

Received 4 May 2022 Accepted 2 June 2022

Edited by M. Zeller, Purdue University, USA

Keywords: sulfondiimidoate; sulfondiimidate; crystal structure; bioisosters.

CCDC reference: 2163661

Supporting information: this article has supporting information at journals.iucr.org/e

Erik Friedrich,^a Timo Heinrich,^b Lara Rosenberger,^b Mireille Krier,^b Stephanie Marek^b and Michael Reggelin^a*

^aAlarich-Weiss-Str. 4, 64287 Darmstadt, Germany, and ^bMerck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany. *Correspondence e-mail: re@chemie.tu-darmstadt.de

The title compound {systematic name: rac-2-[7-methyl-4-(4-methylphenyl)-4-(phenylimino)-6,6-bis(propan-2-yl)-3-oxa-4 λ^6 -thia-5-aza-6-silaoct-4-en-1-yl]-2,3-dihydro-1*H*-isoindole-1,3-dione}, C₃₂H₄₁N₃O₃SSi, was synthesized by desoxy-chlorination of 4-methyl-*N*-phenyl-*N'*-(triisopropylsilyl)benzenesulfonimidamide and subsequent reaction with 2-(2-hydroxyethyl)isoindoline-1,3-dione. The racemic compound was crystallized from isopropanol. The structural characterization by single-crystal X-ray diffraction revealed two double-bonded nitrogen atoms to the central sulfur atom and an overall crystal packing driven by its aromatic interactions.

1. Chemical context

Since 2013 (Lücking, 2013, 2019), there has been an increased research interest in bioisosters of sulfonamides and sulfones. In addition to vigorous interest in the development of new synthetic procedures towards sulfonimidamides (Nandi & Arvidsson, 2018; Chen & Gibson, 2015; Wen *et al.*, 2016; Izzo *et al.*, 2017; Greed *et al.*, 2020; Liu *et al.*, 2021), activities towards the synthesis of sulfondiimides have recently just begun (Zhang *et al.*, 2019; Bohmann *et al.*, 2019). With the synthesis of stable sulfondiimides, Zhang & Willis (2022) introduced a new functional group for medicinal chemistry.

The different aza-analogs of sulfonamides and sulfones have interesting properties for medicinal chemistry due to the (additional) nitrogen atom(s). Besides the potential centrochirality of sulfur, the nitrogen substituents offer new possibilities for functionalization optimizing steric demand, solubility and reactivity.

The herein reported sulfondiimidoate 1 is, based on

and therefore represents the first member of a new substance class. It can be described as an aza-oxo-inverse sulfonamide or an aza-analogue of a sulfonimidoate.

2. Structural commentary

The title compound **1** crystallizes in the triclinic crystal system and $P\overline{1}$ as the centrosymmetric space group, having one molecule in the asymmetric unit (Fig. 1). Geometric parameters may be regarded as normal. A selection is listed in Table 1.

The tetrahedral molecular structure shows a sulfur as the central atom, surrounded by four substituents, including two sulfur-nitrogen double bonds. As a result of the steric repulsion of the aniline ring and the bulky triisopropylsilyl group, the angle N2-S1-N1 at 126.60 $(9)^{\circ}$ is larger than the typical tetrahedral angle (109.5°) , whereas the angle between the aniline and toluene ring (N1-S1-C17) and also the 1,3dioxoisoindolin moiety (N1-S1-O1) are smaller at 101.98 (9) and 105.93 (8)°, respectively. The remaining angle (N2-S1-O1) is 107.27 (8)°. The bond lengths between S1-N1 [1.5139 (16) Å] and S1–N2 [1.4838 (16) Å] are similar to those observed in crystal structures of sulfoximines [1.484 Å; CSD refcode: LISJAZ (Lemasson et al., 2007) or 1.518 Å; CSD refcode: NADNAH; (Mash et al., 1996)], and therefore confirming the presence of the double bonds (Reggelin & Zur, 2000). The ring systems are planar (r.m.s values of 0.003 and 0.007 Å for the phenyl rings and 0.022 Å for the phthalimide).

3. Supramolecular features

The title compound **1** contains secondary nitrogen groups and a dicarboximide, which are hydrogen-bond acceptors, but no strong or moderate intermolecular hydrogen bonds were detected in the crystal. Geometric details of some possible weak hydrogen bonds are listed in Table 2. This includes three borderline C-H···O hydrogen bonds, which link the chains *via* the operators 1 + x, -1 + y, z and 2 - x, 1 - y, 1 - z. The contact C31-H31···N1, involving a tertiary methyl group,

Figure 1

The molecular structure of 2-(1,3-dioxoisoindolin-2-yl)ethyl-4-methyl-N-phenyl-N'-(triisopropylsilyl)benzenesulfondiimidoate (1) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1	
Selected geometric parameters	(Å, °).

S1-N1	1.5139 (16)	S1-C17	1.7718 (19)
S1-N2	1.4838 (16)	Si-N2	1.7240 (17)
\$1-O1	1.6257 (14)	N1-C11	1.412 (2)
N1-S1-O1	105.93 (8)	N2-S1-N1	126.60 (9)
N1-S1-C17	101.98 (9)	S1-N2-Si	142.24 (11)
N2-S1-O1	107.27 (8)	N2-Si-C27	105.99 (9)

Table	2
-------	---

Hydrogen-bond	geometry	(Å, °).
ing alogen cond	Geometry	· • •	<i>,</i> ,

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15\cdots O2^{i}$	0.95	2.52	3.429 (3)	160
$C22-H22\cdots O2^{ii}$	0.95	2.64	3.348 (3)	132
$C14 - H14 \cdots O3^{iii}$	0.95	2.52	3.429 (3)	161
$C31 - H31B \cdot \cdot \cdot N1^{iv}$	0.98	2.60	3.361 (3)	135

Symmetry codes: (i) x + 1, y - 1, z; (ii) x, y - 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) x, y + 1, z.

connects the molecules *via* the operator x, 1 + y, z. Fig. 2 shows the unit cell of the compound along the *b*-axis. It appears that the crystal structure contains anti-parallel π stacking interactions of the phthalimide between its electron-rich sixmembered ring and electron-poor five-membered ring (Ahmed et al., 2019). The centroid-to-centroid distance of 3.470 (1) Å, which is in the range of π - π stacking interactions, confirms its presence. The crystal packing is mainly driven by its attractive intermolecular aromatic interactions, as can be shown by the Aromatics Analyser (feature available in Mercury as part of the CSD-Materials and CSD-Enterprise suites). The distance between centroids for which the assessment was labelled 'strong' equals to 4.11 Å (score: 9.3) and for the 'moderate' ones between 4.48 and 6.39 Å (score: 6.9-3.7) by the CCDC's Aromatics Analyser using a score from 0 (no stabilizing contribution) to 10 (an ideal aromatic interaction geometry) (assessment: 'weak' 0-3, 'moderate' 3-7, 'strong' 7-10. Mercury 2021.3.0 (Build 333817) used (Macrae et al., 2020).

