CRYSTALLOGRAPHIC COMMUNICATIONS

Received 12 April 2022
Accepted 5 May 2022

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; telluride; rare earth metal; superstructure; twinning.

CCDC reference: 2170854
Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

LaTe $_{1.9}$: a tenfold superstructure of the ZrSSi type

Hagen Poddig and Thomas Doert*

Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062 Dresden, Germany. *Correspondence e-mail: thomas.doert@tu-dresden.de

Single crystals of $\mathrm{LaTe}_{1.9}$ (lanthanum telluride) have been obtained by chemical transport reactions with iodine as transport agent. $\mathrm{LaTe}_{1.9}$ adopts the $\mathrm{CeSe}_{1.9}$ structure type and crystallizes in the space group $P 4_{2} / n$ with lattice parameters a $=10.1072(3) \AA$ and $c=18.2874$ (6) \AA. The crystal structure comprises an alternating stacking of puckered [LaTe] slabs and planar [Te] layers along [001]. The planar [Te] layer is dominated by dumbbell-shaped $\mathrm{Te}_{2}{ }^{2-}$ anions along an isolated Te^{2-} anion and a vacancy. The $\mathrm{Te}_{2}{ }^{2-}$ anions form an eight-membered ring enclosing the vacancy in the centre.

1. Chemical context

Chalcogenides $R E X_{2-\delta}(R E=\mathrm{Y}, \mathrm{La}-\mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}-\mathrm{Lu} ; X=\mathrm{S}, \mathrm{Se}$, Te) of trivalent rare-earth metals comprise a large structural variety in a small compositional range $0 \leq \delta \leq 0.2$. This variety can mainly be attributed to the amount of vacancies as this strongly affects the final structural motif (Doert \& Müller, 2016). All crystal structures share a common motif of alternating $[R E X]$ and planar $[X]$ layers, related to their common aristotype, the structure of ZrSSi . Here, the same stacking arrangement is observed with a puckered [ZrS] slab and a planar [Si] layer, where an idealized square-planar [Si] layer is realized (Onken et al., 1964; Klein Haneveld \& Jellinek, 1964). The chalcogenides, however, do not form a square-planar arrangement for electronic reasons, which can be understood by their charge-balanced formula: considering trivalent rareearth metal cations only, the puckered $[R E X]$ slab bears a single positive charge per formula unit, which needs to be compensated by atoms of the planar [X] layer. This is achieved by forming dinuclear $X_{2}{ }^{2-}$ anions in the stoichiometric dichacolgenides $R E X_{2}$. The formation of such dumbbellshaped anions results in a distortion from the ideal squareplanar layer. Reducing the chalcogenide content results in the formation of vacancies inside the planar [X] layer, which in turn forces a reaction of the remaining atoms to balance the missing charge. Consequently, an isolated X^{2-} anion per vacancy is formed to maintain a charge-balanced motif, adding two new constituting fragments to the planar layer. As vacancies are not randomly distributed within the layer, commensurate and incommensurately modulated superstructures are found (Doert \& Müller, 2016). The structural chemistry of the corresponding sulfides and selenides has been thoroughly investigated, revealing several crystal structures that are observed for both chalcogens. The tellurides, however, do not always match the structures of their sulfur and selenium congeners, as shown for LaTe_{2} (Stöwe, 2000a), CeTe_{2} (Stöwe, 2000b) and PrTe_{2} (Stöwe, 2000c). Discrepancies are also observed for the Te-deficient compound $\mathrm{NdTe}_{1.89 \text { (1) }}$ (Stöwe,
2001). However, the $\mathrm{CeSe}_{1.9}$ type (Plambeck-Fischer et al., 1989) with a $\sqrt{5} \times \sqrt{5} \times 2$ supercell of the basic ZrSSi structure seems common to sulfides, selenides and tellurides. $\mathrm{CeTe}_{1.9}$ was found to adopt this superstructure in space group $P 4_{2} / n$ (No. 86) (Ijjaali \& Ibers, 2006). The general motif of alternating stacks of [RETe] slabs and planar [Te] layers is preserved in this structure, the planar [Te] layer comprise four $\mathrm{Te}_{2}{ }^{2-}$ anions surrounding a vacancy, resembling an eightmembered Te ring with alternating long and short distances. Four of these Te rings surround an isolated Te^{2-} anion in a pinwheel-like arrangement. Rationalizing this motif yields ten negative charges due to four $\mathrm{Te}_{2}{ }^{2-}$ and a single Te^{2-} anion, balancing ten positive charges of each [RETe] layer. Here we report on the isotypic compound $\mathrm{LaTe}_{1.9}$, for which no structural characterization has been published yet.

