

Received 13 June 2022 Accepted 26 June 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; cyclam; nickel; triphosphonic acid.

CCDC reference: 2178456

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structure of bis[*trans*diaqua(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1, N^4, N^8, N^{11}$)nickel(II)] *trans*-(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1, N^4, N^8, N^{11}$)bis[4,4',4"-(1,3,5-trimethylbenzene-2,4,6-triyl)tris(hydrogen phenylphosphonato- κO)]nickel(II) decahydrate

Liudmyla V. Tsymbal,^a Rodinel Ardeleanu,^b Sergiu Shova^b and Yaroslaw D. Lampeka^a*

^aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of, Sciences of Ukraine, Prospekt Nauki, 31, Kiev 03028, Ukraine, and ^{bu}Petru Poni^u Institute of Macromolecular Chemistry, Department of, Inorganic, Polymers, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania. *Correspondence e-mail: lampeka@adamant.net

The components of the title compound, $[Ni(C_{10}H_{24}N_4)(H_2O)_2]_2[Ni(C_{10}H_{24}N_4)-(C_{27}H_{24}O_9P_3)_2]\cdot10H_2O$ are two centrosymmetric $[Ni(C_{10}H_{24}N_4)(H_2O)_2]^{2+}$ dications, a centrosymmetric $[Ni(C_{10}H_{24}N_4)(C_{27}H_{24}O_9P_3)_2]^{4-}$ tetra-anion and five crystallographically unique water molecules of crystallization. All of the nickel ions are coordinated by the four secondary N atoms of the macrocyclic cyclam ligands, which adopt the most energetically stable *trans*-III conformation, and the mutually *trans* O atoms of either water molecules in the cations or the phosphonate groups in the anion in a tetragonally distorted NiN₄O₂ octahedral coordination geometry. Strong O-H···O hydrogen bonds between the protonated and the non-protonated phosphonate O atoms of neighboring anions result in the formation of layers oriented parallel to the *bc* plane, which are linked into a three-dimensional network by virtue of numerous N-H···O and O-H···O hydrogen bonds arising from the *sec*-NH groups of the macrocycles, phosphonate O atoms and coordinated and non-coordinated water molecules.

1. Chemical context

First-row transition-metal complexes of 14-membered cyclamlike tetraaza macrocyles (cyclam = 1,4,8,11-tetraazacyclotetradecane; $C_{10}H_{24}N_4$; *L*) are characterized by high thermodynamic stability and kinetic inertness (Yatsimirskii & Lampeka, 1985) and are popular metal-containing building units for the construction of MOFs (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh *et al.*, 2012; Stackhouse & Ma, 2018). These crystalline coordination polymers, in which oligocarboxylates are the most common bridging ligands (Rao *et al.*, 2004), possess permanent porosity and demonstrate many promising applications in different areas (MacGillivray & Lukehart, 2014; Kaskel, 2016).

The rigid trigonal aromatic linker 1,3,5-benzenetricarboxylate, $C_9H_3O_6^{3-}$, is widely used for the assembly of MOFs based on azamacrocyclic cations (Lampeka & Tsymbal, 2004). Its tris-monodentate coordination in the *trans*-axial coordination positions of the metal ions leads predominantly to the formation of two-dimensional coordination polymers with hexagonal nets of 6³ topology (Alexandrov *et al.*, 2017). Usually, the modification of this bridge through the substitution of the carboxylic groups by *para*-carboxybenzyl fragments (the ligand H₃BTB, 4,4',4"-benzene-1,3,5-trivltribenzoic acid) does not affect the coordination properties of the carboxylate groups or the topological characteristics of polymeric nets but results in the enlargement of the hexagonal structural unit of the coordination polymers allowing interpenetration of the subnets (Lampeka et al., 2012; Gong et al., 2016). Compared to carboxylates, linkers with other coordinating functions, in particular oligophosphonates, have been studied to a much lesser extent (Gagnon et al., 2012; Firmino et al., 2018; Yücesan et al., 2018), though one can expect that the substitution of a mono-anionic carboxylic group by a di-anionic phosphonate group with distinct acidity, number of donor atoms and spatial directivity of coordination bonds will strongly influence the composition and topology of the coordination nets. However, except for a very recent publication (Tsymbal et al., 2022), no papers dealing with structural characterization of the complexes formed by metal azamacrocyclic cations and phosphonate ligands have been published to date.

We report here the synthesis and crystal structure of the product of the reaction of $[Ni(L)](ClO_4)_2$ with 4,4',4''-(1,3,5-trimethylbenzene-2,4,6-triyl)triphosphonic acid, H₆Me₃BTP) – the structural analogue of H₃BTB, namely, bis[*trans*-diaqua-(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1$, N^4 ,- N^8 , N^{11})-nickel(II)] *trans*-{bis-[4,4',4''-(1,3,5-trimethylbenzene-2,4,6-triyl)tris(hydrogen phenylphosphonato- κO)-(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1$, N^4 , N^8 , N^{11})-nickel(II)]} deca-hydrate, $[Ni(L)(H_2O)_2]_2[Ni(L)(H_3Me_3BTP)_2]$ ·10H₂O, **I**.

Selected geometric parameters (Å, $^{\circ}$).	Table 1	
	Selected geometric parameters (Å, $^{\circ}$).	

Ni1-N1	2.067 (4)	Ni2-O1W	2.105 (4)
Ni1-N2	2.064 (4)	Ni3-N5	2.070 (4)
Ni1-O1	2.134 (3)	Ni3-N6	2.056 (5)
Ni2-N3	2.072 (4)	Ni3-O2W	2.136 (3)
Ni2-N4	2.076 (4)		
N1-Ni1-N2 ⁱ	85.31 (16)	N3-Ni2-N4	95.34 (16)
N1-Ni1-N2	94.69 (16)	N5-Ni3-N6 ⁱⁱⁱ	85.2 (2)
N3-Ni2-N4 ⁱⁱ	84.66 (16)	N5-Ni3-N6	94.8 (2)

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x + 2, -y + 2, -z + 1; (iii) -x + 1, -y + 3, -z + 1.

2. Structural commentary

The molecular structure of **I** is shown in Fig. 1. It represents a non-polymeric compound in which atom Ni1 is coordinated by two monodentate $H_3Me_3BTP^{3-}$ ligands *via* their phosphonate O atoms, resulting in the formation of an $[Ni(L)(H_3-3Me_3BTP)_2]^{4-}$ complex anion, which is charge-balanced by two structurally non-equivalent $[Ni(L)(H_2O)_2]^{2+}$ divalent cations formed by atoms Ni2 and Ni3. The coordination geometries of all the nickel ions in **I** have much in common: the Ni²⁺ ions (all with site symmetry $\overline{1}$) are coordinated by the four secondary N atoms of the macrocyclic ligands *L*, which adopt the most energetically stable *trans*-III (*R*,*R*,*S*,*S*) conformation (Bosnich *et al.*, 1965*a*; Barefield *et al.*, 1986) with the five-membered (N–Ni–N bite angles $\simeq 85^{\circ}$) and six-

Figure 1

The extended asymmetric unit in I showing the coordination environment of the Ni atoms and the atom-labeling scheme (displacement ellipsoids are drawn at the 30% probability level). C-bound H atoms and uncoordinated water molecules are omitted for clarity. Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x + 2, -y + 2, -z + 1; (iii) -x + 1, -y + 3, -z + 1.

membered (N-Ni-N bite angles $\simeq 95^{\circ}$) chelate rings in *gauche* and chair conformations, respectively (Table 1). The coordination polyhedra of the metal ions can be described as tetragonally elongated *trans*-NiN₄O₂ octahedra with the Ni-N bond lengths [average value 2.068 (3) Å] slightly shorter than the Ni-O bonds which, in turn, do not display any dependence on the nature of the donor oxygen atoms. The location of the metal ions on crystallographic inversion centers enforces strict planarity of the Ni(N₄) coordination moieties and the axial Ni-O bonds are nearly orthogonal to the NiN₄ planes (deviations of the angles N-Ni-O from 90° do not exceed 2°).

The pendant benzene rings of the $H_3Me_3BTP^{3-}$ tri-anion in I are substantially tilted relative to the central aromatic core [average angle between the mean planes = 76 (5)°] and this feature is caused by repulsive interactions between the hydrogen atoms of the pendant rings and those of the methyl substituents of the central ring. The P–OH bond lengths [average value 1.57 (3) Å] are larger than the other P–O bonds [average value 1.501 (5) Å], thus indicating the partially delocalized character of the phosphonate groups.

3. Supramolecular features

In the crystal of I, the $[Ni1(L)(H_3Me_3BTP)_2]^{4-}$ anions, [Ni2/ $Ni3(L)(H_2O)_2]^{2+}$ cations and water molecules of crystallization are linked by numerous hydrogen bonds with participation of the phosphonate groups, the secondary amino groups of the macrocycles and both the coordinated and crystalline water molecules (Table 2). A distinct lamellar structure is inherent for this compound. In particular, strong hydrogen-bonding interactions between the protonated fragments of the P1 and P3 phosphonate groups of one molecule as the donors with the non-protonated O4 and O5 atoms of the P2 group of another molecule as the acceptors [P1-O3- $H3C \cdots O5(x, y-1, z), P3 - O9 - H9C \cdots O49(x, y-1, z+1)],$ together with a weak N1-H1···O6 (x, y - 1, z) hydrogen bond between the secondary amino group of the macrocyclic cation [Ni1(L)] and protonated P2-O6 phosphonate fragment result in the formation of anionic layers oriented parallel to the bc plane. The distance between the parallel mean planes

Figure 2

The hydrogen-bonded (dashed lines) layers in I viewed down the *a* axis. C-bound H atoms and macrocyclic cations formed by Ni3 have been omitted; C and N atoms of the macrocyclic cations formed by Ni2 are shown in green.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1\cdots O6^{iv}$	1.00	2.32	3.196 (5)	146
$N2-H2\cdots O6W$	1.00	2.18	3.039 (6)	143
$N3-H3\cdots O7^{v}$	1.00	2.13	3.102 (6)	162
$N4-H4\cdots O4W$	1.00	2.06	3.056 (6)	173
$N5-H5\cdots O9^{vi}$	1.00	2.07	3.003 (6)	155
$N6-H6\cdots O7W^{ii}$	1.00	1.98	2.956 (6)	166
$O3-H3C\cdots O5^{iv}$	0.84	1.84	2.654 (5)	162
$O6-H6C \cdot \cdot \cdot O3W^{vii}$	0.84	1.75	2.550 (5)	159
$O9-H9C\cdots O4^{viii}$	0.84	1.74	2.517 (5)	154
$O1W-H1WB\cdots O7^{v}$	0.87	1.81	2.679 (5)	173
$O1W-H1WA\cdots O4W$	0.87	2.45	3.256 (6)	155
$O2W - H2WB \cdots O4$	0.86	1.90	2.729 (5)	164
$O2W - H2WA \cdots O7W^{ix}$	0.86	1.81	2.675 (6)	174
$O3W - H3WB \cdots O2$	0.87	1.81	2.676 (4)	177
$O3W - H3WA \cdots O7^{v}$	0.85	1.84	2.689 (5)	174
$O4W-H4WB\cdots O3$	0.87	2.26	3.115 (6)	167
$O4W-H4WA\cdots O8^{v}$	0.87	1.93	2.796 (6)	172
$O5W - H5WB \cdots O5^{x}$	0.87	1.98	2.813 (5)	159
$O5W-H5WA\cdots O8^{xi}$	0.87	1.87	2.725 (5)	168
$O6W - H6WB \cdots O2$	0.87	2.02	2.799 (6)	149
$O6W - H6WA \cdots O5W$	0.87	2.00	2.842 (5)	164
$O7W - H7WB \cdots O3W$	0.85	2.02	2.731 (5)	140
$O7W-H7WA\cdots O5W$	0.86	1.83	2.688 (5)	173

Symmetry codes: (ii) -x + 2, -y + 2, -z + 1; (iv) x, y - 1, z; (v) x, y, z - 1; (vi) -x + 1, -y + 2, -z + 2; (vii) x, y + 1, z; (viii) x, y - 1, z + 1; (ix) x - 1, y + 1, z; (x) x + 1, y - 1, z; (xi) x + 1, y, z - 1.

of the staggered by 60° trimethylbenzene rings of neighboring $H_3Me_3BTP^{3-}$ anions is 5.248 (3) Å, thus allowing us to exclude the possibility of aromatic π - π stacking interactions between them. Additionally, the negative charge of the layers are partially compensated by the incorporation within the layers of the $[Ni2(L)(H_2O)_2]^{2+}$ cations *via* hydrogen bonding between the coordinated water molecules and the phosphonate O7 atom $[O1W-H1WB\cdots O7(x, y, z - 1)]$ (Fig. 2).