Crystal packing in *rac*-2-(1,3-dioxoisoindolin-2-yl)ethyl-4-methyl-*N*-phenyl-*N*'-(triisopropylsilyl)benzenesulfondiimidoate (1) viewed along the *b* axis. Antiparallel stacking of the phthalimide occurs with a centroid–centroid distance of 3.470 (1) Å. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

4. Database survey

The herein reported sulfondiimidoate **1** is, based on extensive database searches, not yet described in the literature. A Scifinderⁿ structure search with undefined bonds on all substituents of the sulfur and a substituent on the oxygen atom resulted in no structure matches as drawn (SciFinder; Chemical Abstracts Service: Columbus, OH; https://scifinder.cas.org; accessed: 06.05.2022). A broadly defined Cambridge Structural Database search with the five central atoms and any type of bonds (SMARTS pattern $[\#7] \sim [\#16] (\sim [\#8]) (\sim [\#6]) \sim [\#7]$) on CSD version 5.43 November 2021 plus update of March 2022 found 85 hits (Groom *et al.*, 2016), all of which are sulfonimidamides.

Restricting this query to a single bond (instead of any bond) between the sulfur and the oxygen returns zero hits. The mean distance between sulfur and oxygen in the 85 hits dataset is 1.436 with a standard deviation of 0.014. The distance S1-O1 (see also Table 1) is hence clearly a single bond and similar functional groups have not been missed by setting the query in too narrow a way.

5. Synthesis and crystallization

Molecular schemes with the atom numbering used in the NMR assignments can be found in Figures S1–S3 in the supporting information. Solvent residue signals were used as internal standard according to the literature [¹H-NMR: δ (CHCl₃) = 7.26 ppm; ¹³C-NMR: δ (CDCl₃) = 77.16 ppm; (Gottlieb *et al.*, 1997)]. The synthesis is shown in Fig. 3.

N-(Tri-iso-propylsilyl)-4-methylbenzenesulfonamide (3)

7.51 mL (6.82 g, 35.0 mmol, 1.2 eq.) of TIPS-Cl and 12.1 mL (8.87 g, 87.6 mmol, 3.0 eq.) of NEt₃ were added to a suspension of 5.00 g (29.2 mmol, 1.0 eq.) of *p*-toluenesulfonamide (2) in 100 mL of CH₂Cl₂. After stirring for 62 h, 100 mL of 1M HCl were added to the reaction mixture. The aqueous layer was extracted with CH₂Cl₂ three times, the combined organic layers were dried over MgSO₄, the solvent was removed under reduced pressure and the crude product was dissolved in 100 mL of CH₂Cl₂. After addition of 300 mL of petroleum ether, the CH₂Cl₂ was removed under reduced pressure. The resulting precipitate was filtered off and washed with pentane. After drying, the protected sulfonamide 3 (9.12 g, 27.8 mmol, 95%) was obtained as a colorless solid. $R_f 0.75$ (20% EtOAc in pentane). M.p. = 427 K. IR (ATR)/cm⁻¹ 1462, 1344, 1286, 1154, 1094, 1004, 936. ¹H-NMR (CDCl₃, 500 MHz, 300 K): $\delta =$ 7.80 $(d, J = 8.3 \text{ Hz}, 4 \text{-H}_2)$, 7.27 $(d, J = 8.3 \text{ Hz}, 3 \text{-H}_2)$, 4.43 (bs, 6 - H_1), 2.42 (s, 1- H_3), 1.29 (hep., J = 7.5 Hz, 7- H_3), 1.15 (d, J = 7.5 Hz, 8-H₁₈) ppm. ¹³C-NMR (CDCl₃, 125 MHz, 300 K): δ = 142.6 (2-C), 141.1 (5-C), 129.5 (3-C₂), 126.2 (4-C₂), 21.6 (1-C), 18.1 (8-C₆), 12.1 (7-C₃) ppm. Calculated for C₁₆H₂₉NO₂SSi: C 58.67, H 8.92, N 4.28; found: C 58.68, H 9.30, N 4.53. ESI–MS: m/z = 328.18 $[M + H]^+$, 677.33 $[2M + Na]^+$.

4-Methyl-N-phenyl-N'-(tri-*iso*-propylsilyl)benzenesulfonimidamide (4)

3.98 g (16.8 mmol, 1.1 eq) of C₂Cl₆ and 4.40 g (16.8 mmol, 1.1 eq) of PPh₃ were heated to reflux of the solvent in 60 mL of CHCl₃ for 6 h. After cooling to room temperature, 3.19 mL (2.32 g, 22.9 mmol, 1.5 eq) of NEt₃ was added via syringe. After five minutes, the reaction mixture was cooled to 273 K. After another five minutes, 5.00 g (15.3 mmol, 1.0 eq) of 4-methyl-N-(triisopropylsilyl)benzenesulfonamide (3) were added. After ten more minutes, 5.58 mL (5.69 g, 61.1 mmol, 4.0 eq) of aniline were added via syringe and the mixture was stirred for one h, at which point the reaction was stopped by the addition of 100 mL of saturated NH₄Cl solution. The aqueous phase was extracted three times with 50 mL of CH₂Cl₂. The combined organic layers were dried over MgSO₄, the solvent was removed under reduced pressure and the crude product was purified by flash chromatography (5% EtOAc in pentane) affording the sulfonimidamide 4 (5.64 g, 14.0 mmol, 92%) as a colorless solid. $R_f 0.63$ (20% EtOAc in pentane). M.p. = 364 K. IR (ATR)/cm⁻¹ 3228, 1600, 1480, 1410, 1347, 1282, 1141, 1091, 895. ¹H-NMR (CDCl₃, 500 MHz, 300 K): $\delta = 7.68 (d, J = 8.3 \text{Hz}, 4 \text{-H}_2), 7.19 \text{--} 7.13 (m, 3/8 \text{-H}_4),$ 7.03-6.97 (m, 9/10-H₃), 6.30 (bs, 6-H), 2.34 (s, 1-H₃), 1.18-1.03 $(m, 11/12-H_{21})$ ppm. ¹³C-NMR (CDCl₃, 125 MHz, 300 K): $\delta =$ 142.2 (7-C), 141.0 (2-C), 138.9 (5-C), 129.2 (9-C₂), 129.0 (3-C₂), 127.1 (4-C₂), 124.2 (8-C₂), 121.2 (10-C), 21.5 (1-C), 18.5 (12-C₆), 13.3 (11-C₃) ppm. Calculated for C₂₂H₃₄N₂OSSi: C 65.62, H 6.96, N 8.51; found: C 65.65, H 6.97, N 8.55. ESI-MS: m/z = $403.22 [M + H]^+$.

