

Received 20 January 2022 Accepted 2 June 2022

Edited by A. S. Batsanov, University of Durham, England

Keywords: crystal structure; zinc(II) coordination complex; quinoline *N*-oxide; Hirshfeld surface analysis.

CCDC references: 2176715; 2176714; 2176713

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of three zinc(II) halide coordination complexes with quinoline *N*-oxide

Clifford W. Padgett,* Will E. Lynch, Erin N. Groneck, Melina Raymundo and Desiree Adams

Georgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA. *Correspondence e-mail: cpadgett@georgiasouthern.edu

The reaction of one equivalent of zinc(II) halide with two equivalents of quinoline *N*-oxide (QNO) in methanol yields compounds as $ZnX_2(QNO)_2$, where X = Cl (I), Br (II) and I (III), namely, dichloridobis(quinoline *N*-oxide- κO)zinc(II), [ZnCl₂(C₉H₇NO)₂], dibromidobis(quinoline *N*-oxide- κO)zinc(II) [ZnI₂(C₉H₇NO)₂], and diiodidobis(quinoline *N*-oxide- κO)zinc(II) [ZnI₂(C₉H₇NO)₂]. In all three complexes, Zn cations are coordinated by two QNO ligands bound through the oxygen atoms and two halide atoms, with X-Zn-X bond angles *ca* 20° wider than the O-Zn-O, giving rise to a distorted tetrahedral geometry. Crystals of (II) and (III) are isostructural and both show pairwise π -stacking of QNO ligands and weak C-H···X hydrogen bonds, while (I) packs differently, with a shorter C-H···Cl bond and without π -stacking.

1. Chemical context

N-oxide complexes have a rich history in organic transformations, including utility with transition metals in oxotransformations [see, for example, Eppenson (2003) and Moustafa et al. (2014)]. These transition-metal N-oxide complexes highlight the strong Lewis acid/Lewis base properties of the zinc(II) ion and N-oxides, respectively. Aromatic N-oxides are strong Lewis base ligands and form transition-metal complexes that are prevalent in the literature and highlight the strong transition metal interactions with the lone pair on the N-oxide oxygen atom. Examples of such complexes include a 4-methylpyridine N-oxide (MePyNO) derivative CuCl₂·2MePyNO (CMPYUC; Watson & Johnson, 1971) and pyridine N-oxide (6PyNO) derivatives Ni(BF₄)₂.6PyNO (PYNONI; van Ingen Schenau et al., 1974) or Au(CF₃)₃·PyNO (NEPVOW; Pérez-Bitrián et al., 2017). Previous reports of zinc(II) complexes with aromatic N-oxides include dibromobis(4-methoxypyridine N-oxide-κO)zinc(II) (GAWHIW; Shi et al. 2005a), diaquabis(picolinato N-oxide- $\kappa^2 O, O'$)zinc(II) (XISBOR; Li et al., 2008) and dichlorobis(pyridine Noxide)zinc(II) (QQQBXP01; McConnell et al., 1986), all of which are mononuclear complexes.

Herein we report the crystal structures of three complexes of quinoline *N*-oxide (QNO) with zinc(II) chloride, bromide and iodide. All three were obtained by 1:2 stoichiometric reaction of the zinc(II) halide with QNO in methanol and found to be mononuclear $ZnX_2(QNO)_2$ complexes with a distorted tetrahedral environment around the zinc ion.

research communications

X=Cl (I), Br (II), I (III)

2. Structural commentary

Compound (I) crystallizes in the monoclinic space group $P2_1$ (Fig. 1), whereas compounds (II) (Fig. 2) and (III) (Fig. 3) both crystallize in the monoclinic space group $P2_1/c$. Each structure contains one symmetrically independent molecule, the coordination sphere around each Zn atom being a distorted tetrahedron. Selected bond lengths and angles in these complexes are shown in Table 1. Compounds (II) and (III) are isostructural in both the molecular conformation and crystal packing, while (I) differs in both aspects, as illustrated by an overlay of molecules (I) and (II) (Fig. 4a) on one hand, and molecules (II) and (III) on the other (Fig. 4b). Most notably, (I) differs in the orientation of the QNO rings relative to each other, the C2-N1-N2-C11 torsion angles being -16.9 (5)° in (I) versus -113.9 (3)° in (II) and -111.6 (3)° in (III).

3. Supramolecular features

Figs. 5, 6 and 7 show the packing of compounds (I), (II) and (III), respectively. In the crystal structures, the packing is stabilized by van der Waals interactions and, in (II) and (III), by similar systems of pairwise π - π stacking interactions. Quinoline moieties Cg1-Cg3 and Cg2-Cg4 (see Figs. 6 and 7) are stacked each against its own inversion-related equivalent, with the separations between their (parallel) mean planes

Figure 1

A view of compound (I), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of compound (II), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3

A view of compound (III), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

equaling 3.483 (5) and 3.402 (5) Å, respectively, for (II), 3.466 (5) and 3.436 (5) Å for (III). The structure of (I) has no π -stacking. Besides, all three structures are characterized by C-H···X hydrogen bonds (X = halogen), see below.

0 0 (,)					
	Compound (II)	Compound (II)		Compound (III)	
2.215 (2)	Zn1-Br1	2.3575 (9)	Zn1–I1	2.5534 (8)	
2.211 (2)	Zn1-Br2	2.3472 (10)	Zn1–I2	2.5475 (9)	
1.991 (5)	Zn1-O1	1.975 (4)	Zn1-O1	1.974 (4)	
1.959 (5)	Zn1-O2	1.989 (4)	Zn1-O2	1.995 (4)	
117.80 (9)	Br1-Zn1-Br2	123.45 (4)	I1-Zn1-I2	122.34 (3)	
99.4 (2)	O1-Zn1-O2	103.10 (16)	O1-Zn1-O2	104.12 (19)	
	2.215 (2) 2.211 (2) 1.991 (5) 1.959 (5) 117.80 (9) 99.4 (2)	Compound (II) 2.215 (2) Zn1-Br1 2.211 (2) Zn1-Br2 1.991 (5) Zn1-O1 1.959 (5) Zn1-O2 117.80 (9) Br1-Zn1-Br2 99.4 (2) O1-Zn1-O2	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Compound (II) Compound (III) 2.215 (2) Zn1-Br1 2.3575 (9) Zn1-I1 2.211 (2) Zn1-Br2 2.3472 (10) Zn1-I2 1.991 (5) Zn1-O1 1.975 (4) Zn1-O1 1.959 (5) Zn1-O2 1.989 (4) Zn1-O2 117.80 (9) Br1-Zn1-Br2 123.45 (4) I1-Zn1-I2 99.4 (2) O1-Zn1-O2 103.10 (16) O1-Zn1-O2	

research communications

Figure 4

(*a*) Molecular overlay of compound (**I**) (green) and compound (**II**) (brown). (*b*) Molecular overlay of compound (**II**) (brown) and compound (**III**) (purple).

4. Hirshfeld surface analysis

The intermolecular interactions were further investigated by quantitative analysis of the Hirshfeld surface, and visualized with *Crystal Explorer 21* (Spackman *et al.*, 2021) and the two-dimensional fingerprint plots (McKinnon *et al.*, 2007). Figs. 8, 9 and 10 show Hirshfeld surfaces of molecules (I) to (III) mapped with the function d_{norm} , the sum of the distances from a surface point to the nearest interior (d_i) and exterior (d_e)

Figure 6 Crystal packing diagram of compound (II), viewed down the b axis.

atoms, normalized by the van der Waals (vdW) radii of the corresponding atoms (r_{vdW}). Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal to vdW as white spots.