The second macrocyclic aqua cation $[Ni3(L)(H_2O)_2]^{2+}$, due to hydrogen bonding of the coordinated water molecule with the phosphonate O4 atom (O2W-H2WB···O4), serves as the bridge between the layers, arranging them into a three-dimensional network (Fig. 3), which is further stabilized by

The structure of I viewed down the *b* axis. C-bound H atoms have been omitted; C and N atoms of the macrocyclic cation formed by Ni2 and Ni3 are shown in green and violet, respectively. Water molecules of crystallization are not shown; hydrogen bonds are depicted as dashed lines.

numerous $O-H\cdots O$ hydrogen bonds involving the water molecules of crystallization, O3W-O7W (Table 2).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update March 2022; Groom et al., 2016) gave no hits related to H₆Me₃BTP or its complexes with metal ions, so the present work is the first structural characterization of a complex of this ligand. At the same time, several works dealing with the structures of the non-methylated analogue of the phosphonate under consideration, namely, 4.4',4''benzene-1,3,5-triyl-triphosphonic acid (H₆BTP), have been published. They include a methanol solvate of the free acid (CSD refcode AKEPEO; Vilela et al., 2021) and its pyridinium salt (YOLGEM; Beckmann et al., 2008), molecular complexes with solvated Co^{II} and Ni^{II} ions (OQIZAR and OQIZEV; Pili et al., 2016) and coordination polymers formed by Sr^{II} (SOTZOR; Vaidhyanathan et al., 2009), Zn^{II} (ISELAV02; Hermer et al., 2016), Y^{III} (AKEPOY; Vilela et al., 2021), Zr^{IV} (COCLIR; Taddei et al., 2014) and V^{IV/V} (COQNAY; Ouellette et al., 2009). Interestingly, as in I, in all the metal complexes except COCLIR and ISELAV02, the ligand acts as a H₃BTP³⁻ tri-anion with three monodeprotonated phosphonate groups. On the other hand, because of the absence of methyl substituents, the molecules of the anions $H_nBTP^{(6-n)-}$ as a whole are flatter than H₂Me₃BTP³⁻ in I with a maximal tilting angle of pendant versus central benzene rings of ca 49° observed in ISELAV02. In addition, in the majority of complexes formed by $H_n BTP^{(6-n)-}$ ligands (except AKEPOY and ISELAV02), aromatic π - π stacking interactions of different strengths are observed with centroid-to-centroid distances between the central aromatic rings ranging from 3.4 to 3.9 Å.

The Cambridge Structural Database contains also 18 hits describing the structure of the $[Ni(L)(H_2O)_2]^{2+}$ complex cation in salts of different inorganic and organic anions as well as the charge-compensating part in anionic coordination polymers. In general, the structure of this cation in **I** is similar to other compounds, both from the point of view of the conformation of the macrocycle and the bond distances and angles characterizing the coordination polyhedron of the metal.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The acid H₆Me₃BTP was synthesized according to a procedure described previously for the preparation of H₆BTP (Vaidhyanathan *et al.*, 2009), starting from 1,3,5-trimethyl-2,4,6tris(4'-bromophenyl)benzene instead of 1,3,5-tris(4'-bromophenyl)benzene. The complex $[Ni(L)](CIO_4)_2$ was prepared from ethanol solutions as described in the literature (Bosnich *et al.*, 1965*b*).

The title compound $[Ni(L)(H_2O)_2]_2[Ni(L)(H_3Me_3BTP)_2]$ -10H₂O, I, was prepared as follows. A solution of

Experimental details.	
Crystal data	
Chemical formula	$\begin{array}{l} [Ni(C_{10}H_{24}N_4)(H_2O)_2]_2\text{-}\\ [Ni(C_{10}H_{24}N_4)(C_{27}H_{24}O_9P_3)_2]\text{-}\\ 10H_2O\end{array}$
$M_{\rm r}$	2200.09
Crystal system, space group	Triclinic, P1
Temperature (K)	160
a, b, c (Å)	9.8779 (5), 17.2467 (11), 17.6707 (11)
α, β, γ (°)	61.409 (6), 77.515 (5), 77.713 (5)
$V(\dot{A}^3)$	2559.7 (3)
Ζ	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.72
Crystal size (mm)	$0.40 \times 0.10 \times 0.10$
Data collection	
Diffractometer	Rigaku Xcalibur Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2020)
T_{\min}, T_{\max}	0.701, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23737, 9657, 6598
R _{int}	0.063
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.067, 0.161, 1.02
No. of reflections	9657
No. of parameters	629
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.67, -0.46

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

 $[Ni(L)](ClO_4)_2$ (46 mg, 0.1 mmol) in 5 ml of water was added to 5 ml of an aqueous solution of H₆Me₃BTP (18 mg, 0.03 mmol) containing 2 ml of pyridine. The pink precipitate, which formed in a week, was filtered off, washed with small amounts of water, methanol and diethyl ether, and dried in air. Yield: 7 mg (10% based on acid). Analysis calculated for C₈₄H₁₄₈N₁₂Ni₃O₃₂P₆: C 45.85, H 6.78, N 7.64%. Found: C 45.73, H 6.87, N 7.51%. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Table 3

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms in **I** were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.95 Å (ring H atoms), 0.98 Å (methyl H atoms), 0.99 Å (methylene H atoms), N–H distances of 1.00 Å, O–H distances of 0.84 Å (protonated phosphonate groups) and 0.87 Å (water molecules) with $U_{\rm iso}$ (H) values of 1.2 $U_{\rm eq}$ or 1.5 $U_{\rm eq}$ times those of the corresponding parent atoms.

References

- Alexandrov, E. V., Blatov, V. A. & Proserpio, D. M. (2017). *CrystEngComm*, **19**, 1993–2006.
- Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). *Inorg. Chem.* 25, 4197– 4202.
- Beckmann, J., Rüttinger, R. & Schwich, T. (2008). *Cryst. Growth Des.* **8**, 3271–3276.
- Bosnich, B., Poon, C. K. & Tobe, M. L. (1965a). *Inorg. Chem.* 4, 1102–1108.
- Bosnich, B., Tobe, M. L. & Webb, G. A. (1965b). Inorg. Chem. 4, 1109–1112.
- Firmino, A. D. G., Figueira, F., Tomé, J. P. C., Paz, F. A. A. & Rocha, J. (2018). Coord. Chem. Rev. 355, 133–149.
- Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034–1054.
- Gong, Y.-N., Zhong, D.-C. & Lu, T.-B. (2016). CrystEngComm, 18, 2596–2606.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hermer, N., Reinsch, H., Mayer, P. & Stock, N. (2016). CrystEng-Comm, 18, 8147–8150.
- Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.
- Lampeka, Ya. D. & Tsymbal, L. V. (2004). *Theor. Exp. Chem.* **40**, 345–371.
- Lampeka, Ya. D., Tsymbal, L. V., Barna, A. V., Shulga, Y. L., Shova, S. & Arion, V. B. (2012). *Dalton Trans.* **41**, 4118–4125.
- MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. *Metal–Organic Framework Materials*. Hoboken: John Wiley and Sons.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.

- Ouellette, W., Wang, G., Liu, H., Yee, G. T., O'Connor, C. J. & Zubieta, J. (2009). *Inorg. Chem.* 48, 953–963.
- Pili, S., Argent, S. P., Morris, C. G., Rought, P., García-Sakai, V., Silverwood, I. P., Easun, T. L., Li, M., Warren, M. R., Murray, C. A., Tang, C. C., Yang, S. & Schröder, M. (2016). J. Am. Chem. Soc. 138, 6352–6355.
- Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.
- Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.
- Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.
- Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.
- Taddei, M., Costantino, F., Vivani, R., Sabatini, S., Lim, S.-H. & Cohen, S. M. (2014). *Chem. Commun.* 50, 5737–5740.
- Tsymbal, L. V., Andriichuk, I. L., Lozan, V., Shova, S. & Lampeka, Y. D. (2022). Acta Cryst. E78, 625–628.
- Vaidhyanathan, R., Mahmoudkhani, A. H. & Shimizu, G. K. H. (2009). Can. J. Chem. 87, 247–253.
- Vilela, S. M. F., Navarro, J. A. R., Barbosa, P., Mendes, R. F., Pérez-Sánchez, G., Nowell, H., Ananias, D., Figueiredo, F., Gomes, J. R. B., Tomé, J. P. C. & Paz, F. A. A. (2021). *J. Am. Chem. Soc.* 143, 1365–1376.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka (in Russian).
- Yücesan, G., Zorlu, Y., Stricker, M. & Beckmann, J. (2018). Coord. Chem. Rev. 369, 105–122.

Acta Cryst. (2022). E78, 750-754 [https://doi.org/10.1107/S2056989022006624]

Synthesis and crystal structure of bis[*trans*-diaqua(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1, N^4, N^8, N^{11}$)nickel(II)] *trans*-(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1, N^4, N^8, N^{11}$)bis[4,4',4''-(1,3,5-trimethylbenzene-2,4,6-triyl)tris(hydrogen phenylphosphonato- κO)]nickel(II) decahydrate

Liudmyla V. Tsymbal, Rodinel Ardeleanu, Sergiu Shova and Yaroslaw D. Lampeka

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2020); cell refinement: *CrysAlis PRO* (Rigaku OD, 2020); data reduction: *CrysAlis PRO* (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $\label{eq:starsest} $$ N^1 = \frac{1}{4} - \frac{1}{$

Crystal data

$[Ni(C_{10}H_{24}N_4)(H_2O)_2]_2[Ni(C_{10}H_{24}N_4) (C_{27}H_{24}O_9P_3)_2] \cdot 10H_2O$ $M_r = 2200.09$ Triclinic, $P\overline{1}$ a = 9.8779 (5) Å b = 17.2467 (11) Å c = 17.6707 (11) Å $a = 61.409 (6)^{\circ}$ $\beta = 77.515 (5)^{\circ}$ $\gamma = 77.713 (5)^{\circ}$ $V = 2559.7 (3) \text{ Å}^3$	Z = 1 F(000) = 1166 $D_x = 1.427 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5403 reflections $\theta = 2.1-26.3^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 160 K Prism, clear light colourless $0.40 \times 0.10 \times 0.10 \text{ mm}$
Data collection	
Rigaku Xcalibur Eos diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1593 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020)	$T_{\min} = 0.701, T_{\max} = 1.000$ 23737 measured reflections 9657 independent reflections 6598 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.063$ $\theta_{\max} = 25.7^{\circ}, \theta_{\min} = 2.1^{\circ}$ $h = -11 \rightarrow 12$ $k = -21 \rightarrow 20$ $l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: mixed
$wR(F^2) = 0.161$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 4.2781P]$
9657 reflections	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
629 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
1 restraint	$\Delta ho_{ m max} = 0.67 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.46 \text{ e} \text{ Å}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