rac-2-(1,3-Dioxo-*iso*-indolin-2-yl)ethyl-4-methyl-N-phenyl-N'-(tri-*iso*-propylsilyl)benzenesulfondiimidoate (1)

282 mg (1.19 mmol, 1.2 eq) of C_2Cl_6 and 313 mg (1.19 mmol, 1.2 eq) of PPh₃ were heated to reflux of the solvent in 5 mL of CHCl₃ for 6 h. After cooling to room temperature, 0.83 mL (603 mg, 5.96 mmol, 6.0 eq) of NEt₃ were added *via* syringe. After five minutes, the reaction mixture was cooled to 273 K. After five more minutes, 400 mg (0.99 mmol, 1.0 eq) of 4-methyl-*N*-phenyl-*N'*-(triisopropylsilyl)benzenesulfonimidamide (**4**) were added and the reaction mixture was stirred for 20 more minutes at 273 K, at which point 1.52 g (7.95 mmol, 8.0 eq) of 2-(2-hydroxyethyl)isoindoline-1,3-dione were added. The mixture was stirred for another 30 min and then quenched with 20 mL of saturated NH₄Cl solution. After

Figure 3

Synthesis of the sulfondiimidoate 1. (a) TIPS-Cl, NEt₃; (b) C₂Cl₆, PPh₃, NEt₃, aniline; (c) C₂Cl₆, PPh₃, NEt₃, N-hydroxyethylphthalimide.

research communications

Table 3Experimental details.

. .

Crystal data	
Chemical formula	$C_{32}H_{41}N_3O_3SSi$
M _r	575.83
Crystal system, space group	Triclinic, P1
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.6752 (2), 8.8765 (2), 20.2299 (6)
α, β, γ (°)	78.107 (2), 87.922 (2), 89.512 (2)
$V(A^3)$	1523.37 (7)
Z	2
Radiation type	Cu Kα
$\mu \text{ (mm}^{-1})$	1.61
Crystal size (mm)	$0.21\times0.16\times0.06$
Data collection	
Diffractometer	XtaLAB Synergy R, HyPix-Arc 150
Absorption correction	Gaussian (<i>CrysAlis PRO</i> ; Rigaku, 2021)
Tmin. Tmax	0.555, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	28106, 5410, 4426
Rint	0.047
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.597
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.108, 1.05
No. of reflections	5410
No. of parameters	368
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.56, -0.38

Computer programs: CrysAlis PRO (Rigaku, 2021), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and OLEX2 (Dolomanov et al., 2009).

phase separation, the aqueous solution was extracted three times with 20 mL of CH₂Cl₂, the combined organic layers were dried over MgSO₄, the solvent was removed under reduced pressure and the resulting crude product was purified by flash chromatography (8% EtOAc in pentane) affording the sulfondiimidoate 1 (447 mg, 0.78 mmol, 78%) as a colorless solid. Crystals suitable for X-ray structure analysis were obtained by recrystallization from *iso*-propanol. $R_f 0.16$ (10%) EtOAc in pentane). M.p. = 380 K. IR (ATR)/cm⁻¹ 2941, 2862, 1712, 1594, 1488, 1391, 1294, 1056, 995. ¹H-NMR (CDCl₃, 500 MHz, 300 K): $\delta = 7.83 - 7.77 (m, 4/16 - H_4), 7.75 - 7.70 (m, 17 - 7.70 m, 17$ H₂), 7.11–7.04 (m, 3/10-H₄), 6.98–6.96 (m, 9-H₂), 6.82 (t, J = 7.3 Hz, 11-H), 4.19–4.06 (m, 12-H₂), 3.88 (t, J = 5.6 Hz, 13-H₂), 2.30 (s, 1-H₃), 0.94–0.88 (m, 6/7-H₂₁) ppm. ¹³C-NMR (CDCl₃, 125 MHz, 300 K): $\delta = 167.9 (14 \cdot C_2)$, 144.6 (8-C), 142.4 (2-C), 139.3 (5-C), 134.0 (17-C₂), 132.2 (1-C₂), 129.3 (3-C₂), 128.7 (10-C₂), 127.5 (4-C₂), 123.7 (9-C₂), 123.4 (16-C₂), 121.2 (11-C), 64.5 (12-C), 37.2 (13-C), 21.6 (1-C), 18.3 (7-C₃), 18.3 (7'-C₃), 13.3 (6-C₃) ppm. Calculated for C₃₂H₄₁N₃O₃SSi: C 66.75, H 7.18, N 7.30; found: C 66.62, H 6.86, N 7.13. ESI-MS: m/z = 576.27 $[M + H]^+$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were refined isotropically using a riding model. The C-H bond distances were constrained to 0.95 Å for aromatic C-H moieties, and to 1.00, 0.99 and 0.98 Å for aliphatic C-H, CH₂ and CH₃ moieties, respectively. Methyl-H atoms were allowed to rotate but not to tip to best fit the experimental electron density. $U_{iso}(H)$ values were set to a multiple of $U_{eq}(C)$ with 1.5 for CH₃, and 1.2 for C-H, CH₂ groups, respectively.

Funding information

Funding for this research was provided by: Merck KGaA.

