn_2(C_8H_4O_4)(OH)_2$ (in space group *P2*₁/*c*) has been reported (Carton *et al.*, 2009; PUCYAO).

Figure 1

The X-ray powder diffraction patterns of $Co_2(C_8H_4O_4)(OH)_2$ (black), Ni₂($C_8H_4O_4$)(OH)₂ (green), and Zn₂($C_8H_4O_4$)(OH)₂ (red). The Zn pattern (measured using Co radiation) and the Zn pattern (measured using synchrotron radiation) were converted to the Mo wavelength used to measure the Co pattern using *JADE Pro* (MDI, 2021).

Some of our recent attempts to prepare Co and Ni porous metal–organic frameworks (MOFs) yielded instead cobalt and nickel terephthalate hydroxide. We took advantage of the opportunity to re-refine the structures (as well as that of Zn) in what we believe to be the correct space group, and to optimize the structures using density functional techniques.

2. Structural commentary

Doubling the *c*-axis of the previously reported disordered C2/m model for Co results in a chemically-reasonable ordered C2/c structure for these compounds. The X-ray powder diffraction patterns show that the three compounds are isostructural (Fig. 1). The root-mean-square Cartesian displacements of the non-H atoms in the Rietveld-refined and DFT-optimized structures are 0.125, 0.143, and 0.339 Å for Co, Ni, and Zn, respectively (Figs. 2–4). The good agreement provides strong evidence that the structures are correct (van de Streek & Neumann, 2014). This discussion concentrates on

Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of $Ni_2(C_8H_4O_4)(OH)_2$. The r.m.s. Cartesian displacement is 0.143 Å.

the DFT-optimized structures. The asymmetric unit (with atom numbering) is illustrated in Fig. 5. The best view of the crystal structure is down the *b*-axis (Fig. 6). A view down the *c*-axis is shown in Fig. 7.

Almost all of the bond distances, angles, and torsion angles in the terephthalate anions fall within the normal ranges indicated by a *Mercury* Mogul Geometry check (Macrae *et al.*, 2020). Only the Ni9–O11 bond distance of 2.187 Å [average = 2.007 (9) Å, Z-score = 20.4] and the Zn14–O16 bond of 1.970 Å [average = 2.122 (47) Å, Z-score = 3.2] are flagged as unusual. The carboxyl–phenyl torsion angles of 7.5, 9.8, and 6.2° for Co, Ni, and Zn, respectively, correspond to a distortion energy of only ~2 kJ mol⁻¹ (Kaduk *et al.*, 1999). This energy penalty can easily be compensated for by coordination to the

Figure 2

Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of $Co_2(C_8H_4O_4)(OH)_2$. The r.m.s. Cartesian displacement is 0.125 Å.

Figure 4

Comparison of the Rietveld-refined (red) and VASP-optimized (blue) structures of $Zn_2(C_8H_4O_4)(OH)_2$. The r.m.s. Cartesian displacement is 0.339 Å.

Figure 5

The asymmetric unit of $Co_2(C_8H_4O_4)(OH)_2$, with the atom numbering. The atoms are represented by 50% probability spheroids.

cations. The closest Miller plane of the phenyl ring is $(85\overline{1})$ for Co and Ni, and (530) for Zn. M9 lies on a center of symmetry, and M10 lies on a twofold axis. For M = Co, Co9 has two shorter Co-O distances of 2.000 Å, and four longer ones ~2.19–2.20 Å. Co10 has four distances ~2.11 Å, and two at 2.157 Å. For M = Ni, all six distances to Ni9 are 2.187–2.232 Å, and Ni10 has four shorter distances at 2.03-2.08 Å and two longer at 2.115 Å. For M = Zn, Zn9 has two short distances of 1.969 Å, and four long ones at \sim 2.22 Å whereas Zn10 has two distances of 2.095 Å and four at 2.14-2.18 Å. Both Co9 and Co10 exhibit octahedral coordination. The coordination sphere of Co9 contains two trans O7 and four equatorial O11 (hydroxyl group), while Co10 has two trans O11 and four equatorial O8. The hydroxyl group bridges three cobalt atoms: one Co9 and two Co10. Atom O7 coordinates to Co10, and O8 bridges two Co9 atoms; as a result each carboxyl group bridges three metal atoms. The bond-valence sums (Brown, 2002) are 1.90 and 1.84 for Co9 and Co10, respectively, 1.78 and 1.93 for Ni9 and Ni10, and 1.92 and 1.86 for Zn9 and Zn10. All cations are thus slightly under-bonded compared to their expected values of 2.00.

Figure 6 The crystal structure of $Co_2(C_8H_4O_4)(OH)_2$, viewed down the *b*-axis direction.

