

Received 28 March 2022 Accepted 26 April 2022

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; ruthenium complex; polypyridine; tridentate ligand; thiocyanato ligand.

CCDC references: 2168839; 2168838

Supporting information: this article has supporting information at journals.iucr.org/e

Isolation and structural comparison of Ru^{II}-dnp complexes [dnp = 2,6-bis(1,8-naphthyridin-2-yl)pyridine] with axially or equatorially coordinating NCS ligands

Tsugiko Takase,^a* Takashi Yamanaka,^b Chihiro Tamura^b and Dai Oyama^a

^aDepartment of Natural Sciences and Informatics, Fukushima University, 1, Kanayagawa, Fukushima 960-1296, Japan, and ^bGraduate School of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan. *Correspondence e-mail: ttakase@sss.fukushima-u.ac.jp

The molecular and crystal structures of two ruthenium(II) complexes, viz. cis-aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine- $\kappa^3 N.N'.N''$](thiocyanato- κN)- $(triphenylphosphine - \kappa P)$ ruthenium(II) hexafluoridophosphate - acetone - water (1/0.5/1), $[Ru(NCS)(C_{21}H_{13}N_5)(C_{18}H_{15}P)(H_2O)]PF_6 \cdot 0.5C_3H_6O \cdot H_2O$ (I) and *trans*-[2,6-bis(1,8-naphthyridin-2-yl)pyridine- κ^3 'N,N',N'']bis(pyridine- κ N)(thiocyanato- κN)ruthenium(II) thiocyanate, $[Ru(NCS)(C_{21}H_{13}N_5)(C_5H_5N)_2]NCS$ (II), with an N-coordinating thiocyanato group and a tridentate polypyridyl supporting ligand, are reported. The Ru^{II} atom in each of the cationic complexes adopts a distorted octahedral coordination sphere, defined by an N atom of the thiocyanato ligand, three N atoms from the tridentate polypyridyl ligand, and an O and P atom in (I) or two pyridine-N atoms in (II) derived from monodentate ligands. The thiocyanato ligand in (I) coordinates in an axial manner to the {Rudnp} unit [dnp = 2,6-bis(1,8-naphthyridin-2-yl)pyridine], whereas it coordinates in an equatorial manner in (II). In the crystal structure of compound (I), intramolecular $C-H\cdots O$, $C-H\cdots N$ and $O-H\cdots N$ hydrogen bonds as well as π - π contacts are present, in addition to intermolecular C-H···F, C-H···O and $O-H \cdots O$ hydrogen bonds. In the crystal structure of compound (II), intramolecular $C-H \cdots N$ hydrogen bonds are observed along with intermolecular C-H···N and C-H···S hydrogen bonds as well as a π - π interaction.

1. Chemical context

Polypyridylruthenium(II) complexes play essential roles in key technologies, such as solar energy conversion (Lewis, 2007). In particular, Ru^{II} complexes with thiocyanate ion(s) are interesting as dye molecules for dye-sensitized solar cells (Hagfeldt *et al.*, 2010). As a ligand, the thiocyanate group can bond to metals through the terminal nitrogen or sulfur atoms since it is ambidentate. Linkage isomeric pairs can be distinguished using spectroscopic techniques when they exist as a mixture (Brewster *et al.*, 2011; Vandenburgh *et al.*, 2008). However, identifying the coordinating atom (N or S) by structural analysis is more reliable when only one isomer exists.

A series of Ru^{II} complexes containing a supporting ligand, dnp [dnp = 2,6-bis(1,8-naphthyridin-2-yl)pyridine], were synthesized to extend the π -conjugated system of the terpyridine framework (which is a typical tridentate polypyridyl ligand) and their properties and reactivities reported (Oyama *et al.*, 2013, 2017). In particular, some reactivities such as

ligand substitutions are significantly different in an identical coordination framework when the axial ligands are triphenylphosphine (PPh₃) or pyridine (py) (Oyama *et al.*, 2013, 2017).

During the current study, the reaction of precursors with different axially bound ligands with the NCS⁻ ion resulted in the formation of the cationic complexes $cis(PPh_3,H_2O)$ -[Ru(dnp)(PPh_3)(NCS- κN)(H₂O)⁺ [(I) as the water/acetone (1/ 0.5) solvated PF₆⁻ salt] with an axially bound NCS⁻ ligand and trans(py)-[Ru(dnp)(py)₂(NCS- κN)]⁺ [(II) as the NCS⁻ salt] with an equatorially bound NCS⁻ ligand. Their crystal structures are reported and compared in this communication.

2. Structural commentary

Figs. 1 and 2 present the molecular structures of compounds (I) and (II), respectively. The Ru^{II} atoms in (I) and (II) exhibit distorted octahedral coordination environments, similar to those reported in other structurally related complexes containing the tridentate dnp ligand (Koizumi & Tanaka, 2005; Oyama *et al.*, 2013, 2017). As listed in Tables 1 and 2, compounds (I) and (II) exhibit intramolecular hydrogen

Figure 1

Molecular structure of the complex cation in (I), with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Table 1					
Hydrogen-bond geometry	۱Å.	°)	for	(I).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H6\cdots F5^{i}$	0.93	2.45	3.369 (6)	170
$C15-H9\cdots F2$	0.93	2.45	3.345 (6)	162
C21-H13···O2	0.93	2.59	3.213 (14)	124
C24-H14···O1	0.93	2.43	3.210 (5)	141
$C24 - H14 \cdot \cdot \cdot N5$	0.93	2.43	3.144 (6)	134
$C25-H15\cdots F4^{ii}$	0.93	2.54	3.347 (7)	145
$C41 - H30 \cdot \cdot \cdot F1^{ii}$	0.96	2.40	3.26 (3)	150

Symmetry codes: (i) -x, -y, -z + 2; (ii) -x + 1, -y + 1, -z + 2.

Table 2				
Hydrogen-bond	geometry	(Å	°) for	(II)

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$			
C12−H8····N9 ⁱ	0.95	2.43	3.305 (5)	152			
$C20-H12\cdots S2^{ii}$	0.95	2.73	3.629 (3)	159			
$C22 - H14 \cdots N1$	0.95	2.51	3.391 (3)	154			
C27−H19···S2	0.95	2.76	3.479 (3)	133			

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$.

bonds between aromatic C—H groups of PPh₃ or pyridine and the non-coordinating N atoms in dnp or the monodentate ligands [OH_2 in (I) or NCS in (II)]. In (I), the interatomic distances between O1 and N1 [2.678 (4) Å] and O1 and N5 [2.983 (4) Å] are considerably short. Although the H atoms of the coordinating water molecule (O1) have not been localized, these short distances indicate that intramolecular hydrogen bonds of medium strength are present between the aqua ligand and the N atoms of the dnp ligand. Furthermore, in (I) intramolecular π - π interactions [$Cg1\cdots Cg2 = 3.640$ (4) Å and $Cg3\cdots Cg4 = 3.749$ (3) Å where Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1/C1–C5, C29–C34, N3/C9–C13, and C35–

Figure 2

Molecular structure of the complex cation in (II), with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.

C40 rings, respectively] are present, with a slippage of 1.2 Å for $Cg1\cdots Cg2$. It is inferred from these results that both $\pi-\pi$ interactions are not exactly cofacial. The slippage angle β is 19.2° for $Cg1\cdots Cg2$ and 16.2° for $Cg3\cdots Cg4$.

As mentioned above, it is important to distinguish the coordination atom of the thiocyanato ligand because of its ambidentate coordination mode. Both S- and N-coordinated Ru^{II} complexes containing polypyridines have been determined structurally, but the N-atom coordination is overwhelmingly dominant. These complexes can be distinguished crystallographically by the Ru - X - C bond angle (X = N or S) through the coordinating atom. For example, the Ru-S-C bond angles (for S-ligating examples) are 104-106° (Brewster et al., 2011; Homanen et al., 1996; Vandenburgh et al., 2008), whereas the Ru–N–C bond angles (for N-ligating examples) are in the range 159-179° (Brewster et al., 2011; Cadranel et al., 2012; Shklover et al., 2002; Vandenburgh et al., 2008; Zakeeruddin *et al.*, 1997). In the present cases, the Ru-X-C bond angles of compounds (I) and (II) are 175.6 (3) and 166.03 (19)°, respectively, indicating that the Ru^{II} atoms in both compounds exhibit an N-coordination.

The bond length between the Ru^{II} atom and the nitrogen atom in (I) [2.105 (3) Å] is slightly longer than that of (II) [2.069 (2) Å]. In contrast, the N=C bond length in (I) [1.116 (5) Å] is shorter than that of (II) [1.160 (3) Å]. The terminal C–S distance [(I): 1.637 (4) Å, (II): 1.647 (2) Å] and the N–C–S bond angle [(I): 178.2 (4)°, (II): 179.0 (2)°] are similar. These data are in agreement with those of the related polypyridyl complexes containing N-bound {Ru^{II}–NCS}⁺ moieties (Brewster *et al.*, 2011; Cadranel *et al.*, 2012; Shklover *et al.*, 2002; Vandenburgh *et al.*, 2008; Zakeeruddin *et al.*, 1997).

Figure 3

The crystal packing of compound (I) with hydrogen bonds (blue; for numerical details, see Table 1) and π - π contacts (green) shown as dashed lines. Ring centroids are shown as red spheres.

Additional solvent molecules are incorporated in the crystal structure of (I), *i.e.*, a water molecule and a disordered acetone molecule (occupancy 0.5) per formula unit. Apart from Coulombic forces, there are weak $C-H\cdots$ F hydrogen bonds between the complex cation and the PF_6^- anion (Table 1) and the acetone molecule $[O1\cdots O2 = 2.87 (1) \text{ Å}]$. These interactions contribute to the stabilization of the packing and formation of a three-dimensional supramolecular structure (Fig. 3).

In the crystal structure of (II), weak $C-H\cdots X(X = N \text{ or } S)$ hydrogen-bonding interactions exist between the complex cation and the NCS⁻ anion (Table 2) along with the intramolecular hydrogen bonds. Additional $\pi-\pi$ interactions $[Cg5\cdots Cg5^i = 4.0093 (15) \text{ Å}; Cg5 \text{ is the centroid of the N5/}$ C17-C21 ring; symmetry code: (i) 1 - x, 1 - y, 1 - z] with a centroid slippage of 1.263 Å for $Cg5\cdots Cg5^i$ are present. The slippage angle β is 18.4° for $Cg5\cdots Cg5^i$. These interactions lead to the formation of a three-dimensional network structure (Fig. 4).