References

- Ahmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122–8131.
- Bohmann, R. A., Schöbel, J.-H., Unoh, Y., Miura, M. & Bolm, C. (2019). Adv. Synth. Catal. 361, 2000–2003.
- Chen, Y. & Gibson, J. (2015). RSC Adv. 5, 4171-4174.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem. 62, 7512–7515.
- Greed, S., Briggs, E. L., Idiris, F. I. M., White, A. J. P., Lücking, U. & Bull, J. A. (2020). *Chem. Eur. J.* **26**, 12533–12538.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Izzo, F., Schäfer, M., Stockman, R. & Lücking, U. (2017). *Chem. Eur. J.* **23**, 15189–15193.
- Lemasson, F., Gais, H.-J. & Raabe, G. (2007). Tetrahedron Lett. 48, 8752–8756.
- Liu, Y., Pan, Q., Hu, X., Guo, Y., Chen, Q.-Y. & Liu, C. (2021). Org. Lett. 23, 3975–3980.
- Lücking, U. (2013). Angew. Chem. Int. Ed. 52, 9399-9408.
- Lücking, U. (2019). Org. Chem. Front. 6, 1319-1324.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* **53**, 226–235.
- Mash, E. A., Gregg, T. M. & Kaczynski, M. A. (1996). J. Org. Chem. 61, 2743–2752.
- Nandi, G. C. & Arvidsson, P. I. (2018). Adv. Synth. Catal. 360, 2976– 3001.
- Reggelin, M. & Zur, C. (2000). Synthesis, pp. 1-64.
- Rigaku (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wen, J., Cheng, H., Dong, S. & Bolm, C. (2016). *Chem. Eur. J.* 22, 5547–5550.
- Zhang, Z.-X., Davies, T. Q. & Willis, M. C. (2019). J. Am. Chem. Soc. 141, 13022–13027.
- Zhang, Z.-X. & Willis, M. C. (2022). Chem, 8, 1137–1146.

supporting information

Acta Cryst. (2022). E78, 699-702 [https://doi.org/10.1107/S2056989022005904]

Synthesis and crystal structure of rac-2-(1,3-dioxoisoindolin-2-yl)ethyl 4methyl-N-phenyl-N'-(triisopropylsilyl)benzenesulfondiimidoate: the first member of a new substance class

Erik Friedrich, Timo Heinrich, Lara Rosenberger, Mireille Krier, Stephanie Marek and Michael Reggelin

Computing details

Data collection: CrysAlis PRO (Rigaku, 2021); cell refinement: CrysAlis PRO (Rigaku, 2021); data reduction: CrysAlis PRO (Rigaku, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

yl]-2,3-dihydro-1H-isoindole-1,3-dione

Crystal data

 $C_{32}H_{41}N_3O_3SSi$ $M_r = 575.83$ Triclinic, P1 a = 8.6752 (2) Å b = 8.8765 (2) Å *c* = 20.2299 (6) Å $\alpha = 78.107 (2)^{\circ}$ $\beta = 87.922 \ (2)^{\circ}$ $\gamma = 89.512 \ (2)^{\circ}$ V = 1523.37 (7) Å³

Data collection

XtaLAB Synergy R, HyPix-Arc 150	$T_{\rm min} = 0.555, \ T_{\rm max} = 1.000$
diffractometer	28106 measured reflection
Radiation source: Rotating-anode X-ray tube,	5410 independent reflection
PhotonJet R (Cu) X-ray Source	4426 reflections with $I > 2$
Mirror monochromator	$R_{\rm int} = 0.047$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\rm max} = 67.1^{\circ}, \theta_{\rm min} = 4.5^{\circ}$
ω scans	$h = -10 \rightarrow 9$
Absorption correction: gaussian	$k = -10 \rightarrow 10$
(CrysAlisPro; Rigaku, 2021)	$l = -24 \rightarrow 24$

Z = 2F(000) = 616 $D_{\rm x} = 1.255 {\rm Mg} {\rm m}^{-3}$ Cu *K* α radiation, $\lambda = 1.54184$ Å Cell parameters from 4930 reflections $\theta = 4.5 - 72.1^{\circ}$ $\mu = 1.61 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.21 \times 0.16 \times 0.06 \text{ mm}$

ıs ons $2\sigma(I)$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0575P)^2 + 0.4269P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
5410 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
368 parameters	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: dual	
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.64242 (5)	0.36921 (5)	0.76180 (2)	0.01884 (13)	
Si	0.82253 (6)	0.58177 (6)	0.83046 (3)	0.01969 (14)	
01	0.53274 (15)	0.43170 (15)	0.69843 (7)	0.0213 (3)	
O2	0.37133 (16)	0.92827 (16)	0.67134 (7)	0.0286 (3)	
03	0.61871 (16)	0.63745 (16)	0.53826 (7)	0.0293 (3)	
N1	0.75807 (18)	0.26207 (18)	0.73756 (9)	0.0224 (4)	
N3	0.47858 (18)	0.75010 (18)	0.61476 (8)	0.0220 (4)	
N2	0.67766 (18)	0.50250 (18)	0.79249 (8)	0.0215 (4)	
C17	0.5169 (2)	0.2380 (2)	0.81561 (10)	0.0191 (4)	
C11	0.8812 (2)	0.3081 (2)	0.69029 (10)	0.0215 (4)	
C4	0.6598 (2)	0.9038 (2)	0.54781 (10)	0.0238 (4)	
C30	0.8671 (2)	0.7773 (2)	0.77709 (11)	0.0249 (5)	
H30	0.941234	0.829050	0.801923	0.030*	
C16	1.0089 (2)	0.2104 (2)	0.69474 (11)	0.0252 (5)	
H16	1.013655	0.123095	0.730762	0.030*	
C9	0.5850 (2)	0.9926 (2)	0.58821 (10)	0.0247 (4)	
C20	0.3301 (2)	0.0244 (2)	0.90149 (11)	0.0252 (5)	
C18	0.5129 (2)	0.2342 (2)	0.88389 (10)	0.0227 (4)	
H18	0.573253	0.304358	0.901627	0.027*	
C3	0.5901 (2)	0.7473 (2)	0.56355 (10)	0.0226 (4)	
C21	0.3360 (2)	0.0304 (2)	0.83209 (11)	0.0268 (5)	
H21	0.275146	-0.039010	0.814108	0.032*	
C10	0.4654 (2)	0.8955 (2)	0.63090 (10)	0.0234 (4)	
C12	0.8784 (2)	0.4379 (2)	0.63815 (10)	0.0239 (4)	
H12	0.792938	0.506435	0.634980	0.029*	
C22	0.4293 (2)	0.1361 (2)	0.78878 (11)	0.0246 (4)	
H22	0.433214	0.138741	0.741556	0.030*	
C1	0.4033 (2)	0.5309 (2)	0.70767 (10)	0.0231 (4)	
H1A	0.429808	0.598387	0.738910	0.028*	
H1B	0.312386	0.468228	0.727047	0.028*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

