

Received 16 June 2022 Accepted 8 July 2022

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; 1,4-dihydropyridine ring; cyclohexene ring; quinoline ring system; van der Waals interactions; Hirshfeld surface analysis; disorder.

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis, characterization, crystal structure and Hirshfeld surface analysis of a hexahydroquinoline derivative: *tert*-butyl 4-([1,1'-biphenyl]-4-yl)-2,6,6trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate

Sema Öztürk Yıldırım,^{a,b} Mehmet Akkurt,^b Gökalp Çetin,^{c,d} Rahime Şimşek,^d Ray J. Butcher^e and Ajaya Bhattarai^f*

^aDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey, ^bDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24100 Erzincan, Turkey, ^dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye-Ankara, Turkey, ^eDepartment of Chemistry, Howard University, Washington DC 20059, USA, and ^fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal. *Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

The title compound, $C_{29}H_{33}NO_3$, crystallizes with three molecules (*A*, *B* and *C*) in the asymmetric unit. They differ in the twist of the phenyl and benzene rings of the 1,1'-biphenyl ring with respect to the plane of the 1,4-dihydropyridine ring. In all three molecules, the 1,4-dihydropyridine ring adopts a distorted boat conformation. The cyclohexene ring has an envelope conformation in molecules *A* and *B*, while it exhibits a distorted half-chair conformation for both the major and minor components in the disordered molecule *C*. In the crystal, molecules are linked by $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, forming layers parallel to (100) defining $R_4^1(6)$ and C(7) graph-set motifs. Additional $C-H\cdots\pi$ interactions consolidate the layered structure. Between the layers, van der Waals interactions stabilize the packing, as revealed by Hirshfeld surface analysis. The greatest contributions to the crystal packing are from $H\cdots H$ (69.6% in *A*, 69.9% in *B*, 70.1% in *C*), $C\cdots H/H\cdots C$ (20.3% in *A*, 20.6% in *B*, 20.3% in *C*) and $O\cdots H/H\cdots O$ (8.6% in *A*, 8.6% in *B*, 8.4% in *C*) interactions.

1. Chemical context

Chronic diseases are among the most common causes of death in the world, accompanied by difficulties and costs in treatment and health care. Therefore, preventing or treating chronic diseases is of paramount importance (Raghupathi & Raghupathi, 2018). Recent advances have shown that many diseases such as cancer, atherosclerosis or neurodegenerative diseases are triggered by inflammation (Furman *et al.*, 2019). Based on these findings, regulating inflammatory mediators and pathways has been suggested as a treatment strategy (Kany *et al.*, 2019).

Inflammatory stimuli that cause chronic inflammation initiate the production of inflammatory mediators such as interleukin-1 β (IL-1 β), interleukin-6 (IL-6) and tumor necrosis factor- α (TNF- α) as a result of the activation of signaling pathways. Receptors activated by inflammatory mediators induce chronic inflammation by various signaling pathways (nuclear factor κ -B (NF-KB), Janus kinase (JAK), signal transducer and activator of transcription (STAT). Inhibiting these pathways may be a promising approach for the treatment of chronic diseases associated with inflammation (Chen *et al.*, 2018).

Nifedipine, the first drug with a 1,4-dihydropyridine (1,4-DHP) ring, was introduced as a therapeutic agent as a result of intensive studies. The success of nifedipine as an anti-hypertensive drug has led to further studies and the discovery of other 1,4-DHP derivatives (De Luca *et al.*, 2019). Numerous compounds were obtained through modifications with respect to the 1,4-DHP ring. These studies also uncovered the idea of obtaining hexahydroquinoline derivatives by condensation of the 1,4-DHP scaffold with the cyclohexane ring system (Bladen *et al.*, 2014). In recent years, it has been found that 1,4-DHP and quinoline analogs have the potential to inhibit inflammation mediators and pathways, along with various other pharmacological activities (Costa *et al.*, 2010; Längle *et al.*, 2015; Kim *et al.*, 2018; Çetin *et al.*, 2022).