For (I), the most intense red spots correspond to the intermolecular contacts O1···C9(1 - x, y - $\frac{1}{2}$, 1 - z) [3.048 (9) Å] and the hydrogen bond C18-H18···Cl2(x, y + 1, z). The latter has the distances $H \cdot \cdot \cdot Cl = 2.53$ Å (for the C-H distance normalized to 1.083 Å) and $C \cdots Cl = 3.416$ (9) Å within the previously observed range but shorter than the average values of 2.64 and 3.66 Å, respectively (Steiner, 1998). The other chloride ligand, Cl2, forms four $H \cdots Cl$ contacts of 2.83-2.98 Å, more typical for van der Waals interactions (Rowland & Taylor, 1996). For (II) and (III), the red spots correspond to $C-H\cdots X$ interactions, viz. $C18-H18\cdots X1$, $C5-H5\cdots X1$, $C16-H16\cdots X2$, and $C9-H9\cdots X2$, which can be also regarded as weak hydrogen bonds (Steiner, 1998). The $H \cdot \cdot \cdot X$ distances in (II) (X = Br) are 2.85, 2.88, 2.88 and 2.89 Å, respectively, while in (III) (X = I) they are 3.03, 3.12, 3.03 and 2.96 Å, respectively.

Figure 5 Crystal packing diagram of compound (I), viewed down the [101] direction.

Figure 7 Crystal packing diagram of compound (**III**), viewed down the *b* axis.

Figure 8 Hirshfeld surface for (I) mapped over d_{norm} .

Analysis of the two-dimensional fingerprint plots (Table 2) indicates that $H \cdots H$ contacts are the most common in all three structures. $X \cdots H$ contacts make the second highest contribution, which increases in the succession (I) < (II) < (III), together with the size of the halogen atoms and hence their share of the molecular surface (16.9, 18.5 and 20.6%, respectively). Interestingly, π -stacking in the structures of (II) and (III) gives only a modest increase of C···C contacts compared to (I), probably because it is counterbalanced by an overall decrease of carbon atoms' share of the surface (21.4 > 19.5 > 18.3%). No halogen···halogen contacts are observed in any of the three structures.

5. Database survey

A search in the Cambridge Structural Database (CSD, version 5.42, update of February 2021; Groom *et al.*, 2016) for aromatic *N*-oxides and halogen ligands bound to zinc returned 21 unique entries, the majority (15) of which contain pyridine *N*-oxide and its derivatives. Of these, the most closely related are pyridine *N*-oxide complexes, dichlorobis(pyridine *N*-oxide)zinc(II) (QQQBXP01; McConnell *et al.*, 1986), dibromorobis(pyridine *N*-oxide)zinc(II) (FIPVUV; Edwards *et*

Table 2
Contributions of selected intermolecular contacts (%).

Compound	(I)	(II)	(III)
H···H	32.0	36.7	36.5
$H \cdots X/X \cdots H$	24.4	28.4	30.0
$C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$	22.7	18.5	18.0
$C \cdot \cdot \cdot C$	5.4	7.1	6.4
$O \cdots H/H \cdots O$	6.0	4.0	3.7

1999) and diiodorobis(pyridine N-oxide)zinc(II) al., (IPNOZN01; Edwards et al., 1999). Related to these are methyl derivatives of pyridine N-oxide complexes with ZnCl₂, viz. dichlorobis(2,6-dimethylpyridine N-oxide)zinc(II) (LUTOZN; Sager & Watson, 1968), three isomers of dichlorobis(methylpyridine *N*-oxide)zinc(II) (QQQBXG, QQQBXJ, QQQBXM), for which only unit-cell parameters were determined (Kidd et al., 1967), and finally, diiodobis(4methylpyridine N-oxide)zinc(II) (SANRUV; Shi et al., 2005b). There is one known structure of a quinoline N-oxide derivadichlorobis(2-methylquinoline N-oxide)zinc(II) tive. (AFUSEZ; Ivashevskaja et al., 2002).

6. Synthesis and crystallization

The water content of QNO and ZnBr₂ have been determined by Thermal Gravimetric Analysis. The formulation for each was found to be QNO·0.28H₂O ($M_W = 150.21 \text{ g mol}^{-1}$) and ZnBr₂·0.86H₂O ($F_W = 240.69 \text{ g mol}^{-1}$).

The title compounds were all synthesized in a similar manner. Compound (I) was synthesized by dissolving 0.0986 g of QNO \cdot 0.28H₂O (0.656 mmol, purchased from Aldrich) in 33 mL of methanol to which 0.0440 g of ZnCl₂ (0.176 mmol, purchased from Strem Chemicals) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0822 g (60.2%). Selected IR bands (ATR–IR, cm⁻¹): 3107 (*w*), 3083 (*w*), 3057 (*w*), 1579 (*m*), 1513 (*m*), 1447 (*m*), 1402 (*s*), 1269 (*s*), 1227 (*m*), 1203 (*s*), 1179 (*m*), 1144 (*m*), 1089 (*s*), 1050 (*m*), 883 (*s*), 800 (*s*), 768 (*s*), 723 (*m*), 584 (*m*), 559 (*m*), 542 (*m*).

Hirshfeld surface for (II) mapped over d_{norm} .

Figure 10 Hirshfeld surface for (III) mapped over d_{norm} .

research communications

Table 3Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$[ZnCl_2(C_0H_7NO)_2]$	$[ZnBr_2(C_0H_7NO)_2]$	$[ZnI_2(C_0H_7NO)_2]$
M _r	426.58	515.50	609.48
Crystal system, space group	Monoclinic, $P2_1$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	298	298	297
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.5167 (4), 7.8697 (4), 13.1617 (7)	16.3922 (11), 7.3527 (6), 15.5809 (10)	16.7231 (7), 7.6155 (4), 15.8689 (7)
β (°)	94.890 (5)	97.113 (6)	97.192 (4)
$V(Å^3)$	878.94 (8)	1863.5 (2)	2005.08 (16)
Z	2	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	1.72	5.62	4.32
Crystal size (mm)	$0.1 \times 0.1 \times 0.03$	$0.15 \times 0.08 \times 0.03$	$0.3 \times 0.3 \times 0.3$
Data collection			
Diffractometer	Rigaku XtaLAB mini	XtaLAB Mini (ROW)	Rigaku XtaLAB mini
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.968, 1.000	0.833, 1.000	0.896, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5308, 3169, 2456	7207, 3415, 2095	11510, 3668, 2748
R _{int}	0.036	0.043	0.032
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602	0.602	0.602
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.077, 1.03	0.042, 0.090, 1.02	0.035, 0.085, 1.07
No. of reflections	3169	3415	3668
No. of parameters	226	226	227
No. of restraints	1	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.42, -0.35	0.55, -0.35	0.80, -0.81
Absolute structure	Flack x determined using 810 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013).	-	-
Absolute structure parameter	-0.006 (15)	-	-

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

Compound (II) was synthesized by dissolving 0.0983 g of QNO $\cdot 0.28H_2O$ (0.654 mmol), in 40 mL of methanol to which 0.0778 g of ZnBr₂ $\cdot 0.86H_2O$ (0.323 mmol, purchased from Alfa Aesar) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0866 g (46.7%). Selected IR bands (ATR–IR, cm⁻¹): 3106 (*w*), 3075 (*w*), 3061 (*w*), 3016 (*w*), 1580 (*m*), 1510 (*s*), 1455 (*m*), 1270 (*s*), 1227 (*m*), 1214 (*s*), 1204 (*s*), 1173 (*m*), 1138 (*m*), 1086 (*s*), 1048 (*m*), 877 (*m*), 800 (*s*), 767 (*s*), 720 (*s*), 581 (*m*), 563 (*m*), 500 (*m*).