~				
C19	0.4200 (2)	0.1271 (2)	0.92686 (11)	0.0256 (5)
H19	0.417784	0.123993	0.974110	0.031*
C24	0.9990 (2)	0.4556 (2)	0.83641 (11)	0.0243 (4)
H24	1.024122	0.441481	0.789435	0.029*
C2	0.3681 (2)	0.6264 (2)	0.63933 (11)	0.0239 (4)
H2A	0.366244	0.558188	0.606327	0.029*
H2B	0.263929	0.671795	0.641762	0.029*
C13	0.9999 (2)	0.4674 (2)	0.59088 (11)	0.0278 (5)
H13	0.997509	0.556827	0.555804	0.033*
C27	0.7421 (2)	0.5970(2)	0.91717 (11)	0.0246 (4)
H27	0.750357	0.492007	0.946548	0.030*
C8	0.6216 (3)	1.1462 (2)	0.58321 (11)	0.0317 (5)
H8	0.570588	1.207038	0.610828	0.038*
C28	0.5708 (2)	0.6429 (3)	0.91904 (12)	0.0294 (5)
H28A	0.558879	0.749867	0.894987	0.044*
H28B	0.533930	0.632856	0.966109	0.044*
H28C	0.510518	0.575262	0.897214	0.044*
C25	0.9721(2)	0.2933(2)	0.87942(12)	0.0296 (5)
H25A	0.947197	0.300481	0.926309	0.044*
H25R	1 065707	0.231402	0.877778	0.044*
H25C	0.886315	0 244644	0.861586	0.044*
C5	0.000010	0.9636 (2)	0.501200	0.0282(5)
H5	0.826384	0.902115	0.473913	0.0202 (5)
C15	11201(2)	0.2406(3)	0.475715 0.64663(12)	0.034
U15	1.1291(2) 1.215207	0.2400 (3)	0.640726	0.0301(3)
П13	1.213207 1.1246(2)	0.172952 0.2692(2)	0.049/30 0.50417 (12)	0.030°
C14	1.1240 (2)	0.3083 (3)	0.39417(12)	0.0303 (3)
H14	1.206057	0.38/532	0.560883	0.036*
C/	0.7370(3)	1.20/1 (3)	0.53569 (11)	0.0344 (5)
H7	0.764486	1.312400	0.530483	0.041*
C23	0.2284 (3)	-0.0901 (3)	0.94846 (12)	0.0357 (6)
H23A	0.120046	-0.06/014	0.938481	0.054*
H23B	0.246165	-0.083527	0.995349	0.054*
H23C	0.252958	-0.194293	0.942108	0.054*
C26	1.1435 (2)	0.5273 (3)	0.85938 (12)	0.0333 (5)
H26A	1.161285	0.629633	0.830942	0.050*
H26B	1.233053	0.461466	0.855196	0.050*
H26C	1.128079	0.536457	0.906621	0.050*
C29	0.8374 (3)	0.7056 (3)	0.94995 (12)	0.0371 (6)
H29A	0.945592	0.672665	0.951077	0.056*
H29B	0.797407	0.702220	0.996161	0.056*
H29C	0.829942	0.810909	0.923502	0.056*
C6	0.8126 (3)	1.1179 (3)	0.49584 (11)	0.0323 (5)
H6	0.891433	1.162922	0.464320	0.039*
C31	0.7218 (3)	0.8771 (3)	0.76655 (14)	0.0431 (6)
H31A	0.639953	0.820185	0.750234	0.065*
H31B	0.744630	0.971775	0.733154	0.065*
H31C	0.687716	0.903397	0.809501	0.065*
C32	0.9431 (3)	0.7677 (3)	0.70892 (13)	0.0485 (7)