In the current study, *tert*-butyl 4-[(1,1'-biphenyl)-4-yl]-2,6,6trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate was obtained by condensation of the 1,4-DHP ring with a substituted cyclohexane ring using a modified Hantzsch method. The molecular structure of the compound was confirmed by spectroscopic methods such as IR, ¹H NMR, ¹³C

Figure 2

Overlay image of the three independent molecules of the title compound. While the terminal phenyl rings of molecules A and B coincide well, that of molecule C is not in the same plane with them, and is approximately normal to them. Only the major component of the disorder in molecule Cis shown.

NMR, and its composition by elemental analysis. In addition, single-crystal X-ray analysis was performed to elucidate the crystal structure of the compound. Independent of the current study, biological activity studies of the title compound are ongoing.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1) contains three independent molecules (denoted with suffixes A, B and

Figure 1

Views from the same direction of the three molecules in the asymmetric unit of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. (a) Molecule A, (b) molecule B, and (c) molecule C (only the major component of the disorder is shown).

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg4, Cg8, Cg12 and Cg13 are the centroids of the C18C–C23C, C18A–C23A, C18B–C23B, and C18B–C29B rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1C-H1NC\cdotsO1B^{i}$	0.92 (5)	1.94 (5)	2.843 (4)	165 (5)
$N1B - H1NB \cdots O1C$	0.95 (4)	1.88 (4)	2.811 (4)	168 (3)
$N1A - H1NA \cdots O1A^{ii}$	0.93 (5)	1.92 (5)	2.842 (4)	174 (4)
$C10A - H10B \cdots O1A^{ii}$	0.98	2.60	3.443 (5)	145
$C10B - H10F \cdots O1C$	0.98	2.47	3.302 (5)	143
$C13A - H13A \cdots O2A$	0.98	2.45	2.978 (7)	113
$C13B - H13D \cdots O2B$	0.98	2.47	3.023 (6)	115
$C15A - H15A \cdots O2A$	0.98	2.41	2.999 (7)	118
$C15B - H15D \cdots O2B$	0.98	2.41	2.965 (6)	116
$C15C - H15G \cdots O2C$	0.98	2.49	3.022 (5)	114
$C23A - H23A \cdots O2A^{ii}$	0.95	2.57	3.403 (4)	147
$C23B - H23B \cdots O2C$	0.95	2.55	3.389 (5)	147
$C23C - H23C \cdots O2B^{i}$	0.95	2.60	3.407 (4)	144
$C15A - H15B \cdots Cg13$	0.98	2.82	3.771 (6)	165
$C27A - H27A \cdots Cg4^{ii}$	0.95	2.75	3.578 (4)	146
$C27B - H27B \cdots Cg8$	0.95	2.63	3.493 (5)	150
$C27C - H27C \cdots Cg12^{iii}$	0.95	2.84	3.632 (7)	142

Symmetry codes: (i) x, y, z - 1; (ii) $-x + \frac{1}{2}$, y, $z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$, y, $z - \frac{1}{2}$.

C). They mainly differ in the twist of the phenyl (C24–C29) and benzene (C18–C23) rings of the 1,1'-biphenyl ring with respect to the plane of the 1,4-dihydropyridine ring (N1/C1–C4/C9). The corresponding dihedral angles amount to 89.26 (16) and 75.83 (19)° in molecule *A*, 88.34 (17) and 71.7 (2)° in molecule *B*, and 89.38 (17) and 83.6 (3)° in molecule *C*. The phenyl and benzene rings of the 1,1'-biphenyl ring make dihedral angles of 39.05 (19)° in *A*, 46.9 (2)° in *B*, and 33.5 (2)° in *C*. Fig. 2 shows an overlay plot of molecules *A*, *B* and *C*, with an r.m.s. deviation of 0.725 Å. Except for the atoms of the minor part of the disordered molecule *C* and the phenyl ring of the biphenyl group, the other atoms of molecule *C* and all atoms of molecules *A* and *B* are quite compatible and coincide with each other.

Figure 3

A view of the intermolecular $N-H\cdots O$ and $C-H\cdots O$ interactions in the crystal structure of the title compound projected along [100]. Only the major component of the disordered molecule *C* is shown.