2. Structural commentary

$\mathrm{LaTe}_{1.9}$ crystallizes in space group $P 4_{2} / n$ (No. 86) in the $\mathrm{CeSe}_{1.9}$ structure type (Plambeck-Fischer et al., 1989) with $a=$ 10.1072 (3) \AA and $c=18.2874$ (6) \AA, corresponding to a $\sqrt{5} \times \sqrt{5} \times 2$ superstructure of the basic ZrSSi unit cell. As indicated above, two stacks of the basic arrangement are present in the structure of $\mathrm{LaTe}_{1.9}$ as the Te -deficient planar [Te] layers are shifted by an n-glide against each other (Fig. 1). The La atoms are coordinated by eight Te atoms (La2), respectively nine Te atoms (La1, La3) forming a bicapped, respectively a tricapped trigonal prism. The $\mathrm{La}-\mathrm{Te}$ distances within the slabs range from 3.2637 (2) to 3.3594 (2) \AA and

Figure 1
Crystal structure of $\mathrm{LaTe}_{1.9}$ with displacement ellipsoids drawn at the 99.95% probability level. The stacking arrangement of puckered [LaTe] slabs and planar [Te] layers along [001] is shown.
from 3.2944 (3) to 3.4480 (3) between the planar [Te] layer and La. Calculating the bond-valence sum bvs (Brese \& O'Keeffe, 1991) for each La site results in 2.99 valence units (v.u.) for La1, 3.06 v.u. for La2 and 2.94 v.u. for La3, which are all very close to the expected value of +3 considering the previously discussed charge-balancing situation. The tellurium layer exhibits a pinwheel-like arrangement of four eight-membered Te squares surrounding a single Te^{2-} anion in its centre (Fig. 2), common to all compounds of the $\mathrm{CeSe}_{1.9}$ type.

In view of the alternating short and long distances, the Te ring can be understood as being built up from four dinuclear $\mathrm{Te}_{2}{ }^{2-}$ anions enclosing a vacancy with alternating bonding and non-bonding distances of 2.9224 (3) and 3.1413 (3) \AA, respectively.

In accordance with the charge balancing mentioned above and $Z=20$, a structured formula of $\mathrm{LaTe}_{1.9}$ can be written as $\left[\left(\mathrm{La}^{3+}\right)_{20}\left(\mathrm{Te}^{2-}\right)_{20}\right]\left[\left(\mathrm{Te}_{2}{ }^{2-}\right)_{8}\left(\mathrm{Te}^{2-}\right)_{2}\right]$. This easily explains the anionic motifs and their quantity in the planar [Te] layer: Te5 and Te6 (both on Wyckoff site $8 g$) form the dumbbell-shaped $\mathrm{Te}_{2}{ }^{2-}$ anions whereas Te 4 (Wyckoff site $2 b$) represents the isolated Te^{2-} (Fig. 2).

3. Database survey

The $\mathrm{CeSe}_{1.9}$ structure type (Plambeck-Fischer et al., 1989) is realized by several rare-earth metal sulfides and selenides but only by a few tellurides, $\mathrm{CeTe}_{1.9}$ being one prominent example (Ijjaali \& Ibers, 2006). The interatomic distances of $\mathrm{LaTe}_{1.9}$ match those observed for $\mathrm{CeTe}_{1.9}$ quite well, including the bonding and non-bonding distances in the planar [Te] layers [2.9224 (3) \AA and 3.1413 (3) \AA in $\mathrm{LaTe}_{1.9}$ vs 2.9194 (5) \AA and 3.1204 (5) \AA in $\mathrm{CeTe}_{1.9}$]. However, the bonding $\mathrm{Te}-\mathrm{Te}$ distances in these two compounds are considerably longer compared to compounds featuring (largely) isolated $\mathrm{Te}_{2}{ }^{2-}$

Figure 2
[Te] layer of $\mathrm{LaTe}_{1.9}$ with four $\mathrm{Te}_{2}{ }^{2-}$ anions enclosing a vacancy each and surrounding an isolated Te^{2-} anion; displacement ellipsoids are drawn at the 99.95% probability level.