			_	II */II	
	<i>x</i>	<u>y</u>	Z	$U_{\rm iso} \cdot / U_{\rm eq}$	
N1l	1.000000	0.500000	1.000000	0.0228 (2)	
P2	0.77348 (14)	1.51832 (8)	0.73137 (8)	0.0273 (3)	
P1	0.86291 (13)	0.70402 (8)	0.82874 (8)	0.0243 (3)	
P3	0.75955 (15)	0.78200 (9)	1.49060 (8)	0.0332 (3)	
05	0.6838 (4)	1.5710 (2)	0.7750 (2)	0.0380 (9)	
C29	0.7561 (5)	1.4015 (3)	0.7965 (3)	0.0241 (10)	
O4	0.7456 (4)	1.5452 (2)	0.6413 (2)	0.0333 (8)	
O3W	1.0380 (3)	0.6623 (2)	0.6411 (2)	0.0311 (8)	
H3WA	0.998703	0.703601	0.598132	0.047*	
H3WB	1.016063	0.687031	0.675752	0.047*	
O4W	0.6258 (4)	0.8895 (3)	0.6511 (3)	0.0607 (12)	
H4WA	0.622702	0.869018	0.615193	0.091*	
H4WB	0.655562	0.843018	0.696393	0.091*	
C22	0.7292 (4)	0.9758 (3)	0.9717 (3)	0.0193 (10)	
C38	0.7501 (5)	0.8505 (3)	1.3753 (3)	0.0274 (11)	
C26	0.7310 (5)	1.2190 (3)	0.9041 (3)	0.0230 (10)	
N1	0.9914 (4)	0.4354 (3)	0.9286 (2)	0.0275 (9)	
H1	0.956271	0.481640	0.873064	0.033*	
O3	0.7242 (4)	0.7049 (2)	0.7985 (2)	0.0387 (9)	
H3C	0.724711	0.656089	0.798510	0.058*	
C34	0.7272 (4)	0.9926 (3)	1.1008 (3)	0.0211 (10)	
N2	1.1919 (4)	0.5419 (3)	0.9365 (3)	0.0330 (10)	
H2	1.173656	0.596679	0.881233	0.040*	
C3	1.2935 (5)	0.4794 (4)	0.9119 (4)	0.0421 (14)	
H3A	1.320107	0.425875	0.965248	0.051*	
H3B	1.378830	0.507709	0.878884	0.051*	
02	0.9773 (4)	0.7334 (2)	0.7517(2)	0.0349 (8)	
09	0.7490 (5)	0.6880 (2)	1.5017 (2)	0.0490 (11)	
H9C	0.757613	0.649777	1.553173	0.074*	
C35	0.7357 (5)	0.9486 (3)	1.1963 (3)	0.0245 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C41	0.7258 (5)	0.9377 (3)	1.0620(3)	0.0229 (10)
C23	0.7243 (5)	1.0683 (3)	0.9212 (3)	0.0229 (10)
C30	0.6330 (5)	1.3737 (3)	0.8509 (3)	0.0335 (12)
H30	0.555907	1.416974	0.852158	0.040*
C25	0.7243 (5)	1.1221 (3)	0.9602 (3)	0.0216 (10)
C5	0.8806 (6)	0.3769(4)	0.9791(3)	0.0381(13)
H5A	0.916444	0 324112	1 029994	0.046*
H5B	0.851180	0.356262	0.942372	0.046*
C33	0.7319(5)	1 1422 (3)	1.0923(3)	0.0280(11)
Н33А	0.769682	1.105369	1 147602	0.042*
H33B	0.637231	1.170079	1.147002	0.042
H33C	0.701865	1.170073	1.102550	0.042
C30	0.791805	0.0036(3)	1.055504	0.042
U20	0.0285 (5)	0.9050 (5)	1.3433 (3)	0.0321(12) 0.030*
П39 С42	0.349341 0.7241 (6)	0.900980	1.303///	0.039°
C42	0.7241(0)	0.8387(3)	1.1138 (3)	0.0333 (12)
H42A	0.818887	0.80/9/4	1.1113/9	0.050*
H42B	0.661713	0.818665	1.094399	0.050*
H42C	0.690678	0.825159	1.176739	0.050*
07	0.9019 (4)	0.7838 (2)	1.50/1 (2)	0.0399 (9)
C36	0.8576 (5)	0.8993 (3)	1.2269 (3)	0.0283 (11)
H36	0.938419	0.898840	1.186477	0.034*
C19	0.7533 (4)	0.9154 (3)	0.9299 (3)	0.0194 (10)
C21	0.6772 (5)	0.8176 (3)	0.8889 (3)	0.0282 (11)
H21	0.603252	0.793241	0.884480	0.034*
08	0.6378 (4)	0.8126 (3)	1.5414 (2)	0.0476 (10)
C20	0.6477 (5)	0.8787 (3)	0.9222 (3)	0.0287 (11)
H20	0.553187	0.895677	0.940187	0.034*
C2	1.2358 (6)	0.4512 (4)	0.8569 (3)	0.0407 (14)
H2A	1.196217	0.505379	0.808660	0.049*
H2B	1.314402	0.421415	0.830904	0.049*
C37	0.8665 (5)	0.8500 (3)	1.3151 (3)	0.0306 (12)
H37	0.952338	0.815768	1.334400	0.037*
C32	0.7271 (4)	1.0848 (3)	1.0504 (3)	0.0211 (10)
C24	0.7140 (6)	1.1079 (3)	0.8254 (3)	0.0314 (12)
H24A	0.660985	1.072081	0.815897	0.047*
H24B	0.808141	1.108441	0.793050	0.047*
H24C	0.666278	1.168989	0.805139	0.047*
Ni2	1.000000	1.000000	0.500000	0.0233(2)
O1W	0.9604 (4)	0.8687(2)	0.5872 (2)	0.0452(10)
HIWA	0.881040	0.872384	0.618973	0.068*
HIWB	0.944450	0 844264	0 557414	0.068*
N3	0.9605 (4)	0.9803(3)	0.337111 0.4004 (2)	0.000
H3	0.9003(4) 0.924717	0.921388	0.4004 (2)	0.0257 (10)
C10	1,0086(5)	0.921300	0 3406 (3)	0.030
H10A	1 128802	1 031630	0.311807	0.0360 (13)
HIOR	1.120092	0.045314	0.312116	0.046*
N/	0.7040 (5)	1 0 4 4 7 (2)	0.512110 0.5221(2)	0.040
194 117	0.7940(3)	1.0++/(3)	0.3321 (3)	0.03//(11)
114	0./44/40	0.770//7	0.300/10	0.045

C9	0.7973 (6)	1.0856 (4)	0.5889 (3)	0.0408 (14)
H9A	0.703665	1.090138	0.621780	0.049*
H9B	0.824723	1.146279	0.553175	0.049*
C7	0.7183 (6)	1.0577 (4)	0.4022 (3)	0.0418 (14)
H7A	0.689758	0.997677	0.440380	0.050*
H7B	0.646435	1.092349	0.362786	0.050*
C6	0.8543 (5)	1.0479 (3)	0.3477 (3)	0.0350 (12)
H6A	0.837243	1.030970	0.304733	0.042*
H6B	0.891090	1.106025	0.315290	0.042*
C8	0 7168 (6)	1 1019 (4)	0.4586(4)	0.0434(14)
H8A	0.758644	1 158069	0.423021	0.052*
H8B	0.618830	1 116899	0.480465	0.052*
Ni3	0.500000	1.500000	0.500000	0.032 0.0280(2)
O2W	0.500000	1.500000 1.5055(2)	0.500000	0.0230(2) 0.0374(9)
	0.3104(4)	1.5055 (2)	0.620771	0.056*
	0.580347	1.520201	0.613028	0.056*
N5	0.389347 0.3476(5)	1.320291	0.013928	0.030°
IN3	0.3470 (3)	1.4101 (5)	0.5085 (5)	0.0430 (12)
H5 O7W	0.333782	1.392139	0.529340	0.052°
U/W	1.3235 (4)	0.6425 (3)	0.01/4(3)	0.0660 (14)
H/WA	1.366682	0.665639	0.63/536	0.099*
H/WB	1.244232	0.6/1069	0.624896	0.099*
N6	0.6644 (5)	1.3992 (3)	0.5280 (3)	0.0464 (12)
H6	0.671366	1.374659	0.486100	0.056*
C14	0.7918 (6)	1.4389 (5)	0.5068 (4)	0.0558 (18)
H14A	0.873557	1.397569	0.499126	0.067*
H14B	0.802863	1.450247	0.554899	0.067*
O6W	1.2369 (4)	0.7283 (3)	0.7946 (2)	0.0541 (11)
H6WA	1.317921	0.726218	0.763661	0.081*
H6WB	1.177461	0.729258	0.764271	0.081*
O5W	1.4763 (3)	0.7022 (2)	0.6828 (2)	0.0395 (9)
H5WA	1.538341	0.732237	0.641517	0.059*
H5WB	1.524801	0.660758	0.722817	0.059*
O1	0.9002 (4)	0.6178 (2)	0.9039 (2)	0.0326 (8)
O6	0.9335 (4)	1.5164 (2)	0.7321 (2)	0.0402 (9)
H6C	0.960853	1.564111	0.692096	0.060*
C17	0.9212 (5)	0.8304 (3)	0.8664 (3)	0.0229 (10)
H17	1.015334	0.815323	0.846193	0.027*
C16	0.8155 (5)	0.7918 (3)	0.8618 (3)	0.0216 (10)
C18	0.8904 (5)	0.8913 (3)	0.9005 (3)	0.0238 (10)
H18	0.964113	0.916614	0.903815	0.029*
C40	0.6201 (5)	0.9525 (3)	1.2561 (3)	0.0302 (12)
H40	0.535465	0.988328	1.236326	0.036*
C1	1 1247 (6)	0 3895 (3)	0.9048(3)	0.0375(13)
HIA	1 108999	0.364727	0.867554	0.045*
HIR	1 157958	0 339182	0.958205	0.045*
C28	0.8659 (5)	1 3371 (3)	0 7957 (3)	0.0323(12)
H28	0.950712	1 353974	0.758385	0.039*
C31	0.6206 (5)	1.323777 1 2844 (3)	0.9032 (3)	0.0319(12)
~ ~ ~	0.0200 (0)	1.2077 (3)	0.7054 (5)	0.0017(14)