supporting information

H32A	1.035816	0.703364	0.716090	0.073*
H32B	0.971724	0.871329	0.684381	0.073*
H32C	0.870715	0.722351	0.682492	0.073*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0187 (2)	0.0157 (2)	0.0222 (3)	-0.00142 (18)	0.00128 (19)	-0.00441 (18)
Si	0.0192 (3)	0.0161 (3)	0.0241 (3)	-0.0013 (2)	0.0001 (2)	-0.0050 (2)
01	0.0210 (7)	0.0205 (7)	0.0231 (8)	0.0017 (5)	-0.0009 (6)	-0.0061 (6)
O2	0.0307 (8)	0.0274 (8)	0.0293 (8)	0.0035 (6)	0.0014 (7)	-0.0099 (6)
O3	0.0310 (8)	0.0248 (8)	0.0324 (9)	0.0012 (6)	0.0034 (7)	-0.0072 (7)
N1	0.0217 (8)	0.0165 (8)	0.0285 (10)	-0.0009 (7)	0.0028 (7)	-0.0043 (7)
N3	0.0216 (8)	0.0197 (8)	0.0248 (9)	-0.0007 (7)	-0.0004 (7)	-0.0048 (7)
N2	0.0200 (8)	0.0174 (8)	0.0284 (10)	-0.0009 (7)	-0.0009 (7)	-0.0079 (7)
C17	0.0173 (9)	0.0145 (9)	0.0250 (11)	0.0001 (7)	0.0016 (8)	-0.0028 (8)
C11	0.0200 (10)	0.0218 (10)	0.0258 (11)	-0.0034 (8)	0.0006 (8)	-0.0125 (8)
C4	0.0222 (10)	0.0243 (10)	0.0241 (11)	-0.0004 (8)	-0.0059 (8)	-0.0020 (8)
C30	0.0274 (11)	0.0192 (10)	0.0296 (12)	-0.0060 (8)	-0.0017 (9)	-0.0079 (9)
C16	0.0242 (11)	0.0237 (10)	0.0300 (12)	0.0011 (8)	-0.0012 (9)	-0.0111 (9)
C9	0.0265 (11)	0.0247 (10)	0.0229 (11)	-0.0026 (9)	-0.0067 (9)	-0.0040 (9)
C20	0.0204 (10)	0.0188 (10)	0.0344 (13)	-0.0001 (8)	0.0052 (9)	-0.0015 (9)
C18	0.0232 (10)	0.0189 (9)	0.0264 (11)	-0.0016 (8)	0.0008 (8)	-0.0056 (8)
C3	0.0213 (10)	0.0231 (10)	0.0230 (11)	0.0008 (8)	-0.0030 (8)	-0.0035 (9)
C21	0.0223 (10)	0.0193 (10)	0.0395 (13)	-0.0033 (8)	-0.0017 (9)	-0.0078 (9)
C10	0.0249 (10)	0.0228 (10)	0.0235 (11)	0.0011 (8)	-0.0066 (9)	-0.0061 (8)
C12	0.0226 (10)	0.0226 (10)	0.0285 (12)	-0.0012 (8)	0.0002 (9)	-0.0097 (9)
C22	0.0260 (11)	0.0230 (10)	0.0259 (11)	-0.0016 (8)	0.0009 (9)	-0.0076 (9)
C1	0.0188 (10)	0.0239 (10)	0.0264 (11)	0.0010 (8)	0.0025 (8)	-0.0054 (9)
C19	0.0281 (11)	0.0229 (10)	0.0248 (11)	0.0018 (9)	0.0037 (9)	-0.0032 (9)
C24	0.0218 (10)	0.0239 (10)	0.0283 (12)	0.0000 (8)	-0.0008 (9)	-0.0076 (9)
C2	0.0194 (10)	0.0230 (10)	0.0287 (12)	-0.0034 (8)	0.0010 (8)	-0.0042 (9)
C13	0.0311 (11)	0.0255 (11)	0.0284 (12)	-0.0091 (9)	0.0047 (9)	-0.0100 (9)
C27	0.0231 (10)	0.0251 (10)	0.0265 (11)	0.0004 (8)	-0.0001 (8)	-0.0074 (9)
C8	0.0402 (13)	0.0267 (11)	0.0292 (12)	-0.0027 (10)	-0.0073 (10)	-0.0068 (9)
C28	0.0256 (11)	0.0321 (11)	0.0329 (13)	-0.0004 (9)	0.0039 (9)	-0.0131 (10)
C25	0.0263 (11)	0.0248 (11)	0.0376 (13)	0.0044 (9)	-0.0068 (9)	-0.0055 (10)
C5	0.0242 (11)	0.0304 (11)	0.0274 (12)	-0.0012 (9)	-0.0035 (9)	0.0008 (9)
C15	0.0211 (11)	0.0327 (12)	0.0409 (14)	0.0001 (9)	0.0015 (9)	-0.0183 (10)
C14	0.0241 (11)	0.0350 (12)	0.0365 (13)	-0.0104 (9)	0.0085 (9)	-0.0193 (10)
C7	0.0419 (13)	0.0284 (11)	0.0319 (13)	-0.0137 (10)	-0.0111 (11)	-0.0014 (10)
C23	0.0301 (12)	0.0289 (12)	0.0441 (15)	-0.0060 (10)	0.0086 (10)	0.0008 (10)
C26	0.0219 (11)	0.0357 (12)	0.0435 (14)	0.0002 (9)	-0.0011 (10)	-0.0111 (11)
C29	0.0293 (12)	0.0521 (15)	0.0368 (14)	-0.0035 (11)	0.0009 (10)	-0.0254 (12)
C6	0.0297 (12)	0.0353 (12)	0.0290 (12)	-0.0102 (10)	-0.0053 (10)	0.0011 (10)
C31	0.0372 (13)	0.0207 (11)	0.0650 (18)	-0.0019 (10)	-0.0084 (12)	0.0075 (11)
C32	0.0789 (19)	0.0266 (12)	0.0378 (15)	-0.0098 (13)	0.0190 (14)	-0.0045 (11)

supporting information

Geometric parameters (Å, °)

S1—N1	1.5139 (16)	С19—Н19	0.9500
S1—N2	1.4838 (16)	C24—H24	1.0000
S1—O1	1.6257 (14)	C24—C25	1.537 (3)
S1—C17	1.7718 (19)	C24—C26	1.539 (3)
Si—N2	1.7240 (17)	C2—H2A	0.9900
Si—C30	1.881 (2)	C2—H2B	0.9900
Si—C24	1.882 (2)	С13—Н13	0.9500
Si—C27	1.894 (2)	C13—C14	1.383 (3)
O1—C1	1.452 (2)	С27—Н27	1.0000
O2—C10	1.211 (2)	C27—C28	1.539 (3)
O3—C3	1.211 (2)	C27—C29	1.539 (3)
N1-C11	1.412 (2)	C8—H8	0.9500
N3—C3	1.396 (2)	C8—C7	1.394 (3)
N3—C10	1.398 (2)	C28—H28A	0.9800
N3—C2	1.459 (2)	C28—H28B	0.9800
C17—C18	1.374 (3)	C28—H28C	0.9800
C17—C22	1.392 (3)	C25—H25A	0.9800
C11—C16	1.394 (3)	С25—Н25В	0.9800
C11—C12	1.394 (3)	C25—H25C	0.9800
C4—C9	1.388 (3)	С5—Н5	0.9500
C4—C3	1.489 (3)	C5—C6	1.392 (3)
C4—C5	1.380 (3)	C15—H15	0.9500
С30—Н30	1.0000	C15—C14	1.386 (3)
C30—C31	1.531 (3)	C14—H14	0.9500
C30—C32	1.525 (3)	С7—Н7	0.9500
C16—H16	0.9500	C7—C6	1.387 (3)
C16—C15	1.389 (3)	C23—H23A	0.9800
C9—C10	1.486 (3)	C23—H23B	0.9800
С9—С8	1.385 (3)	C23—H23C	0.9800
C20—C21	1.393 (3)	C26—H26A	0.9800
C20—C19	1.392 (3)	C26—H26B	0.9800
C20—C23	1.507 (3)	C26—H26C	0.9800
C18—H18	0.9500	С29—Н29А	0.9800
C18—C19	1.389 (3)	C29—H29B	0.9800
C21—H21	0.9500	С29—Н29С	0.9800
C21—C22	1.387 (3)	С6—Н6	0.9500
C12—H12	0.9500	C31—H31A	0.9800
C12—C13	1.387 (3)	C31—H31B	0.9800
C22—H22	0.9500	C31—H31C	0.9800
C1—H1A	0.9900	C32—H32A	0.9800
C1—H1B	0.9900	С32—Н32В	0.9800
C1C2	1.505 (3)	C32—H32C	0.9800
O1—S1—C17	101.13 (8)	N3—C2—C1	113.82 (17)
N1—S1—O1	105.93 (8)	N3—C2—H2A	108.8
N1—S1—C17	101.98 (9)	N3—C2—H2B	108.8