4. Database survey

Some crystal structures of Ru^{II} complexes with both N-coordinating thiocyanato and tridentate terpyridine derivative ligands (tpyR) of the form [Ru(tpyR)(NCS)L₂]ⁿ (R = various substituents, L = pyridyl or NCS ligands) have been reported, as revealed by a search of the Cambridge Crystal Structure Database (CSD, version 5.42, update September 2021; Groom *et al.*, 2016), including refcodes NAMCEL (Brewster *et al.*, 2011), CAQRAP (Cadranel *et al.*, 2012), MIXGOP01 (Shklover *et al.*, 2002), and NUMBOM (Zakeeruddin *et al.*, 1997). In contrast, for NAMCIP (Brewster *et al.*, 2011),

Figure 4

The crystal packing of compound (II) with hydrogen bonds (blue; for numerical details, see Table 2) and π - π contacts (green) shown as dashed lines. Ring centroids are shown as red spheres.

research communications

 Table 3

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$[Ru(NCS)(C_{21}H_{13}N_5)(C_{18}H_{15}P)(H_2O)]PF_6-0.5C_3H_6O\cdot H_2O$	$[Ru(NCS)(C_{21}H_{13}N_5)(C_5H_5N)_2]NCS$
M _r	966.84	710.79
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	296	93
a, b, c (Å)	9.3699 (2), 15.3897 (4), 16.0267 (4)	12.6556 (10), 14.0986 (7), 17.4421 (14)
α, β, γ (°)	92.6869 (9), 105.1544 (8), 100.0149 (7)	90, 108.535 (3), 90
$V(\dot{A}^3)$	2186.29 (10)	2950.7 (4)
Z	2	4
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.55	0.72
Crystal size (mm)	$0.20 \times 0.15 \times 0.10$	$0.25 \times 0.15 \times 0.05$
Data collection		
Diffractometer	Rigaku R-AXIS RAPID	Rigaku Saturn724
Absorption correction	Multi-scan (ABSCOR; Rigaku, 1995)	Multi-scan (REQAB; Rigaku, 1998)
T_{\min}, T_{\max}	0.750, 0.947	0.927, 0.965
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections	34567, 9994, 8406	30135, 6758, 6058
R _{int}	0.025	0.029
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649	0.649
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.169, 1.08	0.036, 0.091, 1.10
No. of reflections	9994	6758
No. of parameters	554	406
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.93, -0.64	1.13, -0.81

Computer programs: RAPID-AUTO (Rigaku, 2006), CrystalClear (Rigaku, 2015), SIR97 (Altomare et al., 1999), SIR92 (Altomare et al., 1993), SHELXL2018/3 (Sheldrick, 2015), Mercury (Macrae et al., 2020), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2019), PLATON (Spek, 2020) and publcIF (Westrip, 2010).

TORMIW (Homanen *et al.*, 1996) and EGAYUH (Vandenburgh *et al.*, 2008) S-coordinating thiocyanato ligands in polypyridylruthenium(II) complexes were reported.

5. Synthesis and crystallization

A methanolic solution (40 ml) containing $[Ru(dnp)(PPh_3)_2-(H_2O)](PF_6)_2$ (50 mg, 0.039 mmol) (Oyama *et al.*, 2013) and 1.1 eq. of NaSCN (10 mg) was heated under reflux for 30 min. The volume was reduced to 5 ml, and a saturated solution of KPF₆ was added. The resulting solid was filtered and washed sequentially with water and diethyl ether. The yield was 32 mg (69%). Crystals suitable for use in X-ray diffraction (XRD) studies were grown by vapor diffusion of diethyl ether into an acetone solution of (I). Fourier transform infrared (FTIR) spectroscopy using a KBr pellet showed ν_{CN} at 2130 cm⁻¹.

For the synthesis of compound (II), a methanolic solution (20 ml) containing $[Ru(dnp)(py)_2(H_2O)](PF_6)_2$ (25 mg, 0.028 mmol) (Oyama *et al.*, 2013) and 2.2 eq. of NaSCN (5 mg) was heated under reflux for 30 min. The reaction mixture was reduced to 3 ml. The addition of diethyl ether (5 ml) to the solution resulted in the formation of a precipitate of (II). The crude product was purified by column chromatography on Al₂O₃ (eluent: acetone). The yield was 9 mg (40%). Single crystals suitable for XRD studies were obtained by recrystallization from acetone. FTIR using a KBr pellet showed ν_{CN} at 2121 (ligand) and 2055 cm⁻¹ (counter-ion).

6. Refinement

Table 3 lists the crystal data, data collection, and structure refinement details. All hydrogen atoms were placed at calculated positions [C-H = 0.93 or 0.96 Å in (I), C-H = 0.95 Å in (II)] and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$. The acetone solvent molecule in (I) (C41–C43, O2) is disordered over an inversion center and was refined with an occupancy of 0.5. The oxygen atom of the solvent water molecule (O3) was refined with an isotropic displacement parameter. H atoms of the coordinating and the solvate water molecules could not be localized from difference-Fourier maps. Therefore, they are not part of the model but part of the formula.

Acknowledgements

The authors would like to thank Mr Yuki Watanabe at Fukushima University for his technical assistance.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP20K05536).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Brewster, T. P., Ding, W., Schley, N. D., Hazari, N., Batista, V. S. & Crabtree, R. H. (2011). *Inorg. Chem.* **50**, 11938–11946.
- Cadranel, A., Alborés, P., Yamazaki, S., Kleiman, V. D. & Baraldo, L. M. (2012). *Dalton Trans.* 41, 5343–5350.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hagfeldt, A., Boschloo, G., Sun, L. C., Kloo, L. & Pettersson, H. (2010). *Chem. Rev.* **110**, 6595–6663.
- Homanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081–4084.
- Koizumi, T. & Tanaka, K. (2005). Inorg. Chim. Acta, 358, 1999-2004.
- Lewis, N. S. (2007). Science, 315, 798-801.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.

- Oyama, D., Yamanaka, T., Abe, R. & Takase, T. (2017). J. Organomet. Chem. 830, 167–174.
- Oyama, D., Yamanaka, T., Fukuda, A. & Takase, T. (2013). Chem. Lett. 42, 1554–1555.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shklover, V., Nazeeruddin, Md. K., Grätzel, M. & Ovchinnikov, Yu. E. (2002). *Appl. Organomet. Chem.* 16, 635–642.Spek, A. L. (2020). *Acta Cryst.* E76, 1–11.
- Vandenburgh, L., Buck, M. R. & Freedman, D. A. (2008). *Inorg. Chem.* **47**, 9134–9136.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker, R., Kalyanasundaram, K., Grätzel, M., Shklover, V. & Haibach, T. (1997). *Inorg. Chem.* 36, 5937–5946.

Acta Cryst. (2022). E78, 545-549 [https://doi.org/10.1107/S2056989022004443]

Isolation and structural comparison of Ru^{II}-dnp complexes [dnp = 2,6-bis(1,8naphthyridin-2-yl)pyridine] with axially or equatorially coordinating NCS ligands

Tsugiko Takase, Takashi Yamanaka, Chihiro Tamura and Dai Oyama

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2006) for (I); *CrystalClear* (Rigaku, 2015) for (II). Cell refinement: *RAPID-AUTO* (Rigaku, 2006) for (I); *CrystalClear* (Rigaku, 2015) for (II). Data reduction: *RAPID-AUTO* (Rigaku, 2006) for (I); *CrystalClear* (Rigaku, 2015) for (II). Program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999) for (I); *SIR92* (Altomare *et al.*, 1993) for (II). For both structures, program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2020), *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2019), *PLATON* (Spek, 2020) and *publCIF* (Westrip, 2010).

cis-Aqua[2,6-bis(1,8-naphthyridin-2-yl)pyridine- $\kappa^3 N, N', N''$](thiocyanato- κN)(triphenylphosphine- κP)ruthenium(II) hexafluoridophosphate-acetone-water (1/0.5/1) (I)

```
Crystal data
```

$[Ru(NCS)(C_{21}H_{13}N_5)(C_{18}H_{15}P) (H_2O)]PF_6 \cdot 0.5C_3H_6O \cdot H_2O M_r = 966.84 \\M_r = 966$	Z = 2 F(000) = 980.00 $D_x = 1.469 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation, $\lambda = 0.71075$ Å
a = 9.3699 (2) Å	Cell parameters from 29007 reflections
b = 15.3897 (4) Å	$\theta = 3.0-27.5^{\circ}$
c = 16.0267 (4) Å	$\mu = 0.55 \text{ mm}^{-1}$
$\alpha = 92.6869 \ (9)^{\circ}$	T = 296 K
$\beta = 105.1544 \ (8)^{\circ}$	Block, purple
$\gamma = 100.0149 \ (7)^{\circ}$	$0.20 \times 0.15 \times 0.10 \text{ mm}$
$V = 2186.29 (10) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID	9994 independent reflections
diffractometer	8406 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.025$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 12$
(ABSCOR; Rigaku, 1995)	$k = -19 \rightarrow 19$
$T_{\min} = 0.750, \ T_{\max} = 0.947$	$l = -20 \rightarrow 20$
34567 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$	Secondary atom site location: difference Fourier map
$wR(F^2) = 0.169$	Hydrogen site location: inferred from
S = 1.08	neighbouring sites
9994 reflections	H-atom parameters constrained
554 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1102P)^2 + 1.1681P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 1.93 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.20144 (3)	0.23092 (2)	0.71810(2)	0.03823 (11)	
S1	0.54439 (14)	0.03779 (10)	0.68390 (13)	0.0978 (5)	
P1	0.02612 (10)	0.31990 (6)	0.72697 (6)	0.0440 (2)	
P2	0.28893 (14)	0.24126 (7)	1.22614 (7)	0.0588 (3)	
F1	0.3298 (6)	0.3196 (2)	1.3006 (2)	0.1247 (15)	
F2	0.2484 (4)	0.16220 (19)	1.15150 (19)	0.0894 (9)	
F3	0.2730 (5)	0.3108 (2)	1.1558 (2)	0.1043 (11)	
F4	0.4608 (4)	0.2498 (3)	1.2296 (3)	0.1163 (13)	
F5	0.3020 (4)	0.1719 (2)	1.2970 (2)	0.0948 (10)	
F6	0.1186 (4)	0.2322 (3)	1.2222 (3)	0.1110 (12)	
O1	0.2872 (3)	0.31914 (19)	0.63264 (18)	0.0589 (7)	
O3	-0.4347 (17)	0.0497 (10)	0.1027 (10)	0.344 (7)*	
N1	0.0916 (4)	0.2097 (2)	0.5019 (2)	0.0575 (8)	
N2	0.0397 (3)	0.14350 (19)	0.62044 (18)	0.0410 (6)	
N3	0.1213 (3)	0.14515 (18)	0.78696 (18)	0.0415 (6)	
N4	0.3425 (3)	0.27857 (19)	0.84298 (19)	0.0435 (6)	
N5	0.4997 (4)	0.3928 (2)	0.8046 (2)	0.0578 (8)	
N6	0.3590 (3)	0.1529 (2)	0.7042 (2)	0.0508 (7)	
C1	0.0597 (6)	0.2151 (3)	0.4174 (3)	0.0699 (13)	
H1	0.119932	0.258875	0.396905	0.084*	
C2	-0.0596 (6)	0.1587 (3)	0.3564 (3)	0.0666 (11)	
H2	-0.078108	0.165630	0.297422	0.080*	
C3	-0.1474 (5)	0.0940 (3)	0.3851 (3)	0.0626 (10)	
Н3	-0.227518	0.055966	0.346082	0.075*	
C4	-0.1156 (4)	0.0850 (3)	0.4755 (2)	0.0504 (8)	
C5	0.0039 (4)	0.1462 (2)	0.5316 (2)	0.0462 (7)	