H31	0.534822	1.267424	0.939145	0.038*
C13	0.6486 (8)	1.3227 (4)	0.6163 (4)	0.0614 (19)
H13A	0.651043	1.342483	0.660143	0.074*
H13B	0.728211	1.275571	0.620745	0.074*
C15	0.2154 (6)	1.4748 (5)	0.5758 (4)	0.0502 (16)
H15A	0.212231	1.487228	0.625394	0.060*
H15B	0.133940	1.444182	0.586810	0.060*
C11	0.3777 (8)	1.3401 (5)	0.6484 (4)	0.0606 (19)
H11A	0.300674	1.302890	0.671624	0.073*
H11B	0.383358	1.360212	0.691424	0.073*
C27	0.8528 (5)	1.2485 (3)	0.8489 (3)	0.0315 (12)
H27	0.930342	1.205552	0.847868	0.038*
C12	0.5140 (8)	1.2849 (4)	0.6361 (4)	0.065 (2)
H12A	0.519087	1.227524	0.689642	0.078*
H12B	0.509541	1.271311	0.588269	0.078*
C4	1.2423 (5)	0.5705 (4)	0.9910 (3)	0.0360 (13)
H4A	1.318132	0.607996	0.956861	0.043*
H4B	1.279137	0.517994	1.041693	0.043*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0278 (5)	0.0183 (4)	0.0225 (4)	0.0031 (4)	-0.0059 (3)	-0.0108 (4)
P2	0.0380 (8)	0.0178 (6)	0.0273 (7)	-0.0020 (6)	-0.0117 (6)	-0.0089 (5)
P1	0.0314 (7)	0.0195 (6)	0.0258 (6)	0.0026 (6)	-0.0079 (5)	-0.0139 (5)
Р3	0.0495 (9)	0.0290 (7)	0.0222 (7)	-0.0109 (7)	-0.0112 (6)	-0.0074 (6)
05	0.056 (2)	0.0220 (18)	0.042 (2)	0.0005 (18)	-0.0129 (18)	-0.0184 (17)
C29	0.031 (3)	0.023 (2)	0.019 (2)	0.000(2)	-0.0063 (19)	-0.010 (2)
O4	0.051 (2)	0.0229 (18)	0.0265 (18)	-0.0077 (17)	-0.0132 (16)	-0.0072 (15)
O3W	0.0317 (19)	0.0298 (19)	0.0354 (19)	0.0021 (16)	-0.0082 (15)	-0.0185 (16)
O4W	0.064 (3)	0.059 (3)	0.060 (3)	-0.013 (2)	-0.008 (2)	-0.026 (2)
C22	0.017 (2)	0.022 (2)	0.020 (2)	-0.002 (2)	0.0003 (18)	-0.012 (2)
C38	0.040 (3)	0.022 (2)	0.025 (3)	-0.007(2)	-0.011 (2)	-0.010 (2)
C26	0.030 (3)	0.019 (2)	0.022 (2)	-0.002 (2)	-0.005 (2)	-0.011 (2)
N1	0.036 (2)	0.021 (2)	0.026 (2)	0.0064 (19)	-0.0090 (18)	-0.0131 (18)
03	0.049 (2)	0.027 (2)	0.054 (2)	0.0082 (18)	-0.0240 (18)	-0.0272 (19)
C34	0.019 (2)	0.025 (2)	0.021 (2)	0.006 (2)	-0.0042 (18)	-0.014 (2)
N2	0.039 (3)	0.031 (2)	0.030 (2)	-0.003 (2)	-0.0034 (19)	-0.016 (2)
C3	0.033 (3)	0.052 (4)	0.046 (3)	-0.004 (3)	0.006 (2)	-0.032 (3)
O2	0.047 (2)	0.031 (2)	0.0312 (19)	-0.0057 (17)	0.0045 (16)	-0.0216 (17)
09	0.090 (3)	0.034 (2)	0.028 (2)	-0.021 (2)	-0.022 (2)	-0.0065 (17)
C35	0.028 (3)	0.023 (2)	0.024 (2)	-0.004 (2)	-0.004 (2)	-0.012 (2)
C41	0.023 (2)	0.019 (2)	0.027 (2)	0.000 (2)	-0.0026 (19)	-0.012 (2)
C23	0.026 (3)	0.022 (2)	0.019 (2)	0.004 (2)	-0.0033 (19)	-0.010 (2)
C30	0.028 (3)	0.022 (3)	0.046 (3)	0.003 (2)	-0.006 (2)	-0.014 (2)
C25	0.021 (2)	0.018 (2)	0.025 (2)	0.001 (2)	-0.0017 (19)	-0.010 (2)
C5	0.053 (4)	0.030 (3)	0.034 (3)	-0.007 (3)	-0.010 (3)	-0.014 (2)
C33	0.035 (3)	0.022 (2)	0.031 (3)	0.000 (2)	-0.008 (2)	-0.016 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C39	0.033(3)	0.040(3)	0.023(3)	-0.007(3)	-0.003(2)	-0.013(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42	0.052 (3)	0.021 (3)	0.027 (3)	-0.004(2)	-0.009(2)	-0.010(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07	0.053 (2)	0.038 (2)	0.0282 (19)	-0.0107(19)	-0.0119 (17)	-0.0096 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36	0.038 (3)	0.025 (3)	0.024 (3)	0.001 (2)	-0.006(2)	-0.014 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	0.023 (2)	0.018 (2)	0.015 (2)	0.001 (2)	-0.0015 (18)	-0.0077 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.026 (3)	0.032 (3)	0.036 (3)	-0.002(2)	-0.006 (2)	-0.023 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08	0.054 (2)	0.053 (3)	0.0258 (19)	-0.001(2)	-0.0044 (17)	-0.0116 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	0.023 (3)	0.033 (3)	0.036 (3)	0.004 (2)	-0.001 (2)	-0.024 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.036 (3)	0.048 (4)	0.041 (3)	0.010 (3)	-0.005(2)	-0.029(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C37	0.038 (3)	0.025 (3)	0.030 (3)	0.007 (2)	-0.015 (2)	-0.013 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	0.020 (2)	0.023 (2)	0.022 (2)	0.004 (2)	-0.0025 (18)	-0.013 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.050 (3)	0.021 (2)	0.025 (3)	-0.003 (2)	-0.007 (2)	-0.012 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni2	0.0292 (5)	0.0196 (4)	0.0220 (4)	0.0031 (4)	-0.0055 (4)	-0.0117 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O1W	0.073 (3)	0.036 (2)	0.033 (2)	-0.014 (2)	-0.0077 (19)	-0.0169 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3	0.042 (3)	0.027 (2)	0.023 (2)	-0.007 (2)	-0.0027 (18)	-0.0130 (18)
N4 0.046 (3) 0.031 (2) 0.040 (3) -0.002 (2) -0.009 (2) -0.019 (2)C9 0.041 (3) 0.047 (3) 0.037 (3) -0.002 (3) 0.001 (2) -0.025 (3)C7 0.046 (3) 0.041 (3) 0.037 (3) 0.001 (3) -0.014 (3) -0.016 (3)C6 0.050 (3) 0.029 (3) 0.031 (3) 0.001 (3) -0.015 (2) -0.016 (2)C8 0.047 (4) 0.039 (3) 0.043 (3) 0.002 (3) -0.009 (3) -0.020 (3)Ni3 0.0357 (5) 0.0258 (5) 0.0275 (5) -0.0032 (4) -0.0080 (4) -0.0148 (4)O2W 0.046 (2) 0.043 (2) 0.034 (2) -0.0071 (19) -0.0080 (2) -0.023 (2)O7W 0.037 (2) 0.102 (4) 0.104 (4) 0.006 (2) -0.008 (2) -0.023 (2)O7W 0.037 (2) 0.102 (4) 0.104 (4) 0.006 (2) -0.008 (2) -0.028 (3)N6 0.050 (3) 0.050 (3) 0.056 (3) 0.008 (3) -0.025 (1)O6W 0.052 (3) 0.059 (3) 0.042 (2) 0.004 (2) -0.0005 (19) -0.023 (2)O5W 0.035 (2) 0.041 (2) 0.044 (2) -0.0071 (18) -0.0156 (17) -0.0044 (17)C17 0.023 (2) 0.022 (2) 0.026 (19) 0.0041 (16) -0.0156 (17) -0.0044 (17)C17 0.023 (2) 0.022 (2) 0.026 (19) 0.004 (2) -0.0056 (19) -0.016 (2)C16 0.028 (3)	C10	0.049 (3)	0.044 (3)	0.031 (3)	-0.007 (3)	-0.005 (2)	-0.024 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4	0.046 (3)	0.031 (2)	0.040 (3)	-0.002 (2)	-0.009(2)	-0.019 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.041 (3)	0.047 (3)	0.037 (3)	-0.002 (3)	0.001 (2)	-0.025 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	0.046 (3)	0.041 (3)	0.037 (3)	0.001 (3)	-0.014 (3)	-0.016 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.050 (3)	0.029 (3)	0.031 (3)	0.001 (3)	-0.015 (2)	-0.016 (2)
Ni3 $0.0357 (5)$ $0.0258 (5)$ $0.0275 (5)$ $-0.0032 (4)$ $-0.0080 (4)$ $-0.0148 (4)$ O2W $0.046 (2)$ $0.043 (2)$ $0.034 (2)$ $-0.0071 (19)$ $-0.0093 (17)$ $-0.0240 (18)$ N5 $0.058 (3)$ $0.045 (3)$ $0.039 (3)$ $-0.017 (3)$ $-0.008 (2)$ $-0.023 (2)$ O7W $0.037 (2)$ $0.102 (4)$ $0.104 (4)$ $0.006 (2)$ $-0.008 (2)$ $-0.023 (2)$ O7W $0.037 (2)$ $0.102 (4)$ $0.104 (4)$ $0.006 (2)$ $-0.008 (2)$ $-0.037 (3)$ C14 $0.042 (4)$ $0.071 (5)$ $0.079 (5)$ $0.013 (3)$ $-0.014 (3)$ $-0.059 (4)$ O6W $0.052 (3)$ $0.059 (3)$ $0.042 (2)$ $0.004 (2)$ $-0.0005 (19)$ $-0.023 (2)$ O5W $0.035 (2)$ $0.041 (2)$ $0.041 (2)$ $-0.0007 (18)$ $-0.0030 (16)$ $-0.0199 (18)$ O1 $0.045 (2)$ $0.022 (118)$ $0.0296 (19)$ $0.0041 (16)$ $-0.015 (17)$ $-0.0044 (17)$ C17 $0.023 (2)$ $0.022 (2)$ $0.021 (2)$ $0.000 (2)$ $-0.0066 (19)$ $-0.010 (2)$ C18 $0.025 (3)$ $0.022 (2)$ $0.021 (2)$ $0.000 (2)$ $-0.0066 (19)$ $-0.010 (2)$ C18 $0.025 (3)$ $0.027 (3)$ $0.032 (3)$ $-0.007 (2)$ $-0.016 (3)$ $-0.025 (3)$ C28 $0.036 (3)$ $0.027 (3)$ $0.032 (3)$ $-0.007 (2)$ $-0.016 (3)$ $-0.025 (3)$ C28 $0.036 (3)$ $0.024 (3)$ $0.041 (3)$ $0.000 (2)$ $-0.005 (3)$ $-0.017 (2)$ <td>C8</td> <td>0.047 (4)</td> <td>0.039 (3)</td> <td>0.043 (3)</td> <td>0.002 (3)</td> <td>-0.009 (3)</td> <td>-0.020 (3)</td>	C8	0.047 (4)	0.039 (3)	0.043 (3)	0.002 (3)	-0.009 (3)	-0.020 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni3	0.0357 (5)	0.0258 (5)	0.0275 (5)	-0.0032 (4)	-0.0080 (4)	-0.0148 (4)
N5 0.058 (3) 0.045 (3) 0.039 (3) -0.017 (3) -0.008 (2) -0.023 (2)O7W 0.037 (2) 0.102 (4) 0.104 (4) 0.006 (2) -0.008 (2) -0.089 (3)N6 0.050 (3) 0.050 (3) 0.056 (3) 0.008 (3) -0.023 (2) -0.037 (3)C14 0.042 (4) 0.071 (5) 0.079 (5) 0.013 (3) -0.014 (3) -0.059 (4)O6W 0.052 (3) 0.059 (3) 0.042 (2) 0.004 (2) -0.0005 (19) -0.023 (2)O5W 0.035 (2) 0.041 (2) 0.041 (2) -0.0007 (18) -0.0030 (16) -0.0199 (18)O1 0.045 (2) 0.0221 (18) 0.0296 (19) 0.0041 (16) -0.0121 (16) -0.0115 (15)O6 0.042 (2) 0.026 (2) 0.021 (2) 0.000 (2) 0.0004 (19) -0.010 (2)C17 0.023 (2) 0.022 (2) 0.021 (2) 0.000 (2) -0.0056 (19) -0.010 (2)C16 0.028 (3) 0.020 (2) 0.019 (2) 0.000 (2) -0.0056 (19) -0.012 (2)C18 0.025 (3) 0.022 (2) 0.028 (3) -0.004 (2) -0.005 (2) -0.014 (2)C40 0.025 (3) 0.030 (3) 0.043 (3) 0.010 (3) -0.015 (3) -0.225 (3)C28 0.366 (3) 0.027 (3) 0.032 (3) -0.007 (2) 0.009 (2) -0.017 (2)C31 0.021 (3) 0.024 (3) 0.041 (3) 0.000 (2) -0.004 (4) -0.022 (3)C15 </td <td>O2W</td> <td>0.046 (2)</td> <td>0.043 (2)</td> <td>0.034 (2)</td> <td>-0.0071 (19)</td> <td>-0.0093 (17)</td> <td>-0.0240 (18)</td>	O2W	0.046 (2)	0.043 (2)	0.034 (2)	-0.0071 (19)	-0.0093 (17)	-0.0240 (18)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N5	0.058 (3)	0.045 (3)	0.039 (3)	-0.017 (3)	-0.008 (2)	-0.023 (2)