Table 1
Experimental details.
Crystal data

Chemical formula	LaTe $_{1.90}$
M_{r}	381.35
Crystal system, space group	Tetragonal, $P 4_{2} / n$
Temperature (K)	100
$a, c(\AA)$	$10.1072(3), 18.2874(6)$
$V\left(\AA^{3}\right)$	$1868.16(13)$
Z	20
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	25.70
Crystal size (mm)	$0.11 \times 0.08 \times 0.04$
Data collection	Bruker APEXII CCD
Diffractometer	Multi-scan $(T W I N A B S$; Bruker,
Absorption correction	$2012)$
	$0.399,0.749$
$T_{\min }, T_{\text {max }}$	$7850,7850,5970$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.055
$R_{\text {int }}$	1.000
(sin $\theta / \lambda)_{\max }\left(\AA^{-1}\right)$	
Refinement	$0.027,0.061,1.12$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	7850
No. of reflections	69
No. of parameters	$2.02,-3.08$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg, 2018) and publCIF (Westrip, 2010).
anions as constituting fragments, e.g. in $\alpha-\mathrm{K}_{2} \mathrm{Te}_{2}(2.86 \AA), \beta-$ $\mathrm{K}_{2} \mathrm{Te}_{2}[2.790(1) \AA], \mathrm{Rb}_{2} \mathrm{Te}_{2}(2.78 \AA)$ or $\mathrm{GdTe}_{1.8}$ [2.868 (1) \AA] (Böttcher et al., 1993; Poddig et al., 2018).

4. Synthesis and crystallization

Crystals of $\mathrm{LaTe}_{1.9}$ were found as a byproduct during the investigation of the system $\mathrm{La}-\mathrm{Te}$ in chemical transport experiments using iodine as transport agent. All preparation steps were carried out in an argon-filled (5.0, Praxair Deutschland GmbH , Düsseldorf, Germany) glove box (MBraun, Garching, Germany). Starting from the elements, 300 mg of a stoichiometric mixture of La (99.5%, MaTecK) and Te (Merck, $>99.9 \%$, reduced in H_{2} stream at 670 K) were ground and loaded into a silica ampule. A small amount of I_{2} (Roth, $>99.8 \%$, purified by sublimating twice prior to use) was added inside the glove box before flame-sealing the ampule under dynamic vacuum ($p \leq 1 \times 10^{-3} \mathrm{mbar}$). The ampule was heated with a ramp of $2 \mathrm{~K} \mathrm{~min}{ }^{-1}$ to 1173 K before applying a gradient from $1173 \rightarrow 1073 \mathrm{~K}$, where the actual transport took place. After seven days, the ampule was cooled down to room temperature. A synthesis resulting in a phase pure product of $\mathrm{LaTe}_{1.9}$ has not yet been successful. The reason is most probably that two other Te-deficient compounds also exist in the composition range $\mathrm{LaTe}_{2-\delta}(0 \leq \delta \leq 0.2)$ along the stoichiometric ditelluride, namely $\mathrm{LaTe}_{1.94 \text { (1) }}$ and $\mathrm{LaTe}_{1.82(1)}$ (Poddig \& Doert, 2020; Poddig et al., 2020). To address the stability ranges of the individual phases, the chalcogen vapor pressures and temperatures have to be evaluated and controlled precisely during synthesis (Müller et al., 2010).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All investigated crystals of $\mathrm{LaTe}_{1.9}$ were found as reticular merohedric twins with a twin index $n=$ 5. On a first glance, the diffraction patterns seem to suggest a large tetragonal unit cell with apparent lattice parameters of a $=22.6211$ (6) \AA and $c=18.3135$ (5) \AA, corresponding to a 50 fold superstructure of the basic ZrSSi structure (Fig. 3). Similar apparent supercells have been reported for the sulfides $\mathrm{SmS}_{1.9}$ (Tamazyan et al., 2000) or $\mathrm{TmS}_{1.9}$ (Müller et al., 2012), and can be explained by twinning along the mirror planes in (100) and (110) of the twin lattice. A schematic scheme drawn along [001] is depicted in Fig. 3, illustrating the lattices of each domain. The corresponding twin law calculated by the diffractometer software (Bruker, 2016) corresponds to the twin law derived for $\mathrm{SmS}_{1.9}(0.6-0.80-0.8-0.6000-1)$. Both domains were handled during the process of integrating and correcting the data, and the refinements were performed on a HKLF5 format file. The twin ratio of the two domains calculated by $S H E L X L$ is 0.57 (1):43 (1).

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. Do 560/1).

Figure 3
Projection of the X-ray diffraction pattern of a twinned crystal of $\mathrm{LaTe}_{1.9}$ along [001]. The individual reflections of the two domains are indicated as green and blue dots, coinciding reflections are marked in black. The axes correspond to the basic structure.

References

Böttcher, P., Getzschmann, J. \& Keller, R. (1993). Z. Anorg. Allg. Chem. 619, 476-488.
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (2012). TWINABS. Bruker-AXS, Madison, WI, USA.
Bruker (2016). APEX2 and SAINT. Bruker AXS, Madison, Wisconsin, USA.
Doert, T. \& Müller, C. J. (2016). Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier.
Ijjaali, I. \& Ibers, J. A. (2006). J. Solid State Chem. 179, 3456-3460. Klein Haneveld, A. \& Jellinek, F. (1964). Recl Trav. Chim. Pays Bas, 83, 776-783.
Müller, C. J., Schwarz, U. \& Doert, T. (2012). Z. Anorg. Allg. Chem. 638, 2477-2484.
Müller, C. J., Schwarz, U., Schmidt, P., Schnelle, W. \& Doert, T. (2010). Z. Anorg. Allg. Chem. 636, 947-953.