Figure 7 The crystal structure of $Co_2(C_8H_4O_4)(OH)_2$, viewed down the *c*-axis direction

The peak profiles are dominated by microstrain broadening. The generalized microstrain model was used for Co and Zn, but the limited Ni data supported refinement of only an isotropic broadening coefficient. The average microstrain is similar for Co and Zn (21042 and 20094 ppm, respectively), while that for Ni is much larger, at 114830 ppm. Perhaps this greater microstrain indicates that some square-planar Ni coordination also occurs. Analysis of the contributions to the total crystal energy of the structure using the Forcite module of Materials Studio (Dassault Systèmes, 2021) suggests that for Co and Ni, the bond and angle distortion terms dominate intramolecular deformation energy, but that torsion terms are also significant. For Zn, the angle distortion terms dominate the intramolecular deformation energy. The intermolecular energy in all three compounds is dominated by electrostatic attractions, which represent the M-O bonds.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) morphology suggests

The layers in the crystal structure of $Co_2(C_8H_4O_4)(OH)_2$, viewed down the *a*-axis direction.

Table 1Experimental details.

	[Co ₂ (C ₈ H ₄ O ₄)(OH) ₂]	$[Ni_2(C_8H_4O_4)(OH)_2]$	[Zn ₂ (C ₈ H ₄ O ₄)(OH) ₂]
Crystal data			
M _r	316	315.53	328.89
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	300	300	300
<i>a</i> , <i>b</i> , <i>c</i> (Å)	19.9554 (10), 3.2883 (2), 12.6139 (8)	20.35 (5), 3.364 (6), 12.19 (4)	20.165 (2), 3.3273 (5), 12.5956 (16)
β (°)	96.059 (5)	98.9 (2)	97.431 (10)
$V(Å^3)$	823.08 (6)	824.6 (15)	837.99 (14)
Ζ	4	4	4
Radiation type	Mo $K\alpha_{1,2}$, $\lambda = 0.70932$, 0.71361 Å	Co $K\alpha_{1,2}$, $\lambda = 1.78892$, 1.79278 Å	Synchrotron, $\lambda = 1.15008 \text{ Å}$
Specimen shape, size (mm)	Cylinder, 12×0.7	Flat sheet, 16×16	Cylinder, $? \times ?$
Data collection			
Diffractometer	PANalytical Empyrean	PANalytical X'Pert	NSLS beamline X3B1
Specimen mounting	Glass capillary	Si zero-background plate with well	Kapton capillary
Data collection mode	Transmission	Reflection	Transmission
Scan method	Step	Step	Step
2θ values (°)	$\begin{aligned} 2\theta_{\min} &= 1.002, 2\theta_{\max} = 49.991, \\ 2\theta_{\text{step}} &= 0.008 \end{aligned}$	$2\theta_{\min} = 4.007, 2\theta_{\max} = 69.983, 2\theta_{\text{step}} = 0.017$	$\begin{aligned} 2\theta_{\min} &= 6.0, 2\theta_{\max} &= 60.0, \\ 2\theta_{\text{step}} &= 0.01 \end{aligned}$
Refinement			
R factors and goodness of fit	$R_{\rm p} = 0.045, R_{\rm wp} = 0.063,$ $R_{\rm exp} = 0.020, R(F^2) = 0.05751,$ $\chi^2 = 10.414$	$R_{\rm p} = 0.084, R_{\rm wp} = 0.107, R_{\rm exp} = 0.070, R(F^2) = 0.14454, \chi^2 = 2.369$	$R_{\rm p} = 0.092, R_{\rm wp} = 0.121, R_{\rm exp} = 0.097, R(F^2) = 0.14121, \chi^2 = 1.573$
No. of parameters	42	12	57
No. of restraints	15	0	14
$(\Delta/\sigma)_{\rm max}$	0.025	97.398	1.459

The same symmetry and lattice parameters were used for the DFT calculations as for each powder diffraction study. Computer programs: GSAS-II (Toby & Von Dreele, 2013), Mercury (Macrae et al., 2020), DIAMOND (Crystal Impact, 2015), and publCIF (Westrip, 2010).

that we might expect elongated (with [010] as the long axis) or platy (with {200} as the major faces) morphology for these compounds. A 2nd order spherical harmonic model was included in the refinement. The texture indices were 1.003, 1.417, and 1.016 for Co, Ni, and Zn respectively, showing that preferred orientation was significant only for the flat-plate Ni specimen.