Compound (III) was synthesized by dissolving 0.0517 g of QNO $\cdot 0.28H_2O$ (0.352 mmol) in approximately 36 mL of methanol to which 0.0524 g of ZnI₂ (0.164 mmol, purchased from Aldrich) were added at 295 K. The solution was covered with parafilm then allowed to sit; X-ray quality crystals were grown by slow evaporation at 295 K. Yield, 0.0910 g (52.3%). Selected IR Bands (ATR–IR, cm⁻¹): 3100 (*w*), 3090 (*w*), 2076 (*w*), 3059 (*w*), 3027 (*w*),1580 (*s*), 1507 (*s*), 1382 (*s*), 1267 (*m*), 1225 (*m*), 1207 (*s*), 1169 (*m*), 1141 (*m*), 1044 (*m*), 880 (*s*), 807 (*s*), 769 (*s*), 720 (*m*), 580 (*m*), 562 (*m*), 499 (*m*).

Infrared spectroscopy confirms the presence of the QNO ligand in all three complexes. Characteristic IR bands include weak ν C-H aromatic stretches observed from 3020-3107 cm⁻¹ and ν N-O stretches of the bound *N*-oxide in the

range 1350–1150 cm⁻¹; notably, a medium band observed in the ligand at 1311 cm⁻¹, appears at between 1225–1227 cm⁻¹ in the three metal complexes. Finally, a broad absorbance in the free ligand from 3100–3500 cm⁻¹ (assigned to the water ν O–H stretch) is absent in all of the metal complexes (Mautner *et al.*, 2016).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All carbon-bound H atoms were positioned geometrically and refined as riding: C-H = 0.95-0.98 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Edwards, R. A., Gladkikh, O. P., Nieuwenhuyzen, M. & Wilkins, C. J. (1999). Z. Kristallogr. 214, 111–118.

Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ingen Schenau, A. D. van, Verschoor, C. G. & Romers, C. (1974). Acta Cryst. B30, 1686–1694.
- Ivashevskaja, S. N., Aleshina, L. A., Andreev, V. P., Nizhnik, Y. P., Chernyshev, V. V. & Schenk, H. (2002). Acta Cryst. C58, m300– m301.
- Kidd, M. R., Sager, R. S. & Watson, W. H. (1967). *Inorg. Chem.* 6, 946–951.
- Li, X.-B., Shang, R.-L. & Sun, B.-W. (2008). Acta Cryst. E64, m131.
- Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). *Inorg. Chim. Acta*, **439**, 1, 69–76.
- McConnell, N. M., Day, R. O. & Wood, J. S. (1986). Acta Cryst. C42, 1094–1095.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, **33**, 5402–5413.

- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Pérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). *Chem. Eur. J.* 23, 14918–14930.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
- Sager, R. S. & Watson, H. W. (1968). Inorg. Chem. 7, 1358-1362.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, J.-M., Liu, Z., Lu, J.-J. & Liu, L.-D. (2005b). Acta Cryst. E61, m856–m857.
- Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005*a*). Acta Cryst. E**61**, m2262–m2263.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Steiner, T. (1998). Acta Cryst. B54, 456-463.
- Watson, W. H. & Johnson, D. R. (1971). Inorg. Chem. 10, 1281-1288.

Acta Cryst. (2022). E78, 716-721 [https://doi.org/10.1107/S2056989022005953]

Crystal structures of three zinc(II) halide coordination complexes with quinoline N-oxide

Clifford W. Padgett, Will E. Lynch, Erin N. Groneck, Melina Raymundo and Desiree Adams

Computing details

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichloridobis(quinoline *N*-oxide-κO)zinc(II) (I)

Crystal data	
$[ZnCl_{2}(C_{9}H_{7}NO)_{2}]$ $M_{r} = 426.58$ Monoclinic, P2 ₁ $a = 8.5167 (4) Å$ $b = 7.8697 (4) Å$ $c = 13.1617 (7) Å$	F(000) = 432 $D_x = 1.612 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.710$ Cell parameters from 1644 $\theta = 2.4-22.4^{\circ}$ $\mu = 1.72 \text{ mm}^{-1}$
$\beta = 94.890 (5)^{\circ}$ $V = 878.94 (8) Å^{3}$ Z = 2	T = 298 K Cube, clear colourless $0.1 \times 0.1 \times 0.03 \text{ mm}$
Data collection	
Rigaku XtaLAB mini diffractometer Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) $T_{min} = 0.968, T_{max} = 1.000$	5308 measured reflections 3169 independent reflection 2456 reflections with $l > 2$ $R_{int} = 0.036$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -10 \rightarrow 10$ $k = -9 \rightarrow 9$ $l = -15 \rightarrow 14$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.077$ *S* = 1.03 3169 reflections 226 parameters 1 restraint Primary atom site location: dual

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

073 Å reflections

ns $\sigma(I)$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0183P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$

Absolute structure: Flack *x* determined using 810 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013). Absolute structure parameter: -0.006 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.60832 (9)	0.40878 (9)	0.69325 (6)	0.0481 (2)	
Cl1	0.8131 (2)	0.5260 (3)	0.78185 (18)	0.0717 (6)	
Cl2	0.5724 (2)	0.1322 (2)	0.71012 (17)	0.0668 (6)	
01	0.6087 (5)	0.4435 (7)	0.5459 (4)	0.0660 (17)	
O2	0.4152 (6)	0.5393 (6)	0.7184 (4)	0.0543 (13)	
N1	0.6919 (7)	0.5702 (8)	0.5068 (4)	0.0472 (15)	
N2	0.3927 (6)	0.6163 (7)	0.8067 (4)	0.0461 (14)	
C1	0.7938 (8)	0.5254 (9)	0.4342 (5)	0.0418 (17)	
C2	0.8061 (9)	0.3562 (9)	0.4045 (6)	0.052 (2)	
H2	0.745778	0.272501	0.432433	0.063*	
C3	0.9086 (10)	0.3150 (11)	0.3332 (6)	0.065 (2)	
H3	0.916168	0.203042	0.311636	0.077*	
C4	1.0011 (10)	0.4398 (14)	0.2932 (6)	0.071 (3)	
H4	1.072298	0.409606	0.246598	0.085*	
C5	0.9891 (9)	0.6041 (11)	0.3210 (6)	0.061 (2)	
H5	1.051065	0.685676	0.292553	0.074*	
C6	0.8835 (8)	0.6538 (9)	0.3931 (5)	0.0469 (18)	
C7	0.8623 (9)	0.8234 (8)	0.4243 (6)	0.056 (2)	
H7	0.920737	0.910057	0.397750	0.067*	
C8	0.7577 (10)	0.8601 (9)	0.4927 (6)	0.063 (2)	
H8	0.742052	0.972081	0.511924	0.075*	
C9	0.6733 (9)	0.7293 (10)	0.5342 (6)	0.056 (2)	
H9	0.602718	0.754824	0.582143	0.068*	
C10	0.3113 (8)	0.5307 (9)	0.8777 (6)	0.0441 (18)	
C11	0.2654 (9)	0.3621 (9)	0.8595 (6)	0.059 (2)	
H11	0.289239	0.306487	0.800371	0.071*	
C12	0.1846 (10)	0.2810 (12)	0.9306 (7)	0.073 (2)	
H12	0.154890	0.168062	0.920740	0.087*	
C13	0.1458 (11)	0.3686 (13)	1.0195 (7)	0.081 (3)	
H13	0.089040	0.312853	1.066778	0.097*	
C14	0.1899 (10)	0.5309 (12)	1.0360(7)	0.069 (3)	
H14	0.163818	0.585631	1.094912	0.082*	
C15	0.2745 (8)	0.6187 (10)	0.9661 (5)	0.0508 (19)	
C16	0.3245 (9)	0.7899 (11)	0.9803 (6)	0.065 (2)	
H16	0.300458	0.850485	1.037580	0.078*	

