



Received 11 May 2022 Accepted 12 May 2022

Edited by M. Zeller, Purdue University, USA

**Keywords:** crystal structure; thiophene; carbohydrazide; pyridine.

**CCDC references**: 2172437; 2172436; 2172435; 2172434

**Supporting information**: this article has supporting information at journals.iucr.org/e

# Different conformations and packing motifs in the crystal structures of four thiophene-carbohydra-zide-pyridine derivatives

Jennifer L. Garbutt,<sup>a</sup> Cristiane F. da Costa,<sup>b</sup> Marcus V. N. deSouza,<sup>b</sup> Solange M. S. V. Wardell,<sup>c</sup> James L. Wardell<sup>a</sup> and William T. A. Harrison<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, <sup>b</sup>Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, and <sup>c</sup>CHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland. \*Correspondence e-mail: w.harrison@abdn.ac.uk

The crystal structures of four thiophene-carbohydrazide-pyridine derivatives, *viz.* N'-[(*E*)-pyridin-3-ylmethylidene]thiophene-2-carbohydrazide, C<sub>11</sub>H<sub>9</sub>N<sub>3</sub>OS, (I), N'-[(E)-pyridin-2-ylmethylidene]thiophene-2-carbohydrazide,  $C_{11}H_9N_3OS$ , (II), N-methyl-N'-[(E)-pyridin-2-ylmethylidene]thiophene-2-carbohydrazide,  $C_{12}H_{11}N_3OS$ , (III) and N'-[(E)-pyridin-2-ylmethylidene]-2-(thiophen-2-yl)ethanohydrazide, C<sub>12</sub>H<sub>11</sub>N<sub>3</sub>OS, (IV) are described. The dihedral angles between the thiophene ring and the pyridine ring are 21.4 (2), 15.42 (14), 4.97 (8) and 83.52 (13)° for (I)-(IV), respectively. The thiophene ring in (IV) is disordered over two orientations in a 0.851 (2):0.149 (2) ratio. Key features of the packing include N-H···N<sub>p</sub> (p = pyridine) hydrogen bonds in (I), which generate C(7)chains propagating in the [001] direction;  $N-H \cdot \cdot \cdot N_p$  links also feature in (II), but in this case they lead to C(6) [001] chains; in (IV), classical amide (C4) N- $H \cdots O$  links result in [010] chains; in every case adjacent molecules in the chains are related by 21 screw axes. There are no classical hydrogen bonds in the extended structure of (III). Various weak  $C-H\cdots X$  (X = O, N, S) interactions occur in each structure, but no aromatic  $\pi$ - $\pi$  stacking is evident. The Hirshfeld surfaces and fingerprint plots for (I)–(IV) are compared.

#### 1. Chemical context

Various thiophene–carbohydrazide derivatives containing a T-C(=O)-NH-N=CH-R (T = thiophene ring) building unit have been previously investigated by some of us for their anti-cancer (Cardoso *et al.*, 2017) and anti-tuberculosis (Cardoso *et al.*, 2014, 2016*a*) properties. Other workers have reported their analgesic activities (Lima *et al.*, 2000) and their potential uses as tunable photo switches (van Dijken *et al.*, 2015). The use of these compounds as multi-dentate chelating ligands has been described by Gholivand *et al.* (2016) and Abbas *et al.* (2021).

In a continuation of our earlier work on this family of compounds (Cardoso *et al.*, 2016*b*,*c*), we now describe the crystal structures and Hirshfeld surfaces of N'-[(*E*)-pyridin-3-ylmethylidene]thiophene-2-carbohydrazide, C<sub>11</sub>H<sub>9</sub>N<sub>3</sub>OS (I), N'-[(*E*)-pyridin-2-ylmethylidene]thiophene-2-carbohydrazide, C<sub>11</sub>H<sub>9</sub>N<sub>3</sub>OS (II), *N*-methyl-N'-[(*E*)-pyridin-2-ylmethylidene]thiophene-2-carbohydrazide, C<sub>12</sub>H<sub>11</sub>N<sub>3</sub>OS (III) and N'-[(*E*)-pyridin-2-ylmethylidene]-thiophene-2-carbohydrazide, C<sub>12</sub>H<sub>11</sub>N<sub>3</sub>OS (III) and N'-[(*E*)-pyridin-2-ylmethylidene]-2-(thiophen-2-yl)ethanohydrazide, C<sub>12</sub>H<sub>11</sub>N<sub>3</sub>OS (IV). Compounds (I) and (II) are positional isomers, differing in the location of the N atom of the pyridine ring, (III) is a methylated derivative of (II) and (IV) has a



\_\_\_\_\_

### research communications

methylene group inserted between the thiophene ring and the carboyhdrazide grouping compared to (I).



#### 2. Structural commentary

The molecular structures of (I)–(IV) are shown in Figs. 1–4, respectively and they all confirm the structures (atomic connectivities) postulated in the previous studies noted in the synthesis section: each compound crystallizes with one molecule in the asymmetric unit and there is no suggestion that any of these compounds exist in the 'enol' -C(OH)=N-tautomer in the solid state.

In (I) (Fig. 1), the conformation about the N2=C6 bond [1.280 (5) Å] is *E* and the C5-N1-N2-C6 torsion angle is 175.1 (4)°. The oxygen atom of the carbonyl group and the sulfur atom of the thiophene ring lie on the same side of the molecule  $[S1-C4-C5-O1 = -4.9 (6)^\circ]$  whereas atom N3 of the pyridine ring lies on the opposite side. The dihedral angle between the thiophene and pyridine rings is 21.4 (2)° and the largest twist in the molecule occurs about the C6-C7 bond  $[N2-C6-C7-C8 = -11.8 (7)^\circ]$ . The N1-N2 bond length of 1.384 (5) Å in (I) is significantly shorter than a typical N-N single bond (~1.44 Å), which suggests substantial delocalization of electrons with the adjacent C5=O1 carbonyl group



Figure 1 The molecular structure of (I) showing 50% displacement ellipsoids.



The molecular structure of (II) showing 50% displacement ellipsoids.

and the N2=C6 double bond, as observed previously for related compounds (Cardoso *et al.*, 2016*c*). Otherwise, the bond lengths and angles in (I) may be regarded as unexceptional.

In (II) (Fig. 2), the N2=C6 double bond [1.284 (3) Å] is also in an *E* configuration and C5-N1-N2-C6 = 173.74 (19)° but unlike (I), atoms O1 and S1 lie on opposite sides of the molecule [S1-C4-C5-O1 = -170.67 (17)°] and N3 lies on the same side as O1. The dihedral angle between the aromatic rings is 15.42 (14)° and the most significant twist occurs about the C5-N1 bond [C4-C5-N1-N2 =12.0 (3)°]. The C8-H8 bond of the pyridine ring points towards S1 but with  $H \cdots S = 3.22$  Å (sum of van der Waals radii = 3.00 Å) we consider it to be too long to be regarded as an intramolecular hydrogen bond.

Compound (III) (Fig. 3) is the *N*-methylated derivative of (II): the N2=C7 bond [1.2815 (17) Å] has an *E* configuration and C5-N1-N2-C7 = 179.40 (12)°. As with (II), O1 and S1 lie on opposite sides of the molecule [S1-C4-C5-O1 = 178.88 (10)° and N3 lies on the same side as O1. The dihedral angle between the C1-C4/S1 and C8-C12/N3 rings is 4.97 (8)°: most of this twist appear to be about the C7-C8 bond [N2-C7-C8-C9 = -4.8 (2)°] although the whole molecule is close to flat [r.m.s. deviation for the 17 non-H atoms = 0.065 Å]. In this case, the short intramolecular H···S contact



The molecular structure of (III) showing 50% displacement ellipsoids. The short  $C-H\cdots S$  contact is indicated by a double-dashed line.



Figure 4

The molecular structure of (IV) showing 50% displacement ellipsoids. The minor disorder component of the thiophene ring is shown with pink bonds.

between C9–H9 and S1 is 2.84 Å (C–H···S = 155°), considerably shorter than the equivalent contact in (II), and reasonable for this type of weak interaction (Ghosh *et al.*, 2020).

In (IV) (Fig. 4), the thiophene ring was modelled with 'flip' disorder (~180° rotation about the C4–C5 bond) in a 0.851 (2): 0.149 (2) ratio, which is a common structural feature for this moiety (Cardoso *et al.*, 2016*c*). Once again, the configuration of the N2=C7 double bond [1.281 (2) Å] is *E* and C6 and C7 are close to *anti* about the N–N bond [C6–N1–N2–C7 =  $-177.90 (14)^{\circ}$ ]. The dihedral angle between the aromatic rings (major disorder conformation for the thiophene moiety) in (IV) of 83.52 (13)° indicates near perpendicularity, which is quite different to the other compounds described here, presumably because the molecule has additional conformational flexibility about the C–C single bonds associated with the C5 methylene group [C3–C4–C5–C6 = 93.8 (6)°; C4–C5–C6–N1 = 144.72 (14)°].

#### 3. Supramolecular features

Geometrical data for the directional intermolecular interactions in (I)–(IV) are listed in Tables 1–4, respectively. The most significant features in the packing of (I) and (II) are N–



#### Figure 5

Fragment of the crystal structure of (I) showing part of an [001] C(7) chain linked by N-H···N hydrogen bonds (double dashed lines). Symmetry codes: (i) -x, -y,  $z - \frac{1}{2}$ ; (ii) -x, -y,  $z + \frac{1}{2}$ .

| Table 1                |       |        |        |
|------------------------|-------|--------|--------|
| Hydrogen-bond geometry | (Å, ' | °) foi | : (I). |

| $D - H \cdots A$           | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|----------------------------|----------------|-------------------------|--------------|-----------------------------|
| $N1-H1N\cdots N3^{i}$      | 0.87 (5)       | 2.14 (5)                | 2.995 (5)    | 166 (4)                     |
| $C1-H1\cdots O1^{ii}$      | 0.95           | 2.53                    | 3.471 (6)    | 171                         |
| $C3-H3\cdots N3^{i}$       | 0.95           | 2.61                    | 3.479 (6)    | 152                         |
| $C6-H6\cdots N3^{i}$       | 0.95           | 2.59                    | 3.410 (6)    | 145                         |
| C9−H9···O1 <sup>iii</sup>  | 0.95           | 2.66                    | 3.397 (5)    | 135                         |
| $C11 - H11 \cdots N2^{iv}$ | 0.95           | 2.57                    | 3.481 (6)    | 160                         |
|                            |                |                         |              |                             |

Symmetry codes: (i) -x, -y,  $z - \frac{1}{2}$ ; (ii) -x + 1, -y + 1,  $z - \frac{1}{2}$ ; (iii) -x + 1, -y,  $z + \frac{1}{2}$ ; (iv)  $x - \frac{1}{2}$ , -y, z.