Onken, H., Vierheilig, K. \& Hahn, H. (1964). Z. Anorg. Allg. Chem. 333, 267-279.
Plambeck-Fischer, P., Abriel, W. \& Urland, W. (1989). J. Solid State Chem. 78, 164-169.
Poddig, H. \& Doert, T. (2020). Acta Cryst. B76, 1092-1099.
Poddig, H., Donath, T., Gebauer, P., Finzel, K., Kohout, M., Wu, Y., Schmidt, P. \& Doert, T. (2018). Z. Anorg. Allg. Chem. 644, 18861896.

Poddig, H., Finzel, K. \& Doert, T. (2020). Acta Cryst. C76, 530-540.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Stöwe, K. (2000a). J. Solid State Chem. 149, 155-166.
Stöwe, K. (2000b). J. Alloys Compd. 307, 101-110.
Stöwe, K. (2000c). Z. Anorg. Allg. Chem. 626, 803-811.
Stöwe, K. (2001). Z. Kristallogr. Cryst. Mater. 216, 215-224.
Tamazyan, R., Arnold, H., Molchanov, V., Kuzmicheva, G. \& Vasileva, I. (2000). Z. Kristallogr. Cryst. Mater. 215, 346-351.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2022). E78, 559-562 [https://doi.org/10.1107/S2056989022004844]

$\mathrm{LaTe}_{1.9}$: a tenfold superstructure of the ZrSSi type

Hagen Poddig and Thomas Doert

Computing details

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: publCIF (Westrip, 2010).

Lanthanum telluride (1/1.9)

Crystal data

$\mathrm{LaTe}_{1.90}$
$M_{r}=381.35$
Tetragonal, $P 4_{2} / n$
$a=10.1072$ (3) \AA
$c=18.2874$ (6) \AA
$V=1868.16(13) \AA^{3}$
$Z=20$
$F(000)=3116$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: sealed X-ray tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
$T_{\min }=0.399, T_{\text {max }}=0.749$
$D_{\mathrm{x}}=6.779 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9906 reflections
$\theta=3.6-46.4^{\circ}$
$\mu=25.70 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, black
$0.11 \times 0.08 \times 0.04 \mathrm{~mm}$

7850 measured reflections
7850 independent reflections
5970 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=45.3^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-13 \rightarrow 14$
$k=0 \rightarrow 20$
$l=0 \rightarrow 36$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.061$
$S=1.12$
7850 reflections
69 parameters
0 restraints
Primary atom site location: iterative

Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0122 P)^{2}+6.7117 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=2.02 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-3.08$ e \AA^{-3}
Extinction correction: SHELXL-2016/6
(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.001129 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
La1	0.250000	-0.250000	$0.38287(2)$	$0.00695(4)$
La2	$0.14760(2)$	$0.05231(2)$	$0.10752(2)$	$0.00710(3)$
La3	$-0.15137(2)$	$-0.04353(2)$	$0.38089(2)$	$0.00696(3)$
Te1	-0.250000	0.250000	$0.43532(2)$	$0.00722(4)$
Te2	$0.14951(2)$	$0.05177(2)$	$0.43621(2)$	$0.00726(3)$
Te3	$-0.15255(2)$	$-0.04952(2)$	$0.07093(2)$	$0.00722(3)$
Te4	-0.250000	-0.250000	0.250000	$0.00773(5)$
Te5	$-0.02702(2)$	$0.16873(2)$	$0.25027(2)$	$0.00992(3)$
Te6	$0.06086(2)$	$-0.12938(2)$	$0.24930(2)$	$0.00770(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	$0.00683(8)$	$0.00672(8)$	$0.00729(7)$	$0.00054(6)$	0.000	0.000
La2	$0.00723(6)$	$0.00691(6)$	$0.00715(5)$	$0.00000(5)$	$0.00005(4)$	$0.00083(4)$
La 3	$0.00657(6)$	$0.00689(6)$	$0.00744(5)$	$0.00015(5)$	$-0.00001(4)$	$-0.00070(4)$
Te1	$0.00701(9)$	$0.00696(9)$	$0.00769(8)$	$0.00009(7)$	0.000	0.000
Te 2	$0.00684(7)$	$0.00726(7)$	$0.00767(5)$	$-0.00005(6)$	$0.00002(5)$	$-0.00037(4)$
Te 3	$0.00712(7)$	$0.00697(7)$	$0.00756(5)$	$0.00007(6)$	$0.00001(5)$	$0.00005(5)$
Te 4	$0.00815(7)$	$0.00815(7)$	$0.00690(11)$	0.000	0.000	0.000
Te 5	$0.01106(7)$	$0.01167(7)$	$0.00702(6)$	$0.00045(6)$	$0.00031(6)$	$-0.00005(5)$
Te6	$0.00881(7)$	$0.00761(6)$	$0.00667(5)$	$0.00034(5)$	$-0.00003(5)$	$-0.00016(5)$