3. Supramolecular features

The octahedral coordination spheres of Co9 share edges, forming chains running parallel to the *b*-axis direction; the shared edges are parallel the *a*-axis direction. The octahedral coordination spheres of Co10 share edges, forming chains propagating along the *b*-axis; in this case, the shared edges lie parallel to the *c*-axis direction. Co9 and Co10 share corners (*via* O11 = the hydroxyl group), forming layers lying perpendicular to the *a*-axis direction (Fig. 8). The hydroxyl group does not participate in hydrogen bonds.

4. Database survey

The crystal structure of the 'new terephthalate-based cobalt hydroxide $Co_2(OH)_2(C_8H_4O_4)$ ' was reported by Huang *et al.* (2000), and its crystal structure determined [Cambridge Structural Database (Groom *et al.*, 2016) refcode QASLIF] by *ab initio* methods using X-ray powder diffraction data. The reported space group is *C*2/*m* with *a* = 19.943 (1), *b* = 3.2895 (1), *c* = 6.2896 (3) Å, β = 95.746 (3)°, *V* = 410.545 Å³, and Z = 2. The structure consists of alternating Co-hydroxide and terephthalate layers, and the terephthalate anions are disordered about an inversion center. Antiferromagnetic ordering in this compound was studied using neutron powder diffraction by Feyerherm *et al.* (2003), using the same unit cell (QASLIF02). The structure was also determined by Kurmoo *et al.* (2001; QASLIF01) in the same unit cell, as well as the structure of cobalt terephthalate dihydrate. The structures of a series of (Co,Fe)₂(C₈H₄O₄)(OH)₂ solid solutions were refined in the same unit cell by Mesbah *et al.* (2010) (UJIMOQ, UJIMOQ01, UJINAD, UJINAD01) using synchrotron and neutron powder data. A reduced cell search in the Cambridge Structural Database yielded in addition the structures of Ni₂(C₈H₄O₄)(OH)₂ (Mesbah *et al.*, 2014, NIWQOB; Han *et al.*, 2018, NIWQOB01).

5. Synthesis and crystallization

Cobalt(II) nitrate hexahydrate (0.0364 g, 0.125 mmol) and terephthalic acid (0.0208 g, 0.125 mmol) were added to a flask followed by 0.125 ml of triethylamine and approximately 5 ml of dimethylformamide. The reaction was stirred for 10 min until a homogenous mixture was obtained. The reaction was heated using a CEM Discover microwave with power set to 150 W using a ramp time of 2 min to reach 423 K with a hold time of 30 min and internal stirring switched off. The vial remained in the microwave until it cooled to 323 K, and the reaction mixture was filtered using vacuum filtration, washed

research communications

Figure 9

The Rietveld plot for the refinement of $\text{Co}_2(\text{C}_8\text{H}_4\text{O}_4)(\text{OH})_2$. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The row of tick marks indicates the calculated reflection positions. The vertical scale has been multiplied by a factor of $4 \times \text{ for } 2\theta > 5.0^\circ$, and by a factor of $20 \times \text{ for } 2\theta > 27.0^\circ$.

with DMF and deionized water (10 ml each). The remaining solid was dried in an oven at 343 K under vacuum.

Nickel(II) nitrate hexahydrate (0.1948 g, 0.67 mmol) and terephthalic acid (0.2492 g, 1.5 mmol) were dissolved in 10 ml of DMF in a microwave vial. The solution was stirred until homogenous. The solution was then heated using a CEM Mars 6 microwave reactor at 750 W for a total of 85 s, in increments of 25 and 60 s. The resulting green solid was isolated using vacuum filtration, washed with water, methanol, and acetone, and allowed to air dry.

Information on the synthesis of $Zn_2(C_8H_4O_4)(OH)_2$ from prior to 1997 is no longer available.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Rietveld refinements (Figs. 9–11) were carried out using *GSAS-II* (Toby & Von Dreele, 2013). All non-H bond distances and angles in the terephthalate anions were subjected to restraints, based on a *Mercury* Mogul Geometry Check (Sykes *et al.*, 2011; Bruno *et al.*, 2004). The Mogul average and standard deviation for each quantity were used as

Figure 10

The Rietveld plot for the refinement of Ni₂(C₈H₄O₄)(OH)₂. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The row of tick marks indicates the calculated reflection positions.

Figure 11

The Rietveld plot for the refinement of $Zn_2(C_8H_4O_4)(OH)_2$. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The row of tick marks indicates the calculated reflection positions. The vertical scale has been multiplied by a factor of $5 \times$ for $2\theta > 10.0^\circ$, and by a factor of $15 \times$ for $2\theta > 18.0^\circ$.

the restraint parameters. The restraints contributed 0–2.3% to the final χ^2 . The $U_{\rm iso}$ were grouped by chemical similarity. The $U_{\rm iso}$ values for the H atoms were fixed at 1.3 × the $U_{\rm iso}$ of the heavy atoms to which they are attached. The peak profiles were described using the generalized microstrain model. The background was modeled using a 3–12-term shifted Chebyshev polynomial.