N2 S1 O1	107 27 (8)	C1 C2 H2A	100 0
N2 S1 N1	107.27(8)	C1 = C2 = H2A	100.0
N2-51-N1	120.00 (9)		108.8
N2—SI—CI/	111.06 (9)	H2A—C2—H2B	107.7
N2—S1—C30	107.57 (9)	С12—С13—Н13	119.6
N2—Si—C24	110.09 (9)	C14—C13—C12	120.8 (2)
S1—N2—Si	142.24 (11)	C14—C13—H13	119.6
N2—Si—C27	105.99 (9)	Si—C27—H27	106.6
C30—Si—C24	110.30 (9)	C28—C27—Si	114.45 (15)
C30—Si—C27	111.23 (9)	С28—С27—Н27	106.6
C24—Si—C27	111.50 (9)	C29—C27—Si	112.48 (14)
C1-01-S1	118.87 (12)	C29—C27—H27	106.6
C11—N1—S1	125.44 (14)	C29—C27—C28	109.50 (17)
$C_3 - N_3 - C_{10}$	112.05 (16)	C9-C8-H8	121.6
$C_3 N_3 C_2$	123.98 (16)	C9 - C8 - C7	121.0 116.8(2)
$C_10 N_2 C_2$	122.95(16)	C7 C8 H8	121.6
$C_{10} = N_{3} = C_{2}$	122.93(10) 110.20(15)	$C_{1} = C_{0} = C_{10}$	121.0
C18 - C17 - S1	119.20(13)	$C_2/-C_{20}$ -H20A	109.5
C18 - C17 - C22	120.93 (18)	C27—C28—H28B	109.5
C22—C17—S1	119.81 (15)	C2/—C28—H28C	109.5
C16—C11—N1	116.63 (18)	H28A—C28—H28B	109.5
C12—C11—N1	124.22 (17)	H28A—C28—H28C	109.5
C12—C11—C16	119.04 (19)	H28B—C28—H28C	109.5
C9—C4—C3	108.23 (18)	C24—C25—H25A	109.5
C5—C4—C9	121.8 (2)	C24—C25—H25B	109.5
C5—C4—C3	129.93 (19)	С24—С25—Н25С	109.5
Si—C30—H30	107.8	H25A—C25—H25B	109.5
C31—C30—Si	111.13 (14)	H25A—C25—H25C	109.5
С31—С30—Н30	107.8	H25B—C25—H25C	109.5
C32—C30—Si	112.26 (14)	С4—С5—Н5	121.5
C32—C30—H30	107.8	C4—C5—C6	117.0 (2)
C32—C30—C31	110.0 (2)	С6—С5—Н5	121.5
C11—C16—H16	119.9	C16—C15—H15	1197
C_{15} C_{16} C_{11}	120.2(2)	C14-C15-C16	120.6(2)
C15 C16 H16	110.0	$C_{14} = C_{15} = C_{10}$	120.0 (2)
$C_{10} = C_{10} = C_{10}$	109.12 (19)	$C_{14}^{12} = C_{15}^{14} = C_{15}^{15}$	119.7
$C^{\ast} = C^{\ast} = C^{\ast} + C^{\ast}$	100.12(10) 121.5(2)	$C_{13} = C_{14} = C_{13}$	119.2 (2)
$C_{8} = C_{9} = C_{4}$	121.3(2)	С15—С14—Н14	120.4
	130.3 (2)	C15-C14-H14	120.4
C21—C20—C23	121.1 (2)	C8—C/—H/	119.2
C19—C20—C21	118.59 (18)	C6—C7—C8	121.6 (2)
C19—C20—C23	120.3 (2)	С6—С7—Н7	119.2
C17—C18—H18	120.2	C20—C23—H23A	109.5
C17—C18—C19	119.65 (19)	С20—С23—Н23В	109.5
C19—C18—H18	120.2	С20—С23—Н23С	109.5
O3—C3—N3	125.02 (18)	H23A—C23—H23B	109.5
O3—C3—C4	129.27 (19)	H23A—C23—H23C	109.5
N3—C3—C4	105.70 (16)	H23B—C23—H23C	109.5
C20—C21—H21	119.4	C24—C26—H26A	109.5
C22—C21—C20	121.12 (19)	C24—C26—H26B	109.5
C22—C21—H21	119.4	C24—C26—H26C	109.5