N6 $0.050(3)$ $0.050(3)$ $0.056(3)$ $0.008(3)$ $-0.023(2)$ $-0.037(3)$ C14 $0.042(4)$ $0.071(5)$ $0.079(5)$ $0.013(3)$ $-0.014(3)$ $-0.059(4)$ O6W $0.052(3)$ $0.059(3)$ $0.042(2)$ $0.004(2)$ $-0.0005(19)$ $-0.023(2)$ O5W $0.035(2)$ $0.041(2)$ $0.041(2)$ $-0.0007(18)$ $-0.0030(16)$ $-0.0199(18)$ O1 $0.045(2)$ $0.0221(18)$ $0.0296(19)$ $0.0041(16)$ $-0.0121(16)$ $-0.0115(15)$ O6 $0.042(2)$ $0.026(2)$ $0.044(2)$ $-0.0058(18)$ $-0.0156(17)$ $-0.0044(17)$ C17 $0.023(2)$ $0.022(2)$ $0.021(2)$ $0.000(2)$ $0.0004(19)$ $-0.010(2)$ C16 $0.028(3)$ $0.020(2)$ $0.019(2)$ $0.000(2)$ $-0.0056(19)$ $-0.0116(2)$ C18 $0.025(3)$ $0.022(2)$ $0.028(3)$ $-0.004(2)$ $-0.007(2)$ $-0.015(2)$ C1 $0.048(3)$ $0.030(3)$ $0.043(3)$ $0.001(2)$ $-0.007(2)$ $-0.015(2)$ C1 $0.048(3)$ $0.030(3)$ $0.043(3)$ $0.010(3)$ $-0.016(3)$ $-0.025(3)$ C28 $0.036(3)$ $0.027(3)$ $0.032(3)$ $-0.007(2)$ $-0.004(2)$ $-0.011(2)$ C13 $0.090(5)$ $0.038(4)$ $0.060(4)$ $0.013(4)$ $-0.044(4)$ $-0.020(3)$ C15 $0.041(4)$ $0.070(5)$ $0.058(4)$ $-0.014(3)$ $0.006(3)$ $-0.046(4)$ C11 $0.087(5)$ $0.057(4)$ $0.042(4)$ $-0.035(4)$ <td>O7W</td> <td>0.037 (2)</td> <td>0.102 (4)</td> <td>0.104 (4)</td> <td>0.006 (2)</td> <td>-0.008 (2)</td> <td>-0.089 (3)</td>	O7W	0.037 (2)	0.102 (4)	0.104 (4)	0.006 (2)	-0.008 (2)	-0.089 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6	0.050 (3)	0.050 (3)	0.056 (3)	0.008 (3)	-0.023 (2)	-0.037 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.042 (4)	0.071 (5)	0.079 (5)	0.013 (3)	-0.014 (3)	-0.059 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6W	0.052 (3)	0.059 (3)	0.042 (2)	0.004 (2)	-0.0005 (19)	-0.023 (2)
O1 $0.045(2)$ $0.0221(18)$ $0.0296(19)$ $0.0041(16)$ $-0.0121(16)$ $-0.0115(15)$ $O6$ $0.042(2)$ $0.026(2)$ $0.044(2)$ $-0.0058(18)$ $-0.0156(17)$ $-0.0044(17)$ $C17$ $0.023(2)$ $0.022(2)$ $0.021(2)$ $0.000(2)$ $0.0004(19)$ $-0.010(2)$ $C16$ $0.028(3)$ $0.020(2)$ $0.019(2)$ $0.000(2)$ $-0.0066(19)$ $-0.010(2)$ $C18$ $0.025(3)$ $0.022(2)$ $0.028(3)$ $-0.004(2)$ $-0.005(2)$ $-0.014(2)$ $C40$ $0.025(3)$ $0.022(2)$ $0.028(3)$ $-0.004(2)$ $-0.007(2)$ $-0.015(2)$ $C1$ $0.048(3)$ $0.030(3)$ $0.043(3)$ $0.001(2)$ $-0.007(2)$ $-0.015(2)$ $C1$ $0.048(3)$ $0.030(3)$ $0.043(3)$ $0.010(3)$ $-0.016(3)$ $-0.025(3)$ $C28$ $0.036(3)$ $0.027(3)$ $0.032(3)$ $-0.007(2)$ $0.009(2)$ $-0.017(2)$ $C31$ $0.021(3)$ $0.024(3)$ $0.041(3)$ $0.000(2)$ $0.004(2)$ $-0.011(2)$ $C13$ $0.090(5)$ $0.038(4)$ $0.060(4)$ $0.013(4)$ $-0.044(4)$ $-0.020(3)$ $C15$ $0.041(4)$ $0.070(5)$ $0.058(4)$ $-0.014(3)$ $0.006(3)$ $-0.046(4)$ $C11$ $0.087(5)$ $0.057(4)$ $0.042(4)$ $-0.035(4)$ $-0.005(3)$ $-0.017(3)$ $C27$ $0.035(3)$ $0.023(3)$ $0.031(3)$ $0.000(2)$ $0.006(2)$ $-0.013(2)$ $C12$ $0.106(6)$ $0.034(4)$ $0.048(4)$ <td>O5W</td> <td>0.035 (2)</td> <td>0.041 (2)</td> <td>0.041 (2)</td> <td>-0.0007 (18)</td> <td>-0.0030 (16)</td> <td>-0.0199 (18)</td>	O5W	0.035 (2)	0.041 (2)	0.041 (2)	-0.0007 (18)	-0.0030 (16)	-0.0199 (18)
06 0.042 (2) 0.026 (2) 0.044 (2) -0.0058 (18) -0.0156 (17) -0.0044 (17) $C17$ 0.023 (2) 0.022 (2) 0.021 (2) 0.000 (2) 0.0004 (19) -0.010 (2) $C16$ 0.028 (3) 0.020 (2) 0.019 (2) 0.000 (2) -0.0066 (19) -0.010 (2) $C18$ 0.025 (3) 0.022 (2) 0.028 (3) -0.004 (2) -0.005 (2) -0.014 (2) $C40$ 0.025 (3) 0.034 (3) 0.031 (3) 0.001 (2) -0.007 (2) -0.015 (2) $C1$ 0.048 (3) 0.030 (3) 0.043 (3) 0.010 (3) -0.016 (3) -0.025 (3) $C28$ 0.036 (3) 0.027 (3) 0.032 (3) -0.007 (2) 0.009 (2) -0.017 (2) $C31$ 0.021 (3) 0.024 (3) 0.041 (3) 0.000 (2) 0.004 (2) -0.011 (2) $C13$ 0.090 (5) 0.038 (4) 0.060 (4) 0.013 (4) -0.044 (4) -0.020 (3) $C15$ 0.041 (4) 0.070 (5) 0.058 (4) -0.014 (3) 0.006 (3) -0.046 (4) $C11$ 0.087 (5) 0.057 (4) 0.042 (4) -0.035 (4) -0.005 (3) -0.017 (3) $C27$ 0.035 (3) 0.023 (3) 0.031 (3) 0.000 (2) 0.006 (2) -0.013 (2) $C12$ 0.106 (6) 0.034 (4) 0.048 (4) -0.015 (4) -0.034 (4) -0.002 (3) $C12$ 0.106 (6) 0.034 (4) 0.048 (4) -0.015 (4) -0.034 (4) -0.002 (3) </td <td>01</td> <td>0.045 (2)</td> <td>0.0221 (18)</td> <td>0.0296 (19)</td> <td>0.0041 (16)</td> <td>-0.0121 (16)</td> <td>-0.0115 (15)</td>	01	0.045 (2)	0.0221 (18)	0.0296 (19)	0.0041 (16)	-0.0121 (16)	-0.0115 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06	0.042 (2)	0.026 (2)	0.044 (2)	-0.0058 (18)	-0.0156 (17)	-0.0044 (17)
C16 $0.028 (3)$ $0.020 (2)$ $0.019 (2)$ $0.000 (2)$ $-0.0066 (19)$ $-0.010 (2)$ C18 $0.025 (3)$ $0.022 (2)$ $0.028 (3)$ $-0.004 (2)$ $-0.005 (2)$ $-0.014 (2)$ C40 $0.025 (3)$ $0.034 (3)$ $0.031 (3)$ $0.001 (2)$ $-0.007 (2)$ $-0.015 (2)$ C1 $0.048 (3)$ $0.030 (3)$ $0.043 (3)$ $0.010 (3)$ $-0.016 (3)$ $-0.025 (3)$ C28 $0.036 (3)$ $0.027 (3)$ $0.032 (3)$ $-0.007 (2)$ $0.009 (2)$ $-0.017 (2)$ C31 $0.021 (3)$ $0.024 (3)$ $0.041 (3)$ $0.000 (2)$ $0.004 (2)$ $-0.011 (2)$ C13 $0.090 (5)$ $0.038 (4)$ $0.060 (4)$ $0.013 (4)$ $-0.044 (4)$ $-0.020 (3)$ C15 $0.041 (4)$ $0.070 (5)$ $0.058 (4)$ $-0.014 (3)$ $0.006 (3)$ $-0.046 (4)$ C11 $0.087 (5)$ $0.057 (4)$ $0.042 (4)$ $-0.035 (4)$ $-0.005 (3)$ $-0.017 (3)$ C27 $0.035 (3)$ $0.023 (3)$ $0.031 (3)$ $0.000 (2)$ $0.006 (2)$ $-0.013 (2)$ C12 $0.106 (6)$ $0.034 (4)$ $0.048 (4)$ $-0.015 (4)$ $-0.034 (4)$ $-0.002 (3)$	C17	0.023 (2)	0.022 (2)	0.021 (2)	0.000 (2)	0.0004 (19)	-0.010 (2)
C18 $0.025(3)$ $0.022(2)$ $0.028(3)$ $-0.004(2)$ $-0.005(2)$ $-0.014(2)$ C40 $0.025(3)$ $0.034(3)$ $0.031(3)$ $0.001(2)$ $-0.007(2)$ $-0.015(2)$ C1 $0.048(3)$ $0.030(3)$ $0.043(3)$ $0.010(3)$ $-0.016(3)$ $-0.025(3)$ C28 $0.036(3)$ $0.027(3)$ $0.032(3)$ $-0.007(2)$ $0.009(2)$ $-0.017(2)$ C31 $0.021(3)$ $0.024(3)$ $0.041(3)$ $0.000(2)$ $0.004(2)$ $-0.011(2)$ C13 $0.090(5)$ $0.038(4)$ $0.060(4)$ $0.013(4)$ $-0.044(4)$ $-0.020(3)$ C15 $0.041(4)$ $0.070(5)$ $0.058(4)$ $-0.014(3)$ $0.006(3)$ $-0.046(4)$ C11 $0.087(5)$ $0.057(4)$ $0.042(4)$ $-0.035(4)$ $-0.005(3)$ $-0.017(3)$ C27 $0.035(3)$ $0.023(3)$ $0.031(3)$ $0.000(2)$ $0.006(2)$ $-0.013(2)$ C12 $0.106(6)$ $0.034(4)$ $0.048(4)$ $-0.015(4)$ $-0.034(4)$ $-0.002(3)$	C16	0.028 (3)	0.020 (2)	0.019 (2)	0.000 (2)	-0.0066 (19)	-0.010 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.025 (3)	0.022 (2)	0.028 (3)	-0.004 (2)	-0.005 (2)	-0.014 (2)
C1 $0.048(3)$ $0.030(3)$ $0.043(3)$ $0.010(3)$ $-0.016(3)$ $-0.025(3)$ C28 $0.036(3)$ $0.027(3)$ $0.032(3)$ $-0.007(2)$ $0.009(2)$ $-0.017(2)$ C31 $0.021(3)$ $0.024(3)$ $0.041(3)$ $0.000(2)$ $0.004(2)$ $-0.011(2)$ C13 $0.090(5)$ $0.038(4)$ $0.060(4)$ $0.013(4)$ $-0.044(4)$ $-0.020(3)$ C15 $0.041(4)$ $0.070(5)$ $0.058(4)$ $-0.014(3)$ $0.006(3)$ $-0.046(4)$ C11 $0.087(5)$ $0.057(4)$ $0.042(4)$ $-0.035(4)$ $-0.005(3)$ $-0.017(3)$ C27 $0.035(3)$ $0.023(3)$ $0.031(3)$ $0.000(2)$ $0.006(2)$ $-0.013(2)$ C12 $0.106(6)$ $0.034(4)$ $0.048(4)$ $-0.015(4)$ $-0.034(4)$ $-0.002(3)$ C4 $0.020(3)$ $0.025(3)$ $0.025(3)$ $0.023(3)$ $0.024(3)$ $0.002(3)$	C40	0.025 (3)	0.034 (3)	0.031 (3)	0.001 (2)	-0.007 (2)	-0.015 (2)
C28 $0.036(3)$ $0.027(3)$ $0.032(3)$ $-0.007(2)$ $0.009(2)$ $-0.017(2)$ C31 $0.021(3)$ $0.024(3)$ $0.041(3)$ $0.000(2)$ $0.004(2)$ $-0.011(2)$ C13 $0.090(5)$ $0.038(4)$ $0.060(4)$ $0.013(4)$ $-0.044(4)$ $-0.020(3)$ C15 $0.041(4)$ $0.070(5)$ $0.058(4)$ $-0.014(3)$ $0.006(3)$ $-0.046(4)$ C11 $0.087(5)$ $0.057(4)$ $0.042(4)$ $-0.035(4)$ $-0.005(3)$ $-0.017(3)$ C27 $0.035(3)$ $0.023(3)$ $0.031(3)$ $0.000(2)$ $0.006(2)$ $-0.013(2)$ C12 $0.106(6)$ $0.034(4)$ $0.048(4)$ $-0.015(4)$ $-0.034(4)$ $-0.002(3)$ C4 $0.020(3)$ $0.025(3)$ $0.023(3)$ $0.024(2)$ $0.002(3)$	C1	0.048 (3)	0.030 (3)	0.043 (3)	0.010 (3)	-0.016 (3)	-0.025 (3)
C31 0.021 (3) 0.024 (3) 0.041 (3) 0.000 (2) 0.004 (2) -0.011 (2)C13 0.090 (5) 0.038 (4) 0.060 (4) 0.013 (4) -0.044 (4) -0.020 (3)C15 0.041 (4) 0.070 (5) 0.058 (4) -0.014 (3) 0.006 (3) -0.046 (4)C11 0.087 (5) 0.057 (4) 0.042 (4) -0.035 (4) -0.005 (3) -0.017 (3)C27 0.035 (3) 0.023 (3) 0.031 (3) 0.000 (2) 0.006 (2) -0.013 (2)C12 0.106 (6) 0.034 (4) 0.048 (4) -0.015 (4) -0.034 (4) -0.002 (3)C4 0.020 (2) 0.025 (2) 0.023 (2) 0.002 (2) 0.011 (2)	C28	0.036 (3)	0.027 (3)	0.032 (3)	-0.007 (2)	0.009 (2)	-0.017 (2)
C13 $0.090(5)$ $0.038(4)$ $0.060(4)$ $0.013(4)$ $-0.044(4)$ $-0.020(3)$ C15 $0.041(4)$ $0.070(5)$ $0.058(4)$ $-0.014(3)$ $0.006(3)$ $-0.046(4)$ C11 $0.087(5)$ $0.057(4)$ $0.042(4)$ $-0.035(4)$ $-0.005(3)$ $-0.017(3)$ C27 $0.035(3)$ $0.023(3)$ $0.031(3)$ $0.000(2)$ $0.006(2)$ $-0.013(2)$ C12 $0.106(6)$ $0.034(4)$ $0.048(4)$ $-0.015(4)$ $-0.034(4)$ $-0.002(3)$ C4 $0.020(2)$ $0.025(2)$ $0.025(2)$ $0.024(2)$ $0.002(2)$ $0.011(2)$	C31	0.021 (3)	0.024 (3)	0.041 (3)	0.000 (2)	0.004 (2)	-0.011 (2)
C15 $0.041(4)$ $0.070(5)$ $0.058(4)$ $-0.014(3)$ $0.006(3)$ $-0.046(4)$ C11 $0.087(5)$ $0.057(4)$ $0.042(4)$ $-0.035(4)$ $-0.005(3)$ $-0.017(3)$ C27 $0.035(3)$ $0.023(3)$ $0.031(3)$ $0.000(2)$ $0.006(2)$ $-0.013(2)$ C12 $0.106(6)$ $0.034(4)$ $0.048(4)$ $-0.015(4)$ $-0.034(4)$ $-0.002(3)$ C4 $0.029(2)$ $0.025(2)$ $0.025(2)$ $0.024(2)$ $0.0011(2)$ $0.011(2)$	C13	0.090 (5)	0.038 (4)	0.060 (4)	0.013 (4)	-0.044 (4)	-0.020 (3)
C11 $0.087 (5)$ $0.057 (4)$ $0.042 (4)$ $-0.035 (4)$ $-0.005 (3)$ $-0.017 (3)$ C27 $0.035 (3)$ $0.023 (3)$ $0.031 (3)$ $0.000 (2)$ $0.006 (2)$ $-0.013 (2)$ C12 $0.106 (6)$ $0.034 (4)$ $0.048 (4)$ $-0.015 (4)$ $-0.034 (4)$ $-0.002 (3)$ C4 $0.029 (2)$ $0.025 (2)$ $0.024 (2)$ $0.002 (2)$ $0.011 (2)$ $0.014 (2)$	C15	0.041 (4)	0.070 (5)	0.058 (4)	-0.014 (3)	0.006 (3)	-0.046 (4)
C27 $0.035(3)$ $0.023(3)$ $0.031(3)$ $0.000(2)$ $0.006(2)$ $-0.013(2)$ C12 $0.106(6)$ $0.034(4)$ $0.048(4)$ $-0.015(4)$ $-0.034(4)$ $-0.002(3)$ C4 $0.022(2)$ $0.021(2)$ $0.011(2)$ $0.011(2)$	C11	0.087 (5)	0.057 (4)	0.042 (4)	-0.035 (4)	-0.005 (3)	-0.017 (3)
C12 0.106 (6) 0.034 (4) 0.048 (4) -0.015 (4) -0.034 (4) -0.002 (3) C4 0.020 (2) 0.025 (2) 0.024 (2) 0.002 (2) 0.011 (2) 0.014 (2)	C27	0.035 (3)	0.023 (3)	0.031 (3)	0.000 (2)	0.006 (2)	-0.013 (2)
CA = 0.020(2) = 0.025(2) = 0.024(2) = 0.002(2) = 0.011(2) = 0.014(2)	C12	0.106 (6)	0.034 (4)	0.048 (4)	-0.015 (4)	-0.034 (4)	-0.002 (3)
C4 = 0.039(5) = 0.035(5) = 0.034(5) = -0.003(5) = -0.011(2) = -0.014(5)	C4	0.039 (3)	0.035 (3)	0.034 (3)	-0.003 (3)	-0.011 (2)	-0.014 (3)