C6	-0.1963 (4)	0.0176 (3)	0.5117 (3)	0.0562 (9)
H4	-0.275944	-0.023686	0.476010	0.067*
C7	-0.1565 (4)	0.0136 (2)	0.5989 (3)	0.0505 (8)
Н5	-0.207602	-0.031113	0.623294	0.061*
C8	-0.0377 (4)	0.0773 (2)	0.6521 (2)	0.0428 (7)
C9	0.0081 (4)	0.0765 (2)	0.7467 (2)	0.0459 (7)
C10	-0.0498 (5)	0.0139 (3)	0.7941 (3)	0.0644 (11)
H6	-0.128217	-0.032599	0.766539	0.077*
C11	0.0111 (6)	0.0216 (3)	0.8841 (3)	0.0817 (16)
Н7	-0.026723	-0.019790	0.917268	0.098*
C12	0.1283 (6)	0.0913 (3)	0.9237 (3)	0.0760 (14)
H8	0.170109	0.096773	0.983515	0.091*
C13	0 1822 (4)	0 1523 (3)	0.8740(2)	0.0516 (8)
C14	0.3075(4)	0.2288(3)	0.9051(2)	0.0511(8)
C15	0.3825(5)	0.2200(3) 0.2494(3)	0.9031(2) 0.9935(3)	0.0679(12)
H9	0.354640	0.213987	1 034253	0.081*
C16	0.4958 (6)	0.3212(3)	1.0194 (3)	0.0720(13)
H10	0.4958 (0)	0.3212 (3)	1.078127	0.0720 (13)
C17	0.545541 0.5405(5)	0.350458	0.0570(3)	0.030
C17	0.3403(3)	0.3718(3)	0.9579(3)	0.0379(10)
C18	0.4024(4)	0.3460(2) 0.4471(2)	0.0007(2)	0.0407(7)
019	0.0392 (0)	0.4471(3)	0.9779 (3)	0.0787 (14)
HII C20	0./13200	0.403180	1.035344	0.094^{*}
C20	0.6933 (6)	0.4921 (3)	0.9140 (4)	0.0817(15)
HI2	0.769460	0.542262	0.926604	0.098*
C21	0.6114 (5)	0.4620 (3)	0.8266 (4)	0.0720 (13)
H13	0.637933	0.492736	0.782642	0.086*
C22	0.4359 (4)	0.1070 (3)	0.6970 (3)	0.0542 (9)
C23	0.0862 (5)	0.4408 (2)	0.7478 (3)	0.0543 (9)
C24	0.2210 (5)	0.4838 (3)	0.7372 (3)	0.0607 (10)
H14	0.286908	0.451352	0.722033	0.073*
C25	0.2587 (7)	0.5761 (3)	0.7493 (4)	0.0816 (15)
H15	0.350439	0.604667	0.742700	0.098*
C26	0.1643 (9)	0.6245 (3)	0.7705 (4)	0.099 (2)
H16	0.189677	0.686032	0.777275	0.119*
C27	0.0335 (10)	0.5829 (4)	0.7817 (5)	0.115 (2)
H17	-0.031213	0.616375	0.796792	0.137*
C28	-0.0074 (8)	0.4916 (4)	0.7713 (5)	0.0931 (18)
H18	-0.098155	0.464252	0.780230	0.112*
C29	-0.1240 (5)	0.3099 (3)	0.6248 (3)	0.0638 (11)
C30	-0.2398 (7)	0.2426 (5)	0.5962 (5)	0.105 (2)
H19	-0.253912	0.198479	0.632581	0.126*
C31	-0.3409 (10)	0.2352 (6)	0.5141 (6)	0.139 (3)
H20	-0.425729	0.190055	0.499432	0.167*
C32	-0.3191 (12)	0.2902 (7)	0.4576 (5)	0.151 (4)
H21	-0.387200	0.285053	0.402952	0.181*
C33	-0.1974(12)	0.3538 (9)	0.4799 (5)	0.174 (5)
H22	-0.177257	0.392207	0.439500	0.209*
C34	-0.0982(8)	0.3640(7)	0 5639 (4)	0.135(3)
001	0.0902 (0)	0.0010(7)	0.000 (1)	0.100 (0)

H23	-0.012944	0.408900	0.577956	0.162*	
C35	-0.0579 (4)	0.2952 (3)	0.8167 (2)	0.0499 (8)	
C36	0.0264 (6)	0.3277 (4)	0.8996 (3)	0.0752 (13)	
H24	0.118188	0.366055	0.907513	0.090*	
C37	-0.0212 (7)	0.3050 (5)	0.9710 (3)	0.0932 (18)	
H25	0.038846	0.328108	1.026088	0.112*	
C38	-0.1535 (7)	0.2498 (4)	0.9626 (4)	0.0909 (17)	
H26	-0.184622	0.233571	1.011189	0.109*	
C39	-0.2415 (8)	0.2180 (6)	0.8801 (5)	0.131 (3)	
H27	-0.334539	0.181065	0.872839	0.158*	
C40	-0.1934 (7)	0.2401 (5)	0.8078 (4)	0.111 (3)	
H28	-0.253921	0.217311	0.752646	0.133*	
O2	0.5573 (15)	0.4320 (11)	0.6201 (8)	0.162 (6)	0.5
C41	0.688 (3)	0.5339 (16)	0.5506 (16)	0.156 (8)	0.5
H29	0.663565	0.561416	0.497545	0.187*	0.5
H30	0.723079	0.578661	0.598965	0.187*	0.5
H31	0.765916	0.500822	0.549928	0.187*	0.5
C42	0.554 (2)	0.4738 (11)	0.5589 (12)	0.124 (5)	0.5
C43	0.414 (4)	0.454 (3)	0.480 (2)	0.28 (3)	0.5
H32	0.429253	0.493342	0.436933	0.335*	0.5
H33	0.399037	0.393942	0.456380	0.335*	0.5
H34	0.327501	0.463494	0.498052	0.335*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.03849 (16)	0.04036 (16)	0.03340 (15)	-0.00234 (10)	0.01317 (10)	-0.00263 (10)
S 1	0.0506 (6)	0.0878 (9)	0.1451 (14)	0.0143 (6)	0.0182 (8)	-0.0414 (9)
P1	0.0419 (5)	0.0462 (5)	0.0400 (4)	0.0036 (3)	0.0091 (3)	-0.0047 (3)
P2	0.0728 (7)	0.0505 (5)	0.0496 (5)	-0.0018 (5)	0.0197 (5)	0.0032 (4)
F1	0.203 (5)	0.074 (2)	0.084 (2)	-0.002 (2)	0.041 (3)	-0.0228 (17)
F2	0.124 (3)	0.0687 (17)	0.0681 (17)	-0.0153 (16)	0.0381 (17)	-0.0117 (14)
F3	0.154 (3)	0.077 (2)	0.084 (2)	0.015 (2)	0.038 (2)	0.0341 (17)
F4	0.070 (2)	0.112 (3)	0.161 (4)	-0.0060 (18)	0.036 (2)	0.012 (3)
F5	0.131 (3)	0.0773 (19)	0.0681 (18)	0.0050 (18)	0.0212 (18)	0.0231 (15)
F6	0.085 (2)	0.138 (3)	0.128 (3)	0.028 (2)	0.052 (2)	0.033 (3)
01	0.0666 (17)	0.0576 (16)	0.0482 (15)	-0.0099 (13)	0.0226 (13)	0.0040 (12)
N1	0.072 (2)	0.0569 (19)	0.0380 (15)	-0.0108 (15)	0.0213 (15)	-0.0055 (13)
N2	0.0405 (14)	0.0444 (14)	0.0352 (13)	-0.0002 (11)	0.0125 (11)	-0.0058 (11)
N3	0.0465 (15)	0.0401 (14)	0.0353 (13)	0.0000 (11)	0.0129 (11)	-0.0014 (11)
N4	0.0427 (15)	0.0453 (15)	0.0388 (14)	0.0008 (11)	0.0108 (11)	-0.0025 (11)
N5	0.0460 (17)	0.0592 (19)	0.059 (2)	-0.0063 (14)	0.0095 (14)	0.0053 (15)
N6	0.0459 (16)	0.0557 (17)	0.0500 (17)	0.0058 (13)	0.0163 (13)	-0.0058 (14)
C1	0.089 (3)	0.073 (3)	0.040 (2)	-0.013 (2)	0.024 (2)	-0.0009 (18)
C2	0.081 (3)	0.076 (3)	0.0365 (19)	0.002 (2)	0.0151 (19)	-0.0025 (18)
C3	0.061 (2)	0.076 (3)	0.0411 (19)	-0.001 (2)	0.0089 (17)	-0.0093 (18)
C4	0.0473 (19)	0.060 (2)	0.0391 (17)	0.0008 (16)	0.0126 (15)	-0.0078 (15)
C5	0.0494 (19)	0.0501 (18)	0.0373 (16)	0.0006 (14)	0.0166 (14)	-0.0062 (14)