C17	0.4081 (9)	0.8637 (10)	0.9084 (6)	0.067 (2)	
H17	0.443132	0.975085	0.917171	0.081*	
C18	0.4411 (9)	0.7745 (11)	0.8231 (6)	0.061 (2)	
H18	0.499384	0.826957	0.775384	0.073*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Zn1	0.0494 (4)	0.0451 (5)	0.0519 (5)	-0.0013 (5)	0.0168 (4)	0.0023 (5)
Cl1	0.0656 (13)	0.0678 (14)	0.0812 (16)	-0.0173 (11)	0.0034 (12)	-0.0053 (12)
Cl2	0.0710 (14)	0.0421 (11)	0.0875 (16)	-0.0034 (10)	0.0087 (12)	0.0054 (10)
01	0.066 (3)	0.083 (5)	0.052 (3)	-0.033 (3)	0.025 (3)	0.006 (3)
O2	0.059 (3)	0.063 (3)	0.043 (3)	0.011 (3)	0.017 (3)	-0.010 (3)
N1	0.045 (3)	0.057 (4)	0.040 (4)	-0.004 (3)	0.006 (3)	0.002 (3)
N2	0.042 (3)	0.050 (4)	0.046 (4)	0.007 (3)	0.004 (3)	-0.003 (3)
C1	0.041 (4)	0.047 (4)	0.037 (4)	-0.003 (4)	0.000 (3)	0.010 (4)
C2	0.052 (5)	0.056 (5)	0.048 (5)	-0.008 (4)	0.005 (4)	0.003 (3)
C3	0.071 (6)	0.064 (6)	0.060 (5)	0.005 (5)	0.012 (5)	-0.003 (4)
C4	0.065 (5)	0.097 (8)	0.053 (5)	0.012 (6)	0.016 (4)	0.008 (6)
C5	0.047 (5)	0.078 (6)	0.061 (6)	-0.006 (5)	0.018 (4)	0.027 (5)
C6	0.044 (4)	0.052 (5)	0.045 (4)	-0.008 (4)	0.004 (4)	0.010 (4)
C7	0.058 (5)	0.043 (5)	0.062 (5)	-0.012 (4)	-0.013 (4)	0.019 (4)
C8	0.076 (6)	0.042 (5)	0.068 (5)	0.006 (4)	-0.009 (5)	0.001 (4)
C9	0.059 (5)	0.065 (6)	0.046 (4)	0.013 (4)	0.010 (4)	-0.004 (4)
C10	0.039 (4)	0.043 (4)	0.050 (5)	0.009 (4)	0.004 (4)	0.008 (4)
C11	0.055 (5)	0.061 (6)	0.062 (5)	-0.003 (4)	0.011 (4)	-0.004 (4)
C12	0.076 (6)	0.056 (5)	0.086 (7)	-0.007 (5)	0.015 (6)	0.002 (5)
C13	0.073 (6)	0.097 (10)	0.075 (6)	-0.004 (6)	0.021 (5)	0.022 (6)
C14	0.062 (6)	0.085 (7)	0.060 (6)	0.004 (5)	0.012 (5)	0.001 (5)
C15	0.047 (4)	0.059 (5)	0.046 (5)	0.008 (4)	0.004 (4)	0.002 (4)
C16	0.066 (6)	0.065 (6)	0.063 (5)	0.010 (5)	0.001 (5)	-0.021 (5)
C17	0.070 (6)	0.053 (6)	0.078 (6)	-0.004 (4)	0.001 (5)	-0.011 (4)
C18	0.072 (6)	0.039 (4)	0.073 (6)	-0.005 (4)	0.012 (5)	-0.004 (5)

Geometric parameters (Å, °)

Zn1—Cl1	2.215 (2)	С7—Н7	0.9300
Zn1—Cl2	2.211 (2)	C7—C8	1.350 (11)
Zn1—O1	1.959 (5)	C8—H8	0.9300
Zn1—O2	1.991 (4)	C8—C9	1.393 (10)
01—N1	1.351 (7)	С9—Н9	0.9300
O2—N2	1.339 (6)	C10—C11	1.398 (10)
N1-C1	1.389 (8)	C10—C15	1.412 (10)
N1-C9	1.316 (9)	C11—H11	0.9300
N2-C10	1.385 (8)	C11—C12	1.366 (10)
N2-C18	1.324 (9)	C12—H12	0.9300
C1—C2	1.395 (9)	C12—C13	1.421 (12)
C1—C6	1.403 (9)	C13—H13	0.9300

С2—Н2	0.9300	C13—C14	1.344 (12)
C2—C3	1.373 (10)	C14—H14	0.9300
С3—Н3	0.9300	C14—C15	1.399 (10)
C3—C4	1 390 (11)	C15—C16	1420(11)
C4—H4	0.9300	C16—H16	0.9300
C_{4}	1.250(12)	C_{16}	1.262(11)
C4—C3	1.550(12)		1.302 (11)
CS—HS	0.9300		0.9300
C5—C6	1.417 (10)	C17—C18	1.373 (10)
C6—C7	1.412 (10)	C18—H18	0.9300
Cl2—Zn1—Cl1	117.80 (9)	С8—С7—Н7	119.9
O1—Zn1—Cl1	113.30 (15)	С7—С8—Н8	120.2
O1— $Zn1$ — $Cl2$	104.40 (18)	C7—C8—C9	119.7 (7)
$\Omega_1 - Z_{n1} - \Omega_2$	99 4 (2)	C9—C8—H8	120.2
$0^{2}-7n^{1}-C^{11}$	108.81(16)	N1 - C9 - C8	120.2 121.1(7)
$O_2 = Z_{n1} = C_{11}$	111 57 (16)	N1 = C0 = H0	121.1 (7)
02-2111-012	111.37(10) 121.7(4)	C° C° U°	119.4
N1 - O1 - ZIII	121.7(4)	Со-С9-П9	119.4
$N_2 = O_2 = Zn_1$	124.0 (4)	N2	119.6 (7)
OI—NI—CI	117.0(6)	N2-C10-C15	118.5 (7)
C9—N1—O1	121.2 (6)	C11—C10—C15	121.9 (7)
C9—N1—C1	121.8 (6)	C10—C11—H11	120.8
O2—N2—C10	118.8 (6)	C12—C11—C10	118.4 (8)
C18—N2—O2	120.2 (6)	C12—C11—H11	120.8
C18—N2—C10	120.9 (6)	C11—C12—H12	119.9
N1—C1—C2	120.1 (7)	C11—C12—C13	120.2 (9)
N1—C1—C6	118.3 (7)	C13—C12—H12	119.9
C2—C1—C6	121.6 (7)	C12—C13—H13	119.6
C1—C2—H2	120.5	C14—C13—C12	120.9 (9)
$C_{3}-C_{2}-C_{1}$	118 9 (7)	C14—C13—H13	119.6
C_{3} C_{2} H_{2}	120.5	C13— $C14$ — $H14$	119.5
$C_2 C_3 H_3$	110.8	C_{13} C_{14} C_{15}	121.0 (0)
$C_2 = C_3 = C_4$	120 4 (9)	$C_{15} = C_{14} = C_{15}$	121.0 ())
$C_2 = C_3 = C_4$	120.4 (8)	C13 - C14 - H14	119.5
C4—C3—H3	119.8		119.2 (7)
C3—C4—H4	119.5		117.6 (8)
C5—C4—C3	121.0 (8)	C14—C15—C16	123.2 (8)
С5—С4—Н4	119.5	C15—C16—H16	120.6
C4—C5—H5	119.6	C17—C16—C15	118.8 (7)
C4—C5—C6	120.9 (8)	C17—C16—H16	120.6
C6—C5—H5	119.6	C16—C17—H17	119.8
C1—C6—C5	117.2 (7)	C16—C17—C18	120.3 (8)
C1—C6—C7	118.8 (7)	C18—C17—H17	119.8
C7—C6—C5	124.0 (7)	N2-C18-C17	122.1 (8)
С6—С7—Н7	119.9	N2—C18—H18	118.9
C8—C7—C6	120.3 (7)	C17—C18—H18	118.9
	~ /	-	
Zn1—O1—N1—C1	127.4 (5)	C4—C5—C6—C1	0.5 (11)
Zn1—O1—N1—C9	-54.6 (8)	C4—C5—C6—C7	-178.7 (8)
Zn1—O2—N2—C10	-94.8 (6)	C5—C6—C7—C8	179.3 (7)