Table 2

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (II).

| $D - H \cdots A$                                                            | D-H                      | $H \cdot \cdot \cdot A$  | $D \cdots A$                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------|--------------------------------------|
| $N1 - H1N \cdots N3^{i}$ $C1 - H1 \cdots O1^{ii}$ $C2 - H2 \cdots O1^{iii}$ | 0.98 (3)<br>0.95<br>0.95 | 2.03 (3)<br>2.48<br>2.64 | 3.013 (3)<br>3.101 (3)<br>3.410 (3) | 177 (3)<br>123<br>139                |
|                                                                             |                          |                          |                                     |                                      |

Symmetry codes: (i)  $-x + 1, -y + 1, z + \frac{1}{2}$ ; (ii)  $-x + \frac{3}{2}, y - \frac{1}{2}, z - \frac{1}{2}$ ; (iii)  $-x + \frac{3}{2}, y - \frac{1}{2}, z + \frac{1}{2}$ ;

 Table 3

 Hydrogen-bond geometry (Å. °) for (III)

| ing a ogen cona geomeny (in, ) ioi (in).                           |              |                         |                            |                             |  |  |  |
|--------------------------------------------------------------------|--------------|-------------------------|----------------------------|-----------------------------|--|--|--|
| $D - H \cdot \cdot \cdot A$                                        | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$               | $D - H \cdot \cdot \cdot A$ |  |  |  |
| $\begin{array}{c} C9-H9\cdots S1\\ C6-H6C\cdots N3^{i}\end{array}$ | 0.95<br>0.98 | 2.84<br>2.61            | 3.7217 (13)<br>3.3499 (18) | 155<br>132                  |  |  |  |

Symmetry code: (i)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ .

| abl | e | 4 |  |  |  |  |  |
|-----|---|---|--|--|--|--|--|
|-----|---|---|--|--|--|--|--|

Hydrogen-bond geometry (Å, °) for (IV).

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------|----------------|-------------------------|--------------|------------------|
| $N1 - H1N \cdots O1^{i}$    | 0.88(2)        | 2.00 (2)                | 2.8628 (18)  | 164.9 (18)       |
| C3-H3···N1 <sup>ii</sup>    | 0.95           | 2.78                    | 3.718 (7)    | 172              |
| $C5-H5B\cdots O1^{i}$       | 0.99           | 2.64                    | 3.307 (2)    | 125              |
| $C7-H7\cdots S1B^{i}$       | 0.95           | 2.65                    | 3.534 (16)   | 155              |
| $C12-H12\cdots S1^{iii}$    | 0.95           | 2.98                    | 3.6624 (19)  | 129              |

Symmetry codes: (i)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (ii)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (iii) -x + 1, -y + 2, -z + 1.

 $H \cdots N_p$  (p = pyridine) hydrogen bonds: in the former, these links generate [001] C(7) chains (Fig. 5), with adjacent molecules in the chain related by the 2<sub>1</sub> screw axis. In (II), the equivalent interaction also leads to [001] chains (Fig. 6) generated by the 2<sub>1</sub> screw axis but here the graph-set motif is C(6). The packing for (IV) features classical C(4) amide N- $H \cdots O$  hydrogen bonds (Fig. 7) leading to [010] chains generated once again by a 2<sub>1</sub> screw axis. There are obviously no classical hydrogen bonds in the extended structure of (III) and the only possible directional intermolecular contact identified is a very weak  $C-H \cdots N_p$  link arising from the *N*methyl group. The structures of (I), (II) and (IV) also feature various  $C-H \cdots X$  (X = N, O, S) interactions although these are presumably very weak, given their  $H \cdots X$  lengths.

The shortest aromatic ring centroid–centroid separations in these structures are  $\pi_t \cdots \pi_p$  (t = thiophene, p = pyridine) = 4.046 (2) Å (slippage = 1.546 Å) for (I),  $\pi_t \cdots \pi_p$  = 4.0509 (12) Å (slippage = 1.929 Å) for (II),  $\pi_t \cdots \pi_p$  = 4.7831 (9) Å for (III) and  $\pi_t \cdots \pi_p$  = 4.643 (2) Å for (IV).



Figure 6

Fragment of the crystal structure of (II) showing part of an [001] C(6) chain linked by N-H···N hydrogen bonds (double-dashed lines). Symmetry code: (i) 1 - x, 1 - y,  $z + \frac{1}{2}$ .

Given these distances, any aromatic ring-stacking effects that contribute to the cohesion and stability of the crystal must be weak to non-existent.

In order to gain more insight into these different packing motifs, the Hirshfeld surfaces and fingerprint plots for (I)-(IV) were calculated using *CrystalExplorer* (Turner *et al.*, 2017) following the approach recently described by Tan *et al.* (2019). The Hirshfeld surfaces (see supporting information) show the expected red spots (close contacts) in the vicinities of the various donor and acceptor atoms.

The fingerprint plots for (I)–(IV) decomposed into the different percentage contact types (Table 5) show that the different contributions are broadly similar, with  $H \cdots H$  (van der Waals) contacts the most significant for each structure, followed by  $C \cdots H/H \cdots C$ . The  $O \cdots H/H \cdots O$  and  $N \cdots H/H \cdots N$  contributions are almost the same for the four structures, despite the lack of classical hydrogen bonds in (III). The  $S \cdots H/H \cdots S$  percentage contributions for (I) and (IV) are notably greater than those for (II) and (III), possibly because the S atom is 'facing outwards' in the former structures but is associated with an intramolecular  $C-H \cdots S$  close contact arising from the pyridine ring in the latter structures. It is notable that the percentage of  $O \cdots O$  contacts is zero in all structures, presumably reflecting the fact that 'bare' O atoms avoid each other in the solid state for electrostatic reasons.

#### 4. Database survey

A survey of the Cambridge Structural Database (CSD Core 2012.3 version of March 2022; Groom *et al.*, 2016) revealed

| Table 5                                                 |  |
|---------------------------------------------------------|--|
| Hirshfeld fingerprint contact percentages for (I)–(IV). |  |

| Contact type                                    | (I)  | (II) | (III) | $(IV)^a$ |
|-------------------------------------------------|------|------|-------|----------|
| $H \cdots H$                                    | 30.1 | 32.8 | 36.5  | 34.5     |
| $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$   | 15.1 | 23.3 | 28.2  | 22.6     |
| $O \cdots H/H \cdots O$                         | 13.1 | 12.8 | 10.4  | 11.2     |
| $N{\cdots}H/H{\cdots}N$                         | 13.7 | 12.2 | 11.5  | 13.8     |
| $S \cdots H/H \cdots S$                         | 12.1 | 7.0  | 5.8   | 10.7     |
| $\mathbf{C} \cdot \cdot \cdot \mathbf{C}$       | 6.2  | 4.5  | 1.8   | 1.2      |
| $C \cdot \cdot \cdot O / O \cdot \cdot \cdot C$ | 1.3  | 0.8  | 0.7   | 1.0      |
| $0 \cdots 0$                                    | 0.0  | 0.0  | 0.0   | 0.0      |

Note: (a) Major disorder component.

nine structures incorporating the T-C(=O)-NH-N=CH-Q (T = thiophene ring; Q = thiophene or furan or pyrrole ring or derivatives) grouping and two with the T- $CH_2-C(=O)-NH-N=CH-Q$  sequence. None of these structures features a pyridine ring in the 'Q' position.

#### 5. Synthesis and crystallization

Compounds (I) and (II) were prepared by a literature procedure (Lima *et al.*, 2000) and single crystals suitable for data collection were recrystallized from ethanol solution at room temperature. For the syntheses and spectroscopic characterizations of (III) and (IV), see Cardoso *et al.* (2016*a*) and



Figure 7

Fragment of the crystal structure of (IV) showing part of an [010] C(4) chain linked by N-H···O hydrogen bonds (double-dashed lines). Symmetry codes: (i)  $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$ ; (ii)  $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$ .