C6	0.049 (2)	0.059 (2)	0.051 (2)	-0.0070 (16)	0.0116 (16)	-0.0128 (17)
C7	0.0495 (19)	0.0469 (18)	0.051 (2)	-0.0047 (15)	0.0185 (16)	-0.0067 (15)
C8	0.0438 (17)	0.0411 (16)	0.0413 (17)	-0.0008 (13)	0.0151 (14)	-0.0034 (13)
C9	0.0486 (18)	0.0439 (17)	0.0422 (17)	-0.0035 (14)	0.0165 (14)	-0.0022 (14)
C10	0.075 (3)	0.057 (2)	0.051 (2)	-0.0184 (19)	0.0198 (19)	0.0019 (18)
C11	0.100 (4)	0.079 (3)	0.050 (2)	-0.032 (3)	0.023 (2)	0.012 (2)
C12	0.095 (3)	0.079 (3)	0.039 (2)	-0.024 (3)	0.017 (2)	0.0074 (19)
C13	0.059 (2)	0.055 (2)	0.0360 (17)	-0.0048 (16)	0.0148 (15)	0.0002 (14)
C14	0.059 (2)	0.055 (2)	0.0346 (16)	-0.0044 (16)	0.0138 (15)	-0.0005 (14)
C15	0.072 (3)	0.079 (3)	0.0388 (19)	-0.012 (2)	0.0099 (18)	0.0017 (19)
C16	0.078 (3)	0.080 (3)	0.039 (2)	-0.007 (2)	0.0000 (19)	-0.0096 (19)
C17	0.051 (2)	0.059 (2)	0.051 (2)	-0.0018 (17)	0.0020 (16)	-0.0105 (17)
C18	0.0393 (17)	0.0478 (18)	0.0475 (19)	0.0015 (13)	0.0085 (14)	-0.0042 (14)
C19	0.073 (3)	0.070 (3)	0.067 (3)	-0.014 (2)	-0.006 (2)	-0.010 (2)
C20	0.064 (3)	0.068 (3)	0.086 (4)	-0.023 (2)	-0.001 (2)	0.002 (3)
C21	0.056 (2)	0.064 (3)	0.083 (3)	-0.0117 (19)	0.011 (2)	0.011 (2)
C22	0.0392 (18)	0.060 (2)	0.057 (2)	-0.0043 (16)	0.0135 (16)	-0.0141 (17)
C23	0.067 (2)	0.0447 (19)	0.049 (2)	0.0117 (17)	0.0121 (17)	0.0022 (15)
C24	0.062 (2)	0.050 (2)	0.059 (2)	0.0021 (17)	0.0035 (19)	0.0030 (17)
C25	0.093 (4)	0.053 (3)	0.076 (3)	-0.009 (2)	-0.001 (3)	0.008 (2)
C26	0.156 (6)	0.043 (2)	0.083 (4)	0.019 (3)	0.006 (4)	0.004 (2)
C27	0.155 (7)	0.066 (4)	0.138 (6)	0.049 (4)	0.050 (6)	-0.001 (4)
C28	0.104 (4)	0.066 (3)	0.128 (5)	0.029 (3)	0.058 (4)	0.004 (3)
C29	0.060 (2)	0.075 (3)	0.048 (2)	0.018 (2)	-0.0011 (18)	-0.0085 (19)
C30	0.086 (4)	0.104 (5)	0.091 (4)	-0.004 (3)	-0.019 (3)	-0.006 (3)
C31	0.107 (6)	0.145 (7)	0.109 (6)	-0.002 (5)	-0.044 (5)	-0.021 (5)
C32	0.164 (9)	0.178 (9)	0.077 (5)	0.075 (7)	-0.047 (5)	-0.031 (5)
C33	0.148 (8)	0.297 (15)	0.056 (4)	0.035 (9)	-0.007 (5)	0.036 (6)
C34	0.092 (5)	0.244 (10)	0.055 (3)	0.015 (5)	0.003 (3)	0.036 (5)
C35	0.0435 (18)	0.055 (2)	0.0495 (19)	0.0011 (14)	0.0166 (15)	-0.0077 (15)
C36	0.068 (3)	0.095 (3)	0.050(2)	-0.015 (2)	0.017 (2)	-0.008 (2)
C37	0.089 (4)	0.129 (5)	0.048 (3)	-0.010 (3)	0.018 (2)	-0.010 (3)
C38	0.099 (4)	0.107 (4)	0.074 (3)	-0.005 (3)	0.053 (3)	0.001 (3)
C39	0.113 (5)	0.165 (7)	0.101 (5)	-0.066 (5)	0.071 (4)	-0.037 (5)
C40	0.088 (4)	0.151 (6)	0.067 (3)	-0.060 (4)	0.034 (3)	-0.032 (3)
O2	0.146 (10)	0.222 (15)	0.095 (8)	-0.035 (10)	0.035 (7)	0.026 (9)
C41	0.21 (3)	0.121 (15)	0.144 (19)	0.027 (17)	0.064 (18)	0.014 (14)
C42	0.158 (16)	0.094 (10)	0.107 (12)	-0.008 (10)	0.040 (11)	-0.005 (9)
C43	0.26 (5)	0.30 (5)	0.18 (3)	-0.06 (3)	-0.07 (3)	0.11 (3)

Geometric parameters (Å, °)

Ru1—N3	1.936 (3)	C16—C17	1.388 (7)	
Ru1—N2	2.100 (3)	C16—H10	0.9300	
Ru1—N4	2.105 (3)	C17—C19	1.419 (6)	
Ru1—N6	2.105 (3)	C17—C18	1.421 (5)	
Ru1—O1	2.176 (3)	C19—C20	1.338 (8)	
Ru1—P1	2.3409 (9)	C19—H11	0.9300	

S1-C22	1.637 (4)	C20—C21	1.421 (7)
P1—C35	1.836 (4)	C20—H12	0.9300
P1—C23	1.836 (4)	C21—H13	0.9300
P1-C29	1.839 (4)	C23—C24	1.377 (6)
P2—F6	1.562 (4)	C23—C28	1.380(7)
P2—F1	1.577 (3)	C24—C25	1.393 (6)
P2—F4	1.579 (4)	C24—H14	0.9300
P2—F2	1.588 (3)	C25—C26	1.346 (9)
P2—F3	1.588 (3)	C25—H15	0.9300
P2—F5	1.590 (3)	C26—C27	1.340 (10)
N1-C1	1 319 (5)	C26—H16	0.9300
N1—C5	1.350(5)	C27-C28	1 381 (8)
N2-C8	1 345 (4)	C27—H17	0.9300
N2	1 379 (4)	C_{28} H18	0.9300
N3_C13	1.379(4) 1 353 (4)	C_{29} C_{30}	1 328 (7)
N3 C0	1.359 (4)	C_{2}^{2} C_{3}^{4}	1.326(7) 1.355(9)
NJ = CJ	1.339 (4)	$C_{29} = C_{34}$	1.333(9) 1.302(0)
N4 - C19	1.330(3) 1.274(4)	$C_{30} = C_{31}$	1.392 (9)
N4-C18	1.3/4 (4)	C30—H19	0.9300
N5	1.318 (3)	C31 - C32	1.298 (15)
N5	1.346 (5)	C31—H20	0.9300
N6	1.116 (5)	$C_{32} = C_{33}$	1.324 (15)
CI - C2	1.403 (6)	C32—H21	0.9300
CI—HI	0.9300	C33—C34	1.406 (9)
C2—C3	1.355 (6)	C33—H22	0.9300
C2—H2	0.9300	C34—H23	0.9300
C3—C4	1.419 (5)	C35—C40	1.368 (6)
С3—Н3	0.9300	C35—C36	1.376 (6)
C4—C5	1.407 (5)	C36—C37	1.370 (7)
C4—C6	1.413 (6)	C36—H24	0.9300
С6—С7	1.356 (6)	C37—C38	1.346 (8)
С6—Н4	0.9300	C37—H25	0.9300
С7—С8	1.404 (5)	C38—C39	1.377 (9)
С7—Н5	0.9300	C38—H26	0.9300
C8—C9	1.465 (5)	C39—C40	1.385 (8)
C9—C10	1.379 (5)	C39—H27	0.9300
C10—C11	1.397 (6)	C40—H28	0.9300
С10—Н6	0.9300	O2—C42	1.19 (2)
C11—C12	1.386 (6)	C41—C42	1.47 (3)
С11—Н7	0.9300	C41—H29	0.9600
C12—C13	1.374 (5)	C41—H30	0.9600
С12—Н8	0.9300	C41—H31	0.9600
C13—C14	1.474 (5)	C42—C43	1.53 (3)
C14—C15	1.400 (5)	C43—H32	0.9600
C15—C16	1.356 (6)	C43—H33	0.9600
С15—Н9	0.9300	C43—H34	0.9600
N3—Ru1—N2	79.15 (11)	С16—С15—Н9	120.2
N3—Ru1—N4	79.47 (11)	C14—C15—H9	120.2
			1 2012

N2—Ru1—N4	158.24 (12)	C15—C16—C17	119.8 (4)
N3—Ru1—N6	90.12 (13)	C15—C16—H10	120.1
N2—Ru1—N6	87.81 (11)	C17—C16—H10	120.1
N4—Ru1—N6	88 21 (12)	$C_{16} - C_{17} - C_{19}$	124 3 (4)
$N_3 R_{11} O_1$	175 58 (11)	$C_{16} - C_{17} - C_{18}$	121.3(1) 1188(4)
$N_2 = R_{11} = O_1$	96 97 (11)	C19 - C17 - C18	116.8(4)
N4 $Ru1$ $O1$	$104\ 23\ (11)$	N5_C18_N4	115.9(3)
N6 Ru1 O1	87 59 (13)	$N_{5} - C_{18} - C_{17}$	113.9(3) 122.9(3)
$N_3 R_{11} P_1$	97.37(13)	N_{4} C18 C17	122.9(3) 121.2(3)
$N_2 = R_{11} = P_1$	92.21(9)	C_{20} C_{10} C_{17}	121.2(3)
$N_2 - K_{U1} - I_1$ $N_4 - P_{U1} - P_1$	91.25(8)	$C_{20} = C_{19} = C_{17}$	119.9 (4)
N4 - Ku1 - 1 N6 - Pu1 - P1	33.01(0)	$C_{20} = C_{19} = H_{11}$	120.0
10 - Ku = 1	177.27(9)	$C_{10} = C_{10} = C_{11}$	120.0
OI - KuI - PI	89.98(9)	C19 - C20 - C21	119.0 (4)
$C_{22} = P_1 = C_{22}$	100.95(18)	C19 - C20 - H12	120.5
$C_{33} = P_1 = C_{29}$	109.5(2)	C21—C20—H12	120.5
C23—P1—C29	101.0 (2)	N5 - C21 - C20	123.5 (5)
C_{35} —PI—Rul	112.05 (13)	N5-C21-H13	118.3
C23—PI—Rul	120.14 (14)	C20—C21—H13	118.3
C29—P1—Rul	112.01 (15)	N6—C22—S1	178.2 (4)
F6—P2—F1	89.9 (3)	C24—C23—C28	118.1 (4)
F6—P2—F4	179.6 (3)	C24—C23—P1	121.8 (3)
F1—P2—F4	90.6 (3)	C28—C23—P1	120.1 (4)
F6—P2—F2	90.3 (2)	C23—C24—C25	119.9 (5)
F1—P2—F2	179.7 (3)	C23—C24—H14	120.0
F4—P2—F2	89.3 (2)	C25—C24—H14	120.0
F6—P2—F3	90.5 (2)	C26—C25—C24	121.1 (6)
F1—P2—F3	89.7 (2)	С26—С25—Н15	119.5
F4—P2—F3	89.5 (2)	C24—C25—H15	119.5
F2—P2—F3	90.49 (19)	C27—C26—C25	119.3 (5)
F6—P2—F5	88.4 (2)	С27—С26—Н16	120.4
F1—P2—F5	89.9 (2)	С25—С26—Н16	120.4
F4—P2—F5	91.5 (2)	C26—C27—C28	121.5 (6)
F2—P2—F5	89.90 (18)	С26—С27—Н17	119.2
F3—P2—F5	178.9 (2)	С28—С27—Н17	119.2
C1—N1—C5	118.0 (3)	C23—C28—C27	120.1 (6)
C8—N2—C5	118.0 (3)	C23—C28—H18	119.9
C8—N2—Ru1	112.9 (2)	C27—C28—H18	119.9
C5—N2—Ru1	129.1 (2)	C30—C29—C34	114.8 (6)
C13—N3—C9	120.8 (3)	C30—C29—P1	126.1 (5)
C13—N3—Ru1	119.8 (2)	C34—C29—P1	117.3 (4)
C9—N3—Ru1	119.4 (2)	C29—C30—C31	122.9 (7)
C14—N4—C18	117.6 (3)	С29—С30—Н19	118.6
C14—N4—Ru1	112.3 (2)	С31—С30—Н19	118.6
C18—N4—Ru1	130.1 (2)	C32—C31—C30	121.3 (8)
C21—N5—C18	117.8 (4)	C32—C31—H20	119.4
C22—N6—Ru1	175.6 (3)	C30—C31—H20	119.4
N1—C1—C2	123.9 (4)	C31—C32—C33	118.3 (7)
N1—C1—H1	118.0	C31—C32—H21	120.9