Zn1—O2—N2—C18	88.5 (7)	C6—C1—C2—C3	0.0 (12)
O1—N1—C1—C2	0.3 (10)	C6—C7—C8—C9	1.6 (12)
O1—N1—C1—C6	-179.2 (6)	C7—C8—C9—N1	-1.1 (12)
O1—N1—C9—C8	-179.1 (6)	C9—N1—C1—C2	-177.7 (7)
O2-N2-C10-C11	5.0 (9)	C9—N1—C1—C6	2.8 (10)
O2—N2—C10—C15	-173.8 (6)	C10-N2-C18-C17	-2.7 (11)
O2—N2—C18—C17	174.0 (6)	C10-C11-C12-C13	1.4 (12)
N1—C1—C2—C3	-179.5 (6)	C10-C15-C16-C17	-0.7 (11)
N1—C1—C6—C5	178.5 (6)	C11-C10-C15-C14	0.1 (11)
N1—C1—C6—C7	-2.2 (10)	C11—C10—C15—C16	180.0 (7)
N2-C10-C11-C12	-179.7 (7)	C11—C12—C13—C14	-1.2 (14)
N2-C10-C15-C14	179.0 (6)	C12—C13—C14—C15	0.4 (14)
N2-C10-C15-C16	-1.2 (10)	C13—C14—C15—C10	0.1 (13)
C1—N1—C9—C8	-1.1 (11)	C13—C14—C15—C16	-179.7 (8)
C1—C2—C3—C4	1.4 (12)	C14—C15—C16—C17	179.1 (8)
C1—C6—C7—C8	0.1 (11)	C15-C10-C11-C12	-0.9 (11)
C2-C1-C6-C5	-1.0 (11)	C15—C16—C17—C18	1.0 (12)
C2-C1-C6-C7	178.3 (7)	C16—C17—C18—N2	0.7 (13)
C2—C3—C4—C5	-1.9 (13)	C18—N2—C10—C11	-178.3 (7)
C3—C4—C5—C6	0.9 (13)	C18—N2—C10—C15	2.9 (10)

Dibromidobis(quinoline N-oxide-ĸO)zinc(II) (II)

Crystal data

 $[ZnBr_2(C_9H_7NO)_2]$ $M_r = 515.50$ Monoclinic, $P2_1/c$ a = 16.3922 (11) Å b = 7.3527 (6) Å c = 15.5809 (10) Å $\beta = 97.113$ (6)° V = 1863.5 (2) Å³ Z = 4

Data collection

XtaLAB Mini (ROW) diffractometer Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) $T_{\min} = 0.833, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.090$ S = 1.013415 reflections F(000) = 1008 $D_x = 1.837 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1219 reflections $\theta = 2.6-22.0^{\circ}$ $\mu = 5.62 \text{ mm}^{-1}$ T = 298 KIrregular, clear colourless $0.15 \times 0.08 \times 0.03 \text{ mm}$

7207 measured reflections 3415 independent reflections 2095 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 25.4^\circ$, $\theta_{min} = 2.5^\circ$ $h = -16 \rightarrow 19$ $k = -8 \rightarrow 8$ $l = -18 \rightarrow 18$

226 parameters0 restraintsPrimary atom site location: dualHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0258P)^2]$	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.25508 (4)	0.26213 (9)	0.37264 (4)	0.0514 (2)
Br2	0.22409 (4)	-0.03623 (9)	0.41131 (4)	0.0695 (2)
Br1	0.26119 (4)	0.35514 (10)	0.22878 (4)	0.0698 (2)
01	0.3616 (2)	0.3196 (6)	0.4411 (2)	0.0662 (11)
O2	0.1778 (2)	0.4332 (5)	0.4197 (2)	0.0597 (10)
N2	0.1157 (3)	0.3586 (5)	0.4557 (3)	0.0445 (11)
N1	0.4115 (3)	0.4386 (7)	0.4079 (3)	0.0543 (12)
C10	0.0394 (3)	0.3446 (7)	0.4065 (3)	0.0415 (12)
C1	0.4897 (3)	0.3784 (8)	0.3969 (3)	0.0466 (14)
C15	-0.0264 (3)	0.2713 (7)	0.4450 (3)	0.0468 (13)
C16	-0.0121 (4)	0.2148 (7)	0.5319 (3)	0.0550 (15)
H16	-0.054979	0.167100	0.558720	0.066*
C18	0.1273 (3)	0.3032 (7)	0.5371 (3)	0.0526 (15)
H18	0.179191	0.313686	0.568455	0.063*
C17	0.0635 (4)	0.2296 (8)	0.5765 (3)	0.0561 (15)
H17	0.072791	0.190483	0.633590	0.067*
C11	0.0284 (4)	0.4086 (8)	0.3210 (3)	0.0571 (16)
H11	0.071759	0.460347	0.296363	0.069*
C6	0.5437 (4)	0.5023 (9)	0.3641 (3)	0.0592 (16)
C2	0.5136 (4)	0.2028 (9)	0.4187 (3)	0.0626 (17)
H2	0.476904	0.122160	0.439392	0.075*
C14	-0.1031 (4)	0.2572 (8)	0.3940 (4)	0.0673 (17)
H14	-0.147290	0.206267	0.417522	0.081*
C13	-0.1135 (4)	0.3168 (9)	0.3113 (4)	0.0742 (19)
H13	-0.164632	0.307127	0.278474	0.089*
C12	-0.0477 (4)	0.3927 (9)	0.2752 (3)	0.0723 (19)
H12	-0.055985	0.433696	0.218351	0.087*
C9	0.3862 (4)	0.6041 (10)	0.3872 (4)	0.0730 (19)
Н9	0.333060	0.639141	0.395028	0.088*
C7	0.5161 (5)	0.6777 (10)	0.3420 (4)	0.077 (2)
H7	0.550832	0.760022	0.319363	0.093*
C3	0.5912 (4)	0.1490 (10)	0.4098 (4)	0.083 (2)
Н3	0.607681	0.030702	0.424267	0.099*
C8	0.4388 (5)	0.7279 (9)	0.3536 (4)	0.083 (2)
H8	0.420515	0.844968	0.339148	0.099*
C5	0.6244 (4)	0.4382 (12)	0.3568 (4)	0.085 (2)