In all three molecules, the 1,4-dihydropyridine ring adopts a distorted boat conformation with puckering parameters (Cremer & Pople, 1975) $Q_{\rm T} = 0.269$ (4) Å, $\theta = 104.5$ (9)° and $\varphi = 357.4$ (9)° in *A*, $Q_{\rm T} = 0.257$ (4) Å, $\theta = 73.1$ (9)° and $\varphi = 176.0$ (9)° in *B*, and $Q_{\rm T} = 0.303$ (4) Å, $\theta = 106.9$ (8)° and $\varphi = 356.2$ (8)° in *C*. The cyclohexene ring (C4–C9) has an envelope conformation in molecules *A* and *B* [the puckering parameters are $Q_{\rm T} = 0.430$ (4) Å, $\theta = 58.8$ (5)° and $\varphi = 179.9$ (6)° in *B*], while the major and minor components of the disordered cyclohexene rings in *C* exhibit a distorted half-chair conformation, with puckering parameters of $Q_{\rm T} = 0.451$ (9) Å, $\theta = 44.7$ (12)° and $\varphi = 161$ (2)° for the major component, and of $Q_{\rm T} = 0.44$ (2) Å, $\theta = 50$ (3)° and $\varphi = 206$ (5)° for the minor component.

Bond lengths and angles in the three molecules of the title compound are comparable with those of closely related structures detailed in section 5 (*Database survey*).

3. Supramolecular features

In the crystal, molecules are linked by $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 1, Fig. 3), forming layers parallel to (100), defining $R_4^1(6)$ and C(7) graph-set motifs (Bernstein *et al.*, 1995). Additional $C-H\cdots \pi$ interactions consolidate the layered arrangement (Table 1; Fig. 4). Between the layers, van der Waals interactions stabilize the packing, as revealed by Hirshfeld surface analysis.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Spackman et al., 2021) was used to construct Hirshfeld surfaces for the three independent molecules; the disorder of molecule C was included in the calculations. The d_{norm} mappings for molecule A were performed in the range -0.5982 to +2.4710 a.u., for molecule B in the range

Figure 4

A general view of a part of the molecular packing formed by $C-H\cdots\pi$ interactions in the crystal structure of the title compound. Only the major component of the disordered molecule *C* is shown.

Table 2 Summary of short interatomic contacts (Å) in the title compound.

Contact	Distance	Symmetry operation
$O1C \cdots H1NB$	1.88	<i>x</i> , <i>y</i> , <i>z</i>
$H1NC \cdot \cdot \cdot O1B$	1.94	x, y, -1 + z
$H10I \cdot \cdot \cdot H14B$	2.40	$1 - x, 1 - y, -\frac{1}{2} + z$
$C8C \cdot \cdot \cdot H16K$	3.07	$1 - x, -y, -\frac{1}{2} + z$
$H10G \cdot \cdot \cdot H13H$	2.43	$1 - x, 1 - y, -\frac{1}{2} + z$
C19C···H27A	2.86	$\frac{1}{2} - x, y, -\frac{1}{2} + z^2$
H26C···C20B	2.90	$\frac{1}{2} - x, y, -\frac{1}{2} + z$
$H17K \cdot \cdot \cdot H10E$	2.07	$1 - x, -y, -\frac{1}{2} + z$
$H16G \cdot \cdot \cdot H17A$	2.52	$\frac{1}{2} - x, -1 + y, -\frac{1}{2} + z$
H20C···H28C	2.56	$\frac{1}{2} - x, y, -\frac{1}{2} + z$
$O1A \cdots H1NA$	1.92	$\frac{1}{2} - x, y, -\frac{1}{2} + z$
$H7AA \cdots H15E$	2.49	x, 1 + y, z
$H10B \cdot \cdot \cdot H17D$	2.51	$1-x, 1-y, \frac{1}{2}+z$
$H16A \cdot \cdot \cdot H17F$	2.47	$-\frac{1}{2} + x, 1 - y, z$
C19A···H27B	2.89	x, y, z
H16B···C10B	2.97	$\frac{1}{2} - x, y, -\frac{1}{2} + z$
$H28A \cdot \cdot \cdot H20B$	2.42	$\frac{1}{2} - x, y, -\frac{1}{2} + z$

(a) View of the three-dimensional Hirshfeld surface for molecule A; (b) view of the three-dimensional Hirshfeld surface for molecule B; (c) view of the three-dimensional Hirshfeld surface for molecule C. Some intermolecular N-H···O and C-H···O interactions are shown as dashed lines.