Geometric parameters ($A,{ }^{\circ}$)

La1-Te3 ${ }^{\text {i }}$	3.2938 (2)	La2-Te6	3.2960 (2)
$\mathrm{La} 1-\mathrm{Te} 3{ }^{\text {ii }}$	3.2938 (2)	$\mathrm{La} 2-\mathrm{Te}{ }^{\text {ii }}$	3.3198 (2)
La 1 - $\mathrm{Te} 1^{\text {iii }}$	3.3248 (3)	$\mathrm{La} 2-\mathrm{Te} 5$	3.3637 (3)
La1-Te6	3.3329 (3)	La3-Te1	3.2843 (2)
La $1-\mathrm{Te} 6^{\text {iv }}$	3.3329 (2)	$\mathrm{La} 3-\mathrm{Te} 4$	3.3284 (2)
$\mathrm{La} 1-\mathrm{Te} 2{ }^{\text {iv }}$	3.3593 (2)	La3-Te3 ${ }^{\text {vii }}$	3.3361 (3)
La1-Te2	3.3594 (2)	La3-Te6	3.3384 (2)
$\mathrm{La} 1-\mathrm{Te} 5^{\mathrm{ii}}$	3.4179 (3)	$\mathrm{La} 3-\mathrm{Te} 2{ }^{\text {iii }}$	3.3460 (2)
La1-Te5 ${ }^{\text {i }}$	3.4179 (3)	$\mathrm{La} 3-\mathrm{Te} 2$	3.3465 (3)
La2-Te3 ${ }^{\text {v }}$	3.2637 (2)	La3-Te3 ${ }^{\text {ii }}$	3.3574 (3)
$\mathrm{La} 2-\mathrm{Te} 2^{\mathrm{vi}}$	3.2649 (3)	La3-Te6 ${ }^{\text {vii }}$	3.4194 (3)
La2-Te3	3.2726 (3)	La3-Te5	3.4480 (3)
$\mathrm{La} 2-\mathrm{Te} 2{ }^{\text {i }}$	3.2920 (3)	Te5-Te6 ${ }^{\text {vi }}$	2.9224 (3)