Н5	0.662411	0.515411	0.336046	0.102*
C4	0.6460 (5)	0.2678 (14)	0.3794 (5)	0.095 (3)
H4	0.699190	0.228696	0.374594	0.114*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0345 (4)	0.0688 (5)	0.0519 (4)	-0.0003 (3)	0.0089 (3)	-0.0017 (3)
Br2	0.0598 (4)	0.0637 (4)	0.0855 (5)	0.0040 (3)	0.0113 (3)	0.0048 (4)
Br1	0.0663 (4)	0.0960 (5)	0.0476 (3)	-0.0052 (4)	0.0090 (3)	-0.0030 (4)
O1	0.037 (2)	0.102 (3)	0.059(2)	-0.016 (2)	0.0020 (18)	0.010(2)
O2	0.046 (2)	0.055 (2)	0.083 (3)	-0.005 (2)	0.0278 (19)	0.002 (2)
N2	0.040 (3)	0.042 (3)	0.054 (3)	0.007 (2)	0.014 (2)	-0.005 (2)
N1	0.043 (3)	0.072 (4)	0.045 (3)	-0.005 (3)	-0.007(2)	-0.012 (3)
C10	0.043 (3)	0.039 (3)	0.043 (3)	0.007 (3)	0.011 (2)	-0.006(3)
C1	0.039 (3)	0.062 (4)	0.037 (3)	-0.005 (3)	-0.002 (2)	-0.011 (3)
C15	0.041 (3)	0.048 (3)	0.054 (3)	0.003 (3)	0.015 (3)	-0.003 (3)
C16	0.051 (4)	0.060 (4)	0.057 (4)	-0.001 (3)	0.020 (3)	0.006 (3)
C18	0.053 (4)	0.056 (4)	0.047 (3)	0.009 (3)	-0.003 (3)	-0.004 (3)
C17	0.063 (4)	0.062 (4)	0.046 (3)	0.007 (3)	0.017 (3)	0.008 (3)
C11	0.064 (4)	0.063 (4)	0.046 (3)	0.008 (3)	0.015 (3)	-0.003 (3)
C6	0.051 (4)	0.076 (5)	0.049 (3)	-0.016 (4)	0.001 (3)	-0.015 (3)
C2	0.053 (4)	0.072 (5)	0.059 (4)	-0.003 (3)	-0.007(3)	-0.003 (3)
C14	0.042 (4)	0.079 (5)	0.081 (5)	-0.008 (3)	0.008 (3)	0.000 (4)
C13	0.055 (4)	0.092 (5)	0.072 (4)	0.002 (4)	-0.007 (3)	-0.006 (4)
C12	0.085 (5)	0.094 (5)	0.037 (3)	0.016 (4)	0.002 (3)	-0.002(3)
C9	0.052 (4)	0.088 (5)	0.075 (4)	0.009 (4)	-0.010 (3)	-0.028 (4)
C7	0.086 (6)	0.074 (5)	0.071 (4)	-0.029 (4)	0.002 (4)	-0.003 (4)
C3	0.064 (5)	0.079 (5)	0.101 (5)	0.010 (4)	-0.007 (4)	-0.016 (4)
C8	0.098 (6)	0.053 (4)	0.087 (5)	-0.003 (5)	-0.028 (5)	0.000 (4)
C5	0.056 (5)	0.122 (7)	0.079 (5)	-0.035 (5)	0.022 (4)	-0.023 (5)
C4	0.050 (5)	0.130 (7)	0.104 (6)	0.006 (5)	0.008 (4)	-0.029(6)

Geometric parameters (Å, °)

Zn1—Br2	2.3472 (10)	C11—H11	0.9300
Zn1—Br1	2.3575 (8)	C11—C12	1.364 (8)
Zn1—O1	1.975 (3)	C6—C7	1.395 (8)
Zn1—O2	1.989 (4)	C6—C5	1.422 (9)
01—N1	1.345 (5)	С2—Н2	0.9300
O2—N2	1.339 (5)	C2—C3	1.356 (8)
N2-C10	1.388 (6)	C14—H14	0.9300
N2-C18	1.323 (6)	C14—C13	1.352 (8)
N1-C1	1.386 (6)	C13—H13	0.9300
N1—C9	1.313 (7)	C13—C12	1.392 (8)
C10-C15	1.406 (7)	C12—H12	0.9300
C10-C11	1.402 (7)	С9—Н9	0.9300
C1—C6	1.410(7)	С9—С8	1.400 (9)

C1—C2	1.380(7)	С7—Н7	0.9300
C15—C16	1.408 (7)	C7—C8	1.354 (9)
C15—C14	1.405 (7)	С3—Н3	0.9300
C16—H16	0.9300	C3—C4	1.378 (10)
C16—C17	1.346 (7)	С8—Н8	0.9300
C18—H18	0.9300	С5—Н5	0.9300
C18 - C17	1387(7)	C5-C4	1 338 (9)
C17—H17	0.9300	C4—H4	0.9300
	0.9500		0.9500
$Br^2 - 7n^2 - Br^2$	123 45 (4)	C12—C11—H11	121.0
$\Omega_1 - Zn_1 - Br_2$	105 44 (12)	C1 - C6 - C5	116.5 (6)
$\Omega_1 = Zn_1 = Br_1$	108.21(11)	C7 - C6 - C1	119.2 (6)
01 - 7n1 - 02	103.10(16)	C7 - C6 - C5	119.2(0) 124.2(7)
$\Omega^2 - 7n1 - Br^2$	109.17(11)	$C_1 - C_2 - H_2$	124.2(7)
$O_2 = Zn_1 = Br_2$	105.17(11) 105.72(11)	$C_1 = C_2 = 112$	110 3 (6)
$N_1 = 01 = 7n^1$	103.72(11) 118.1(3)	$C_{3} = C_{2} = C_{1}$	119.5 (0)
N1 = 01 = 2111 $N2 = 02 = 7n1$	116.1(3)	$C_{15} = C_{14} = H_{14}$	120.4
$N_2 = O_2 = Z_{III}$	110.0(5)	C13 - C14 - H14	119.0
02-N2-C10	118.5 (4)	C13 - C14 - C15	120.8 (6)
C18 - N2 - C10	120.1 (4)	C13-C14-H14	119.6
C18 - N2 - C10	121.4 (5)	CI4—CI3—HI3	119.9
OI—NI—CI	117.1 (5)	C14—C13—C12	120.2 (6)
C9—N1—O1	120.5 (5)	С12—С13—Н13	119.9
C9—N1—C1	122.4 (6)	C11—C12—C13	121.8 (6)
N2—C10—C15	118.6 (5)	C11—C12—H12	119.1
N2—C10—C11	120.1 (5)	C13—C12—H12	119.1
C11—C10—C15	121.3 (5)	N1—C9—H9	119.9
N1—C1—C6	118.0 (6)	N1—C9—C8	120.2 (6)
C2—C1—N1	120.5 (5)	С8—С9—Н9	119.9
C2—C1—C6	121.5 (6)	С6—С7—Н7	120.0
C10-C15-C16	118.6 (5)	C8—C7—C6	119.9 (7)
C14—C15—C10	117.9 (5)	С8—С7—Н7	120.0
C14—C15—C16	123.6 (5)	С2—С3—Н3	119.7
C15—C16—H16	119.8	C2—C3—C4	120.7 (7)
C17—C16—C15	120.3 (5)	C4—C3—H3	119.7
C17—C16—H16	119.8	С9—С8—Н8	119.9
N2—C18—H18	119.4	C7—C8—C9	120.2 (7)
N2-C18-C17	121.1 (5)	С7—С8—Н8	119.9
C17—C18—H18	119.4	С6—С5—Н5	119.7
C16—C17—C18	120.0 (5)	C4—C5—C6	120.5 (7)
С16—С17—Н17	120.0	С4—С5—Н5	119.7
C18—C17—H17	120.0	C3—C4—H4	119.3
C10—C11—H11	121.0	C5-C4-C3	121.5 (7)
C_{12} C_{11} C_{10}	118.0 (6)	C5-C4-H4	1193
	110.0 (0)		117.5
Zn1—O1—N1—C1	-122.3 (4)	C1—C6—C7—C8	1.1 (9)
Zn1—O1—N1—C9	57.8 (6)	C1—C6—C5—C4	0.7 (9)
Zn1—O2—N2—C10	-97.8 (4)	C1—C2—C3—C4	0.2 (9)
Zn1—O2—N2—C18	83.4 (5)	C15—C10—C11—C12	-2.0(8)
	X- 7		