Ta	ble	3

Percentage	contributions	of	interatomic	contacts	to	the	Hirshfeld
surfaces for	the molecules	A, I	B and C of th	e title cor	npo	und.	

Contact	% for <i>A</i>	% for <i>B</i>	% for <i>C</i>
$H \cdots H$	69.6	69.9	70.1
$C \cdots H/H \cdots C$	20.3	20.6	20.3
$O \cdot \cdot \cdot H/H \cdot \cdot \cdot O$	8.6	8.6	8.4
$N \cdots H/H \cdots N$	1.1	0.8	0.9
$\mathbf{C} \cdots \mathbf{C}$	0.5	0.1	0.4

-0.6131 to +2.5190 a.u., and for molecule C in the range -0.6097 to +2.4293 a.u.. On the d_{norm} surfaces, bright-red spots show the locations of $N-H\cdots O$ and $C-H\cdots O$ interactions (Fig. 5a for molecule A, Fig. 5b for molecule B, and Fig. 5c for molecule C).

Fingerprint plots (Fig. 6) reveal that $H \cdot \cdot H$ interactions make the largest contributions (69.6% for molecule A, 69.9% for molecule B, and 70.1% for molecule C) to the overall surface (Table 2). $C \cdots H/H \cdots C$ (20.3% for A, 20.6% for B, and 20.3% for C) contacts are also significant. Table 3 lists the contributions of additional, less notable interactions. As seen in Table 3, the relevant contacts around molecules A, B, and C are quite similar.

Molecule C

Figure 6

The two-dimensional fingerprint plots for molecules A, B and C showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $C \cdots H/H \cdots C$ and (d) $O \cdots H/H \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with the 1,4,5,6,7,8-hexahydroquinoline unit revealed seven closely related entries: ethyl 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [CSD refcode LOQCAX (I); Steiger et al., 2014], ethyl 4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [PUGCIE (II); Mookiah et al., 2009], (RR,SS)-methyl 4-(2,4-chlorophenyl)-2,7-dimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (RS,SR)-methyl 4-(2,4-chlorophenyl)-2,7-dimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [UCOLOO (III); Linden et al., 2006], ethyl 2,7,7-trimethyl-4-(1-methyl-1H-indol-3-yl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [NEQMON (IV); Öztürk Yildirim et al., 2013], (+/-)-methyl 4-(2,3-difluorophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate [DAYJET (V); Linden et al., 2005], benzyl 4-(3-chloro-2-fluorophenyl)-2methyl-5-oxo-4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridine-3carboxylate [IMEJOA (VI); Linden et al., 2011], and ethyl 4-(5-bromo-1*H*-indol-3-yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8hexahydroquinoline-3-carboxylate [PECPUK (VII); Gündüz et al., 2012].

In (I), hydrogen bonds are formed between the N-H group of one molecule and the carbonyl O atom in the cyclohexanone ring of an adjacent molecule. These hydrogen bonds link the molecules into extended chains running along [001]. In the crystal of (II), molecules are linked by $N-H \cdots O$ and O- $H \cdots O$ hydrogen bonds into layers parallel to (101). The network includes $R_4^4(30)$ and $R_4^4(34)$ graph-set motifs. In (III), an intermolecular N-H···O hydrogen bond between the amine group and the carbonyl O atom of the cyclohexenone ring of a neighboring molecule links the molecules into extended chains parallel to [101]. These interactions can be described by graph-set motif C(6). In the crystal of (IV), N-H···O hydrogen bonds connect the molecules into C(6) chains parallel to [010], and pairs of weak C-H···O hydrogen bonds link inversion-related chains into a ladder motif through $R_2^2(18)$ rings. A weak intramolecular C-H···O hydrogen bond is also observed. In (\mathbf{V}) , the crystal structure exhibits an intermolecular N-H···O hydrogen-bonding interaction involving the carbonyl O atom of the oxocyclohexene ring, whereby the molecules are linked into C(6) chains parallel to [100]. In (VI), the frequently observed intermolecular N-H···O hydrogen bond between the amine group and the carbonyl O atom of the oxocyclopentene ring of a neighboring molecule links the molecules into extended C(6) chains

Figure 7 Schematic synthetic route for the title compound.

parallel to [010]; there are no other significant intermolecular interactions. In the crystal of (**VII**), molecules are linked by pairs of $N-H\cdots O$ hydrogen bonds, forming dimers with $R_2^1(6)$ ring motifs. These dimers are connected by $N-H\cdots O$ hydrogen bonds, generating chains along [110]. A $C-H\cdots O$ contact occurs between the independent molecules.