The structures were optimized with density functional techniques using VASP (Kresse & Furthmüller, 1996) (fixed experimental unit cells) through the MedeA graphical interface (Materials Design, 2016). The calculations were carried out on 16 2.4 GHz processors (each with 4 Gb RAM) of a 64-processor HP Proliant DL580 Generation 7 Linux cluster at North Central College. The calculations for Co and Ni were spin-polarized magnetic calculations, using the simplified LDSA + U approach, and $U_j = 3.7$ eV for Co and Ni. The calculations used the GGA-PBE functional, a plane wave cutoff energy of 400.0 eV, and a *k*-point spacing of 0.5 Å⁻¹ leading to an 8 × 8 × 2 mesh.

Acknowledgements

We thank Professors Paul F. Brandt, Jeffrey A. Bjorklund, and Nicholas C. Boaz for their support, mentoring, and helpful discussions.

References

- Bravais, A. (1866). *Etudes Cristallographiques*. Paris: Gauthier Villars.
- Brown, I. D. (2002). *The Chemical Bond in Inorganic Chemistry*. IUCr/Oxford University Press.
- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.
- Carton, A., Mesbah, A., Aranda, L., Rabu, P. & François, M. (2009). Solid State Sci. 11, 818–823.
- Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Dassault Systèmes (2021). *Materials Studio*. BIOVIA, San Diego, CA, USA.
- Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-447.

- Feyerherm, R., Loose, A., Rabu, P. & Drillon, M. (2003). Solid State Sci. 5, 321–326.
- Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.
- Gates-Rector, S. & Blanton, T. (2019). Powder Diffr. 34, 352-360.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Han, B., Ou, X., Deng, Z., Song, Y., Tian, C., Deng, H., Xu, Y.-J. & Lin, Z. (2018). Angew. Chem. Int. Ed. 57, 16811–16815.
- Huang, Z.-L., Drillon, M., Masciocchi, N., Sironi, A., Zhao, J.-T., Rabu, P. & Panissod, P. (2000). *Chem. Mater.* **12**, 2805–2812.
- Kaduk, J. A. (2016). *CSD Communication* (refcode PUCYAO01). CCDC, Cambridge, England.
- Kaduk, J. A., Golab, J. T. & Leusen, F. J. J. (1999). Cryst. Eng. 1(3/4), 277-290.
- Kresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15-50.
- Kurmoo, M., Kumagai, H., Green, M. A., Lovett, B. W., Blundell, S. J.,
- Ardavan, A. & Singleton, J. (2001). J. Solid State Chem. 159, 343-351.

- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Materials Design (2016). *MedeA 2.20.4*. Materials Design Inc., Angel Fire, NM, USA.
- MDI (2021). JADE Pro 8.1. Materials Data, Livermore CA, USA.
- Mesbah, A., Malaman, B., Mazet, T., Sibille, R. & François, M. (2010). *CrystEngComm*, **12**, 3126–3131.
- Mesbah, A., Rabu, P., Sibille, R., Lebègue, S., Mazet, T., Malaman, B. & François, M. (2014). *Inorg. Chem.* 53, 872–881.
- Sherif, F. (1970). Ind. Eng. Chem. Prod. Res. Develop. 9(3), 408-412.
- Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020– 1032.
- Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882–886.
- Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2022). E78, 584-589 [https://doi.org/10.1107/S2056989022005023]

Crystal structures of dimetal terephthalate dihydroxides, $M_2(C_8H_4O_4)(OH)_2$ (*M* = Co, Ni, Zn) from powder diffraction data and DFT calculations

Emma L. Markun, Drew A. Jensen, Joshua D. Vegetabile and James A. Kaduk

Computing details

Program(s) used to refine structure: *GSAS-II* (Toby & Von Dreele, 2013) for Co_Riet, Ni_Riet, Zn_Riet. Molecular graphics: *Mercury* (Macrae *et al.*, 2020), *DIAMOND* (Crystal Impact, 2015) for Co_Riet. Software used to prepare material for publication: *publCIF* (Westrip, 2010) for Co_Riet.