### research communications

### Table 6Experimental details.

|                                                                                | (I)                                                                          | (II)                                                                         | (III)                                               | (IV)                                                                         |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|
| Crystal data                                                                   |                                                                              |                                                                              |                                                     |                                                                              |
| Chemical formula                                                               | $C_{11}H_9N_3OS$                                                             | C <sub>11</sub> H <sub>9</sub> N <sub>3</sub> OS                             | $C_{12}H_{11}N_3OS$                                 | $C_{12}H_{11}N_3OS$                                                          |
| M <sub>r</sub>                                                                 | 231.27                                                                       | 231.27                                                                       | 245.30                                              | 245.30                                                                       |
| Crystal system, space group                                                    | Orthorhombic, $Pca2_1$                                                       | Orthorhombic, $Pna2_1$                                                       | Monoclinic, C2/c                                    | Monoclinic, $P2_1/c$                                                         |
| Temperature (K)                                                                | 100                                                                          | 100                                                                          | 100                                                 | 100                                                                          |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                             | 10.6845 (9), 9.4974 (9),<br>10.0917 (10)                                     | 18.4056 (13), 9.5255 (7),<br>6.0300 (4)                                      | 21.0690 (15), 5.1085 (4),<br>21.1531 (15)           | 11.3963 (8), 9.2782 (7),<br>11.8178 (8)                                      |
| $\alpha, \beta, \gamma$ (°)                                                    | 90, 90, 90                                                                   | 90, 90, 90                                                                   | 90, 95.265 (2), 90                                  | 90, 112.761 (2), 90                                                          |
| $V(\dot{A}^3)$                                                                 | 1024.05 (16)                                                                 | 1057.19 (13)                                                                 | 2267.1 (3)                                          | 1152.27 (14)                                                                 |
| Z                                                                              | 4                                                                            | 4                                                                            | 8                                                   | 4                                                                            |
| Radiation type                                                                 | Μο Κα                                                                        | Μο Κα                                                                        | Μο Κα                                               | Μο Κα                                                                        |
| $\mu \text{ (mm}^{-1})$                                                        | 0.30                                                                         | 0.29                                                                         | 0.27                                                | 0.27                                                                         |
| Crystal size (mm)                                                              | $0.05 \times 0.04 \times 0.01$                                               | $0.15 \times 0.06 \times 0.04$                                               | $0.42 \times 0.12 \times 0.03$                      | $0.10\times0.09\times0.06$                                                   |
| Data collection                                                                |                                                                              |                                                                              |                                                     |                                                                              |
| Diffractometer                                                                 | Rigaku Saturn724+ CCD                                                        | Rigaku Saturn724+ CCD                                                        | Rigaku Saturn724+ CCD                               | Rigaku AFC12 CCD                                                             |
| Absorption correction                                                          | Multi-scan ( <i>CrystalClear</i> ;<br>Rigaku, 2012)                          | Multi-scan ( <i>CrystalClear</i> ;<br>Rigaku, 2012)                          | Multi-scan ( <i>CrystalClear</i> ;<br>Rigaku, 2012) | Multi-scan ( <i>CrystalClear</i> ;<br>Rigaku, 2012)                          |
| $T_{\min}, T_{\max}$                                                           | 0.484, 1.000                                                                 | 0.756, 1.000                                                                 | 0.780, 1.000                                        | 0.723, 1.000                                                                 |
| No. of measured, independent<br>and observed $[I > 2\sigma(I)]$<br>reflections | 6740, 1822, 1559                                                             | 7314, 1979, 1930                                                             | 8717, 2563, 2307                                    | 8155, 2593, 2138                                                             |
| R <sub>int</sub>                                                               | 0.058                                                                        | 0.026                                                                        | 0.022                                               | 0.031                                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                           | 0.649                                                                        | 0.649                                                                        | 0.650                                               | 0.670                                                                        |
| Refinement                                                                     |                                                                              |                                                                              |                                                     |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                            | 0.046, 0.112, 1.08                                                           | 0.029, 0.083, 1.08                                                           | 0.031, 0.087, 1.07                                  | 0.041, 0.112, 1.10                                                           |
| No. of reflections                                                             | 1822                                                                         | 1979                                                                         | 2563                                                | 2593                                                                         |
| No. of parameters                                                              | 148                                                                          | 148                                                                          | 155                                                 | 170                                                                          |
| No. of restraints                                                              | 1                                                                            | 1                                                                            | 0                                                   | 10                                                                           |
| H-atom treatment                                                               | H atoms treated by a mixture<br>of independent and<br>constrained refinement | H atoms treated by a mixture<br>of independent and<br>constrained refinement | H-atom parameters constrained                       | H atoms treated by a mixture<br>of independent and<br>constrained refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$   | 0.27, -0.43                                                                  | 0.33, -0.24                                                                  | 0.33, -0.29                                         | 0.32, -0.30                                                                  |
| Absolute structure                                                             | Parsons et al. (2013)                                                        | Parsons et al. (2013)                                                        | -                                                   | -                                                                            |
| Absolute structure parameter                                                   | 0.02 (13)                                                                    | 0.04 (4)                                                                     | —                                                   | -                                                                            |

Computer programs: CrystalClear (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Cardoso *et al.* (2014), respectively: in each case, colourless blocks suitable for X-ray data collections were recrystallized from ethanol solution at room temperature.

#### Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. The thiophene ring in (IV) was modelled as disordered over two sets of sites related by an approximate rotation of 180° about the C4-C5 bond in a 0.851 (2): 0.149 (2) ratio. EADP cards in SHELXL were used for the  $U_{ij}$  values of equivalent atom pairs (e.g., C1 and C1B) and a SAME card was used to restrain the nearest-neighbour and next-nearest-neighbour bond distances in the two disorder components to be equal with standard deviations of 0.02 and 0.04 Å, respectively. The N-bound H atoms in (I), (II) and (IV) were located in difference maps and their positions were freely refined with  $U_{iso}(H) = 1.2U_{eq}(N)$ . All C-bound H atoms were located geometrically (C-H = 0.95-0.99 Å) and refined as riding atoms with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}$  (methyl C). The methyl group in (III) was allowed to rotate, but not to tip, to best fit the electron density.

#### References

- Abbas, S., Imtiaz-ud-din, Mehmood, M., Rauf, M. K., Azam, S. S., Ihsan-ul Haq, Tahir, M. N. & Parvaiz, N. (2021). *J. Mol. Struct.* **1230** article No. 129870.
- Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). *Arch. Pharm. Chem. Life Sci.* 347, 432–448.
- Cardoso, L. N. F., Nogueira, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016*a*). *Mediterr. J. Chem.* **5**, 356–366.
- Cardoso, L. N. F., Nogueira, T. C. M., Rodrigues, F. A. R., Oliveira, A. C. A., Luciano, S., Pessoa, C. & de Souza, M. V. N. (2017). *Med. Chem. Res.* 26, 1605–1608.
- Cardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., de Souza, M. V. N., Jotani, M. M. & Tiekink, E. R. T. (2016c). *Acta Cryst.* E72, 1025–1031.
- Cardoso, L. N. F., Noguiera, T. C. M., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V. & de Souza, M. V. N. (2016b). Z. Kristallogr. 231, 167–178.

### research communications

- Dijken, D. J. van, Kovaříček, P., Ihrig, S. P. & Hecht, S. (2015). J. Am. Chem. Soc. 137, 14982–14991.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gholivand, K., Farshadfer, K., Roe, M., Gholami, A. & Esrafili, M. D. (2016). *CrystEngComm*, **18**, 2873–2884.
- Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). *Phys. Chem. Chem. Phys.* **22**, 17482–17493.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lima, P. C., Lima, L. M., da Silva, K. C. M., Léda, P. H. O., de Miranda, A. L. P., Fraga, C. A. M. & Barreiro, E. J. (2000). *Eur. J. Med. Chem.* 35, 187–203.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2022). E78, 619-624 [https://doi.org/10.1107/S2056989022005151]

Different conformations and packing motifs in the crystal structures of four thiophene-carbohydrazide-pyridine derivatives

# Jennifer L. Garbutt, Cristiane F. da Costa, Marcus V. N. deSouza, Solange M. S. V. Wardell, James L. Wardell and William T. A. Harrison

#### **Computing details**

For all structures, data collection: *CrystalClear* (Rigaku, 2012); cell refinement: *CrystalClear* (Rigaku, 2012); data reduction: *CrystalClear* (Rigaku, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

*N'*-[(*E*)-Pyridin-3-ylmethylidene]thiophene-2-carbohydrazide (I)

Crystal data  $C_{11}H_9N_3OS$   $M_r = 231.27$ Orthorhombic,  $Pca2_1$  a = 10.6845 (9) Å b = 9.4974 (9) Å c = 10.0917 (10) Å V = 1024.05 (16) Å<sup>3</sup> Z = 4

#### Data collection

F(000) = 480

Rigaku Saturn724+ CCD diffractometer  $\omega$  scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2012)  $T_{min} = 0.484, T_{max} = 1.000$ 6740 measured reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.046$  $wR(F^2) = 0.112$ S = 1.081822 reflections 148 parameters 1 restraint Primary atom site location: structure-invariant direct methods  $D_x = 1.500 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5861 reflections  $\theta = 3.5-27.5^{\circ}$  $\mu = 0.30 \text{ mm}^{-1}$ T = 100 KChip, colourless  $0.05 \times 0.04 \times 0.01 \text{ mm}$ 

1822 independent reflections 1559 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.058$   $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.5^{\circ}$   $h = -12 \rightarrow 13$   $k = -12 \rightarrow 12$  $l = -7 \rightarrow 13$ 

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 0.5837P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.27$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.43$  e Å<sup>-3</sup> Absolute structure: Parsons *et al.* (2013) Absolute structure parameter: 0.02 (13)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x           | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|--------------|---------------|-----------------------------|
| C1  | 0.4074 (4)  | 0.5100 (5)   | -0.3833 (5)   | 0.0253 (10)                 |
| H1  | 0.444915    | 0.579791     | -0.437808     | 0.030*                      |
| C2  | 0.2866 (4)  | 0.4653 (4)   | -0.3959 (5)   | 0.0239 (10)                 |
| H2  | 0.230294    | 0.500393     | -0.460776     | 0.029*                      |
| C3  | 0.2544 (4)  | 0.3608 (4)   | -0.3018 (5)   | 0.0236 (10)                 |
| Н3  | 0.173924    | 0.318696     | -0.296656     | 0.028*                      |
| C4  | 0.3510 (4)  | 0.3271 (4)   | -0.2195 (4)   | 0.0199 (10)                 |
| C5  | 0.3644 (4)  | 0.2257 (4)   | -0.1092 (4)   | 0.0194 (9)                  |
| C6  | 0.1581 (4)  | 0.0118 (5)   | 0.0671 (5)    | 0.0215 (9)                  |
| H6  | 0.084911    | 0.035530     | 0.018411      | 0.026*                      |
| C7  | 0.1483 (4)  | -0.0844 (4)  | 0.1798 (4)    | 0.0188 (9)                  |
| C8  | 0.2501 (3)  | -0.1470 (4)  | 0.2449 (6)    | 0.0215 (9)                  |
| H8  | 0.333133    | -0.132248    | 0.214145      | 0.026*                      |
| C9  | 0.2277 (4)  | -0.2306 (4)  | 0.3544 (5)    | 0.0208 (9)                  |
| H9  | 0.295199    | -0.273712    | 0.400284      | 0.025*                      |
| C10 | 0.1052 (4)  | -0.2507 (5)  | 0.3966 (5)    | 0.0228 (10)                 |
| H10 | 0.091113    | -0.306383    | 0.473419      | 0.027*                      |
| C11 | 0.0286 (3)  | -0.1154 (4)  | 0.2275 (5)    | 0.0196 (9)                  |
| H11 | -0.041192   | -0.077506    | 0.181272      | 0.023*                      |
| N1  | 0.2581 (3)  | 0.1569 (4)   | -0.0731 (4)   | 0.0196 (8)                  |
| H1N | 0.186 (4)   | 0.181 (5)    | -0.107 (5)    | 0.023*                      |
| N2  | 0.2634 (3)  | 0.0646 (4)   | 0.0328 (4)    | 0.0211 (8)                  |
| N3  | 0.0061 (3)  | -0.1955 (4)  | 0.3344 (4)    | 0.0217 (8)                  |
| 01  | 0.4666 (3)  | 0.2073 (3)   | -0.0557 (4)   | 0.0278 (8)                  |
| S1  | 0.48271 (9) | 0.42487 (11) | -0.25732 (14) | 0.0248 (3)                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$  | $U^{12}$     | $U^{13}$     | $U^{23}$     |  |
|-----|-------------|-------------|-----------|--------------|--------------|--------------|--|
| C1  | 0.030 (2)   | 0.024 (2)   | 0.022 (3) | -0.0009 (18) | 0.009 (2)    | 0.002 (2)    |  |
| C2  | 0.030 (2)   | 0.026 (2)   | 0.016 (3) | 0.0038 (18)  | 0.000(2)     | 0.006 (2)    |  |
| C3  | 0.026 (2)   | 0.022 (2)   | 0.022 (3) | 0.0033 (16)  | -0.0001 (18) | 0.0045 (19)  |  |
| C4  | 0.025 (2)   | 0.0204 (19) | 0.015 (2) | 0.0014 (16)  | -0.0012 (18) | -0.0021 (17) |  |
| C5  | 0.020(2)    | 0.022 (2)   | 0.017 (2) | -0.0029 (16) | 0.0016 (18)  | -0.0019 (19) |  |
| C6  | 0.0196 (19) | 0.025 (2)   | 0.019 (2) | -0.0002 (17) | -0.004 (2)   | -0.0007 (19) |  |
| C7  | 0.018 (2)   | 0.0216 (19) | 0.017 (2) | -0.0014 (15) | 0.0001 (18)  | -0.0027 (18) |  |
| C8  | 0.0177 (18) | 0.0242 (19) | 0.023 (2) | -0.0026 (13) | -0.002 (3)   | -0.005 (2)   |  |
| C9  | 0.020 (2)   | 0.026 (2)   | 0.017 (2) | 0.0002 (16)  | -0.006(2)    | 0.001 (2)    |  |
| C10 | 0.025 (2)   | 0.027 (2)   | 0.017 (2) | 0.0016 (17)  | -0.001 (2)   | -0.0001 (19) |  |
|     |             |             |           |              |              |              |  |