$-\mathrm{Te} 5^{\text {i }}$
Te3 ${ }^{\text {- }}$ La1-Te
Te3 ${ }^{\text {- }}$ La $1-\mathrm{Te}$
Te3 ${ }^{\text {ii- }}$-La1-Te1 ${ }^{\text {iii }}$
$3{ }^{\text {i-LLa }}$-Te
Te3ii-La1-Te
Te ${ }^{\text {iii- }}$-La1-T
Te3 ${ }^{\text {i }}$-La1-Te6
Te3 ${ }^{\text {ii- }} \mathrm{La} 1-\mathrm{Te} 6^{\text {iv }}$
Te ${ }^{\text {iiii- }}$ La1-Te6 ${ }^{\text {iv }}$
Te6-La1-Te6
Te3-La ${ }^{\text {i }}$ - $\mathrm{Te} 2^{\text {iv }}$
$\mathrm{Te}{ }^{3 i}-\mathrm{La} 1-\mathrm{Te} 2^{\mathrm{iv}}$
e1iii-La $-\mathrm{Te} 2^{\text {iv }}$
-
Te6 ${ }^{\text {iv }}-\mathrm{La} 1-\mathrm{Te} 2^{\text {iv }}$
Te3 ${ }^{\text {i }}$-La1-Te2
Te3 ${ }^{\text {iii-L }}$
Te ${ }^{\text {iii }}$ - $\mathrm{La} 1-\mathrm{Te}$
Te6-La1-Te2
Te $6^{\text {iv }}$-Lal
Te2 ${ }^{2 \mathrm{iv}}$ - Lal
Te3 ${ }^{\text {i }}$ - $\mathrm{La} 1-\mathrm{Te} 5{ }^{\text {ii }}$
$5{ }^{\text {ii }}$
Te ${ }^{\text {iiii }}$-La1-Te5 ${ }^{\text {ii }}$
Te6-La1-Te5 ${ }^{\text {ii }}$
Te6 ${ }^{\text {iv}}-\mathrm{La} 1-\mathrm{Te} 5{ }^{\text {ii }}$
$\mathrm{Te} 2^{2 \mathrm{iv}}-\mathrm{La} 1-\mathrm{Te} 5^{\text {ii }}$
Te2-La1-Te5ii
Te3 ${ }^{\text {i }}$
Te3ii-La1-Te5 ${ }^{\text {i }}$
Te1 ${ }^{\text {iii-LLa1-Te5 }}$
Te6-La1-Te5 ${ }^{\text {i }}$
Te6 ${ }^{\text {iv }}$-Lal-Te5 ${ }^{\text {i }}$
$\mathrm{Te} 2^{\mathrm{iv}}$-La1-Te5 ${ }^{\text {i }}$
T
Te $5^{\mathrm{ii}}-\mathrm{La} 1-\mathrm{Te} 5{ }^{\text {i }}$
Te3 ${ }^{\text {v }}$-La2- ${ }^{\text {- }}{ }^{\text {2 }}{ }^{\text {vi }}$
Te3-La2-Te3
Te2 ${ }^{\text {vi }}$-La2- Te 3
Te3 ${ }^{\text {v }}$-La2- ${ }^{\text {- }} 2^{\text {i }}$
Te2 ${ }^{\text {vi }}$-La2- $\mathrm{Te}^{\text {2 }}$
$\mathrm{Te} 3-\mathrm{La} 2-\mathrm{Te} 2^{\mathrm{i}}$
Te3 ${ }^{\mathrm{v}}$-La2- $\mathrm{Te} 5{ }^{\text {i }}$
Te2 ${ }^{\text {vi }}$-La2- ${ }^{\text {- }} 5^{\text {i }}$
Te3-La2-Te5 ${ }^{\text {i }}$
$2{ }^{\text {i}}-\mathrm{La} 2-\mathrm{Te}$

Te5-Te6
$\mathrm{Te} 2^{\mathrm{iii}}-\mathrm{La} 3-\mathrm{Te} 3^{\mathrm{ii}}$
Te2-La3-Te3 ${ }^{\text {ii }}$
Te1—La3—Te6 ${ }^{\text {vii }}$
Te4—La3-Te6 ${ }^{\text {vii }}$
Te3 ${ }^{\text {vii }}-\mathrm{La} 3-\mathrm{Te} 6^{\text {vii }}$
Te6-La3-Te6 ${ }^{\text {vii }}$
Te $2{ }^{\text {iii- }} \mathrm{La} 3-\mathrm{Te}^{\text {vii }}$
Te2-La3-Te6 ${ }^{\text {vii }}$
Te3 ${ }^{\text {ii }-L a 3-T e 6 ~}{ }^{\text {vii }}$