Geometric parameters (Å, °)

Ni1—N1 ⁱ	2.067 (4)	C24—H24A	0.9800
Ni1—N1	2.067 (4)	C24—H24B	0.9800
Ni1—N2	2.064 (4)	C24—H24C	0.9800
Ni1—N2 ⁱ	2.064 (4)	Ni2—N3 ⁱⁱ	2.072 (4)
Ni1—O1 ⁱ	2.134 (3)	Ni2—N3	2.072 (4)
Ni1-01	2.134 (3)	Ni2—N4	2.076 (4)
P2—O5	1.495 (4)	Ni2—N4 ⁱⁱ	2.076 (4)
P2—C29	1.804 (5)	Ni2—O1W ⁱⁱ	2.105 (4)
P2—O4	1.502 (3)	Ni2—O1W	2.105 (4)
P2—O6	1.576 (4)	O1W—H1WA	0.8701
P1—O3	1.570 (4)	O1W—H1WB	0.8691
P1—O2	1.518 (3)	N3—H3	1.0000
P101	1.483 (3)	N3—C10	1.481 (6)
P1—C16	1.811 (5)	N3—C6	1.479 (6)
P3—C38	1.813 (5)	C10—H10A	0.9900
Р3—09	1.562 (4)	C10—H10B	0.9900
Р3—О7	1.506 (4)	C10—C9 ⁱⁱ	1.496 (7)
Р3—О8	1.499 (4)	N4—H4	1.0000
C29—C30	1.391 (7)	N4—C9	1.486 (6)
C29—C28	1.381 (7)	N4—C8	1.457 (7)
O3W—H3WA	0.8523	С9—Н9А	0.9900
O3W—H3WB	0.8700	C9—H9B	0.9900
O4W—H4WA	0.8687	C7—H7A	0.9900
O4W—H4WB	0.8702	C7—H7B	0.9900
C22—C41	1.400 (6)	C7—C6	1.504 (7)
C22—C23	1.402 (6)	C7—C8	1.513 (7)
С22—С19	1.497 (6)	C6—H6A	0.9900
C38—C39	1.380 (7)	C6—H6B	0.9900
C38—C37	1.390 (7)	C8—H8A	0.9900
C26—C25	1.488 (6)	C8—H8B	0.9900
C26—C31	1.388 (6)	Ni3—N5	2.070 (4)
C26—C27	1.392 (6)	Ni3—N5 ⁱⁱⁱ	2.070 (5)
N1—H1	1.0000	Ni3—N6	2.056 (5)
N1-C5	1.482 (6)	Ni3—N6 ⁱⁱⁱ	2.056 (5)
N1-C1	1.474 (6)	Ni3—O2W ⁱⁱⁱ	2.137 (3)
O3—H3C	0.8400	Ni3—O2W	2.136 (3)
C34—C35	1.497 (6)	O2W—H2WA	0.8638
C34—C41	1.414 (6)	O2W—H2WB	0.8553
C34—C32	1.401 (6)	N5—H5	1.0000
N2—H2	1.0000	N5—C15	1.497 (7)
N2—C3	1.469 (6)	N5C11	1.431 (8)
N2-C4	1.477 (6)	O7W—H7WA	0.8613
С3—НЗА	0.9900	O7W—H7WB	0.8521
С3—Н3В	0.9900	N6—H6	1.0000
C3—C2	1.521 (7)	N6—C14	1.452 (7)
О9—Н9С	0.8400	N6—C13	1.487 (8)