O2—C10—N3	124.20 (19)	H26A—C26—H26B	109.5
O2—C10—C9	129.97 (19)	H26A—C26—H26C	109.5
N3—C10—C9	105.82 (17)	H26B—C26—H26C	109.5
C11—C12—H12	119.9	C27—C29—H29A	109.5
C13—C12—C11	120.15 (19)	C27—C29—H29B	109.5
C13—C12—H12	119.9	С27—С29—Н29С	109.5
C17—C22—H22	120.5	H29A—C29—H29B	109.5
C21—C22—C17	118.94 (19)	H29A—C29—H29C	109.5
C21—C22—H22	120.5	H29B—C29—H29C	109.5
01—C1—H1A	110.2	C5—C6—H6	119.4
01 - C1 - H1B	110.2	C7 - C6 - C5	121.2(2)
01 - C1 - C2	107.48 (15)	C7—C6—H6	119.4
$H_1 A = C_1 = H_1 B$	108.5	C_{30} C_{31} H_{31A}	109.5
$C_2 C_1 H_1 A$	110.2	C_{30} C_{31} H_{31B}	109.5
$C_2 = C_1 = H_1 R$	110.2	$C_{30} = C_{31} = H_{31C}$	109.5
$C_2 = C_1 = H_1 B$	110.2	$\begin{array}{c} \text{U}_{30} \\ \text{U}_{31} \\$	109.5
$C_{20} = C_{19} = 1119$	119.0		109.5
C18 - C19 - C20	120.8 (2)		109.5
C18—C19—H19	119.0	H31B-C31-H31C	109.5
S1—C24—H24	106.0	$C_{30} = C_{32} = H_{32A}$	109.5
C25—C24—S1	113.53 (14)	C30—C32—H32B	109.5
C25—C24—H24	106.0	C30—C32—H32C	109.5
C25—C24—C26	110.03 (18)	H32A—C32—H32B	109.5
C26—C24—S1	114.45 (14)	H32A—C32—H32C	109.5
C26—C24—H24	106.0	H32B—C32—H32C	109.5
S1-01-C1-C2	154.80 (13)	C9—C4—C3—N3	-1.7 (2)
S1—N1—C11—C16	153.82 (16)	C9—C4—C5—C6	-0.5(3)
S1—N1—C11—C12	-30.1 (3)	C9—C8—C7—C6	-0.7(3)
S1—C17—C18—C19	-177.16 (14)	C20—C21—C22—C17	-0.5(3)
S1—C17—C22—C21	177.63 (15)	C18—C17—C22—C21	0.5 (3)
01—S1—N1—C11	71.56 (18)	C3—N3—C10—O2	176.21 (19)
01 - S1 - N2 - Si	-14337(17)	$C_3 - N_3 - C_{10} - C_9$	-2.9(2)
01 - 11 - 112 - 112	-138.15(15)	$C_3 - N_3 - C_2 - C_1$	105.9(2)
$01 - 10^{-10} - 10^{$	44 69 (16)	$C_3 - C_4 - C_9 - C_{10}$	0.0(2)
01 - C1 - C2 - N3	-74.8(2)	C_{3} C_{4} C_{9} C_{8}	$-177\ 80\ (19)$
N1 = S1 = O1 = C1	176 34 (13)	C_{3} C_{4} C_{5} C_{6}	177 5 (2)
N1 = S1 = 01 = 01 N1 = S1 = N2 = Si	-173(2)	C_{21} C_{20} C_{19} C_{18}	0.4(3)
N1 - S1 - C17 - C18	112 72 (16)	C10 N3 C3 O3	-17640(19)
N1 = S1 = C17 = C22	-64.45(17)	C10 = N3 = C3 = C4	29(2)
N1 C11 C16 C15	174.52(18)	C10 N3 $C2$ $C1$	-865(2)
N1 = C11 = C12 = C13	-174.82(18)	$C_{10} = N_{5} = C_{2} = C_{1}$	-177.2(2)
N1 - C11 - C12 - C13	-46.00(15)	$C_{10} = C_{9} = C_{8} = C_{7}$	1/7.2(2)
$N_2 = S_1 = O_1 = O_1$	-40.09(13)	C12 - C11 - C10 - C13	-1.8(3)
N2 = S1 = C17 = C19	-33.1(2) -24.57(19)	C12 - C13 - C14 - C13	-1.8(3)
$1N_2 - 51 - C17 - C18$	-24.37(18)	$C_{22} - C_{17} - C_{18} - C_{19}$	0.0(3)
$N_2 = S_1 = C_1 / = C_2 / C_$	158.20 (15)	C19 - C20 - C21 - C22	0.1(3)
$N_2 = S_1 = C_3 U = C_3 I$	55.01 (18)	C_{24} S1 N_{2} S1	-0.8(2)
N2—S1—C30—C32	-68.60 (19)	C24 - S1 - C30 - C31	175.10(16)
N2—S1—C24—C25	-61.52 (17)	C24—Si—C30—C32	51.5 (2)

$\begin{array}{l} N2-Si-C24-C26\\ N2-Si-C27-C28\\ N2-Si-C27-C29\\ C17-S1-O1-C1\\ C17-S1-N1-C11\\ C17-S1-N2-Si\\ C17-C18-C19-C20\\ C11-C16-C15-C14\\ C11-C12-C13-C14\\ C4-C9-C10-O2\\ C4-C9-C10-O2\\ C4-C9-C10-N3\\ C4-C9-C8-C7\\ C4-C5-C6-C7\\ C30-Si-N2-S1\\ C30-Si-C24-C25\\ C30-Si-C24-C26\\ \end{array}$	$\begin{array}{c} 171.01 \ (15) \\ -38.05 \ (17) \\ -163.87 \ (15) \\ 70.31 \ (14) \\ 176.97 \ (17) \\ 106.97 \ (18) \\ -0.5 \ (3) \\ 0.6 \ (3) \\ 0.7 \ (3) \\ -177.3 \ (2) \\ 1.7 \ (2) \\ 0.0 \ (3) \\ -0.1 \ (3) \\ 119.40 \ (18) \\ 179.92 \ (15) \\ 52.46 \ (18) \end{array}$	$\begin{array}{ccccccc} C24 & -Si & -C27 & -C28\\ C24 & -Si & -C27 & -C29\\ C2 & -N3 & -C3 & -O3\\ C2 & -N3 & -C3 & -C4\\ C2 & -N3 & -C10 & -O2\\ C2 & -N3 & -C10 & -C9\\ C27 & -Si & -C20 & -C31\\ C27 & -Si & -C30 & -C31\\ C27 & -Si & -C30 & -C32\\ C27 & -Si & -C24 & -C25\\ C27 & -Si & -C24 & -C25\\ C27 & -Si & -C24 & -C26\\ C8 & -C9 & -C10 & -O2\\ C8 & -C9 & -C10 & -C5\\ C5 & -C4 & -C9 & -C10\\ C5 & -C4 & -C9 & -C8\\ \end{array}$	$\begin{array}{c} -157.85 (14) \\ 76.34 (17) \\ -7.7 (3) \\ 171.58 (17) \\ 7.4 (3) \\ -171.74 (17) \\ -121.54 (18) \\ -60.64 (18) \\ 175.74 (17) \\ 55.82 (18) \\ -71.65 (18) \\ 0.2 (4) \\ 179.2 (2) \\ 0.7 (3) \\ 178.36 (18) \\ 0.6 (3) \end{array}$
C4—C5—C6—C7 C30—Si—N2—S1 C30—Si—C24—C25 C30—Si—C24—C26	-0.1 (3) 119.40 (18) 179.92 (15) 52.46 (18)	C8—C9—C10—N3 C8—C7—C6—C5 C5—C4—C9—C10 C5—C4—C9—C8	179.2 (2) 0.7 (3) 178.36 (18) 0.6 (3)
C30—Si—C27—C28 C30—Si—C27—C29 C16—C11—C12—C13 C16—C15—C14—C13 C9—C4—C3—O3	78.57 (17) -47.24 (18) 1.1 (3) 1.2 (3) 177.6 (2)	C5-C4-C3-O3 C5-C4-C3-N3 C23-C20-C21-C22 C23-C20-C19-C18	-0.7 (4) -179.9 (2) 179.82 (19) -179.31 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C15—H15…O2 ⁱ	0.95	2.52	3.429 (3)	160
C22—H22…O2 ⁱⁱ	0.95	2.64	3.348 (3)	132
C14—H14…O3 ⁱⁱⁱ	0.95	2.52	3.429 (3)	161
C31—H31 B ····N1 ^{iv}	0.98	2.60	3.361 (3)	135

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*, *y*+1, *z*.