Te1—La3-Te5
Te4-La3-Te5
Te3 ${ }^{\text {vii }}$-La3——Te5
Te6-La3-Te5
Te ${ }^{\text {iii }}-\mathrm{La} 3-\mathrm{Te} 5$
Te2-La3-Te5
Te3 ${ }^{\text {iii-La3——e5 }}$
Te6 ${ }^{\text {vii-LL }} 3$-Te5
$\mathrm{La} 3-\mathrm{Te} 1-\mathrm{La}{ }^{\text {viii }}$
La3-Te1-La2 ${ }^{\text {vii }}$
$\mathrm{La}^{\text {viii }}-\mathrm{Te} 1 — \mathrm{La} 2^{\text {vii }}$
La3-Te1-La2 ${ }^{\text {vi }}$
La3 ${ }^{\text {viii }}-\mathrm{Te} 1-\mathrm{La} 2^{\text {vi }}$
La2 ${ }^{\text {vii }}-\mathrm{Te} 1-\mathrm{La} 2^{\text {vi }}$
La3-Te1—La $1^{\text {iii }}$
$\mathrm{La}^{\text {viii }}-\mathrm{Te} 1 — \mathrm{La} 1^{\text {iii }}$
$\mathrm{La} 2^{\text {vii }}-\mathrm{Te} 1-\mathrm{La} 1^{\text {iii }}$
$\mathrm{La} 2^{\mathrm{vi}}-\mathrm{Te} 1-\mathrm{La} 1^{\text {iii }}$
$\mathrm{La} 2^{\mathrm{i}}-\mathrm{Te} 2-\mathrm{La} 2^{\text {vi }}$
$\mathrm{La} 2^{\mathrm{i}}-\mathrm{Te} 2-\mathrm{La} 3^{\text {iii }}$
La2 ${ }^{\text {vi }}-\mathrm{Te} 2-\mathrm{La} 3^{\text {iii }}$
La2 ${ }^{\text {i }}$-Te2-La3
$\mathrm{La} 2^{\text {vi}}-\mathrm{Te} 2-\mathrm{La} 3$
La3 ${ }^{\text {iii- }} \mathrm{Te} 2-\mathrm{La} 3$
La2 ${ }^{i}-\mathrm{Te} 2-\mathrm{La} 1$
La2 ${ }^{\text {vi_ }}$-Te2-La1
La3 ${ }^{\text {iii- }}$-Te2-La1
La3-Te2-La1
$\mathrm{La} 2^{\mathrm{v}}-\mathrm{Te} 3-\mathrm{La} 2$
$\mathrm{La} 2^{\mathrm{v}}-\mathrm{Te} 3-\mathrm{La} 1^{\text {vi }}$
$\mathrm{La} 2-\mathrm{Te} 3-\mathrm{La} 1^{\text {vi }}$
$\mathrm{La} 2^{\mathrm{v}}-\mathrm{Te} 3-\mathrm{La}^{\text {ii }}{ }^{\text {i }}$
$\mathrm{La} 2-\mathrm{Te} 3-\mathrm{La} 3^{\text {ii }}$
La ${ }^{\text {vi- }}$-Te3-La3 ${ }^{\text {ii }}$
$\mathrm{La}^{2}-\mathrm{Te} 3-\mathrm{La}^{\text {vii }}$
$\mathrm{La} 2-\mathrm{Te} 3-\mathrm{La} 3^{\text {vii }}$
La1 ${ }^{\text {vi }}-\mathrm{Te} 3-\mathrm{La}^{\text {vii }}$
3.1413 (3)
73.330 (5)
84.571 (6)
74.669 (6)
59.908 (4)
72.455 (5)
89.696 (6)
135.020 (7)
135.283 (7)
131.586 (6)
76.027 (6)
90.060 (6)
135.955 (7)
55.118 (5)
134.911 (7)
72.489 (5)
129.745 (6)
64.015 (6)
144.714 (11)
85.769 (5)
86.028 (4)
86.029 (4)
85.769 (4)
152.703 (10)
107.643 (5)
107.643 (5)
103.648 (5)
103.648 (5)
86.685 (6)
104.300 (6)
105.511 (6)
148.230 (7)
85.472 (6)
107.465 (6)
85.364 (5)
149.063 (7)
105.424 (7)
85.737 (5)
101.125 (7)
105.604 (7)
86.313 (5)
104.549 (6)
85.690 (6)
149.757 (7)
105.889 (6)
152.986 (8)
86.610 (5)