C35—C36	1.368 (7)	C14—H14A	0.9900
C35—C40	1.392 (6)	C14—H14B	0.9900
C41 - C42	1 507 (6)	C_{14} C_{15}	1 507 (9)
C^{23} C^{25}	1 396 (6)	O6W—H6WA	0.8706
$C_{23} = C_{23}$	1.590 (6)	O6W—H6WB	0.8688
C30 H30	0.9500	OSW HSWA	0.8696
C_{30} C_{31}	1.382(7)	O5W H5WB	0.8704
C_{22} C_{22}	1.302(7)		0.8704
C5 H5A	0.0000	C_{17} H_{17}	0.8400
C5 U5P	0.9900	C17 - C16	1.397(6)
	0.9900	C17 - C10	1.387 (0)
C_{3}	1.513 (7)	C12 - C18	1.396 (6)
C33—H33A	0.9800		0.9500
С33—Н33В	0.9800	C40—H40	0.9500
С33—Н33С	0.9800	CI—HIA	0.9900
C33—C32	1.506 (6)	C1—H1B	0.9900
С39—Н39	0.9500	C28—H28	0.9500
C39—C40	1.399 (6)	C28—C27	1.375 (7)
C42—H42A	0.9800	C31—H31	0.9500
C42—H42B	0.9800	C13—H13A	0.9900
C42—H42C	0.9800	C13—H13B	0.9900
С36—Н36	0.9500	C13—C12	1.506 (9)
C36—C37	1.385 (6)	C15—H15A	0.9900
C19—C20	1.391 (6)	C15—H15B	0.9900
C19—C18	1.393 (6)	C11—H11A	0.9900
C21—H21	0.9500	C11—H11B	0.9900
C21—C20	1.389 (6)	C11—C12	1.514 (10)
C21—C16	1.398 (6)	С27—Н27	0.9500
С20—Н20	0.9500	C12—H12A	0.9900
C2—H2A	0.9900	C12—H12B	0.9900
C2—H2B	0.9900	C4—H4A	0.9900
C2-C1	1.513 (7)	C4—H4B	0.9900
$C_{37} - H_{37}$	0.9500		0.000
057 1157	0.9500		
N1Ni1N1 ⁱ	180.0	N4 - Ni2 - O1W	89 10 (17)
$N1-Ni1-O1^{i}$	91 79 (14)	$N4^{ii}$ Ni2 O1W	90.90(17)
$N1^{i}$ $Ni1$ $O1^{i}$	88 21 (14)	$N4^{ii}$ Ni2 O1W ⁱⁱ	89 10 (17)
$N1^{i}$ $Nj1$ $O1$	91.79(14)	$N_4 = N_1 2 = N_4^{ii}$	180.00(13)
N1 Ni1 O1	91.79(14)		106.8
N1 = N11 = O1 $N1 = N11 = N21$	85.21 (14)	Ni2—OIW—IIIWA	100.8
NII NII NI	85.31 (10) 85.21 (16)	H1WA O W H1WD	108.1
NII — NII — NZ	03.31(10)	$\Pi WA = OI W = \Pi I W B$	104.3
N1 - N11 - N2	94.09 (10)	N12 - N3 - H3	107.3
NI - NII - N2	94.09 (10)	C10 N2 H2	105.7 (3)
$N2^{-}N11 - N2$	180.0	C10—N3—H3	107.3
N2 - N11 - O1	90.47 (15)	$C_0 - N_3 - N_1 Z$	114.6 (3)
N2-N11-O1	89.53 (15)	$C_0 - N_3 - H_3$	107.3
$N2^{i}$ $N11$ $O1^{i}$	89.53 (15)	C6—N3—C10	114.3 (4)
$N2-Ni1-O1^{1}$	90.47 (15)	N3—C10—H10A	109.9
01 ¹ —Ni1—01	180.0	N3—C10—H10B	109.9

O5—P2—C29	110.3 (2)	N3—C10—C9 ⁱⁱ	109.1 (4)
O5—P2—O4	115.4 (2)	H10A-C10-H10B	108.3
O5—P2—O6	111.3 (2)	C9 ⁱⁱ —C10—H10A	109.9
O4—P2—C29	108.0 (2)	C9 ⁱⁱ —C10—H10B	109.9
O4—P2—O6	110.5 (2)	Ni2—N4—H4	106.9
O6—P2—C29	100.2 (2)	C9—N4—Ni2	106.4 (3)
O3—P1—C16	102.1 (2)	C9—N4—H4	106.9
O2—P1—O3	110.2 (2)	C8—N4—Ni2	115.2 (3)
O2—P1—C16	107.1 (2)	C8—N4—H4	106.9
O1—P1—O3	111.4 (2)	C8—N4—C9	114.0 (4)
O1—P1—O2	115.2 (2)	С10 ^{іі} —С9—Н9А	110.1
O1—P1—C16	110.06 (19)	С10 ^{іі} —С9—Н9В	110.1
O9—P3—C38	101.5 (2)	N4—C9—C10 ⁱⁱ	108.1 (4)
O7—P3—C38	107.6 (2)	N4—C9—H9A	110.1
07—P3—09	109.8 (2)	N4—C9—H9B	110.1
08—P3—C38	109.4 (2)	H9A—C9—H9B	108.4
08—P3—09	111.8 (2)	H7A—C7—H7B	107.3
08—P3—07	115.7 (2)	C6—C7—H7A	108.1
C30—C29—P2	120.9 (4)	C6—C7—H7B	108.1
C28—C29—P2	121.0 (4)	C6—C7—C8	116.9 (5)
C28—C29—C30	118.0 (4)	C8—C7—H7A	108.1
H3WA—O3W—H3WB	98.3	С8—С7—Н7В	108.1
H4WA—O4W—H4WB	104.4	N3—C6—C7	112.6 (4)
C41—C22—C23	120.1 (4)	N3—C6—H6A	109.1
C41—C22—C19	118.6 (4)	N3—C6—H6B	109.1
C23—C22—C19	120.9 (4)	С7—С6—Н6А	109.1
C39—C38—P3	121.3 (4)	С7—С6—Н6В	109.1
C39—C38—C37	118.6 (4)	H6A—C6—H6B	107.8
C37—C38—P3	120.1 (4)	N4—C8—C7	111.9 (5)
C31—C26—C25	123.6 (4)	N4—C8—H8A	109.2
C31—C26—C27	116.3 (4)	N4—C8—H8B	109.2
C27—C26—C25	120.1 (4)	C7—C8—H8A	109.2
Ni1—N1—H1	106.9	C7—C8—H8B	109.2
C5—N1—Ni1	104.8 (3)	H8A—C8—H8B	107.9
C5—N1—H1	106.9	O2W-Ni3-O2W ⁱⁱⁱ	180.0
C1—N1—Ni1	116.4 (3)	N5 ⁱⁱⁱ —Ni3—O2W	91.54 (15)
C1—N1—H1	106.9	N5—Ni3—O2W	88.46 (15)
C1—N1—C5	114.2 (4)	N5 ⁱⁱⁱ —Ni3—O2W ⁱⁱⁱ	88.46 (15)
Р1—О3—НЗС	109.5	N5—Ni3—O2W ⁱⁱⁱ	91.54 (15)
C41—C34—C35	117.8 (4)	N5—Ni3—N5 ⁱⁱⁱ	180.0
C32—C34—C35	121.4 (4)	N6—Ni3—O2W	89.19 (16)
C32—C34—C41	120.8 (4)	N6 ⁱⁱⁱ —Ni3—O2W	90.81 (16)
Ni1—N2—H2	106.6	N6 ⁱⁱⁱ —Ni3—O2W ⁱⁱⁱ	89.19 (16)
C3—N2—Ni1	116.1 (3)	N6—Ni3—O2W ⁱⁱⁱ	90.81 (16)
C3—N2—H2	106.6	N5—Ni3—N6 ⁱⁱⁱ	85.2 (2)
C3—N2—C4	114.4 (4)	N5—Ni3—N6	94.8 (2)
C4—N2—Ni1	106.0 (3)	N5 ⁱⁱⁱ —Ni3—N6	85.2 (2)
C4—N2—H2	106.6	N5 ⁱⁱⁱ —Ni3—N6 ⁱⁱⁱ	94.8 (2)

N2—C3—H3A	109.1	N6 ⁱⁱⁱ —Ni3—N6	180.0
N2—C3—H3B	109.1	Ni3—O2W—H2WA	110.2
N2—C3—C2	112.3 (4)	Ni3—O2W—H2WB	109.7
НЗА—СЗ—НЗВ	107.9	H2WA—O2W—H2WB	103.1
С2—С3—НЗА	109.1	Ni3—N5—H5	106.1
С2—С3—Н3В	109.1	C15—N5—Ni3	105.8 (4)
Р3—О9—Н9С	109.5	C15—N5—H5	106.1
C36—C35—C34	119.7 (4)	C11—N5—Ni3	117.4 (4)
C36—C35—C40	118.5 (4)	C11—N5—H5	106.1
C40—C35—C34	121.7 (4)	C11—N5—C15	114.5 (5)
C22—C41—C34	119.4 (4)	H7WA—O7W—H7WB	94.0
C22—C41—C42	119.5 (4)	Ni3—N6—H6	106.1
C34—C41—C42	121.1 (4)	C14—N6—Ni3	107.9 (4)
C22—C23—C24	118.7 (4)	C14—N6—H6	106.1
C25—C23—C22	120.0 (4)	C14 - N6 - C13	114.0 (5)
C_{25} C_{23} C_{24}	121.2 (4)	C13—N6—Ni3	115.9 (4)
C29—C30—H30	119.4	C13—N6—H6	106.1
$C_{31} - C_{30} - C_{29}$	121.2 (5)	N6-C14-H14A	109.8
C31—C30—H30	119.4	N6—C14—H14B	109.8
C_{23} C_{25} C_{26}	118 9 (4)	$N6-C14-C15^{iii}$	109.4 (5)
C_{23} C_{25} C_{32}	120.8 (4)	H14A—C14—H14B	108.2
C_{32} — C_{25} — C_{26}	120.2 (4)	$C15^{iii}$ — $C14$ — $H14A$	109.8
N1—C5—H5A	110.0	$C15^{iii}$ — $C14$ — $H14B$	109.8
N1—C5—H5B	110.0	H6WA—O6W—H6WB	104.5
$N1-C5-C4^{i}$	108.4 (4)	H5WA—O5W—H5WB	104.5
H5A—C5—H5B	108.4	P1—O1—Ni1	167.3 (2)
C4 ⁱ —C5—H5A	110.0	P2-06-H6C	109.5
C4 ⁱ —C5—H5B	110.0	С16—С17—Н17	119.7
H33A—C33—H33B	109.5	C16—C17—C18	120.5 (4)
H33A—C33—H33C	109.5	С18—С17—Н17	119.7
H33B—C33—H33C	109.5	C21—C16—P1	122.4 (4)
С32—С33—Н33А	109.5	C17—C16—P1	118.7 (3)
С32—С33—Н33В	109.5	C17—C16—C21	118.7 (4)
С32—С33—Н33С	109.5	C19—C18—C17	121.1 (4)
С38—С39—Н39	119.6	С19—С18—Н18	119.5
C38—C39—C40	120.8 (5)	C17—C18—H18	119.5
С40—С39—Н39	119.6	C35—C40—C39	120.0 (5)
C41—C42—H42A	109.5	C35—C40—H40	120.0
C41—C42—H42B	109.5	C39—C40—H40	120.0
C41 - C42 - H42C	109.5	N1-C1-C2	112.0 (4)
H42A - C42 - H42B	109.5	N1—C1—H1A	109.2
H42A - C42 - H42C	109.5	N1—C1—H1B	109.2
H42B— $C42$ — $H42C$	109.5	C2-C1-H1A	109.2
C35—C36—H36	119.1	C2—C1—H1B	109.2
C35—C36—C37	121.8 (5)	H1A—C1—H1B	107.9
C37—C36—H36	119.1	C29—C28—H28	120.0
C20—C19—C22	124.0 (4)	C27—C28—C29	120.1 (5)
$C_{20} - C_{19} - C_{18}$	1179(4)	C27—C28—H28	120.0
		C_{2}, C_{2}, C_{12}	120.0