C2—C1—H1	118.0	C33—C32—H21	120.9
C3—C2—C1	118.7 (4)	C32—C33—C34	120.8 (10)
С3—С2—Н2	120.6	С32—С33—Н22	119.6
C1—C2—H2	120.6	C34—C33—H22	119.6
C2—C3—C4	119.2 (4)	C29—C34—C33	121.4 (9)
С2—С3—Н3	120.4	C29—C34—H23	119.3
С4—С3—Н3	120.4	C33—C34—H23	119.3
C5-C4-C6	118.6 (3)	C40—C35—C36	117.2 (4)
C5—C4—C3	117.8 (4)	C40—C35—P1	124.4 (3)
C6—C4—C3	123.6 (4)	C36—C35—P1	118.0 (3)
N1-C5-N2	116.2 (3)	C37—C36—C35	121.8 (4)
N1-C5-C4	122.3(3)	C37—C36—H24	119.1
N2-C5-C4	121.5(3)	C35—C36—H24	119.1
C7-C6-C4	1194(3)	$C_{38} - C_{37} - C_{36}$	1211(5)
C7—C6—H4	120.3	$C_{38} = C_{37} = H_{25}$	119.4
C4-C6-H4	120.3	$C_{36} = C_{37} = H_{25}$	119.4
C_{6}	119.7 (3)	C_{37} C_{38} C_{39}	118.1 (5)
C6-C7-H5	120.1	C_{37} C_{38} H_{26}	120.9
$C_{0} = C_{7} = H_{5}$	120.1	$C_{39} C_{38} H_{26}$	120.9
$N_{2} = C_{8} = C_{7}$	120.1 122.7(3)	$C_{39} = C_{38} = C_{40}$	120.9
$N_2 = C_8 = C_7$	122.7(3) 115.5(3)	$C_{38} = C_{39} = C_{40}$	121.0 (5)
112 - 03 - 03	113.3(3) 121.8(3)	$C_{38} = C_{39} = H_{27}$	119.5
$C_{1} = C_{3} = C_{1}$	121.0(3) 120.6(3)	$C_{40} = C_{39} = 1127$	119.5
$N_2 = C_0 = C_1 C_2$	120.0(3)	$C_{35} = C_{40} = C_{35}$	120.0(3)
$N_{3} = C_{9} = C_{8}$	115.0(3) 126.4(2)	$C_{33} = C_{40} = H_{28}$	119.7
C10 - C9 - C8	120.4(3)	$C_{40} = C_{40} = H_{28}$	119.7
C_{2}	118.9 (4)	C42 - C41 - H29	109.5
$C_{11} = C_{10} = H_{0}$	120.5	$H_{20} = C_{41} = H_{30}$	109.5
СП—СПО—Н6	120.5	$H_{29} - C_{41} - H_{30}$	109.5
C12 = C11 = C10	119.5 (4)	C42 - C41 - H31	109.5
С12—С11—Н/	120.2	H29—C41—H31	109.5
C10—C11—H7	120.2	H30—C41—H31	109.5
C13—C12—C11	119.6 (4)	02-C42-C41	121 (2)
С13—С12—Н8	120.2	02	120 (2)
С11—С12—Н8	120.2	C41—C42—C43	118 (2)
N3-C13-C12	120.6 (3)	С42—С43—Н32	109.5
N3—C13—C14	112.9 (3)	С42—С43—Н33	109.5
C12—C13—C14	126.6 (3)	H32—C43—H33	109.5
N4—C14—C15	122.6 (3)	C42—C43—H34	109.5
N4—C14—C13	115.7 (3)	H32—C43—H34	109.5
C15—C14—C13	121.7 (3)	H33—C43—H34	109.5
C16—C15—C14	119.7 (4)		
C5—N1—C1—C2	-0.1 (8)	C21—N5—C18—C17	-1.8 (6)
N1—C1—C2—C3	-0.7(8)	C14—N4—C18—N5	175.8 (3)
C1 - C2 - C3 - C4	-0.3(7)	Ru1—N4—C18—N5	-2.1(5)
$C_2 - C_3 - C_4 - C_5$	2.0 (7)	C14—N4—C18—C17	-4.3 (5)
$C_2 - C_3 - C_4 - C_6$	-177.3(4)	Ru1—N4—C18—C17	177.8 (3)
C1 - N1 - C5 - N2	-1792(4)	C_{16} C_{17} C_{18} N_{5}	-1787(4)
01 111 05 112	1/2.2 (7)		I / 0. / (T)

C1—N1—C5—C4	1.9 (6)	C19—C17—C18—N5	2.1 (6)
C8—N2—C5—N1	-175.2 (3)	C16—C17—C18—N4	1.5 (6)
Ru1—N2—C5—N1	5.5 (5)	C19—C17—C18—N4	-177.8 (4)
C8—N2—C5—C4	3.6 (5)	C16—C17—C19—C20	-179.6 (5)
Ru1—N2—C5—C4	-175.6 (3)	C18—C17—C19—C20	-0.4 (8)
C6-C4-C5-N1	176.5 (4)	C17—C19—C20—C21	-1.4(9)
C3—C4—C5—N1	-2.9(6)	C18—N5—C21—C20	-0.2(8)
C6—C4—C5—N2	-2.3(6)	C19—C20—C21—N5	1.8 (9)
C3—C4—C5—N2	178.3 (4)	C35—P1—C23—C24	140.2 (4)
C5-C4-C6-C7	-0.2(6)	C29—P1—C23—C24	-107.1(4)
C_{3} C_{4} C_{6} C_{7}	179.2(4)	$R_{11} - P_{1} - C_{23} - C_{24}$	166(4)
C4-C6-C7-C8	1 2 (6)	C_{35} P1 C_{23} C_{28}	-425(5)
C_{5} N2 C_{8} C_{7}	-26(5)	C_{29} P1 C_{23} C_{20}	70.1(5)
$R_{11} N_{2} C_{8} C_{7}$	176.8(3)	$R_{\mu}1 - P1 - C23 - C28$	-166.2(4)
$C_{5} N_{2} C_{8} C_{9}$	170.0(3) 178.4(3)	$C_{28}^{28} C_{23}^{23} C_{24}^{24} C_{25}^{25}$	-0.7(7)
$P_{11} = N_2 = C_3 = C_3$	-22(4)	$P_1 = C_{23} = C_{24} = C_{25}$	176.6(4)
Ru1 - N2 - C3 - C3	2.2(4)	11 - 025 - 024 - 025	170.0(4)
$C_{0} - C_{1} - C_{0} - C_{1}$	0.2(0)	$C_{23} = C_{24} = C_{23} = C_{20}$	-0.7(7)
$C_{0} - C_{0} - C_{0} - C_{0}$	1/9.2 (4)	$C_{24} = C_{25} = C_{26} = C_{27}$	1.3 (9)
C13 - N3 - C9 - C10	1.8 (6)	$C_{25} = C_{26} = C_{27} = C_{28}$	-0.5(12)
Ru1 - N3 - C9 - C10	179.3 (3)	C24—C23—C28—C27	1.4 (9)
C13—N3—C9—C8	-176.9 (3)	P1—C23—C28—C27	-175.9 (6)
Ru1—N3—C9—C8	0.5 (4)	C26—C27—C28—C23	-0.9 (12)
N2—C8—C9—N3	1.2 (5)	C35—P1—C29—C30	-48.5 (6)
C7—C8—C9—N3	-177.8 (3)	C23—P1—C29—C30	-154.4 (6)
N2—C8—C9—C10	-177.4 (4)	Ru1—P1—C29—C30	76.5 (6)
C7—C8—C9—C10	3.6 (6)	C35—P1—C29—C34	147.9 (5)
N3—C9—C10—C11	-0.9 (7)	C23—P1—C29—C34	42.0 (6)
C8—C9—C10—C11	177.7 (5)	Ru1—P1—C29—C34	-87.1 (6)
C9—C10—C11—C12	-0.3 (9)	C34—C29—C30—C31	-9.3 (11)
C10-C11-C12-C13	0.5 (9)	P1-C29-C30-C31	-173.3 (7)
C9—N3—C13—C12	-1.6 (6)	C29—C30—C31—C32	6.4 (15)
Ru1—N3—C13—C12	-179.0 (4)	C30—C31—C32—C33	0.2 (17)
C9—N3—C13—C14	177.5 (3)	C31—C32—C33—C34	-2.9(18)
Ru1—N3—C13—C14	0.1 (5)	C30—C29—C34—C33	6.4 (12)
C11—C12—C13—N3	0.4 (8)	P1—C29—C34—C33	171.9 (8)
C11—C12—C13—C14	-178.6(5)	C32—C33—C34—C29	-0.5(17)
C18 - N4 - C14 - C15	4.0 (6)	C_{23} P_{1} C_{35} C_{40}	134.2 (5)
$R_{\rm H}1$ —N4—C14—C15	-177.8(4)	C_{29} P1 C_{35} C40	28.2(6)
C18 - N4 - C14 - C13	-1775(3)	$R_{11} = P_{1} = C_{35} = C_{40}$	-967(5)
$R_{\rm H} = N4 - C14 - C13$	0.7(4)	C_{23} P1 C_{25} C 10	-519(4)
$N_3 C_{13} C_{14} N_4$	-0.6(5)	C_{29} P1 C_{35} C_{36}	-157.9(4)
$C_{12} = C_{13} = C_{14} = C_{14}$	178 5 (5)	$P_{1} = P_{1} = C_{35} = C_{36}$	137.7(4)
$V_{12} = V_{13} = V_{14} = V_{14}$	170.3(3) 1770(4)	C_{40} C_{25} C_{26} C_{27}	1 1 (0)
113 - 013 - 014 - 013	1/7.9(4) -2 0(8)	$C_{+0} - C_{3} - C_{$	1.1(7) -172 2(5)
$\begin{array}{c} 12 \\ 12 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	-5.0(8)	$r_1 - c_{33} - c_{30} - c_{37} - c_{39}$	-1/5.2(5)
N4 - U14 - U15 - U16	-0.0(8)	$C_{33} - C_{30} - C_{37} - C_{38} - C_{30}$	-0.1(10)
C13 - C14 - C15 - C16	-1/9.1(3)	$C_{30} - C_{3} / - C_{30} - C_{39} / C_{30} - C_{39} / C_{30} - C_{30} / C_{30} - C_{30} / $	-1.5(11)
C14—C15—C16—C17	-2.4 (8)	$C_3/-C_38-C_39-C_40$	1.8 (13)
C15—C16—C17—C19	-178.9 (5)	C36—C35—C40—C39	-0.6(11)