| 011        | 0.01(0.(17) | 0.0000 (10) | 0.010 (0)   | 0.0010 (1.4) | 0.001 (0)    | 0.000 (2)    |
|------------|-------------|-------------|-------------|--------------|--------------|--------------|
| CII        | 0.0169 (17) | 0.0238 (18) | 0.018 (2)   | 0.0012 (14)  | -0.001(2)    | -0.002(2)    |
| N1         | 0.0164 (17) | 0.0258 (18) | 0.016 (2)   | -0.0001 (14) | -0.0040 (16) | 0.0038 (16)  |
| N2         | 0.0247 (19) | 0.0223 (18) | 0.016 (2)   | -0.0014 (14) | -0.0010 (18) | 0.0000 (16)  |
| N3         | 0.0250 (18) | 0.0222 (16) | 0.018 (2)   | 0.0005 (15)  | 0.0031 (17)  | -0.0009 (16) |
| 01         | 0.0179 (15) | 0.0385 (18) | 0.0270 (19) | -0.0039 (12) | -0.0050 (15) | 0.0063 (17)  |
| <b>S</b> 1 | 0.0222 (5)  | 0.0301 (5)  | 0.0221 (6)  | -0.0036 (4)  | 0.0015 (6)   | 0.0037 (6)   |

Geometric parameters (Å, °)

| C1—C2       | 1.364 (6)  | С6—Н6        | 0.9500     |
|-------------|------------|--------------|------------|
| C1—S1       | 1.708 (5)  | C7—C11       | 1.398 (5)  |
| C1—H1       | 0.9500     | C7—C8        | 1.403 (6)  |
| C2—C3       | 1.415 (6)  | C8—C9        | 1.381 (7)  |
| С2—Н2       | 0.9500     | С8—Н8        | 0.9500     |
| C3—C4       | 1.363 (6)  | C9—C10       | 1.390 (6)  |
| С3—Н3       | 0.9500     | С9—Н9        | 0.9500     |
| C4—C5       | 1.479 (6)  | C10—N3       | 1.338 (5)  |
| C4—S1       | 1.729 (4)  | C10—H10      | 0.9500     |
| C5—O1       | 1.230 (5)  | C11—N3       | 1.342 (6)  |
| C5—N1       | 1.360 (5)  | C11—H11      | 0.9500     |
| C6—N2       | 1.280 (5)  | N1—N2        | 1.384 (5)  |
| C6—C7       | 1.463 (6)  | N1—H1N       | 0.87 (5)   |
|             |            |              |            |
| C2-C1-S1    | 111.6 (3)  | C8—C7—C6     | 125.0 (4)  |
| C2-C1-H1    | 124.2      | C9—C8—C7     | 118.9 (4)  |
| S1—C1—H1    | 124.2      | С9—С8—Н8     | 120.5      |
| C1—C2—C3    | 112.7 (4)  | С7—С8—Н8     | 120.5      |
| C1—C2—H2    | 123.7      | C8—C9—C10    | 119.2 (4)  |
| С3—С2—Н2    | 123.7      | С8—С9—Н9     | 120.4      |
| C4—C3—C2    | 112.9 (4)  | С10—С9—Н9    | 120.4      |
| С4—С3—Н3    | 123.5      | N3—C10—C9    | 123.2 (4)  |
| С2—С3—Н3    | 123.5      | N3—C10—H10   | 118.4      |
| C3—C4—C5    | 133.3 (4)  | С9—С10—Н10   | 118.4      |
| C3—C4—S1    | 110.8 (3)  | N3—C11—C7    | 124.1 (4)  |
| C5—C4—S1    | 115.9 (3)  | N3—C11—H11   | 118.0      |
| O1—C5—N1    | 123.7 (4)  | C7—C11—H11   | 118.0      |
| O1—C5—C4    | 120.6 (4)  | C5—N1—N2     | 118.5 (4)  |
| N1C5C4      | 115.7 (4)  | C5—N1—H1N    | 120 (3)    |
| N2—C6—C7    | 121.1 (4)  | N2—N1—H1N    | 120 (3)    |
| N2—C6—H6    | 119.4      | C6—N2—N1     | 114.8 (4)  |
| С7—С6—Н6    | 119.4      | C10—N3—C11   | 117.3 (4)  |
| C11—C7—C8   | 117.3 (4)  | C1—S1—C4     | 92.0 (2)   |
| C11—C7—C6   | 117.7 (4)  |              |            |
|             |            |              |            |
| S1—C1—C2—C3 | 0.2 (5)    | C8—C9—C10—N3 | 1.6 (7)    |
| C1—C2—C3—C4 | -0.3 (6)   | C8—C7—C11—N3 | 3.2 (6)    |
| C2—C3—C4—C5 | -179.1 (5) | C6-C7-C11-N3 | -176.2 (4) |
| C2—C3—C4—S1 | 0.2 (5)    | O1—C5—N1—N2  | 2.4 (6)    |

| C3—C4—C5—O1  | 174.4 (5) | C4—C5—N1—N2   | -177.6 (3) |
|--------------|-----------|---------------|------------|
| S1—C4—C5—O1  | -4.9 (6)  | C7—C6—N2—N1   | -178.2 (4) |
| C3—C4—C5—N1  | -5.6 (7)  | C5—N1—N2—C6   | 175.1 (4)  |
| S1—C4—C5—N1  | 175.1 (3) | C9—C10—N3—C11 | -1.0 (6)   |
| N2-C6-C7-C11 | 167.6 (4) | C7-C11-N3-C10 | -1.5 (6)   |
| N2—C6—C7—C8  | -11.8 (7) | C2-C1-S1-C4   | -0.1 (4)   |
| C11—C7—C8—C9 | -2.5 (6)  | C3—C4—S1—C1   | -0.1 (4)   |
| C6—C7—C8—C9  | 176.9 (4) | C5—C4—S1—C1   | 179.4 (3)  |
| C7—C8—C9—C10 | 0.3 (6)   |               |            |
|              |           |               |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H      | H···A    | $D \cdots A$ | D—H··· $A$ |
|------------------------------------|----------|----------|--------------|------------|
| N1—H1 <i>N</i> ····N3 <sup>i</sup> | 0.87 (5) | 2.14 (5) | 2.995 (5)    | 166 (4)    |
| C1—H1···O1 <sup>ii</sup>           | 0.95     | 2.53     | 3.471 (6)    | 171        |
| C3—H3…N3 <sup>i</sup>              | 0.95     | 2.61     | 3.479 (6)    | 152        |
| C6—H6…N3 <sup>i</sup>              | 0.95     | 2.59     | 3.410 (6)    | 145        |
| С9—Н9…О1 <sup>ііі</sup>            | 0.95     | 2.66     | 3.397 (5)    | 135        |
| C11—H11····N2 <sup>iv</sup>        | 0.95     | 2.57     | 3.481 (6)    | 160        |

Symmetry codes: (i) -*x*, -*y*, *z*-1/2; (ii) -*x*+1, -*y*+1, *z*-1/2; (iii) -*x*+1, -*y*, *z*+1/2; (iv) *x*-1/2, -*y*, *z*.

N'-[(E)-Pyridin-2-ylmethylidene]thiophene-2-carbohydrazide (II)

Crystal data

C<sub>11</sub>H<sub>9</sub>N<sub>3</sub>OS  $M_r = 231.27$ Orthorhombic,  $Pna2_1$  a = 18.4056 (13) Å b = 9.5255 (7) Å c = 6.0300 (4) Å V = 1057.19 (13) Å<sup>3</sup> Z = 4F(000) = 480

Data collection

Rigaku Saturn724+ CCD diffractometer  $\omega$  scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2012)  $T_{\min} = 0.756, T_{\max} = 1.000$ 7314 measured reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.029$  $wR(F^2) = 0.083$ S = 1.081979 reflections 148 parameters 1 restraint  $D_x = 1.453 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6000 reflections  $\theta = 2.4-27.5^{\circ}$  $\mu = 0.29 \text{ mm}^{-1}$ T = 100 KBlade, dark orange  $0.15 \times 0.06 \times 0.04 \text{ mm}$ 

1979 independent reflections 1930 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.026$   $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$   $h = -23 \rightarrow 23$   $k = -9 \rightarrow 12$  $l = -5 \rightarrow 7$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0573P)^2 + 0.2224P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$ 

| $\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$  |
|------------------------------------------------------------|
| $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$ |

Special details

Absolute structure: Parsons *et al.* (2013) Absolute structure parameter: 0.04 (4)