Poly[dihydroxido(µ₆-terepthalato)dicobalt] (Co_Riet)

Crystal data

 $\begin{bmatrix} \text{Co}_2(\text{C}_8\text{H}_4\text{O}_4)(\text{OH})_2 \end{bmatrix} \\ M_r = 316 \\ \text{Monoclinic, } C2/c \\ a = 19.9554 (10) \text{ Å} \\ b = 3.2883 (2) \text{ Å} \\ c = 12.6139 (8) \text{ Å} \\ \beta = 96.059 (5)^\circ \\ \end{bmatrix}$

Data collection

PANalytical Empyrean diffractometer Specimen mounting: glass capillary

Refinement

Least-squares matrix: full $R_{\rm p} = 0.045$ $R_{\rm wp} = 0.063$ $R_{\rm exp} = 0.020$ $R(F^2) = 0.05751$ 5864 data points Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = $Utan(Th)^2 + Vtan(Th) + W$: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); $SH/L = S/L+H/L U, V, W in (centideg)^2, X \& Y$ in centideg 30.816, 10.768, 0.000, 1.935, 0.000, 0.033, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model $(10^6 * \text{delta Q/Q})$ parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 2180.060, 4.385767395e6, 5373.300, 103711.383, 724.789, 689333.161, -2196.502, 2609.389, 91248.973, 0.800,

V = 823.08 (6) Å³ Z = 4 $D_x = 2.550 \text{ Mg m}^{-3}$ Mo $K\alpha_{1,2}$ radiation, $\lambda = 0.70932$, 0.71361 Å T = 300 Kpink cylinder, $12 \times 0.7 \text{ mm}$

Data collection mode: transmission Scan method: step $2\theta_{\min} = 1.002^\circ$, $2\theta_{\max} = 49.991^\circ$, $2\theta_{step} = 0.008^\circ$

42 parameters 15 restraints H-atom parameters not defined? Weighting scheme based on measured s.u.'s $(\Delta/\sigma)_{max} = 0.025$ Background function: Background function: "chebyschev-1" function with 4 terms: 1063(5), -577(6), 95(4), -25(3), Background peak parameters: pos, int, sig, gam: 11.866, 3892.401, 44425.907, 0.100, Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.0542; 0:0:C(2,0)

Coefficients: 0:0:C(2,-2) = -0.0542; 0:0:C(2,-2) = -0.1055; 0:0:C(2,2) = -0.0207

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3140 (2)	0.106 (3)	0.0412 (4)	0.018 (3)*	
C2	0.2695 (3)	0.269 (3)	0.1093 (3)	0.0184*	
C3	0.2024 (3)	0.368 (4)	0.0686 (4)	0.0184*	
H4	0.28873	0.24618	0.19840	0.0220*	
Н5	0.17120	0.48125	0.13117	0.0220*	
C6	0.3837 (3)	-0.024 (5)	0.0845 (5)	0.0200*	
07	0.3988 (3)	-0.007 (7)	0.1799 (5)	0.020000*	
08	0.4268 (3)	-0.031 (5)	0.0168 (5)	0.020000*	
Co9	0.50000	0.50000	0.50000	0.0020 (5)*	
Co10	0.00000	0.495 (3)	-0.25000	0.0020*	
011	0.0287 (3)	0.030 (7)	0.1569 (7)	0.0200*	
H12	0.06922	-0.03114	0.16621	0.0260*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Geometric parameters (Å, °)

C1—C2	1.406 (6)	O8—C6	1.274 (4)
C1–C3 ⁱ	1.391 (3)	O8—Co9 ⁱⁱ	2.151 (12)
C1—C6	1.501 (5)	Co9—O8 ⁱⁱⁱ	2.151 (12)
C2—C1	1.406 (6)	Co9—O8 ^{iv}	2.151 (12)
С2—С3	1.421 (4)	Co9—O11 ^v	2.004 (8)
C3—C1 ⁱ	1.391 (3)	Co9—O11 ^{vi}	2.004 (8)
C3—C2	1.421 (4)	Co10—O7 ⁱ	2.119 (5)
C6—C1	1.501 (5)	Co10—O7 ^{vii}	2.119 (5)
С6—О7	1.211 (5)	Co10—O11 ^{viii}	2.072 (16)
C6—O8	1.274 (4)	Co10—O11 ^{ix}	2.072 (16)
O7—C6	1.211 (5)	O11—Co9 ^x	2.004 (8)
O7—Co10 ⁱ	2.119 (5)	O11—Co10 ^{viii}	2.072 (16)
C2-C1-C3 ⁱ	119.1 (3)	C1 ⁱ —C3—C2	119.2 (3)
C2—C1—C6	120.4 (2)	C1—C6—O7	118.2 (4)
C3 ⁱ —C1—C6	119.5 (3)	C1—C6—O8	115.2 (5)
C1—C2—C3	119.9 (3)	O7—C6—O8	123.5 (6)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) -x+1, y-1, -z+1/2; (iii) -x+1, y+1, -z+1/2; (iv) x, -y, z+1/2; (v) -x+1/2, y+1/2, -z+1/2; (vi) x+1/2, -y+1/2, -z+1/2; (vi) x+1/2, -y+1/2, -z+1/2; (vii) x-1/2, -y+1/2, -z+1/2; (vii) x-1/2, -y+1/2, -z+1/2; (vii) x-1/2, -y+1/2, -z+1/2; (vii) x-1/2, -y+1/2, -z+1/2; (vii) -x-1/2; (viii) -x-1/2; (viii)