6. Synthesis and crystallization

The title compound was synthesized *via* a Hantzsch reaction. 4,4-Dimethylcyclohexane-1,3-dione (1 mmol), [1,1'-biphenyl]-4-carbaldehyde (1 mmol), *tert*-butyl acetoacetate (1 mmol), and ammonium acetate (5 mmol) were refluxed for 8 h in absolute methanol (10 ml). The reaction mixture was monitored by TLC, and after completion of the reaction was cooled to room temperature. The obtained precipitate was filtered and recrystallized from ethanol for further purification. The synthetic route is shown in Fig. 7.

Yellowish solid, m.p. 520-522 K; yield: 41%. IR (ν , cm⁻¹) 3284 (N–H, stretching), 3067 (C–H stretching, aromatic), 2966 (C–H stretching, aliphatic) 1671 (C=O stretching, ester), 1597 (C=O stretching, ketone). ¹H NMR (DMSO-*d*₆) δ : 0.88 (3H; *s*; 6-CH₃), 0.97 (3H; *s*; 6-CH₃), 1.32 [9H, *s*, C(CH₃)₃], 1.70–1.71 (2H; *m*; quinoline H7), 2.23 (3H; *s*; 2-CH₃), 2.47–2.50 (2H; *m*; quinoline H8), 4.82 (1H; *s*; quinoline H4), 7.19–7.21 (2H, *m*, Ar-H), 7.27–7.31 (H, *m*, Ar-H), 7.38–7.48 (4H, *m*, Ar-H), 7.57–7.59 (2H, *m*, Ar-H), 8.98 (1H, *s*; NH). ¹³C NMR (DMSO-*d*₆) δ : 18.2, 22.9, 24.1, 25.1, 27.9, 34.1, 36.0, 40.0, 78.7, 104.6, 108.8, 126.0, 126.3, 127.0, 127.9, 128.7, 137.3, 140.1, 143.8, 147.1, 149.8, 166.4, 199.3. Analysis calculated for C₂₉H₃₃NO₃: C 78.52, H 7.5, N 3.16. Found: C 78.30, H 7.602, N 3.19.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. All C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.95 Å for aryl-H atoms, C-H = 0.99 Å for methylene groups, C-H = 1.00 Å for methine groups and C-H = 0.98 Å for methyl groups, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for other hydrogen atoms. The H atoms of the NH groups were found in a difference-Fourier map and refined freely (see Table 1).

In molecule *C*, except the fused carbon atoms (C4*C* and C9*C*) and the carbonyl oxygen atom (O1*C*) of the 6,6-dimethylcyclohex-2-en-1-one group (C4*C*-C5*C*/C5*F*-C6*C*/C6*F*-C7*C*/C7*F*-C8*C*/C8*F*-C9*C*-O1*C*-C16*C*/C16*F*-C17*C*/C17*F*), the other C atoms are disordered over two sets of sites with a refined occupancy ratio of 0.716 (4):0.284 (4). For the disordered components, the EADP instruction was used in the final cycles of the refinement.

Acknowledgements

RJB is grateful to Howard University Nanoscience Facility for access to liquid nitrogen. Authors' contributions are as follows.

Table 4Experimental details.

Crystal data C29H33NO3 Chemical formula M_r 443.56 Crystal system, space group Orthorhombic, Pca21 Temperature (K) 100 a, b, c (Å) 33.2247 (14), 19.0904 (7), 12.0370 (3) $V(Å^3)$ 7634.7 (5) Z 12 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 0.07 Crystal size (mm) $0.29 \times 0.17 \times 0.04$ Data collection SuperNova, Dual, Cu at zero, Atlas Diffractometer Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015) T_{\min}, T_{\max} 0.984. 0.997 69430, 26062, 13388 No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections Rint 0.091 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.815 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.077, 0.212, 1.02 No. of reflections 26062 No. of parameters 943 No. of restraints 13 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.58, -0.37

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), and PLATON (Spek, 2020).