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| C1  | 0.80728 (12) | 0.2567 (2)   | 0.9079 (4)   | 0.0243 (5)                  |
| H1  | 0.844507     | 0.190518     | 0.876806     | 0.029*                      |
| C2  | 0.80182 (12) | 0.3272 (2)   | 1.1043 (4)   | 0.0240 (5)                  |
| H2  | 0.834112     | 0.312980     | 1.225101     | 0.029*                      |
| C3  | 0.74255 (10) | 0.4248 (2)   | 1.1102 (5)   | 0.0225 (5)                  |
| Н3  | 0.730933     | 0.483815     | 1.232138     | 0.027*                      |
| C4  | 0.70395 (11) | 0.4200 (2)   | 0.9075 (4)   | 0.0198 (4)                  |
| C5  | 0.64198 (11) | 0.5159 (2)   | 0.8639 (4)   | 0.0201 (4)                  |
| C6  | 0.56443 (11) | 0.3875 (2)   | 0.3737 (4)   | 0.0214 (4)                  |
| H6  | 0.530355     | 0.461814     | 0.358627     | 0.026*                      |
| C7  | 0.56402 (10) | 0.2730 (2)   | 0.2119 (5)   | 0.0207 (4)                  |
| C8  | 0.61299 (11) | 0.1601 (2)   | 0.2192 (5)   | 0.0248 (4)                  |
| H8  | 0.647838     | 0.152750     | 0.334814     | 0.030*                      |
| C9  | 0.60922 (12) | 0.0599 (2)   | 0.0540 (5)   | 0.0282 (5)                  |
| Н9  | 0.642008     | -0.017145    | 0.053144     | 0.034*                      |
| C10 | 0.55693 (12) | 0.0730 (2)   | -0.1110 (5)  | 0.0276 (5)                  |
| H10 | 0.553393     | 0.005274     | -0.226127    | 0.033*                      |
| C11 | 0.51001 (12) | 0.1869 (2)   | -0.1042 (5)  | 0.0252 (5)                  |
| H11 | 0.474376     | 0.195559     | -0.217400    | 0.030*                      |
| N1  | 0.60295 (9)  | 0.50362 (19) | 0.6733 (3)   | 0.0207 (4)                  |
| H1N | 0.5663 (14)  | 0.573 (3)    | 0.629 (5)    | 0.025*                      |
| N2  | 0.60975 (9)  | 0.38992 (19) | 0.5354 (3)   | 0.0200 (4)                  |
| N3  | 0.51261 (10) | 0.2853 (2)   | 0.0546 (4)   | 0.0222 (4)                  |
| 01  | 0.62639 (9)  | 0.60967 (18) | 0.9963 (3)   | 0.0263 (4)                  |
| S1  | 0.74058 (3)  | 0.29964 (5)  | 0.72453 (13) | 0.02379 (16)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|-------------|--------------|--------------|
| C1 | 0.0204 (9)  | 0.0272 (11) | 0.0252 (13) | 0.0009 (8)  | -0.0035 (9)  | -0.0004 (11) |
| C2 | 0.0236 (10) | 0.0273 (10) | 0.0209 (12) | -0.0006 (9) | -0.0040 (9)  | -0.0004 (10) |
| C3 | 0.0180 (9)  | 0.0194 (9)  | 0.0302 (14) | 0.0013 (7)  | 0.0020 (9)   | 0.0050 (10)  |
| C4 | 0.0203 (8)  | 0.0214 (9)  | 0.0177 (11) | -0.0019 (7) | 0.0025 (8)   | 0.0003 (9)   |
| C5 | 0.0201 (9)  | 0.0217 (9)  | 0.0184 (11) | -0.0016 (7) | 0.0022 (8)   | 0.0005 (9)   |
| C6 | 0.0180 (8)  | 0.0250 (10) | 0.0213 (11) | 0.0017 (7)  | -0.0001 (9)  | -0.0007 (9)  |
| C7 | 0.0177 (8)  | 0.0244 (10) | 0.0200 (11) | -0.0014 (7) | -0.0005 (10) | 0.0021 (11)  |
| C8 | 0.0205 (9)  | 0.0279 (10) | 0.0258 (12) | 0.0017 (7)  | -0.0027 (10) | 0.0002 (12)  |
|    |             |             |             |             |              |              |

| O1       0.0283 (8)       0.0284 (8)       0.0222 (10)       0.0038 (6)       -0.0002 (7)       -0.0046 (7) | C9<br>C10<br>C11<br>N1<br>N2<br>N3<br>O1 | 0.0268 (10)<br>0.0275 (10)<br>0.0221 (9)<br>0.0199 (8)<br>0.0181 (7)<br>0.0202 (8)<br>0.0283 (8) | 0.0272 (11)<br>0.0281 (11)<br>0.0306 (11)<br>0.0231 (8)<br>0.0239 (8)<br>0.0262 (9)<br>0.0284 (8) | 0.0307 (14)<br>0.0271 (14)<br>0.0229 (13)<br>0.0189 (11)<br>0.0178 (9)<br>0.0203 (11)<br>0.0222 (10) | $\begin{array}{c} 0.0061 \ (9) \\ -0.0002 \ (9) \\ 0.0000 \ (8) \\ 0.0017 \ (7) \\ -0.0005 \ (6) \\ 0.0011 \ (6) \\ 0.0038 \ (6) \end{array}$ | 0.0010 (10)<br>0.0022 (10)<br>-0.0032 (10)<br>0.0003 (7)<br>0.0010 (7)<br>-0.0014 (8)<br>-0.0002 (7) | -0.0019 (11)<br>-0.0066 (10)<br>-0.0009 (10)<br>-0.0012 (8)<br>0.0006 (8)<br>-0.0003 (8)<br>-0.0046 (7) |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|

Geometric parameters (Å, °)

| C1—C2       | 1.365 (4)   | С6—Н6         | 0.9500      |
|-------------|-------------|---------------|-------------|
| C1—S1       | 1.702 (2)   | C7—N3         | 1.345 (3)   |
| C1—H1       | 0.9500      | C7—C8         | 1.404 (3)   |
| C2—C3       | 1.434 (3)   | C8—C9         | 1.381 (4)   |
| С2—Н2       | 0.9500      | С8—Н8         | 0.9500      |
| C3—C4       | 1.415 (3)   | C9—C10        | 1.390 (4)   |
| С3—Н3       | 0.9500      | С9—Н9         | 0.9500      |
| C4—C5       | 1.485 (3)   | C10—C11       | 1.387 (3)   |
| C4—S1       | 1.728 (2)   | C10—H10       | 0.9500      |
| C5—O1       | 1.232 (3)   | C11—N3        | 1.341 (3)   |
| C5—N1       | 1.361 (3)   | C11—H11       | 0.9500      |
| C6—N2       | 1.284 (3)   | N1—N2         | 1.371 (3)   |
| C6—C7       | 1.463 (3)   | N1—H1N        | 0.98 (3)    |
|             |             |               |             |
| C2—C1—S1    | 113.11 (17) | C8—C7—C6      | 123.1 (2)   |
| C2—C1—H1    | 123.4       | C9—C8—C7      | 118.3 (2)   |
| S1—C1—H1    | 123.4       | С9—С8—Н8      | 120.8       |
| C1—C2—C3    | 113.4 (2)   | С7—С8—Н8      | 120.8       |
| C1—C2—H2    | 123.3       | C8—C9—C10     | 119.3 (2)   |
| С3—С2—Н2    | 123.3       | С8—С9—Н9      | 120.4       |
| C4—C3—C2    | 109.9 (2)   | С10—С9—Н9     | 120.4       |
| С4—С3—Н3    | 125.1       | C11—C10—C9    | 118.7 (2)   |
| С2—С3—Н3    | 125.1       | C11—C10—H10   | 120.6       |
| C3—C4—C5    | 121.3 (2)   | C9—C10—H10    | 120.6       |
| C3—C4—S1    | 112.16 (16) | N3—C11—C10    | 123.0 (2)   |
| C5—C4—S1    | 126.50 (18) | N3—C11—H11    | 118.5       |
| O1—C5—N1    | 119.15 (19) | C10-C11-H11   | 118.5       |
| O1—C5—C4    | 120.7 (2)   | C5—N1—N2      | 122.15 (18) |
| N1—C5—C4    | 120.1 (2)   | C5—N1—H1N     | 122.2 (17)  |
| N2—C6—C7    | 121.55 (19) | N2—N1—H1N     | 115.5 (17)  |
| N2—C6—H6    | 119.2       | C6—N2—N1      | 114.55 (19) |
| С7—С6—Н6    | 119.2       | C11—N3—C7     | 117.90 (19) |
| N3—C7—C8    | 122.7 (2)   | C1—S1—C4      | 91.48 (12)  |
| N3—C7—C6    | 114.14 (18) |               |             |
| S1—C1—C2—C3 | -1.8 (3)    | C8—C9—C10—C11 | 0.0 (4)     |
| C1—C2—C3—C4 | 1.0 (3)     | C9—C10—C11—N3 | -0.1 (4)    |

| C2—C3—C4—C5  | -176.80 (19) | O1—C5—N1—N2   | -169.81 (19) |  |
|--------------|--------------|---------------|--------------|--|
| C2—C3—C4—S1  | 0.2 (2)      | C4—C5—N1—N2   | 12.0 (3)     |  |
| C3—C4—C5—O1  | 5.8 (3)      | C7—C6—N2—N1   | -179.61 (19) |  |
| S1—C4—C5—O1  | -170.67 (17) | C5—N1—N2—C6   | 173.74 (19)  |  |
| C3—C4—C5—N1  | -176.02 (19) | C10-C11-N3-C7 | 1.0 (3)      |  |
| S1—C4—C5—N1  | 7.5 (3)      | C8—C7—N3—C11  | -1.9 (3)     |  |
| N2-C6-C7-N3  | 179.2 (2)    | C6—C7—N3—C11  | 178.0 (2)    |  |
| N2—C6—C7—C8  | -1.0 (4)     | C2-C1-S1-C4   | 1.60 (19)    |  |
| N3—C7—C8—C9  | 1.8 (4)      | C3—C4—S1—C1   | -0.99 (17)   |  |
| C6—C7—C8—C9  | -178.0 (2)   | C5-C4-S1-C1   | 175.80 (19)  |  |
| C7—C8—C9—C10 | -0.8(4)      |               |              |  |
|              |              |               |              |  |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|------------------------------------|-------------|----------|--------------|---------|
| N1—H1 <i>N</i> ····N3 <sup>i</sup> | 0.98 (3)    | 2.03 (3) | 3.013 (3)    | 177 (3) |
| C1—H1···O1 <sup>ii</sup>           | 0.95        | 2.48     | 3.101 (3)    | 123     |
| C2—H2····O1 <sup>iii</sup>         | 0.95        | 2.64     | 3.410 (3)    | 139     |

Symmetry codes: (i) -x+1, -y+1, z+1/2; (ii) -x+3/2, y-1/2, z-1/2; (iii) -x+3/2, y-1/2, z+1/2.