C15—C16—C17—C18	2.0 (8)	P1-C35-C40-C39	173.4 (7)
C21—N5—C18—N4	178.1 (4)	C38—C39—C40—C35	-0.9 (14)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
0.93	2.45	3.369 (6)	170
0.93	2.45	3.345 (6)	162
0.93	2.59	3.213 (14)	124
0.93	2.43	3.210 (5)	141
0.93	2.43	3.144 (6)	134
0.93	2.54	3.347 (7)	145
0.96	2.40	3.26 (3)	150
	<i>D</i> —H 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	D—H H…A 0.93 2.45 0.93 2.45 0.93 2.59 0.93 2.43 0.93 2.43 0.93 2.43 0.93 2.43 0.93 2.43 0.93 2.43 0.93 2.43 0.93 2.43 0.93 2.43	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Symmetry codes: (i) -*x*, -*y*, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2.

trans-[2,6-Bis(1,8-naphthyridin-2-yl)pyridine- $\kappa^{3'}N$, N', N'']bis(pyridine- κN)(thiocyanato- κN)ruthenium(II) thiocyanate (II)

Crystal data

$[Ru(NCS)(C_{21}H_{13}N_5)(C_5H_5N)_2]NCS$	F(000) = 1440.00
$M_r = 710.79$	$D_{\rm x} = 1.600 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
a = 12.6556 (10) Å	Cell parameters from 7649 reflections
b = 14.0986 (7) Å	$\theta = 3.1 - 27.6^{\circ}$
c = 17.4421 (14) Å	$\mu=0.72~\mathrm{mm^{-1}}$
$\beta = 108.535 \ (3)^{\circ}$	T = 93 K
$V = 2950.7 (4) Å^3$	Platelet, purple
Z = 4	$0.25 \times 0.15 \times 0.05 \text{ mm}$
Data collection	
Rigaku Saturn724	6758 independent reflections
diffractometer	6058 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 28.626 pixels mm ⁻¹	$R_{\rm int} = 0.029$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(<i>REQAB</i> ; Rigaku, 1998)	$k = -18 \rightarrow 18$
$T_{\min} = 0.927, \ T_{\max} = 0.965$	$l = -22 \rightarrow 21$
30135 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.091$ S = 1.10 6758 reflections 406 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 2.9803P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.13$ e Å⁻³ $\Delta\rho_{min} = -0.81$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ru1	0.73332 (2)	0.38197 (2)	0.79490 (2)	0.01220 (7)
S1	0.39862 (5)	0.39265 (5)	0.87218 (4)	0.02286 (14)
S2	1.08750 (7)	0.12965 (7)	0.89031 (6)	0.0466 (2)
N1	0.70294 (18)	0.38857 (15)	0.98054 (13)	0.0213 (4)
N2	0.83872 (16)	0.38102 (13)	0.91797 (12)	0.0155 (4)
N3	0.88229 (16)	0.37934 (13)	0.78244 (13)	0.0161 (4)
N4	0.69378 (17)	0.37739 (13)	0.66605 (12)	0.0155 (4)
N5	0.50056 (17)	0.38259 (15)	0.62868 (13)	0.0195 (4)
N6	0.73064 (15)	0.52961 (14)	0.79703 (11)	0.0144 (4)
N7	0.71689 (16)	0.23463 (14)	0.79725 (11)	0.0148 (4)
N8	0.57797 (16)	0.38875 (13)	0.81029 (12)	0.0150 (4)
N9	1.1118 (3)	0.1261 (2)	1.0511 (3)	0.0605 (10)
C1	0.6735 (2)	0.38898 (19)	1.04670 (16)	0.0250 (6)
H1	0.596645	0.395157	1.040937	0.030*
C2	0.7502 (2)	0.38073 (18)	1.12584 (16)	0.0257 (6)
H2	0.725046	0.381745	1.171672	0.031*
C3	0.8603 (2)	0.37134 (19)	1.13490 (16)	0.0263 (6)
H3	0.913218	0.365204	1.187311	0.032*
C4	0.8955 (2)	0.37077 (18)	1.06568 (16)	0.0222 (5)
C5	0.8121 (2)	0.37965 (16)	0.98896 (15)	0.0170 (5)
C6	1.0075 (2)	0.3633 (2)	1.06873 (17)	0.0302 (6)
H4	1.064516	0.355198	1.119123	0.036*
C7	1.0338 (2)	0.3677 (2)	0.99887 (17)	0.0287 (6)
Н5	1.109374	0.363961	1.000289	0.034*
C8	0.9484 (2)	0.37788 (17)	0.92474 (16)	0.0192 (5)
C9	0.9741 (2)	0.38180 (16)	0.84863 (16)	0.0189 (5)
C10	1.0804 (2)	0.38683 (18)	0.84086 (17)	0.0236 (5)
H6	1.144589	0.388480	0.887533	0.028*
C11	1.0912 (2)	0.38939 (18)	0.76456 (18)	0.0257 (6)
H7	1.162986	0.394404	0.758536	0.031*
C12	0.9974 (2)	0.38464 (18)	0.69684 (17)	0.0236 (5)
H8	1.004151	0.385025	0.644116	0.028*
C13	0.8932 (2)	0.37929 (16)	0.70748 (15)	0.0181 (5)
C14	0.7866 (2)	0.37476 (16)	0.64229 (16)	0.0192 (5)
C15	0.7840 (2)	0.3661 (2)	0.56132 (16)	0.0258 (6)
Н9	0.851351	0.365671	0.548224	0.031*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C16	0.6846 (2)	0.3583 (2)	0.50232 (16)	0.0284 (6)
H10	0.681492	0.349725	0.447630	0.034*
C17	0.5856 (2)	0.36317 (19)	0.52286 (15)	0.0228 (5)
C18	0.5922 (2)	0.37458 (16)	0.60530 (15)	0.0176 (5)
C19	0.4790 (2)	0.3594 (2)	0.46440 (16)	0.0307 (6)
H11	0.471574	0.350438	0.408944	0.037*
C20	0.3871 (2)	0.3686 (2)	0.48793 (16)	0.0288 (6)
H12	0.314452	0.367060	0.449543	0.035*
C21	0.4027 (2)	0.38040 (18)	0.57117 (16)	0.0225 (5)
H13	0.338013	0.387331	0.587133	0.027*
C22	0.69873 (19)	0.57334 (17)	0.85510 (15)	0.0179 (5)
H14	0.684341	0.535624	0.895819	0.022*
C23	0.6862 (2)	0.67017 (18)	0.85773 (16)	0.0228 (5)
H15	0.664358	0.698350	0.899817	0.027*
C24	0.7058 (2)	0.72600 (18)	0.79841 (16)	0.0254 (6)
H16	0.696320	0.792839	0.798536	0.030*
C25	0.7396 (2)	0.68249 (18)	0.73875 (16)	0.0239 (5)
H17	0.754158	0.719108	0.697497	0.029*
C26	0.7518 (2)	0.58469 (18)	0.74030 (15)	0.0189 (5)
H18	0.775997	0.555269	0.699798	0.023*
C27	0.8032 (2)	0.17690 (17)	0.83344 (14)	0.0174 (5)
H19	0.875293	0.203965	0.855670	0.021*
C28	0.7914 (2)	0.07944 (18)	0.83963 (15)	0.0206 (5)
H20	0.854209	0.040994	0.865668	0.025*
C29	0.6872 (2)	0.03930 (18)	0.80747 (16)	0.0236 (5)
H21	0.677155	-0.027208	0.810502	0.028*
C30	0.5974 (2)	0.09807 (18)	0.77057 (16)	0.0215 (5)
H22	0.524601	0.072233	0.748726	0.026*
C31	0.6145 (2)	0.19431 (17)	0.76586 (15)	0.0183 (5)
H23	0.552640	0.233747	0.739781	0.022*
C32	0.50337 (19)	0.38985 (16)	0.83534 (14)	0.0156 (4)
C33	1.1013 (3)	0.1275 (2)	0.9913 (3)	0.0385 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.01117 (10)	0.01297 (10)	0.01255 (10)	0.00016 (6)	0.00390 (7)	0.00024 (7)
S 1	0.0170 (3)	0.0297 (3)	0.0251 (3)	-0.0005 (2)	0.0111 (2)	-0.0020 (3)
S2	0.0280 (4)	0.0616 (6)	0.0502 (5)	0.0079 (4)	0.0122 (4)	0.0023 (4)
N1	0.0198 (10)	0.0278 (11)	0.0160 (10)	0.0031 (8)	0.0055 (8)	0.0019 (8)
N2	0.0145 (9)	0.0156 (9)	0.0144 (10)	-0.0001 (7)	0.0020 (8)	0.0011 (7)
N3	0.0155 (9)	0.0147 (9)	0.0196 (10)	-0.0002 (7)	0.0076 (8)	0.0009 (8)
N4	0.0182 (9)	0.0157 (9)	0.0139 (9)	0.0003 (7)	0.0069 (8)	0.0010(7)
N5	0.0183 (10)	0.0246 (11)	0.0153 (10)	0.0000 (8)	0.0049 (8)	-0.0010 (8)
N6	0.0131 (9)	0.0137 (9)	0.0141 (9)	0.0001 (7)	0.0012 (7)	0.0013 (7)
N7	0.0168 (9)	0.0139 (9)	0.0149 (9)	-0.0010 (7)	0.0069 (8)	-0.0012 (7)
N8	0.0143 (9)	0.0163 (9)	0.0138 (9)	0.0001 (7)	0.0036 (7)	-0.0001 (7)
N9	0.074 (2)	0.0450 (19)	0.092 (3)	-0.0064 (16)	0.068 (2)	-0.0125 (19)