O1—N1—C1—C6	-178.5 (4)	C15—C16—C17—C18	0.9 (9)
O1—N1—C1—C2	0.7 (7)	C15—C14—C13—C12	0.3 (10)
O1—N1—C9—C8	179.3 (5)	C16—C15—C14—C13	178.8 (6)
O2—N2—C10—C15	-178.1 (4)	C18—N2—C10—C15	0.6 (7)
O2-N2-C10-C11	-0.3 (7)	C18—N2—C10—C11	178.4 (5)
O2—N2—C18—C17	178.4 (5)	C11—C10—C15—C16	-177.9 (5)
N2-C10-C15-C16	-0.2 (7)	C11—C10—C15—C14	2.6 (8)
N2-C10-C15-C14	-179.7 (5)	C6—C1—C2—C3	1.1 (8)
N2-C10-C11-C12	-179.7 (5)	C6—C7—C8—C9	-0.3 (10)
N2-C18-C17-C16	-0.5 (8)	C6—C5—C4—C3	0.5 (11)
N1—C1—C6—C7	-1.6 (7)	C2-C1-C6-C7	179.2 (5)
N1-C1-C6-C5	177.7 (5)	C2-C1-C6-C5	-1.5 (8)
N1—C1—C2—C3	-178.1 (5)	C2—C3—C4—C5	-1.0 (11)
N1—C9—C8—C7	0.1 (10)	C14—C15—C16—C17	178.9 (6)
C10-N2-C18-C17	-0.3 (8)	C14—C13—C12—C11	0.4 (10)
C10-C15-C16-C17	-0.6 (8)	C9—N1—C1—C6	1.4 (7)
C10-C15-C14-C13	-1.7 (9)	C9—N1—C1—C2	-179.4 (5)
C10-C11-C12-C13	0.5 (9)	C7—C6—C5—C4	179.9 (6)
C1—N1—C9—C8	-0.6 (8)	C5—C6—C7—C8	-178.1 (6)

Diiodidodobis(quinoline *N*-oxide-κO)zinc(II) (III)

Crystal data

 $[ZnI_2(C_9H_7NO)_2]$ $M_r = 609.48$ Monoclinic, $P2_1/c$ a = 16.7231 (7) Å b = 7.6155 (4) Å c = 15.8689 (7) Å $\beta = 97.192$ (4)° V = 2005.08 (16) Å³ Z = 4

Data collection

Rigaku XtaLAB mini diffractometer ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) $T_{\min} = 0.896, T_{\max} = 1.000$ 11510 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.085$ S = 1.073668 reflections 227 parameters 0 restraints F(000) = 1152 $D_x = 2.019 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3422 reflections $\theta = 2.6-24.1^{\circ}$ $\mu = 4.32 \text{ mm}^{-1}$ T = 297 KBlock, clear colourless $0.3 \times 0.3 \times 0.3 \text{ mm}$

3668 independent reflections 2748 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 25.4^\circ, \ \theta_{min} = 2.5^\circ$ $h = -20 \rightarrow 20$ $k = -8 \rightarrow 9$ $l = -19 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0249P)^2 + 3.8317P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.80$ e Å⁻³ $\Delta\rho_{min} = -0.81$ e Å⁻³ Extinction correction: SHELXL-2018/1 (Sheldrick 2015a), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00071 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.26214 (2)	0.37499 (6)	0.22453 (2)	0.07021 (17)	
I2	0.22463 (3)	-0.02923 (6)	0.41988 (3)	0.07442 (17)	
Zn1	0.25578 (3)	0.28426 (10)	0.37845 (4)	0.0553 (2)	
01	0.3601 (2)	0.3426 (7)	0.4449 (3)	0.0780 (13)	
O2	0.1777 (2)	0.4466 (5)	0.4234 (3)	0.0627 (10)	
N1	0.4094 (3)	0.4544 (7)	0.4109 (3)	0.0592 (12)	
N2	0.1160 (3)	0.3728 (6)	0.4566 (3)	0.0509 (11)	
C1	0.4847 (3)	0.3925 (8)	0.3984 (3)	0.0545 (14)	
C2	0.5069 (4)	0.2175 (9)	0.4180 (4)	0.0707 (17)	
H2	0.470599	0.140389	0.438341	0.085*	
C3	0.5817 (5)	0.1635 (11)	0.4068 (5)	0.095 (2)	
H3	0.596812	0.048098	0.419687	0.114*	
C4	0.6360 (5)	0.2760 (13)	0.3768 (6)	0.105 (3)	
H4	0.687500	0.235837	0.370683	0.126*	
C5	0.6159 (4)	0.4433 (12)	0.3560 (5)	0.088 (2)	
Н5	0.653406	0.516920	0.335438	0.106*	
C6	0.5378 (4)	0.5077 (9)	0.3652 (4)	0.0641 (16)	
C7	0.5127 (5)	0.6797 (10)	0.3444 (5)	0.082 (2)	
H7	0.547198	0.757244	0.321637	0.099*	
C8	0.4374 (5)	0.7327 (10)	0.3576 (5)	0.085 (2)	
H8	0.419938	0.846144	0.343511	0.102*	
C9	0.3871 (4)	0.6157 (10)	0.3923 (4)	0.0758 (19)	
Н9	0.336222	0.652818	0.402601	0.091*	
C10	0.0431 (3)	0.3575 (7)	0.4054 (3)	0.0487 (12)	
C11	0.0343 (4)	0.4227 (8)	0.3219 (4)	0.0638 (16)	
H11	0.077050	0.475911	0.299604	0.077*	
C12	-0.0388 (5)	0.4051 (10)	0.2751 (4)	0.081 (2)	
H12	-0.046101	0.448351	0.219880	0.098*	
C13	-0.1039 (4)	0.3237 (11)	0.3073 (5)	0.088 (2)	
H13	-0.153042	0.311918	0.273148	0.106*	
C14	-0.0955 (4)	0.2624 (9)	0.3879 (5)	0.0755 (19)	
H14	-0.138783	0.208570	0.408920	0.091*	
C15	-0.0218 (3)	0.2796 (7)	0.4398 (4)	0.0534 (13)	
C16	-0.0094 (4)	0.2205 (8)	0.5249 (4)	0.0632 (16)	
H16	-0.051513	0.168071	0.548760	0.076*	

C17	0.0633 (4)	0.2398 (9)	0.5717 (4)	0.0666 (17)	
H17	0.071247	0.201324	0.627730	0.080*	
C18	0.1257 (4)	0.3171 (8)	0.5358 (4)	0.0589 (15)	
H18	0.175593	0.330122	0.568251	0.071*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
I1	0.0640 (3)	0.0961 (4)	0.0508 (2)	-0.0078 (2)	0.00801 (19)	-0.0018 (2)
I2	0.0652 (3)	0.0668 (3)	0.0928 (3)	0.0106 (2)	0.0157 (2)	0.0090 (2)
Zn1	0.0377 (3)	0.0742 (5)	0.0542 (4)	-0.0006 (3)	0.0070 (3)	-0.0005 (3)
01	0.048 (2)	0.122 (4)	0.063 (3)	-0.014 (2)	0.002 (2)	0.006 (3)
02	0.055 (2)	0.059 (3)	0.078 (3)	-0.0007 (19)	0.024 (2)	0.003 (2)
N1	0.043 (3)	0.079 (4)	0.052 (3)	-0.001 (3)	-0.003 (2)	-0.012 (3)
N2	0.047 (2)	0.052 (3)	0.057 (3)	0.007 (2)	0.016 (2)	-0.001 (2)
C1	0.042 (3)	0.075 (4)	0.044 (3)	-0.001 (3)	-0.005 (2)	-0.014 (3)
C2	0.066 (4)	0.069 (5)	0.073 (4)	-0.001 (3)	-0.007 (3)	-0.004 (3)
C3	0.073 (5)	0.086 (6)	0.120 (7)	0.013 (4)	-0.009 (5)	-0.026 (5)
C4	0.064 (5)	0.114 (7)	0.136 (8)	0.012 (5)	0.011 (5)	-0.054 (6)
C5	0.061 (4)	0.110 (7)	0.097 (6)	-0.016 (4)	0.021 (4)	-0.026 (5)
C6	0.053 (3)	0.073 (5)	0.066 (4)	-0.011 (3)	0.006 (3)	-0.017 (3)
C7	0.083 (5)	0.076 (5)	0.086 (5)	-0.022 (4)	0.001 (4)	-0.008 (4)
C8	0.087 (5)	0.065 (5)	0.095 (5)	0.004 (4)	-0.018 (4)	-0.013 (4)
C9	0.063 (4)	0.084 (5)	0.076 (4)	0.008 (4)	-0.011 (4)	-0.024 (4)
C10	0.051 (3)	0.047 (3)	0.049 (3)	0.007 (2)	0.013 (3)	0.000 (2)
C11	0.070 (4)	0.071 (4)	0.051 (3)	0.005 (3)	0.012 (3)	0.003 (3)
C12	0.092 (5)	0.099 (6)	0.052 (4)	0.014 (4)	0.002 (4)	-0.001 (4)
C13	0.065 (4)	0.110 (6)	0.085 (5)	0.005 (4)	-0.015 (4)	-0.006 (5)
C14	0.056 (4)	0.083 (5)	0.086 (5)	-0.008 (3)	0.004 (4)	-0.010 (4)
C15	0.050 (3)	0.053 (3)	0.058 (3)	0.004 (3)	0.011 (3)	-0.003 (3)
C16	0.062 (4)	0.060 (4)	0.071 (4)	0.005 (3)	0.025 (3)	0.013 (3)
C17	0.067 (4)	0.080 (5)	0.056 (4)	0.014 (3)	0.016 (3)	0.011 (3)
C18	0.056 (3)	0.069 (4)	0.051 (3)	0.009 (3)	0.005 (3)	0.000 (3)