Te3 ${ }^{\text {v-LLa }}$ - Te 6	141.795 (7)	$\mathrm{La} 3{ }^{\text {iii }}-\mathrm{Te} 3-\mathrm{La} 3{ }^{\text {vii }}$	87.422 (6)
Te2 ${ }^{\text {vi }}$-La2-Te6	128.902 (6)	$\mathrm{La3}{ }^{\text {vii }}-\mathrm{Te} 4-\mathrm{La} 3{ }^{\text {ii }}$	88.029 (7)
Te3-La2-Te6	74.873 (6)	La3 ${ }^{\text {vii }}-\mathrm{Te} 4-\mathrm{La} 3{ }^{\text {ix }}$	121.144 (4)
Te2 ${ }^{\text {i }}$-La2— Te 6	127.073 (7)	$\mathrm{La} 3{ }^{\text {iii }}$ - $\mathrm{Te} 4-\mathrm{La}^{\text {ix }}$	121.144 (4)
Te5--La2-Te6	52.645 (6)	La3 ${ }^{\text {vii }}$-Te4-La3	121.144 (4)
$\mathrm{Te} 3^{\vee}-\mathrm{La} 2-\mathrm{Te} 1^{\text {ii }}$	75.603 (6)	La3ii-Te4-La3	121.145 (4)
Te2 ${ }^{\text {vi }}$-La2- $\mathrm{Te}^{\text {1i }}{ }^{\text {i }}$	152.164 (7)	La3 ${ }^{\text {ix }}$-Te4-La3	88.029 (7)
Te3-La2-Te1 ${ }^{\text {ii }}$	87.208 (5)	Te6 ${ }^{\text {vi_-Te5-Te6 }}$	175.690 (9)
Te $2^{\text {i }}$-La2- ${ }^{\text {- }} 1^{\text {ii }}$	85.964 (5)	Te6 ${ }^{\text {vi }}$-Te5-La2 ${ }^{\text {vi }}$	63.706 (6)
Te5 ${ }^{\text {i }} \mathrm{La} 2-\mathrm{Te} 1^{\text {ii }}$	77.677 (6)	Te6-Te5-La2 ${ }^{\text {vi }}$	118.432 (7)
Te6-La2-Te1 ${ }^{\text {ii }}$	75.863 (6)	Te6 ${ }^{\text {vi_-Te5-La2 }}$	120.999 (8)
Te3 ${ }^{\text {v-LL2}}$ - Te 5	141.908 (8)	Te6-Te5-La2	60.772 (5)
$\mathrm{Te} 2^{\text {vi }}$-La2-Te5	73.230 (6)	La2 ${ }^{\text {vi}}$ - $\mathrm{Te} 5-\mathrm{La} 2$	133.008 (9)
Te3-La2-Te5	77.427 (6)	Te6 ${ }^{\text {vi }}$-Te5-La1 ${ }^{\text {vi }}$	62.856 (5)
Te2 ${ }^{\text {i }}$-La2-Te5	124.638 (7)	Te6-Te5-La1 ${ }^{\text {vi }}$	114.389 (7)
Te5 ${ }^{\text {-LL2 }} \mathrm{L} 2$ Te5	76.593 (7)	$\mathrm{La} 2{ }^{\text {vi }}$ - $\mathrm{Te} 5-\mathrm{La}^{\text {vi }}$	125.977 (7)
Te6-La2-Te5	56.276 (6)	$\mathrm{La} 2-\mathrm{Te} 5-\mathrm{La} 1^{\text {vi }}$	82.945 (6)
Te1ii-La2-Te5	131.965 (7)	Te6 ${ }^{\text {vi_-Te5-La3 }}$	116.808 (7)
Te1-La3-Te4	133.902 (7)	Te6-Te5-La3	60.669 (5)
Te1-La3-Te3 ${ }^{\text {vii }}$	86.745 (5)	La2 ${ }^{\text {vi}}$-Te5-La3	83.822 (6)
Te4-La3-Te3 ${ }^{\text {vii }}$	73.231 (5)	La2-Te5-La3	120.748 (7)
Te1-La3-Te6	130.412 (7)	La1 ${ }^{\text {vi}}$-Te5-La3	113.748 (7)
Te4-La3-Te6	60.731 (4)	Te5--Te6-Te5	85.692 (9)
Te3 ${ }^{\text {vii_-La3--Te6 }}$	133.378 (6)	Te5--Te6-La2	63.650 (6)
Te1-La3-Te $2^{\text {iii }}$	73.811 (6)	Te5-Te6-La2	62.951 (6)
Te4-La3-Te $2^{\text {iii }}$	134.830 (7)	Te5--Te6-La1	65.861 (5)
Te3 ${ }^{\text {vii }}$-La3-Te $2^{\text {iii }}$	74.503 (5)	Te5-Te6-La1	120.592 (7)
Te6-La3-Te $2^{\text {iii }}$	135.279 (7)	La2-Te6-La1	128.888 (7)
Te1-La3-Te2	85.654 (5)	Te5--Te6-La3	120.461 (7)
Te4-La3-Te2	132.068 (6)	Te5-Te6-La3	64.213 (5)
Te3 ${ }^{\text {vii }}$-La3-Te2	147.001 (7)	La2-Te6-La3	126.382 (7)
Te6-La3-Te2	73.072 (6)	La1-Te6-La3	86.290 (6)
Te ${ }^{\text {iii }}$-La3- Te 2	72.535 (6)	Te5--Te6-La3ii	121.325 (7)
Te1-La3-Te3ii	147.141 (7)	Te5-Te6-La3ii	122.568 (7)
Te4-La3-Te3ii	72.959 (5)	La2-Te6-La3ii	83.998 (6)
Te3 ${ }^{\text {vii }}$-La3-Te3 ${ }^{\text {ii }}$	84.626 (6)	La $1-\mathrm{Te} 6-\mathrm{La} 3{ }^{\text {ii }}$	116.758 (7)
Te6-La3-Te3 ${ }^{\text {ii }}$	75.783 (6)	La3-Te6-La3 ${ }^{\text {ii }}$	118.169 (7)

[^0]
[^0]: Symmetry codes: (i) $-y+1 / 2, x,-z+1 / 2$; (ii) $y,-x-1 / 2,-z+1 / 2$; (iii) $-x,-y,-z+1$; (iv) $-x+1 / 2,-y-1 / 2, z ;$ (v) $-x,-y,-z$; (vi) $y,-x+1 / 2,-z+1 / 2$; (vii) $-y-1 / 2, x,-z+1 / 2$; (viii) $-x-1 / 2,-y+1 / 2, z$; (ix) $-x-1 / 2,-y-1 / 2, z$.