C1	0.0267 (13)	0.0310 (14)	0.0201 (13)	0.0053 (11)	0.0112 (11)	0.0029 (10)
C2	0.0354 (15)	0.0266 (14)	0.0170 (12)	0.0003 (11)	0.0107 (11)	0.0011 (10)
C3	0.0320 (14)	0.0269 (14)	0.0150 (12)	-0.0016 (11)	0.0005 (11)	0.0023 (10)
C4	0.0236 (12)	0.0209 (12)	0.0176 (12)	-0.0002 (10)	0.0003 (10)	0.0013 (10)
C5	0.0189 (11)	0.0148 (11)	0.0163 (11)	0.0001 (9)	0.0042 (9)	0.0007 (9)
C6	0.0203 (13)	0.0416 (16)	0.0218 (13)	-0.0003 (11)	-0.0031 (11)	0.0040 (12)
C7	0.0169 (12)	0.0390 (16)	0.0260 (14)	0.0010 (11)	0.0009 (11)	0.0041 (12)
C8	0.0144 (11)	0.0178 (11)	0.0236 (13)	-0.0003 (9)	0.0036 (10)	0.0015 (9)
C9	0.0152 (11)	0.0172 (11)	0.0236 (13)	0.0000 (9)	0.0054 (10)	0.0011 (9)
C10	0.0158 (11)	0.0237 (13)	0.0310 (14)	0.0001 (9)	0.0070 (10)	0.0003 (11)
C11	0.0168 (12)	0.0256 (13)	0.0387 (16)	-0.0012 (10)	0.0145 (11)	0.0020 (11)
C12	0.0221 (12)	0.0245 (13)	0.0297 (14)	0.0003 (10)	0.0163 (11)	0.0012 (11)
C13	0.0197 (12)	0.0174 (11)	0.0202 (12)	0.0012 (9)	0.0105 (10)	0.0010 (9)
C14	0.0197 (12)	0.0167 (11)	0.0231 (13)	0.0015 (9)	0.0094 (10)	0.0000 (9)
C15	0.0268 (13)	0.0329 (15)	0.0223 (13)	0.0019 (11)	0.0142 (11)	0.0023 (11)
C16	0.0318 (14)	0.0399 (16)	0.0173 (13)	0.0023 (12)	0.0128 (11)	0.0005 (11)
C17	0.0263 (13)	0.0281 (13)	0.0145 (12)	0.0015 (10)	0.0073 (10)	0.0023 (10)
C18	0.0200 (11)	0.0161 (11)	0.0168 (12)	-0.0008 (9)	0.0058 (9)	-0.0011 (9)
C19	0.0356 (15)	0.0422 (16)	0.0135 (12)	0.0007 (13)	0.0068 (11)	-0.0013 (11)
C20	0.0231 (13)	0.0411 (16)	0.0178 (13)	-0.0005 (11)	0.0001 (10)	-0.0006 (11)
C21	0.0206 (12)	0.0281 (14)	0.0183 (12)	-0.0006 (10)	0.0053 (10)	-0.0018 (10)
C22	0.0174 (11)	0.0193 (12)	0.0165 (11)	0.0009 (9)	0.0045 (9)	0.0009 (9)
C23	0.0239 (12)	0.0205 (12)	0.0221 (13)	0.0037 (10)	0.0048 (10)	-0.0024 (10)
C24	0.0323 (14)	0.0141 (12)	0.0264 (14)	0.0032 (10)	0.0045 (11)	0.0009 (10)
C25	0.0291 (13)	0.0181 (12)	0.0223 (13)	-0.0018 (10)	0.0049 (11)	0.0036 (10)
C26	0.0192 (11)	0.0188 (11)	0.0172 (12)	-0.0010 (9)	0.0038 (9)	0.0023 (9)
C27	0.0170 (11)	0.0196 (12)	0.0159 (11)	0.0016 (9)	0.0057 (9)	-0.0010 (9)
C28	0.0248 (12)	0.0186 (12)	0.0199 (12)	0.0046 (10)	0.0092 (10)	0.0021 (10)
C29	0.0362 (14)	0.0155 (12)	0.0225 (13)	-0.0025 (10)	0.0144 (11)	-0.0007 (10)
C30	0.0225 (12)	0.0209 (12)	0.0214 (13)	-0.0065 (10)	0.0075 (10)	-0.0044 (10)
C31	0.0172 (11)	0.0194 (12)	0.0178 (12)	-0.0013 (9)	0.0050 (9)	-0.0031 (9)
C32	0.0163 (11)	0.0148 (11)	0.0133 (11)	0.0006 (8)	0.0015 (9)	0.0001 (8)
C33	0.0233 (14)	0.0296 (16)	0.056 (2)	-0.0018 (12)	0.0027 (15)	0.0152 (15)

Geometric parameters (Å, °)

Ru1—N3	1.966 (2)	C10—C11	1.381 (4)	
Ru1—N8	2.069 (2)	С10—Н6	0.9500	
Ru1—N6	2.0824 (19)	C11—C12	1.384 (4)	
Ru1—N7	2.0893 (19)	С11—Н7	0.9500	
Ru1—N2	2.137 (2)	C12—C13	1.391 (3)	
Ru1—N4	2.142 (2)	С12—Н8	0.9500	
S1—C32	1.647 (2)	C13—C14	1.464 (4)	
S2—C33	1.715 (4)	C14—C15	1.407 (4)	
N1—C1	1.320 (3)	C15—C16	1.353 (4)	
N1—C5	1.348 (3)	С15—Н9	0.9500	
N2—C8	1.355 (3)	C16—C17	1.410 (4)	
N2—C5	1.383 (3)	C16—H10	0.9500	

N3—C9	1.353 (3)	C17—C19	1.410 (4)
N3—C13	1.358 (3)	C17—C18	1.423 (3)
N4—C14	1.365 (3)	C19—C20	1.357 (4)
N4—C18	1.382 (3)	C19—H11	0.9500
N5—C21	1.323 (3)	C20—C21	1.412 (4)
N5—C18	1.351 (3)	C20—H12	0.9500
N6—C26	1.350 (3)	С21—Н13	0.9500
N6—C22	1.352 (3)	C22—C23	1.377 (4)
N7—C27	1.348 (3)	С22—Н14	0.9500
N7—C31	1.361 (3)	C23—C24	1.384 (4)
N8—C32	1.160 (3)	C23—H15	0.9500
N9—C33	1.009 (5)	C24—C25	1.387 (4)
C1-C2	1 417 (4)	C24—H16	0.9500
C1—H1	0.9500	C_{25} C_{26}	1 387 (4)
$C^2 - C^3$	1 358 (4)	C25—H17	0.9500
C2—H2	0.9500	C26—H18	0.9500
$C_2 = C_4$	1 413 (4)	$C_{20} = C_{20}$	1.390(3)
C3 H3	0.9500	$C_{27} = C_{20}$	0.0500
C4 C6	1.407(4)	C_{2}^{2} C_{2}^{0}	1.370(4)
C_{4}	1.407(4)	C_{20} C	0.0500
C4 = C3	1.422(3) 1.262(4)	$C_{20} = C_{20}$	1 280 (4)
	1.505 (4)	$C_{29} = C_{30}$	1.369 (4)
$C_0 = H_4$	0.9300	C29—H21	0.9300
C/-C8	1.405 (4)	C_{30} U_{32}	1.381 (3)
C/—H5	0.9500	C30—H22	0.9500
C8-C9	1.465 (4)	C31—H23	0.9500
C9—C10	1.396 (3)		
N3—Ru1—N8	178.11 (8)	С10—С11—Н7	120.0
N3—Ru1—N6	92.43 (7)	С12—С11—Н7	120.0
N8—Ru1—N6	85.99 (7)	C11-C12-C13	118.7(2)
N3—Ru1—N7	95 07 (7)	С11—С12—Н8	120.6
N8—Ru1—N7	86 49 (7)	C13—C12—H8	120.6
N6—Ru1—N7	172.39(7)	N3-C13-C12	120.0 121.3(2)
$N_3 = R_{11} = N_2$	78 26 (8)	N3-C13-C14	121.3(2) 1134(2)
N8— $Ru1$ — $N2$	100.68 (8)	C_{12} C_{13} C_{14}	1253(2)
N6 $Ru1$ $N2$	89 82 (7)	N4-C14-C15	123.3(2) 124.0(2)
N7— $Ru1$ — $N2$	90.47(7)	N4 - C14 - C13	124.0(2) 1156(2)
$N_3 R_{11} N_4$	78 22 (8)	C_{15} C_{14} C_{13}	120.3(2)
N8 Pu1 N4	102.88 (8)	$C_{15} = C_{14} = C_{15}$	120.3(2) 110.3(2)
N6 Pu1 N4	102.00(0)	$C_{16} = C_{15} = C_{14}$	119.3 (2)
N7 Dy1 N4	92.02(7)	$C_{10} - C_{13} - H_{0}$	120.3
$N_{-}Ku_{-}N_{4}$	69.93(7)	$C_{14} - C_{13} - H_{9}$	120.3
$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}$	130.42(0)	C15 - C16 - U10	117.3 (<i>2</i>)
$C_{1} = N_{1} = C_{2}$	116.0(2)	C13 - C10 - H10	120.4
$C_0 = N_2 = C_3$	117.1(2)	C_{1} $-C_{10}$ $-H_{10}$	120.4
C_{δ} N2 D 1	112.50 (16)	C10 - C17 - C19	122.5 (2)
C_{2} N2 C_{12}	130.3 / (16)	C10 - C17 - C18	119.4 (2)
C9—N3—C13	119.9 (2)	C19—C17—C18	118.1 (2)
C9—N3—Ru1	119.92 (17)	N5-C18-N4	116.4 (2)