Conceptualization, RS and SOY; methodology, RS and GC; investigation, RS and SOY; writing (original draft), GC and MA writing (review and editing of the manuscript), RS and SOY; crystal data production and validation, RJB and SOY; visualization, MA; funding acquisition, RJB; resources, AB, RJB and RS.

Funding information

RJB is grateful for funding from NSF (award 1205608) and the Partnership for Reduced Dimensional Materials for partial funding of this research, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. This study was supported by Hacettepe University Scientific Research Unit (Project No. THD-2020–18806).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bladen, C., Gündüz, M. G., Şimşek, R., Şafak, C. & Zamponi, G. W. (2014). Eur. J. Physiol. 466, 1355–1363.
- Çetin, G., Çetİn, B., Çolak, B., Aşan, M., Birlik Demirel, G., Cansaran-Duman, D., Akçelik, N. & Şimşek, R. (2022). J. Res. Pharm. **26**, 219–230.
- Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. (2018). *Oncotarget*, **9**, 7204–7218.
- Costa, S., Zimetti, F., Pedrelli, M., Cremonesi, G. & Bernini, F. (2010). *Pharmacol. Res.* 62, 265–270.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- De Luca, M., Ioele, G. & Ragno, G. (2019). Pharmaceutics, 11, 85.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N. & Slavich, G. M. (2019). *Nat. Med.* 25, 1822–1832.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Gündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). *Acta Cryst.* E68, 03404–03405.
- Kany, S., Vollrath, J. T. & Relja, B. (2019). Int. J. Mol. Sci. 20, 6008.
- Kim, B. R., Cho, Y. C. & Cho, S. (2018). BMB Rep. 51, 308-313.
- Längle, D., Marquardt, V., Heider, E., Vigante, B., Duburs, G., Luntena, I., Flötgen, D., Golz, C., Strohmann, C., Koch, O. & Schade, D. (2015). *Eur. J. Med. Chem.* 95, 249–266.
- Linden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). *Acta Cryst.* C**62**, 0227–0230.
- Linden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). *Acta Cryst.* C67, 080–084.
- Linden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). *Acta Cryst.* C61, 0731–0734.
- Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, 02664.
- Öztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). *Acta Cryst.* E**69**, 040–041.
- Raghupathi, W. & Raghupathi, V. (2018). Int. J. Environ. Res. Publ. Heal. 15, 431.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795.

Acta Cryst. (2022). E78, 798-803 [https://doi.org/10.1107/S2056989022007022]

Synthesis, characterization, crystal structure and Hirshfeld surface analysis of a hexahydroquinoline derivative: *tert*-butyl 4-([1,1'-biphenyl]-4-yl)-2,6,6-tri-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

Sema Öztürk Yıldırım, Mehmet Akkurt, Gökalp Çetin, Rahime Şimşek, Ray J. Butcher and Ajaya Bhattarai

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015\bbr021); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015\bbr021); data reduction: *CrysAlis PRO* (Rigaku OD, 2015\bbr021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a\bbr022); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b\bbr023); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012\bbr008); software used to prepare material for publication: *PLATON* (Spek, 2020\bbr025).

tert-Butyl 4-([1,1'-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

Crystal data

C₂₉H₃₃NO₃ $M_r = 443.56$ Orthorhombic, $Pca2_1$ a = 33.2247 (14) Å b = 19.0904 (7) Å c = 12.0370 (3) Å V = 7634.7 (5) Å³ Z = 12F(000) = 2856

Data collection

SuperNova, Dual, Cu at zero, Atlas diffractometer Radiation source: micro-focus sealed X-ray tube Detector resolution: 10.6501 pixels mm⁻¹ ω scans Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2015\bbr021) $T_{\min} = 0.984, T_{\max} = 0.997$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.077$ $wR(F^2) = 0.212$ S = 1.0226062 reflections $D_x = 1.158 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9135 reflections $\theta = 3.7-29.8^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 KPlate, colorless $0.28 \times 0.17 \times 0.04 \text{ mm}$