Geometric parameters (Å, °)

I1—Zn1	2.5534 (8)	С7—Н7	0.9300
I2—Zn1	2.5473 (9)	C7—C8	1.363 (10)
Zn1—O1	1.973 (4)	C8—H8	0.9300
Zn1—O2	1.994 (4)	C8—C9	1.386 (10)
01—N1	1.345 (6)	С9—Н9	0.9300
O2—N2	1.339 (5)	C10—C11	1.405 (8)
N1-C1	1.381 (7)	C10—C15	1.405 (7)
N1—C9	1.307 (8)	C11—H11	0.9300
N2-C10	1.383 (7)	C11—C12	1.356 (9)
N2-C18	1.317 (7)	C12—H12	0.9300
C1—C2	1.408 (9)	C12—C13	1.404 (10)
C1—C6	1.397 (8)	С13—Н13	0.9300

С2—Н2	0.9300	C13—C14	1.352 (10)
С2—С3	1.350 (9)	C14—H14	0.9300
С3—Н3	0.9300	C14—C15	1.400 (8)
C3—C4	1.377 (12)	C15—C16	1.414 (8)
C4—H4	0.9300	C16—H16	0.9300
C4—C5	1.348 (12)	C16—C17	1.350 (8)
C5—H5	0.9300	С17—Н17	0.9300
C5—C6	1.420 (9)	C17—C18	1.382 (8)
C6—C7	1.402 (10)	C18—H18	0.9300
	100.00 (2)	C0 C7 117	100.0
$\frac{12-2n1-11}{2}$	122.33(3)	$C_{A} = C_{A} = H_{A}$	120.2
01 - 2n1 - 11	108.10 (13)	C/C8H8	120.4
OI = ZnI = I2	105.60 (15)	C/-C8-C9	119.3 (7)
01 - 2n1 - 02	104.13 (19)	C9—C8—H8	120.4
02—Zn1—I1	106.36 (12)	N1—C9—C8	121.6 (7)
02—Zn1—I2	108.93 (12)	N1—C9—H9	119.2
N1—O1—Zn1	118.3 (3)	С8—С9—Н9	119.2
N2—O2—Zn1	116.9 (3)	N2—C10—C11	120.3 (5)
01—N1—C1	117.2 (5)	N2—C10—C15	118.3 (5)
C9—N1—O1	120.9 (5)	C15—C10—C11	121.4 (5)
C9—N1—C1	121.9 (6)	C10—C11—H11	121.2
O2—N2—C10	118.0 (4)	C12—C11—C10	117.6 (6)
C18—N2—O2	120.2 (5)	C12—C11—H11	121.2
C18—N2—C10	121.8 (5)	C11—C12—H12	118.9
N1—C1—C2	120.7 (6)	C11—C12—C13	122.1 (6)
N1—C1—C6	118.3 (6)	C13—C12—H12	118.9
C6—C1—C2	121.0 (6)	С12—С13—Н13	119.9
C1—C2—H2	120.6	C14—C13—C12	120.2 (7)
C3—C2—C1	118.8 (7)	C14—C13—H13	119.9
С3—С2—Н2	120.6	C13—C14—H14	119.8
С2—С3—Н3	119.4	C13—C14—C15	120.3 (7)
C2—C3—C4	121.3 (8)	C15—C14—H14	119.8
С4—С3—Н3	119.4	C10—C15—C16	118.5 (5)
C3—C4—H4	119.4	C14—C15—C10	118.4 (5)
C5—C4—C3	121.2 (8)	C14—C15—C16	123.0 (6)
C5—C4—H4	119.4	С15—С16—Н16	119.9
C4—C5—H5	119.8	C17-C16-C15	120.3 (6)
C4-C5-C6	120.4 (8)	C17 - C16 - H16	119.9
С6—С5—Н5	119.8	C_{16} $-C_{17}$ $-H_{17}$	120.2
$C_1 - C_6 - C_5$	117.3 (7)	C_{16} C_{17} C_{18}	119.6 (6)
C1 $C6$ $C7$	1103(6)	C_{18} C_{17} H_{17}	120.2
C_{1}^{-}	123 4 (7)	N_{2} C_{18} C_{17} $C_$	120.2
C6_C7_H7	120.7	N2H18	110 3
$C_{0} = C_{1} = C_{1}$	120.2	112 - C10 - 1110 C17 C18 H18	117.5
0-0/-00	117./ (/)	U1/U10	117.5
Zn1—01—N1—C1	-119.9 (4)	C4—C5—C6—C1	1.6 (10)
Zn1—O1—N1—C9	61.5 (6)	C4—C5—C6—C7	-179.6 (7)
Zn1—O2—N2—C10	-96.9 (5)	C5—C6—C7—C8	-178.0 (7)

Zn1—O2—N2—C18	83.1 (5)	C6-C1-C2-C3	2.1 (9)
01—N1—C1—C2 01—N1—C1—C6	2.2 (7) -178.3 (5)	C7—C8—C9—N1	-1.6 (11)
01—N1—C9—C8	179.7 (5)	C9—N1—C1—C2	-179.2 (6)
O2-N2-C10-C11	-1.7 (7)	C9—N1—C1—C6	0.3 (8)
O2—N2—C10—C15	179.7 (5)	C10-N2-C18-C17	0.3 (9)
O2-N2-C18-C17	-179.7 (5)	C10-C11-C12-C13	-0.6 (11)
N1—C1—C2—C3	-178.4 (6)	C10-C15-C16-C17	0.3 (9)
N1-C1-C6-C5	177.6 (5)	C11—C10—C15—C14	2.1 (9)
N1-C1-C6-C7	-1.2 (8)	C11-C10-C15-C16	-178.5 (5)
N2-C10-C11-C12	-179.5 (6)	C11—C12—C13—C14	1.2 (12)
N2-C10-C15-C14	-179.4 (5)	C12-C13-C14-C15	0.0 (12)
N2-C10-C15-C16	0.0 (8)	C13-C14-C15-C10	-1.6 (10)
C1—N1—C9—C8	1.1 (9)	C13-C14-C15-C16	179.1 (7)
C1—C2—C3—C4	-0.1 (11)	C14—C15—C16—C17	179.6 (6)
C1—C6—C7—C8	0.7 (10)	C15-C10-C11-C12	-1.0 (9)
C2-C1-C6-C5	-2.9 (9)	C15—C16—C17—C18	-0.3 (10)
C2-C1-C6-C7	178.3 (6)	C16—C17—C18—N2	0.0 (10)
C2—C3—C4—C5	-1.2 (13)	C18—N2—C10—C11	178.3 (5)
C3—C4—C5—C6	0.4 (13)	C18—N2—C10—C15	-0.2 (8)