C18—C19—C22	118.0 (4)	C26—C31—H31	119.3
C20—C21—H21	119.9	C30—C31—C26	121.4 (4)
C20—C21—C16	120.2 (4)	C30—C31—H31	119.3
C16—C21—H21	119.9	N6—C13—H13A	109.2
C19—C20—H20	119.3	N6—C13—H13B	109.2
C21—C20—C19	121.5 (4)	N6—C13—C12	112.1 (5)
С21—С20—Н20	119.3	H13A—C13—H13B	107.9
С3—С2—Н2А	108.4	С12—С13—Н13А	109.2
C3—C2—H2B	108.4	C12—C13—H13B	109.2
H2A—C2—H2B	107.5	N5—C15—C14 ⁱⁱⁱ	110.1 (5)
C1—C2—C3	115.4 (4)	N5—C15—H15A	109.6
C1—C2—H2A	108.4	N5—C15—H15B	109.6
C1—C2—H2B	108.4	C14 ⁱⁱⁱ —C15—H15A	109.6
С38—С37—Н37	120.0	C14 ⁱⁱⁱ —C15—H15B	109.6
C36—C37—C38	120.1 (5)	H15A—C15—H15B	108.2
С36—С37—Н37	120.0	N5—C11—H11A	109.3
C34—C32—C25	118.8 (4)	N5—C11—H11B	109.3
C_{34} C_{32} C_{33}	120.2 (4)	N5-C11-C12	111.5 (5)
C_{25} C_{32} C_{33}	121.0 (4)	H11A—C11—H11B	108.0
C23—C24—H24A	109.5	C12—C11—H11A	109.3
C23—C24—H24B	109.5	C12—C11—H11B	109.3
C_{23} C_{24} $H_{24}C$	109.5	C26—C27—H27	118.5
H24A—C24—H24B	109.5	C_{28} — C_{27} — C_{26}	123.0 (5)
$H_24A - C_24 - H_24C$	109.5	C28—C27—H27	118.5
H24B—C24—H24C	109.5	C13—C12—C11	118.5 (6)
$O1W^{ii}$ —Ni2—O1W	180.0	C13—C12—H12A	107.7
N3—Ni2—O1W	88.65 (15)	C13—C12—H12B	107.7
N3 ⁱⁱ —Ni2—O1W ⁱⁱ	88.65 (15)	C11—C12—H12A	107.7
N3—Ni2—O1W ⁱⁱ	91.35 (15)	C11—C12—H12B	107.7
N3 ⁱⁱ —Ni2—O1W	91.35 (15)	H12A—C12—H12B	107.1
N3—Ni2—N3 ⁱⁱ	180.0	$N2-C4-C5^{i}$	107.4 (4)
N3—Ni2—N4 ⁱⁱ	84.66 (16)	N2—C4—H4A	110.2
N3 ⁱⁱ —Ni2—N4 ⁱⁱ	95.34 (16)	N2—C4—H4B	110.2
N3 ⁱⁱ —Ni2—N4	84.66 (16)	C5 ⁱ —C4—H4A	110.2
N3—Ni2—N4	95.34 (16)	C5 ⁱ —C4—H4B	110.2
N4—Ni2—O1W ⁱⁱ	90.90 (17)	H4A—C4—H4B	108.5
			10010
Ni1—N1—C5—C4 ⁱ	44.0 (4)	O7—P3—C38—C37	38.0 (5)
Ni1—N1—C1—C2	-55.0 (5)	C36—C35—C40—C39	-2.7(7)
Ni1-N2-C3-C2	55.3 (5)	C19-C22-C41-C34	169.3 (4)
Ni1 $-N2$ $-C4$ $-C5^{i}$	-42.6(4)	$C_{19} - C_{22} - C_{41} - C_{42}$	-93(6)
P2-C29-C30-C31	-177.8(4)	C19 - C22 - C23 - C25	-169.7(4)
P2-C29-C28-C27	177.0 (4)	$C_{19} - C_{22} - C_{23} - C_{24}$	12.3 (6)
P3-C38-C39-C40	-176.5(4)	08—P3—C38—C39	-15.9(5)
P3—C38—C37—C36	177.2 (4)	O8—P3—C38—C37	164.4 (4)
O5—P2—C29—C30	29.0 (5)	C20—C19—C18—C17	-1.5(7)
05-P2-C29-C28	-149.2 (4)	C20-C21-C16-P1	173.3 (4)
$C_{29} = C_{30} = C_{31} = C_{26}$	07(8)	C_{20} C_{21} C_{16} C_{17}	-2.0(7)
020 000 001 020	(0)		(')

C29—C28—C27—C26	1.1 (8)	C37—C38—C39—C40	3.2 (7)
O4—P2—C29—C30	-98.0 (4)	C32—C34—C35—C36	-105.9 (5)
O4—P2—C29—C28	83.8 (4)	C32—C34—C35—C40	77.4 (6)
C22—C23—C25—C26	175.0 (4)	C32—C34—C41—C22	2.2 (7)
C22—C23—C25—C32	-1.0(7)	C32—C34—C41—C42	-179.2 (4)
C22—C19—C20—C21	-174.9 (4)	C24—C23—C25—C26	-7.1 (7)
C22—C19—C18—C17	175.5 (4)	C24—C23—C25—C32	176.9 (4)
C38—C39—C40—C35	-0.6 (8)	Ni2—N3—C10—C9 ⁱⁱ	43.0 (5)
C26—C25—C32—C34	-177.1 (4)	Ni2—N3—C6—C7	-54.7 (5)
C26—C25—C32—C33	2.1 (7)	Ni2—N4—C9—C10 ⁱⁱ	-41.1 (5)
O3—P1—O1—Ni1	149.1 (9)	Ni2—N4—C8—C7	55.8 (5)
O3—P1—C16—C21	25.1 (4)	C10—N3—C6—C7	-176.9 (4)
O3—P1—C16—C17	-159.6 (3)	C9—N4—C8—C7	179.2 (5)
C34—C35—C36—C37	-173.4 (4)	C6—N3—C10—C9 ⁱⁱ	170.0 (4)
C34—C35—C40—C39	174.0 (4)	C6C7C8N4	-71.7 (6)
N2-C3-C2-C1	-71.6 (6)	C8—N4—C9—C10 ⁱⁱ	-169.2 (4)
$C3-N2-C4-C5^{i}$	-171.9 (4)	C8—C7—C6—N3	71.3 (6)
C3—C2—C1—N1	71.1 (6)	Ni3—N5—C15—C14 ⁱⁱⁱ	37.7 (5)
O2—P1—O1—Ni1	22.6 (10)	Ni3—N5—C11—C12	-53.9 (6)
O2—P1—C16—C21	141.0 (4)	Ni3—N6—C14—C15 ⁱⁱⁱ	-39.2 (5)
O2—P1—C16—C17	-43.8 (4)	Ni3—N6—C13—C12	52.9 (6)
O9—P3—C38—C39	102.4 (4)	N5-C11-C12-C13	69.6 (7)
O9—P3—C38—C37	-77.3 (4)	N6-C13-C12-C11	-69.2 (7)
C35—C34—C41—C22	-175.0 (4)	C14—N6—C13—C12	178.9 (5)
C35—C34—C41—C42	3.6 (7)	O1—P1—C16—C21	-93.2 (4)
C35—C34—C32—C25	177.6 (4)	O1—P1—C16—C17	82.0 (4)
C35—C34—C32—C33	-1.6 (7)	O6—P2—C29—C30	146.4 (4)
C35—C36—C37—C38	-0.8 (8)	O6—P2—C29—C28	-31.8 (4)
C41—C22—C23—C25	3.8 (7)	C16—P1—O1—Ni1	-98.5 (10)
C41—C22—C23—C24	-174.2 (4)	C16—C21—C20—C19	-0.2 (7)
C41—C22—C19—C20	85.7 (6)	C16—C17—C18—C19	-0.7 (7)
C41—C22—C19—C18	-91.1 (5)	C18—C19—C20—C21	1.9 (7)
C41—C34—C35—C36	71.2 (6)	C18—C17—C16—P1	-173.0 (3)
C41—C34—C35—C40	-105.5 (5)	C18—C17—C16—C21	2.4 (7)
C41—C34—C32—C25	0.6 (7)	C40—C35—C36—C37	3.4 (7)
C41—C34—C32—C33	-178.6 (4)	C1-N1-C5-C4 ⁱ	172.6 (4)
C23—C22—C41—C34	-4.4 (7)	C28—C29—C30—C31	0.4 (8)
C23—C22—C41—C42	177.0 (4)	C31—C26—C25—C23	110.8 (5)
C23—C22—C19—C20	-100.7 (5)	C31—C26—C25—C32	-73.2 (6)
C23—C22—C19—C18	82.5 (5)	C31—C26—C27—C28	0.1 (7)
C23—C25—C32—C34	-1.2 (7)	C13—N6—C14—C15 ⁱⁱⁱ	-169.4 (5)
C23—C25—C32—C33	178.0 (4)	C15—N5—C11—C12	-179.0 (5)
C30—C29—C28—C27	-1.3 (7)	C11—N5—C15—C14 ⁱⁱⁱ	168.7 (5)
C25—C26—C31—C30	178.9 (5)	C27—C26—C25—C23	-69.4 (6)
C25—C26—C27—C28	-179.7 (5)	C27—C26—C25—C32	106.6 (5)
C5—N1—C1—C2	-177.5 (4)	C27—C26—C31—C30	-0.9 (7)

C39—C38—C37—C36	-2.5 (7)	C4—N2—C3—C2	179.3 (5)
O7—P3—C38—C39	-142.3 (4)		

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) -*x*+2, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+3, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N1—H1…O6 ^{iv}	1.00	2.32	3.196 (5)	146
N2—H2···O6 <i>W</i>	1.00	2.18	3.039 (6)	143
N3—H3…07 ^v	1.00	2.13	3.102 (6)	162
N4—H4…O4 <i>W</i>	1.00	2.06	3.056 (6)	173
N5—H5…O9 ^{vi}	1.00	2.07	3.003 (6)	155
N6—H6···O7 <i>W</i> ⁱⁱ	1.00	1.98	2.956 (6)	166
O3—H3 <i>C</i> ···O5 ^{iv}	0.84	1.84	2.654 (5)	162
O6—H6C···O3W ^{vii}	0.84	1.75	2.550 (5)	159
O9—H9 <i>C</i> ···O4 ^{viii}	0.84	1.74	2.517 (5)	154
$O1W$ — $H1WB$ ··· $O7^{v}$	0.87	1.81	2.679 (5)	173
O1 <i>W</i> —H1 <i>WA</i> ···O4 <i>W</i>	0.87	2.45	3.256 (6)	155
O2 <i>W</i> —H2 <i>WB</i> ···O4	0.86	1.90	2.729 (5)	164
O2W—H2WA···O7W ^{ix}	0.86	1.81	2.675 (6)	174
O3 <i>W</i> —H3 <i>WB</i> ···O2	0.87	1.81	2.676 (4)	177
$O3W$ — $H3WA$ ··· $O7^{v}$	0.85	1.84	2.689 (5)	174
O4 <i>W</i> —H4 <i>WB</i> ···O3	0.87	2.26	3.115 (6)	167
$O4W$ — $H4WA$ ··· $O8^{v}$	0.87	1.93	2.796 (6)	172
O5W— $H5WB$ ···O5 ^x	0.87	1.98	2.813 (5)	159
O5W— $H5WA$ ···O8 ^{xi}	0.87	1.87	2.725 (5)	168
O6 <i>W</i> —H6 <i>WB</i> ···O2	0.87	2.02	2.799 (6)	149
O6 <i>W</i> —H6 <i>WA</i> ···O5 <i>W</i>	0.87	2.00	2.842 (5)	164
O7 <i>W</i> —H7 <i>WB</i> ···O3 <i>W</i>	0.85	2.02	2.731 (5)	140
O7 <i>W</i> —H7 <i>WA</i> ···O5 <i>W</i>	0.86	1.83	2.688 (5)	173

Symmetry codes: (ii) -*x*+2, -*y*+2, -*z*+1; (iv) *x*, *y*-1, *z*; (v) *x*, *y*, *z*-1; (vi) -*x*+1, -*y*+2, -*z*+2; (vii) *x*, *y*+1, *z*; (viii) *x*, *y*-1, *z*+1; (ix) *x*-1, *y*+1, *z*; (x) *x*+1, *y*-1, *z*; (xi) *x*+1, *y*, *z*-1.