N-Methyl-N'-[(E)-pyridin-2-ylmethylidene]thiophene-2-carbohydrazide (III)

Crystal data

 $C_{12}H_{11}N_3OS$   $M_r = 245.30$ Monoclinic, C2/c a = 21.0690 (15) Å b = 5.1085 (4) Å c = 21.1531 (15) Å  $\beta = 95.265 (2)^{\circ}$   $V = 2267.1 (3) \text{ Å}^3$ Z = 8

Data collection

Rigaku Saturn724+ CCD diffractometer  $\omega$  scans Absorption correction: multi-scan (CrystalClear; Rigaku, 2012)  $T_{\min} = 0.780, T_{\max} = 1.000$ 8717 measured reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.031$  $wR(F^2) = 0.087$ S = 1.072563 reflections 155 parameters 0 restraints F(000) = 1024  $D_x = 1.437 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7400 reflections  $\theta = 2.9-27.5^{\circ}$   $\mu = 0.27 \text{ mm}^{-1}$  T = 100 KLath, colourless  $0.42 \times 0.12 \times 0.03 \text{ mm}$ 

2563 independent reflections 2307 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.022$  $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$  $h = -27 \rightarrow 27$  $k = -6 \rightarrow 6$  $l = -27 \rightarrow 21$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0408P)^2 + 2.1991P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$ 

#### $\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x           | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|-------------|-------------|-----------------------------|
| C1  | 0.50199 (7) | 0.8774 (3)  | 0.34463 (7) | 0.0262 (3)                  |
| H1  | 0.525890    | 0.988871    | 0.319795    | 0.031*                      |
| C2  | 0.50475 (7) | 0.8871 (3)  | 0.40904 (7) | 0.0283 (3)                  |
| H2  | 0.530839    | 1.006088    | 0.434266    | 0.034*                      |
| C3  | 0.46445 (6) | 0.7003 (3)  | 0.43432 (6) | 0.0243 (3)                  |
| Н3  | 0.460459    | 0.680014    | 0.478420    | 0.029*                      |
| C4  | 0.43135 (6) | 0.5499 (3)  | 0.38752 (6) | 0.0196 (3)                  |
| C5  | 0.38600 (6) | 0.3464 (3)  | 0.40503 (6) | 0.0206 (3)                  |
| C6  | 0.30541 (6) | 0.0098 (3)  | 0.37672 (6) | 0.0229 (3)                  |
| H6A | 0.306676    | 0.001379    | 0.423104    | 0.034*                      |
| H6B | 0.316415    | -0.161776   | 0.360136    | 0.034*                      |
| H6C | 0.262463    | 0.059115    | 0.359010    | 0.034*                      |
| C7  | 0.32615 (6) | 0.1249 (3)  | 0.25363 (6) | 0.0190 (3)                  |
| H7  | 0.298098    | -0.007769   | 0.265792    | 0.023*                      |
| C8  | 0.33189 (6) | 0.1729 (2)  | 0.18583 (6) | 0.0178 (3)                  |
| C9  | 0.36845 (6) | 0.3762 (3)  | 0.16384 (6) | 0.0197 (3)                  |
| Н9  | 0.392055    | 0.489970    | 0.192720    | 0.024*                      |
| C10 | 0.36941 (6) | 0.4078 (3)  | 0.09876 (6) | 0.0222 (3)                  |
| H10 | 0.393440    | 0.545017    | 0.082220    | 0.027*                      |
| C11 | 0.33481 (7) | 0.2364 (3)  | 0.05837 (6) | 0.0247 (3)                  |
| H11 | 0.334717    | 0.253470    | 0.013642    | 0.030*                      |
| C12 | 0.30036 (7) | 0.0398 (3)  | 0.08438 (6) | 0.0266 (3)                  |
| H12 | 0.277110    | -0.078189   | 0.056315    | 0.032*                      |
| N1  | 0.35096 (5) | 0.2040 (2)  | 0.35878 (5) | 0.0194 (2)                  |
| N2  | 0.35836 (5) | 0.2591 (2)  | 0.29655 (5) | 0.0176 (2)                  |
| N3  | 0.29791 (6) | 0.0063 (2)  | 0.14694 (5) | 0.0234 (3)                  |
| 01  | 0.37945 (5) | 0.3068 (2)  | 0.46105 (4) | 0.0291 (2)                  |
| S1  | 0.45075 (2) | 0.64215 (7) | 0.31337 (2) | 0.02308 (11)                |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|-------------|-------------|-------------|
| C1 | 0.0201 (7) | 0.0236 (7) | 0.0350 (8) | -0.0028 (6) | 0.0027 (5)  | -0.0049 (6) |
| C2 | 0.0219 (7) | 0.0273 (7) | 0.0349 (8) | 0.0015 (6)  | -0.0020 (6) | -0.0129 (6) |
| C3 | 0.0227 (7) | 0.0279 (7) | 0.0223 (6) | 0.0052 (6)  | 0.0015 (5)  | -0.0055 (5) |
| C4 | 0.0183 (6) | 0.0220 (6) | 0.0185 (6) | 0.0042 (5)  | 0.0015 (5)  | -0.0022 (5) |
| C5 | 0.0210 (6) | 0.0229 (6) | 0.0180 (6) | 0.0061 (5)  | 0.0026 (5)  | -0.0006 (5) |
| C6 | 0.0203 (6) | 0.0253 (7) | 0.0234 (6) | -0.0005 (6) | 0.0038 (5)  | 0.0070 (5)  |
|    |            |            |            |             |             |             |

| C7         | 0.0185 (6)   | 0.0182 (6)   | 0.0204 (6)   | 0.0001 (5)    | 0.0031 (5)   | 0.0018 (5)    |
|------------|--------------|--------------|--------------|---------------|--------------|---------------|
| C8         | 0.0167 (6)   | 0.0178 (6)   | 0.0188 (6)   | 0.0023 (5)    | 0.0010 (4)   | -0.0002 (5)   |
| C9         | 0.0181 (6)   | 0.0218 (6)   | 0.0191 (6)   | -0.0008 (5)   | 0.0010 (5)   | -0.0009 (5)   |
| C10        | 0.0216 (6)   | 0.0239 (7)   | 0.0218 (6)   | -0.0010 (5)   | 0.0049 (5)   | 0.0010 (5)    |
| C11        | 0.0293 (7)   | 0.0281 (7)   | 0.0171 (6)   | 0.0017 (6)    | 0.0042 (5)   | -0.0019 (5)   |
| C12        | 0.0335 (8)   | 0.0240 (7)   | 0.0218 (6)   | -0.0036 (6)   | 0.0006 (5)   | -0.0061 (5)   |
| N1         | 0.0189 (5)   | 0.0237 (6)   | 0.0158 (5)   | -0.0006 (4)   | 0.0024 (4)   | 0.0035 (4)    |
| N2         | 0.0175 (5)   | 0.0200 (5)   | 0.0155 (5)   | 0.0018 (4)    | 0.0024 (4)   | 0.0020 (4)    |
| N3         | 0.0281 (6)   | 0.0200 (6)   | 0.0218 (5)   | -0.0030 (5)   | 0.0008 (4)   | -0.0022(4)    |
| 01         | 0.0378 (6)   | 0.0339 (6)   | 0.0161 (4)   | 0.0009 (5)    | 0.0051 (4)   | 0.0002 (4)    |
| <b>S</b> 1 | 0.02249 (19) | 0.02627 (19) | 0.02056 (18) | -0.00532 (13) | 0.00245 (12) | -0.00153 (12) |
|            |              |              |              |               |              |               |

Geometric parameters (Å, °)

| C1—C2      | 1.359 (2)   | C7—N2       | 1.2815 (17) |  |
|------------|-------------|-------------|-------------|--|
| C1—S1      | 1.7075 (14) | C7—C8       | 1.4709 (17) |  |
| C1—H1      | 0.9500      | С7—Н7       | 0.9500      |  |
| C2—C3      | 1.414 (2)   | C8—N3       | 1.3436 (17) |  |
| С2—Н2      | 0.9500      | C8—C9       | 1.3981 (18) |  |
| C3—C4      | 1.3894 (19) | C9—C10      | 1.3879 (18) |  |
| С3—Н3      | 0.9500      | С9—Н9       | 0.9500      |  |
| C4—C5      | 1.4817 (19) | C10—C11     | 1.3835 (19) |  |
| C4—S1      | 1.7223 (13) | C10—H10     | 0.9500      |  |
| C5—O1      | 1.2225 (16) | C11—C12     | 1.382 (2)   |  |
| C5—N1      | 1.3780 (17) | C11—H11     | 0.9500      |  |
| C6—N1      | 1.4545 (17) | C12—N3      | 1.3400 (17) |  |
| С6—Н6А     | 0.9800      | C12—H12     | 0.9500      |  |
| C6—H6B     | 0.9800      | N1—N2       | 1.3690 (14) |  |
| С6—Н6С     | 0.9800      |             |             |  |
| C2—C1—S1   | 112.41 (11) | С8—С7—Н7    | 119.5       |  |
| C2—C1—H1   | 123.8       | N3—C8—C9    | 123.07 (11) |  |
| S1—C1—H1   | 123.8       | N3—C8—C7    | 113.86 (11) |  |
| C1—C2—C3   | 112.48 (13) | C9—C8—C7    | 123.06 (11) |  |
| С1—С2—Н2   | 123.8       | С10—С9—С8   | 118.36 (12) |  |
| С3—С2—Н2   | 123.8       | С10—С9—Н9   | 120.8       |  |
| C4—C3—C2   | 112.53 (12) | С8—С9—Н9    | 120.8       |  |
| С4—С3—Н3   | 123.7       | C11—C10—C9  | 118.95 (13) |  |
| С2—С3—Н3   | 123.7       | C11—C10—H10 | 120.5       |  |
| C3—C4—C5   | 120.19 (12) | C9—C10—H10  | 120.5       |  |
| C3—C4—S1   | 110.61 (10) | C12—C11—C10 | 118.69 (12) |  |
| C5—C4—S1   | 129.19 (10) | C12—C11—H11 | 120.7       |  |
| 01C5N1     | 120.00 (13) | C10-C11-H11 | 120.7       |  |
| O1—C5—C4   | 119.42 (12) | N3—C12—C11  | 123.71 (13) |  |
| N1-C5-C4   | 120.58 (11) | N3—C12—H12  | 118.1       |  |
| N1-C6-H6A  | 109.5       | C11—C12—H12 | 118.1       |  |
| N1—C6—H6B  | 109.5       | N2—N1—C5    | 118.24 (11) |  |
| Н6А—С6—Н6В | 109.5       | N2—N1—C6    | 121.81 (11) |  |