C13—N3—Ru1	120.09 (16)	N5—C18—C17	122.3 (2)
C14—N4—C18	116.5 (2)	N4—C18—C17	121.3 (2)
C14—N4—Ru1	112.51 (16)	C20—C19—C17	119.5 (2)
C18—N4—Ru1	130.93 (16)	C20—C19—H11	120.2
C21—N5—C18	117.1 (2)	C17—C19—H11	120.2
C26—N6—C22	117.6 (2)	C19—C20—C21	118.0 (3)
C26—N6—Ru1	123.63 (16)	C19—C20—H12	121.0
C22—N6—Ru1	118.65 (16)	C21—C20—H12	121.0
C27 - N7 - C31	117.6 (2)	N5—C21—C20	125.0 (2)
C27—N7—Ru1	122.59 (16)	N5-C21-H13	117.5
C_{31} N7 Rul	119 71 (16)	C20—C21—H13	117.5
C_{32} N8—Rul	166.03 (19)	N6-C22-C23	122.8(2)
N1-C1-C2	123.7(3)	N6-C22-H14	118.6
N1-C1-H1	118.1	C^{23} C^{22} H^{14}	118.6
$C_2 - C_1 - H_1$	118.1	$C_{22} = C_{23} = C_{24}$	110.0 119.3(2)
C_{3} C_{2} C_{1}	118.7 (3)	$C_{22} = C_{23} = C_{24}$	120.3
C_{3} C_{2} H_{2}	120.6	C_{24} C_{23} H_{15}	120.3
C_{1} C_{2} H_{2}	120.6	$C_{24} = C_{25} = III_5$	120.3 118.7(2)
$C_1 = C_2 = C_1$	120.0 110.4(2)	$C_{23} = C_{24} = C_{23}$	120.6
$C_2 = C_3 = C_4$	119.4 (2)	$C_{25} = C_{24} = H_{16}$	120.0
$C_2 = C_3 = H_3$	120.3	$C_{25} = C_{24} = 110$	120.0 1180(2)
C_{4} C_{3} C_{4} C_{3}	123.8 (2)	$C_{20} = C_{23} = C_{24}$	120.5
$C_{0} - C_{1} - C_{3}$	123.0(2) 118.7(2)	$C_{20} = C_{25} = H_{17}$	120.5
$C_0 = C_4 = C_5$	116.7(2) 117.6(2)	N6 C26 C25	120.3 122.6(2)
C_{3}	117.0(2) 115.7(2)	N6 C26 H18	122.0 (2)
N1 = C5 = C4	113.7(2) 122.6(2)	$N_0 = C_{20} = H_{18}$	110./
N1 - C5 - C4	122.0(2) 121.7(2)	N7 C27 C28	110.7
$N_2 - C_3 - C_4$	121.7(2) 110.5(2)	N = C27 = U10	122.8 (2)
$C^{-}C^{-}C^{-}C^{-}C^{+}$	119.5 (2)	$N = C_2 = H_1 = 0$	110.0
C/-C6-H4	120.2	$C_{20} = C_{27} = H_{19}$	110.0 110.1(2)
$C4 - C0 - \Pi4$	120.2	$C_{29} = C_{28} = C_{27}$	119.1 (2)
C6 C7 U5	119.5 (2)	$C_{29} = C_{28} = H_{20}$	120.4
C° C^{7} H^{5}	120.5	$C_{27} = C_{28} = C_{20} = C_{20}$	120.4 118 7 (2)
C_{0} C_{1} C_{1} C_{2} C_{2}	120.5 122.4(2)	$C_{28} = C_{29} = C_{30}$	110.7 (2)
N2 - C8 - C7	125.4(2) 115.0(2)	$C_{20} = C_{20} = H_{21}$	120.7
$N_2 - C_0 - C_9$	113.9(2)	$C_{20} = C_{29} = H_{21}$	120.7
1 - 10 - 10	120.7(2)	$C_{31} = C_{30} = C_{29}$	119.5 (2)
N3 - C9 - C10	120.7(2)	$C_{31} = C_{30} = H_{22}$	120.2
$N_{3} = C_{9} = C_{8}$	113.2(2) 126.1(2)	C29—C30—H22	120.2
C10 - C9 - C8	120.1(2)	N/-C31-C30	122.3 (2)
C11 = C10 = C9	119.2 (2)	$N = C_{31} = H_{23}$	118.9
C11 - C10 - H6	120.4	C30—C31—H23	118.9
С9—С10—Н6	120.4	N8-C32-S1	179.0 (2)
C10-C11-C12	120.1 (2)	N9—C33—S2	178.4 (4)
C5—N1—C1—C2	0.1 (4)	Ru1—N4—C14—C15	176.3 (2)
N1—C1—C2—C3	-0.4 (4)	C18—N4—C14—C13	179.1 (2)
C1—C2—C3—C4	0.5 (4)	Ru1—N4—C14—C13	-2.3 (2)
C2—C3—C4—C6	178.7 (3)	N3-C13-C14-N4	4.0 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-174.6 (2) 6.4 (4) -1.0 (4) 177.5 (2) 2.7 (4) 177.5 (3) -1.0 (4) 179.7 (2) -0.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.4 (4) -1.0 (4) 177.5 (2) 2.7 (4) 177.5 (3) -1.0 (4) 179.7 (2) -0.7 (3)
C8-N2-C5-N1 176.2 (2) $N4-C14-C15-C16$ $Ru1-N2-C5-N1$ -6.5 (3) $C13-C14-C15-C16$ $C8-N2-C5-C4$ -2.9 (3) $C14-C15-C16-C17$ $Ru1-N2-C5-C4$ 174.35 (17) $C15-C16-C17-C19$ $C6-C4-C5-N1$ -179.0 (2) $C15-C16-C17-C18$	-1.0 (4) 177.5 (2) 2.7 (4) 177.5 (3) -1.0 (4) 179.7 (2) -0.7 (3)
Ru1—N2—C5—N1 $-6.5 (3)$ C13—C14—C15—C16C8—N2—C5—C4 $-2.9 (3)$ C14—C15—C16—C17Ru1—N2—C5—C4174.35 (17)C15—C16—C17—C19C6—C4—C5—N1 $-179.0 (2)$ C15—C16—C17—C18	177.5 (2) 2.7 (4) 177.5 (3) -1.0 (4) 179.7 (2) -0.7 (3)
C8-N2-C5-C4 -2.9 (3) C14-C15-C16-C17 Ru1-N2-C5-C4 174.35 (17) C15-C16-C17-C19 C6-C4-C5-N1 -179.0 (2) C15-C16-C17-C18	2.7 (4) 177.5 (3) -1.0 (4) 179.7 (2) -0.7 (3)
Ru1—N2—C5—C4 174.35 (17) C15—C16—C17—C19 C6—C4—C5—N1 -179.0 (2) C15—C16—C17—C18	177.5 (3) -1.0 (4) 179.7 (2) -0.7 (3)
C6-C4-C5-N1 -179.0 (2) C15-C16-C17-C18	-1.0 (4) 179.7 (2) -0.7 (3)
	179.7 (2) -0.7 (3)
C3-C4-C5-N1 0.1 (4) $C21-N5-C18-N4$	-0.7 (3)
C6—C4—C5—N2 0.0 (4) C21—N5—C18—C17	
C3—C4—C5—N2 179.2 (2) C14—N4—C18—N5	-176.4(2)
C3—C4—C6—C7 –177.0 (3) Ru1—N4—C18—N5	5.3 (3)
C5-C4-C6-C7 2.1 (4) C14-N4-C18-C17	4.0 (3)
C4—C6—C7—C8 –1.2 (4) Ru1—N4—C18—C17	-174.26 (18)
C5—N2—C8—C7 3.9 (3) C16—C17—C18—N5	177.9 (2)
Ru1—N2—C8—C7 –173.8 (2) C19—C17—C18—N5	-0.6 (4)
C5—N2—C8—C9 –178.5 (2) C16—C17—C18—N4	-2.5 (4)
Ru1—N2—C8—C9 3.7 (2) C19—C17—C18—N4	179.0 (2)
C6—C7—C8—N2 –1.9 (4) C16—C17—C19—C20	-177.1 (3)
C6—C7—C8—C9 –179.3 (3) C18—C17—C19—C20	1.3 (4)
C13—N3—C9—C10 1.7 (3) C17—C19—C20—C21	-0.8 (4)
Ru1—N3—C9—C10 –175.39 (18) C18—N5—C21—C20	1.3 (4)
C13—N3—C9—C8 –177.8 (2) C19—C20—C21—N5	-0.5 (4)
Ru1—N3—C9—C8 5.1 (3) C26—N6—C22—C23	0.7 (3)
N2—C8—C9—N3 -5.7 (3) Ru1—N6—C22—C23	-174.93 (18)
C7—C8—C9—N3 171.9 (2) N6—C22—C23—C24	0.6 (4)
N2-C8-C9-C10 174.8 (2) C22-C23-C24-C25	-1.2 (4)
C7—C8—C9—C10 -7.5 (4) C23—C24—C25—C26	0.4 (4)
N3-C9-C10-C11 0.1 (4) C22-N6-C26-C25	-1.5 (3)
C8—C9—C10—C11 179.5 (2) Ru1—N6—C26—C25	173.92 (18)
C9—C10—C11—C12 -1.6 (4) C24—C25—C26—N6	0.9 (4)
C10-C11-C12-C13 1.3 (4) C31-N7-C27-C28	0.0 (3)
C9—N3—C13—C12 –2.0 (3) Ru1—N7—C27—C28	175.82 (17)
Ru1—N3—C13—C12 175.11 (18) N7—C27—C28—C29	0.1 (4)
C9—N3—C13—C14 179.0 (2) C27—C28—C29—C30	-0.6 (4)
Ru1—N3—C13—C14 -3.9 (3) C28—C29—C30—C31	1.0 (4)
C11—C12—C13—N3 0.5 (4) C27—N7—C31—C30	0.4 (3)
C11—C12—C13—C14 179.4 (2) Ru1—N7—C31—C30	-175.53 (18)
C18—N4—C14—C15 –2.3 (3) C29—C30—C31—N7	-0.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C12—H8…N9 ⁱ	0.95	2.43	3.305 (5)	152
C20—H12···S2 ⁱⁱ	0.95	2.73	3.629 (3)	159

			supporting information		
C22—H14…N1	0.95	2.51	3.391 (3)	154	
C27—H19…S2	0.95	2.76	3.479 (3)	133	

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*-1, -*y*+1/2, *z*-1/2.