(Co_DFT)

Crystal data

 $C_8H_6Co_2O_6$ $M_r = 316$ Monoclinic, C2/c a = 20.02520 Å b = 3.30420 Å c = 12.59800 Å $\beta = 96.33^{\circ}$ $V = 828.49 \text{ Å}^{3}$ Z = 4 Data collection

 $\begin{array}{c} h = \longrightarrow \\ k = \longrightarrow \end{array}$

$l = \rightarrow$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.31569	0.14758	0.04012	0.0184	
C2	0.26806	0.23812	0.11006	0.0184	
C3	0.20287	0.33955	0.07035	0.0184	
H4	0.28329	0.23013	0.19578	0.022	
Н5	0.16565	0.41266	0.12436	0.022	
C6	0.38562	0.03773	0.08352	0.020	
07	0.39861	0.98679	0.18301	0.020	
08	0.42960	0.00198	0.01583	0.020	
Co9	0.00000	0.00000	0.00000	0.002	
Co10	0.50000	0.97237	0.25000	0.002	
011	0.02838	0.97997	0.15714	0.020	
H12	0.07726	0.97414	0.17088	0.026	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Poly[dihydroxido(µ₆-terepthalato)dinickel] (Ni_Riet)

Crystal data

 $[\text{Ni}_{2}(\text{C}_{8}\text{H}_{4}\text{O}_{4})(\text{OH})_{2}]$ $M_{r} = 315.53$ Monoclinic, C2/c a = 20.35 (5) Å b = 3.364 (6) Å c = 12.19 (4) Å $\beta = 98.9$ (2)°

Data collection

PANalytical X'Pert
diffractometer
Specimen mounting: Si zero-background plate
with well

Refinement

Least-squares matrix: full $R_{\rm p} = 0.084$ $R_{\rm wp} = 0.107$ $R_{\rm exp} = 0.070$ $R(F^2) = 0.14454$ 3949 data points Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak $variance(Gauss) = Utan(Th)^2 + Vtan(Th) + W:$ peak HW(Lorentz) = X/cos(Th)+Ytan(Th); $SH/L = S/L+H/L U, V, W in (centideg)^2, X \& Y$ in centideg 2.761, 0.000, 1.090, 3.610, 0.000, 0.047, 12 parameters 0 restraints H-atom parameters not defined?

 $V = 824.6 (15) \text{ Å}^3$ Z = 4 $D_x = 2.542 \text{ Mg m}^{-3}$ Co $Ka_{1,2}$ radiation, $\lambda = 1.78892$, 1.79278 Å T = 300 Kpale green flat_sheet, $16 \times 16 \text{ mm}$

Data collection mode: reflection Scan method: step $2\theta_{\min} = 4.007^{\circ}, 2\theta_{\max} = 69.983^{\circ}, 2\theta_{step} = 0.017^{\circ}$

 $(\Delta/\sigma)_{max} = 97.398$ Background function: Background function: "chebyschev-1" function with 3 terms: 139.3(6), -71.0(8), 7.7(7), Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.91(8); 0:0:C(2,0) = 0.63(8); 0:0:C(2,2) = 0.93(13)

11099	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
11999		
11///	0.03425	0.0100*
26556	0.10759	0.0100*
40008	0.07333	0.0100*
24618	0.19840	0.0130*
48125	0.13117	0.0130*
0.01497	0.07632	0.0100*
0.00110	0.17831	0.0100*
0.00173	0.01302	0.0100*
50000	0.50000	0.0387*
50145	-0.25000	0.0387*
0007	0.15823	0.0063*
0.03114	0.16621	0.0082*
	11999 26556 40008 24618 48125 0.01497 0.00110 0.00173 50000 50145 0007 0.03114	119990.03425265560.10759400080.07333246180.19840481250.131170.014970.076320.001100.178310.001730.01302500000.5000050145-0.2500000070.158230.031140.16621

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Geometric parameters (Å, °)