| N1—C6—H6C<br>H6A—C6—H6C<br>H6B—C6—H6C<br>N2—C7—C8<br>N2—C7—H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5<br>109.5<br>109.5<br>121.06 (12)<br>119.5                                                                                                                                                                                                        | C5—N1—C6<br>C7—N2—N1<br>C12—N3—C8<br>C1—S1—C4        | 119.89 (11)<br>118.14 (11)<br>117.20 (12)<br>91.97 (7)                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} S1 &C1 &C2 &C3 \\ C1 &C2 &C3 &C4 \\ C2 &C3 &C4 &C5 \\ C2 &C3 &C4 &S1 \\ C3 &C4 &C5 &O1 \\ C3 &C4 &C5 &O1 \\ C3 &C4 &C5 &N1 \\ S1 &C4 &$ | $\begin{array}{c} -0.08 \ (16) \\ 0.02 \ (18) \\ -179.06 \ (12) \\ 0.04 \ (15) \\ -2.21 \ (19) \\ 178.88 \ (10) \\ 177.22 \ (12) \\ -1.69 \ (19) \\ 176.35 \ (12) \\ -4.8 \ (2) \\ 0.3 \ (2) \\ -178.51 \ (12) \\ -0.6 \ (2) \\ 0.1 \ (2) \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 0.7 (2) \\ 178.23 (11) \\ -1.19 (18) \\ 1.06 (19) \\ -178.37 (11) \\ -179.79 (11) \\ 179.40 (12) \\ -3.49 (18) \\ -1.0 (2) \\ 0.5 (2) \\ 179.38 (12) \\ 0.09 (12) \\ -0.07 (11) \\ 178.92 (13) \end{array}$ |

#### Hydrogen-bond geometry (Å, °)

| D—H···A                      | D—H  | H···A | D····A      | D—H···A |  |
|------------------------------|------|-------|-------------|---------|--|
| С9—Н9…S1                     | 0.95 | 2.84  | 3.7217 (13) | 155     |  |
| C6—H6 $C$ ···N3 <sup>i</sup> | 0.98 | 2.61  | 3.3499 (18) | 132     |  |

Symmetry code: (i) -x+1/2, y+1/2, -z+1/2.

*N'*-[(*E*)-Pyridin-2-ylmethylidene]-2-(thiophen-2-yl)ethanohydrazide (IV)

| C <sub>12</sub> H <sub>11</sub> N <sub>3</sub> OS                                                                                                                                                                 | F(000) = 512                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $M_r = 245.30$                                                                                                                                                                                                    | $D_x = 1.414 \text{ Mg m}^{-3}$                                                                                                                                                                                                              |
| Monoclinic, $P2_1/c$                                                                                                                                                                                              | Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$                                                                                                                                                                                        |
| a = 11.3963 (8) Å                                                                                                                                                                                                 | Cell parameters from 43879 reflections                                                                                                                                                                                                       |
| b = 9.2782 (7) Å                                                                                                                                                                                                  | $\theta = 2.9-27.5^{\circ}$                                                                                                                                                                                                                  |
| c = 11.8178 (8) Å                                                                                                                                                                                                 | $\mu = 0.27 \text{ mm}^{-1}$                                                                                                                                                                                                                 |
| $\beta = 112.761$ (2)°                                                                                                                                                                                            | T = 100  K                                                                                                                                                                                                                                   |
| V = 1152.27 (14) Å <sup>3</sup>                                                                                                                                                                                   | Block, colourless                                                                                                                                                                                                                            |
| Z = 4                                                                                                                                                                                                             | $0.10 \times 0.09 \times 0.06 \text{ mm}$                                                                                                                                                                                                    |
| Data collection<br>Rigaku AFC12 CCD<br>diffractometer<br>$\omega$ scans<br>Absorption correction: multi-scan<br>(CrystalClear; Rigaku, 2012)<br>$T_{\min} = 0.723, T_{\max} = 1.000$<br>8155 measured reflections | 2593 independent reflections<br>2138 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.031$<br>$\theta_{max} = 28.4^{\circ}, \theta_{min} = 2.9^{\circ}$<br>$h = -15 \rightarrow 14$<br>$k = -12 \rightarrow 11$<br>$l = -14 \rightarrow 14$ |

Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant            |
|---------------------------------|------------------------------------------------------------|
| Least-squares matrix: full      | direct methods                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.041$ | Hydrogen site location: mixed                              |
| $wR(F^2) = 0.112$               | H atoms treated by a mixture of independent                |
| S = 1.10                        | and constrained refinement                                 |
| 2593 reflections                | $w = 1/[\sigma^2(F_o^2) + (0.0505P)^2 + 0.7045P]$          |
| 170 parameters                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 10 restraints                   | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
|                                 | $\Delta  ho_{ m max} = 0.32 \ { m e} \ { m \AA}^{-3}$      |
|                                 | $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ |
| Special details                 |                                                            |

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|            | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------------|--------------|--------------|--------------|-----------------------------|-----------|
| C1         | 0.9466 (2)   | 0.7136 (3)   | 0.2749 (2)   | 0.0222 (5)                  | 0.851 (2) |
| H1         | 1.033688     | 0.689483     | 0.317920     | 0.027*                      | 0.851 (2) |
| C2         | 0.8750 (2)   | 0.6617 (3)   | 0.1571 (2)   | 0.0203 (5)                  | 0.851 (2) |
| H2         | 0.905946     | 0.598307     | 0.111806     | 0.024*                      | 0.851 (2) |
| C3         | 0.7527 (8)   | 0.7158 (11)  | 0.1161 (7)   | 0.0246 (10)                 | 0.851 (2) |
| Н3         | 0.689801     | 0.695835     | 0.037087     | 0.029*                      | 0.851 (2) |
| C4         | 0.73066 (15) | 0.80326 (17) | 0.20255 (15) | 0.0211 (3)                  | 0.851 (2) |
| <b>S</b> 1 | 0.86521 (5)  | 0.82422 (7)  | 0.33564 (5)  | 0.02360 (18)                | 0.851 (2) |
| C1B        | 0.8982 (14)  | 0.684 (2)    | 0.1833 (17)  | 0.0203 (5)                  | 0.149 (2) |
| H1B        | 0.956589     | 0.632055     | 0.158977     | 0.024*                      | 0.149 (2) |
| C2B        | 0.9327 (13)  | 0.7537 (17)  | 0.2944 (14)  | 0.0222 (5)                  | 0.149 (2) |
| H2B        | 1.015819     | 0.750408     | 0.356806     | 0.027*                      | 0.149 (2) |
| C3B        | 0.8327 (13)  | 0.829 (2)    | 0.3049 (14)  | 0.02360 (18)                | 0.149 (2) |
| H3B        | 0.836035     | 0.888345     | 0.371821     | 0.028*                      | 0.149 (2) |
| C4B        | 0.73066 (15) | 0.80326 (17) | 0.20255 (15) | 0.0211 (3)                  | 0.149 (2) |
| S1B        | 0.7385 (12)  | 0.6996 (17)  | 0.0929 (12)  | 0.0246 (10)                 | 0.149 (2) |
| C5         | 0.61018 (15) | 0.86577 (18) | 0.19459 (16) | 0.0231 (3)                  |           |
| H5A        | 0.553207     | 0.878920     | 0.107425     | 0.028*                      |           |
| H5B        | 0.625573     | 0.961417     | 0.234861     | 0.028*                      |           |
| C6         | 0.54702 (14) | 0.76587 (17) | 0.25759 (15) | 0.0206 (3)                  |           |
| C7         | 0.35889 (15) | 0.83579 (18) | 0.42527 (15) | 0.0223 (3)                  |           |
| H7         | 0.359384     | 0.937962     | 0.420223     | 0.027*                      |           |
| C8         | 0.28771 (14) | 0.76417 (18) | 0.49016 (15) | 0.0207 (3)                  |           |
| C9         | 0.27577 (15) | 0.61405 (19) | 0.49162 (16) | 0.0243 (4)                  |           |
| Н9         | 0.314773     | 0.554343     | 0.450832     | 0.029*                      |           |
| C10        | 0.20629 (15) | 0.55382 (19) | 0.55336 (16) | 0.0271 (4)                  |           |
| H10        | 0.197174     | 0.452251     | 0.556146     | 0.033*                      |           |
| C11        | 0.14999 (16) | 0.64555 (19) | 0.61139 (16) | 0.0260 (4)                  |           |
| H11        | 0.101007     | 0.607862     | 0.653853     | 0.031*                      |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C12 | 0 16714 (16) | 0.70222(10)  | 0 60569 (17) | 0.0267(4)  |
|-----|--------------|--------------|--------------|------------|
|     | 0.10/14(10)  | 0.79525 (19) | 0.00308(17)  | 0.0207 (4) |
| H12 | 0.129255     | 0.854810     | 0.646226     | 0.032*     |
| N1  | 0.48282 (13) | 0.83765 (15) | 0.31638 (13) | 0.0211 (3) |
| H1N | 0.4714 (18)  | 0.932 (2)    | 0.3080 (18)  | 0.025*     |
| N2  | 0.42014 (12) | 0.76009 (15) | 0.37563 (13) | 0.0213 (3) |
| N3  | 0.23384 (13) | 0.85429 (16) | 0.54651 (13) | 0.0247 (3) |
| 01  | 0.55355 (11) | 0.63460 (13) | 0.25449 (13) | 0.0280 (3) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C1  | 0.0172 (8)  | 0.0271 (13) | 0.0254 (12) | 0.0030 (8)   | 0.0118 (7)  | 0.0006 (9)   |
| C2  | 0.0203 (11) | 0.0209 (13) | 0.0221 (14) | -0.0002 (9)  | 0.0109 (10) | -0.0036 (8)  |
| C3  | 0.0205 (18) | 0.024 (2)   | 0.028 (3)   | -0.0032 (14) | 0.0080 (19) | -0.0029 (17) |
| C4  | 0.0196 (7)  | 0.0194 (7)  | 0.0245 (8)  | -0.0023 (6)  | 0.0088 (6)  | 0.0032 (6)   |
| S1  | 0.0191 (3)  | 0.0280 (3)  | 0.0230 (3)  | -0.0014 (2)  | 0.0073 (2)  | -0.0037 (2)  |
| C1B | 0.0203 (11) | 0.0209 (13) | 0.0221 (14) | -0.0002 (9)  | 0.0109 (10) | -0.0036 (8)  |
| C2B | 0.0172 (8)  | 0.0271 (13) | 0.0254 (12) | 0.0030 (8)   | 0.0118 (7)  | 0.0006 (9)   |
| C3B | 0.0191 (3)  | 0.0280 (3)  | 0.0230 (3)  | -0.0014 (2)  | 0.0073 (2)  | -0.0037 (2)  |
| C4B | 0.0196 (7)  | 0.0194 (7)  | 0.0245 (8)  | -0.0023 (6)  | 0.0088 (6)  | 0.0032 (6)   |
| S1B | 0.0205 (18) | 0.024 (2)   | 0.028 (3)   | -0.0032 (14) | 0.0080 (19) | -0.0029 (17) |
| C5  | 0.0204 (7)  | 0.0176 (7)  | 0.0319 (9)  | -0.0002 (6)  | 0.0108 (6)  | 0.0024 (7)   |
| C6  | 0.0164 (6)  | 0.0194 (8)  | 0.0244 (8)  | -0.0001 (6)  | 0.0061 (6)  | 0.0011 (6)   |
| C7  | 0.0219 (7)  | 0.0192 (8)  | 0.0251 (8)  | 0.0000 (6)   | 0.0083 (6)  | 0.0006 (6)   |
| C8  | 0.0181 (7)  | 0.0218 (8)  | 0.0211 (8)  | 0.0005 (6)   | 0.0064 (6)  | -0.0013 (6)  |
| C9  | 0.0212 (7)  | 0.0231 (8)  | 0.0298 (9)  | 0.0009 (6)   | 0.0112 (6)  | -0.0033 (7)  |
| C10 | 0.0224 (7)  | 0.0222 (8)  | 0.0354 (10) | -0.0002 (6)  | 0.0098 (7)  | 0.0021 (7)   |
| C11 | 0.0239 (7)  | 0.0267 (9)  | 0.0286 (9)  | -0.0009 (6)  | 0.0114 (7)  | 0.0032 (7)   |
| C12 | 0.0273 (8)  | 0.0277 (9)  | 0.0300 (9)  | 0.0014 (7)   | 0.0163 (7)  | -0.0025 (7)  |
| N1  | 0.0213 (6)  | 0.0168 (6)  | 0.0271 (7)  | 0.0006 (5)   | 0.0114 (6)  | 0.0015 (5)   |
| N2  | 0.0183 (6)  | 0.0211 (7)  | 0.0244 (7)  | -0.0007 (5)  | 0.0081 (5)  | 0.0013 (5)   |
| N3  | 0.0247 (6)  | 0.0225 (7)  | 0.0290 (8)  | 0.0012 (5)   | 0.0128 (6)  | -0.0003 (6)  |
| 01  | 0.0267 (6)  | 0.0161 (6)  | 0.0475 (8)  | -0.0002 (5)  | 0.0214 (6)  | 0.0000 (5)   |

### Geometric parameters (Å, °)

| C1—C2   | 1.399 (3)   | С5—Н5А  | 0.9900    |
|---------|-------------|---------|-----------|
| C1—S1   | 1.716 (2)   | С5—Н5В  | 0.9900    |
| C1—H1   | 0.9500      | C6—O1   | 1.222 (2) |
| C2—C3   | 1.380 (8)   | C6—N1   | 1.362 (2) |
| C2—H2   | 0.9500      | C7—N2   | 1.281 (2) |
| C3—C4   | 1.401 (7)   | C7—C8   | 1.473 (2) |
| С3—Н3   | 0.9500      | С7—Н7   | 0.9500    |
| C4—C5   | 1.460 (2)   | C8—N3   | 1.355 (2) |
| C4—S1   | 1.7311 (16) | C8—C9   | 1.400 (2) |
| C1B—C2B | 1.379 (15)  | C9—C10  | 1.385 (2) |
| C1B—S1B | 1.723 (16)  | С9—Н9   | 0.9500    |
| C1B—H1B | 0.9500      | C10—C11 | 1.395 (2) |
|         |             |         |           |

| C2B—C3B                         | 1.384 (15)          | C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500       |
|---------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| C2B—H2B                         | 0.9500              | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.389 (2)    |
| C3B—C4B                         | 1.337 (13)          | C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500       |
| СЗВ—НЗВ                         | 0.9500              | C12—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.341 (2)    |
| C4B—C5                          | 1.460 (2)           | C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500       |
| C4B—S1B                         | 1.643 (11)          | N1—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3804 (19)  |
| C5—C6                           | 1.532 (2)           | N1—H1N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.88 (2)     |
|                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| C2—C1—S1                        | 114.85 (18)         | C4—C5—H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.8        |
| C2—C1—H1                        | 122.6               | C6—C5—H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.8        |
| S1—C1—H1                        | 122.6               | H5A—C5—H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.2        |
| C3—C2—C1                        | 110.2 (3)           | O1—C6—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.63 (15)  |
| C3—C2—H2                        | 124.9               | O1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.90 (15)  |
| C1—C2—H2                        | 124.9               | N1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113.47 (14)  |
| C2—C3—C4                        | 113.4 (5)           | N2—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.90 (15)  |
| С2—С3—Н3                        | 123.3               | N2—C7—H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.1        |
| С4—С3—Н3                        | 123.3               | С8—С7—Н7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.1        |
| C3—C4—C5                        | 127.8 (3)           | N3—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.90 (15)  |
| C3—C4—S1                        | 112.4 (3)           | N3—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.03 (15)  |
| C5—C4—S1                        | 119.63 (13)         | C9—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.07 (15)  |
| C1—S1—C4                        | 89.14 (10)          | C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.07 (16)  |
| C2B—C1B—S1B                     | 113.1 (12)          | С10—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.5        |
| C2B—C1B—H1B                     | 123.4               | С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5        |
| S1B—C1B—H1B                     | 123.4               | C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.56 (16)  |
| C1B—C2B—C3B                     | 112.6 (13)          | C9—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.7        |
| C1B—C2B—H2B                     | 123.7               | C11—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.7        |
| C3B—C2B—H2B                     | 123.7               | C12—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.53 (16)  |
| C4B—C3B—C2B                     | 106.5 (12)          | C12—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.7        |
| C4B—C3B—H3B                     | 126.7               | C10-C11-H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.7        |
| C2B—C3B—H3B                     | 126.7               | N3—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.09 (16)  |
| C3B—C4B—C5                      | 117.0 (7)           | N3—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.0        |
| C3B—C4B—S1B                     | 121.7 (7)           | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.0        |
| C5—C4B—S1B                      | 121.2 (4)           | C6—N1—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.30 (13)  |
| C4B—S1B—C1B                     | 85.9 (8)            | C6—N1—H1N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.7 (13)   |
| C4B—C5—C6                       | 109.60 (13)         | N2—N1—H1N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.4 (13)   |
| C4—C5—C6                        | 109.60 (13)         | C7—N2—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.27 (14)  |
| С4—С5—Н5А                       | 109.8               | C12—N3—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.84 (15)  |
| С6—С5—Н5А                       | 109.8               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| S1 C1 C2 C3                     | 11(6)               | C/B C5 C6 O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -356(2)      |
| $S_1 = C_1 = C_2 = C_3$         | -20(9)              | $C_{4} C_{5} C_{6} O_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -35.6(2)     |
| $C_1 = C_2 = C_3 = C_4$         | -173 A (A)          | $C_{4} = C_{5} = C_{6} = 01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33.0(2)      |
| $C_2 = C_3 = C_4 = C_3$         | 2 1 (0)             | C4 $C5$ $C6$ $N1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 144.72(14)   |
| $C_2 = C_3 = C_4 = S_1$         | 2.1(9)<br>0 1 (2)   | $N_{2}^{-}C_{3}^{-}C_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N_{3}^{-}N$ | 175.58(14)   |
| $C_2 = C_1 = S_1 = C_1$         | -12(5)              | $N_2 - C_7 - C_8 - C_9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -52(2)       |
| $C_{5} - C_{4} - S_{1} - C_{1}$ | 1.2(3)<br>17474(15) | $N_2 - C_7 - C_0 - C_7$<br>$N_3 - C_8 - C_9 - C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.2(2)      |
| $SIB_{1}$                       | -4(2)               | $C_{7}$ $C_{8}$ $C_{9}$ $C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -170 31 (15) |
| C1P C2P C2D C4P                 | (2)                 | $C_{1} = C_{0} = C_{1} = C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/7.31(13)   |
| CID-C2D-C3D-C4D                 | 5 (2)               | 0-07-010-011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4 (2)      |

| C2B—C3B—C4B—C5  | 176.8 (10)  | C9—C10—C11—C12 | -0.6 (2)     |
|-----------------|-------------|----------------|--------------|
| C2B—C3B—C4B—S1B | -0.5 (19)   | C10-C11-C12-N3 | 0.7 (3)      |
| C3B—C4B—S1B—C1B | -1.5 (16)   | O1—C6—N1—N2    | -0.5 (2)     |
| C5—C4B—S1B—C1B  | -178.7 (8)  | C5—C6—N1—N2    | 179.18 (13)  |
| C2B—C1B—S1B—C4B | 3.1 (18)    | C8—C7—N2—N1    | 179.54 (13)  |
| C3B—C4B—C5—C6   | -84.9 (10)  | C6—N1—N2—C7    | -177.90 (14) |
| S1B-C4B-C5-C6   | 92.4 (7)    | C11—C12—N3—C8  | -0.5 (3)     |
| C3—C4—C5—C6     | 93.8 (6)    | C9—C8—N3—C12   | 0.2 (2)      |
| S1—C4—C5—C6     | -81.44 (16) | C7—C8—N3—C12   | 179.39 (14)  |
|                 |             |                |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H      | H···A    | $D \cdots A$ | D—H···A    |
|------------------------------------|----------|----------|--------------|------------|
| N1—H1N····O1 <sup>i</sup>          | 0.88 (2) | 2.00 (2) | 2.8628 (18)  | 164.9 (18) |
| C3—H3···N1 <sup>ii</sup>           | 0.95     | 2.78     | 3.718 (7)    | 172        |
| C5—H5 <i>B</i> ····O1 <sup>i</sup> | 0.99     | 2.64     | 3.307 (2)    | 125        |
| C7—H7···S1 $B^{i}$                 | 0.95     | 2.65     | 3.534 (16)   | 155        |
| C12—H12…S1 <sup>iii</sup>          | 0.95     | 2.98     | 3.6624 (19)  | 129        |
|                                    |          |          |              |            |

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) x, -y+3/2, z-1/2; (iii) -x+1, -y+2, -z+1.