C1—C2	1.4074	O8—C6	1.3123	
C1-C3 ⁱ	1.3331	Ni9—O11 ⁱⁱ	1.9246	
C1—C6	1.5251	Ni9—O11 ⁱⁱⁱ	1.9246	
C2—C1	1.4074	Ni10—O7 ⁱ	2.0995	
C2—C3	1.3985	Ni10—O7 ^{iv}	2.0995	
C3-C1 ⁱ	1.3331	Ni10—O11 ^v	2.149	
C3—C2	1.3985	Ni10—O11 ^{vi}	2.1377	
Н5—С3	1.1584	Ni10—O11 ^{vii}	2.149	
C6—C1	1.5251	Ni10—O11 ^{viii}	2.1377	
C6—O7	1.2313	O11—Ni9 ^{ix}	1.9246	
C6—O8	1.3123	O11—Ni10 ^v	2.149	
O7—C6	1.2313	O11—Ni10 ^{vi}	2.1377	
O7—Ni10 ⁱ	2.0995			
C2-C1-C3 ⁱ	117.925	C1 ⁱ —C3—C2	118.448	
C2—C1—C6	121.216	C1—C6—O7	111.649	
C3 ⁱ —C1—C6	120.856	C1—C6—O8	121.645	
C1—C2—C3	123.601	O7—C6—O8	122.291	

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) *x*+1/2, -*y*+1/2, *z*+1/2; (iv) *x*-1/2, -*y*+1/2, *z*-1/2; (v) -*x*, -*y*, -*z*; (vi) -*x*, -*y*+1, -*z*; (vii) *x*, -*y*, -*z*; (vi) -*x*, -*y*+1/2, -*z*+1/2; (iv) -*x*, -*y*, -*z*; (vi) -*x*, -*y*+1/2, -*z*+1/2; (iv) -*x*+1/2, -*z*+1/2; (iv) -*x*, -*y*+1/2, -*z*+1/2; (iv) -*x*+1/2, -*z*+1/2; (iv) -*x*+1/2

(Ni_DFT)

Crystal data

 $C_8H6Ni_2O_6$ $M_r = 315.53$ Monoclinic, C2/c a = 20.40719 Å b = 3.27188 Å c = 12.22464 Å $\beta = 99.20^{\circ}$ $V = 805.74 \text{ Å}^{3}$ Z = 4 Data collection

 $h = \rightarrow$ $k = \rightarrow$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.31659	0.14671	0.03597	0.010	
C2	0.27424	0.23178	0.11288	0.010	
C3	0.20831	0.33316	0.07742	0.010	
H4	0.29416	0.22005	0.20095	0.013	
Н5	0.17519	0.40045	0.13678	0.013	
C6	0.38690	0.03143	0.07591	0.010	
07	0.90294	0.45891	0.17836	0.010	
08	0.42774	0.00936	0.00489	0.010	
Ni9	0.00000	0.00000	0.00000	0.03866	
Ni10	0.00000	0.45204	0.25000	0.03866	
011	0.52764	0.45960	0.16035	0.00631	
H12	0.57607	0.45471	0.17494	0.00821	

 $l = \rightarrow$

Poly[dihydroxido(µ₆-terepthalato)dizinc] (Zn_Riet)

Crystal data

 $[Zn_2(C_8H_4O_4)(OH)_2]$ $M_r = 328.89$ Monoclinic, C2/ca = 20.165 (2) Å*b* = 3.3273 (5) Å *c* = 12.5956 (16) Å $\beta = 97.431 \ (10)^{\circ}$

Data collection

NSLS beamline X3B1 diffractometer Specimen mounting: Kapton capillary

Refinement

Least-squares matrix: full $R_{\rm p} = 0.092$ $R_{\rm wp} = 0.121$ $R_{\rm exp} = 0.097$ $R(F^2) = 0.14121$ 5400 data points

 $V = 837.99 (14) Å^3$ Z = 4 $D_{\rm x} = 2.607 {\rm Mg} {\rm m}^{-3}$ Synchrotron radiation, $\lambda = 1.15008$ Å T = 300 Kwhite

Data collection mode: transmission Scan method: step $2\theta_{\min} = 6.0^{\circ}, 2\theta_{\max} = 60.0^{\circ}, 2\theta_{\text{step}} = 0.01^{\circ}$

Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th) ² +Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg) ² , X & Y in centideg 6.427, -1.067, 0.000, 0.000, 0.000, 0.022, Crystallite size in microns with
1 000 1 000 Microstrain "generalized" model
$(10^6 * \text{delta } Q/Q)$ parameters: S400, S040,
S004, S220, S202, S022, S301, S103, S121,
G/L mix 807.414, 6.074702219e6, 12850.425,
116093.843, 1080.871, 214564.056, 1450.184,
-4276.159, -164837.348, 0.600,
57 parameters
14 restraints
H-atom parameters not defined?
$(\Delta/\sigma)_{\rm max} = 1.459$

Background function: Background function: "chebyschev-1" function with 12 terms:

28.78(11), -16.88(18), 8.18(16), 0.45(16), -2.60(15), -1.04(14), 3.60(13), -1.88(13), 0.46(12), 1.97(12), -1.94(11), 1.26(10), Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.05(4); 0:0:C(2,0)= -0.18(6); 0:0:C(2,2) = -0.21(4)

Fractional atomic coordinates an	d isotropic o	r equivalent isotro	pic displacement	parameters	$(Å^2)$)
----------------------------------	---------------	---------------------	------------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3153 (9)	0.132 (11)	0.038 (2)	0.148 (18)*	
C2	0.2801 (13)	0.369 (13)	0.1020 (17)	0.148*	
C3	0.2145 (14)	0.477 (16)	0.067 (2)	0.148*	
H7	0.29840	0.55800	0.17260	0.192*	
H8	0.18320	0.73700	0.09150	0.192*	
C11	0.3863 (5)	0.016 (8)	0.0750 (18)	0.0500*	
O12	0.4045 (9)	0.025 (16)	0.1743 (18)	0.050000*	
O13	0.4201 (7)	-0.156 (9)	0.008 (2)	0.050000*	
Zn14	0.50000	0.50000	0.50000	0.078 (4)*	
Zn15	0.00000	0.54200	-0.25000	0.078*	
O16	0.0318 (13)	0.072 (14)	0.161 (3)	0.0500*	
H17	0.06922	-0.03114	0.16621	0.065000*	

Geometric parameters (Å, °)

C1—C2	1.3877 (16)	O13—C11	1.284 (2)
C1—C3 ⁱ	1.43 (4)	O13—Zn14 ⁱⁱ	1.989 (13)
C1—C11	1.498 (3)	Zn14—O13 ⁱⁱⁱ	1.989 (13)
C2—C1	1.3877 (16)	Zn14—O13 ^{iv}	1.989 (13)
C2—C3	1.385 (2)	Zn14—O16 ^v	2.06 (3)
C3—C1 ⁱ	1.43 (4)	Zn14—O16 ^{vi}	2.06 (3)
C3—C2	1.385 (2)	Zn15—O12 ⁱ	2.048 (17)
C11—C1	1.498 (3)	Zn15—O12 ^{vii}	2.048 (17)
C11—O12	1.2573 (14)	Zn15—O16 ^{viii}	1.87 (4)
C11—O13	1.284 (2)	Zn15—O16 ^{ix}	1.87 (4)
O12—C11	1.2573 (14)	O16—Zn14 ^x	2.06 (3)
O12—Zn15 ⁱ	2.048 (17)	O16—Zn15 ^{viii}	1.87 (4)
C2C1C3 ⁱ	119.81 (12)	C1—C11—O12	116.6 (2)
C2—C1—C11	120.4 (2)	C1-C11-O13	118.59 (19)
C3 ⁱ —C1—C11	119.6 (4)	O12—C11—O13	123.42 (15)
C1—C2—C3	120.20 (17)	O16 ^{viii} —Zn15—O16 ^{xi}	93 (2)
C1 ⁱ C3C2	119.83 (12)		

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) -x+1, y-1, -z+1/2; (iii) -x+1, y+1, -z+1/2; (iv) x, -y, z+1/2; (v) -x+1/2, y+1/2, -z+1/2; (vi) x+1/2, -y+1/2, -z+1/2; (vi) x-1/2, -y+1/2, -z+1/2; (vii) x-1/2, -z+1/2; (vii) x-1/2; (vii) x-1/2, -z+1/2; (vii) x-1/2; (vi) x-1/2

(Zn_DFT)

Crystal data

 $C_8H_6O_6Zn_2$ $M_r = 328.89$ Monoclinic, C2/c*a* = 20.15960 Å *b* = 3.32510 Å Data collection

 $h = \rightarrow$ $k = \rightarrow$ *c* = 12.59470 Å $\beta = 97.52^{\circ}$ $V = 837.00 \text{ Å}^3$ Z = 4 $l = \rightarrow$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.31537	0.14052	0.03973	0.14798
C2	0.26900	0.22410	0.11036	0.14798
C3	0.20398	0.33320	0.07087	0.14798
H7	0.28504	0.20470	0.19624	0.19231
H8	0.16745	0.40076	0.12504	0.19231
C11	0.38529	0.02740	0.08247	0.050
O12	0.39938	0.97473	0.18247	0.050
013	0.42745	0.99381	0.01434	0.050
O16	0.02778	0.97322	0.15570	0.050
H17	0.07652	0.96489	0.16886	0.065
Zn14	0.00000	0.00000	0.00000	0.07842
Zn15	0.50000	0.96690	0.25000	0.07842

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)