69430 measured reflections 26062 independent reflections 13388 reflections with $I > 2\sigma(I)$ $R_{int} = 0.091$ $\theta_{max} = 35.4^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -52 \rightarrow 45$ $k = -30 \rightarrow 18$ $l = -12 \rightarrow 19$

943 parameters13 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0858P)^2 + 0.3289P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
O1C	0.46360 (9)	0.08706 (13)	0.3497 (2)	0.0319 (6)	
O2C	0.45841 (11)	0.33966 (14)	0.4075 (2)	0.0401 (8)	
O3C	0.48150 (10)	0.41061 (13)	0.2723 (2)	0.0333 (7)	
N1C	0.48126 (9)	0.24320 (15)	0.0522 (2)	0.0210 (6)	
H1NC	0.4898 (17)	0.253 (3)	-0.019 (4)	0.054 (15)*	
C1C	0.47707 (11)	0.30241 (18)	0.1187 (3)	0.0217 (7)	
C2C	0.46516 (11)	0.29472 (18)	0.2253 (3)	0.0215 (7)	
C3C	0.44911 (11)	0.22483 (17)	0.2661 (3)	0.0195 (6)	
H3CA	0.457116	0.219390	0.345766	0.023*	
C4C	0.46876 (12)	0.16588 (18)	0.2003 (3)	0.0223 (7)	
C9C	0.48166 (11)	0.17716 (18)	0.0953 (3)	0.0216 (7)	
C10C	0.48761 (13)	0.36843 (19)	0.0585 (3)	0.0280 (8)	
H10G	0.469779	0.406270	0.083077	0.042*	
H10H	0.484358	0.361273	-0.021631	0.042*	
H10I	0.515606	0.381025	0.074573	0.042*	
C11C	0.46732 (13)	0.34996 (18)	0.3106 (3)	0.0252 (8)	
C12C	0.48964 (15)	0.4703 (2)	0.3458 (3)	0.0363 (10)	
C13C	0.52017 (17)	0.4500 (3)	0.4339 (4)	0.0531 (14)	
H13G	0.506416	0.426122	0.495179	0.080*	
H13H	0.533542	0.492149	0.461951	0.080*	
H13I	0.540253	0.418457	0.401344	0.080*	
C14C	0.5076 (2)	0.5231 (2)	0.2654 (4)	0.0633 (17)	
H14G	0.489180	0.529980	0.202794	0.095*	
H14H	0.533472	0.505606	0.237940	0.095*	
H14I	0.511733	0.567845	0.303760	0.095*	
C15C	0.45081 (16)	0.4972 (2)	0.3945 (4)	0.0455 (12)	
H15G	0.440597	0.463492	0.449029	0.068*	
H15H	0.430940	0.503272	0.335077	0.068*	
H15I	0.455634	0.542314	0.430975	0.068*	
C5C	0.4736 (4)	0.0987 (5)	0.2485 (11)	0.0182 (16)	0.716 (4)
C6C	0.4829 (2)	0.0353 (4)	0.1732 (5)	0.0231 (13)	0.716 (4)
C7C	0.51262 (18)	0.0589 (3)	0.0831 (4)	0.0254 (10)	0.716 (4)
H7CA	0.538459	0.071720	0.118645	0.030*	0.716 (4)
H7CB	0.517837	0.019137	0.032286	0.030*	0.716 (4)
C8C	0.4976 (7)	0.1206 (6)	0.0158 (11)	0.0219 (16)	0.716 (4)
H8CA	0.475884	0.105316	-0.034922	0.026*	0.716 (4)

H8CB	0.519848	0.139966	-0.029617	0.026*	0.716 (4)
C16C	0.44347 (19)	0.0096 (3)	0.1220 (5)	0.0347 (12)	0.716 (4)
H16G	0.425520	-0.006979	0.181001	0.052*	0.716 (4)
H16H	0.449072	-0.028783	0.070302	0.052*	0.716 (4)
H16I	0.430524	0.048234	0.081918	0.052*	0.716 (4)
C17C	0.5016 (2)	-0.0234 (3)	0.2432 (5)	0.0392 (14)	0.716 (4)
H17G	0.483035	-0.036371	0.303037	0.059*	0.716 (4)
H17H	0.527040	-0.007118	0.275277	0.059*	0.716 (4)
H17I	0.506661	-0.064298	0.195979	0.059*	0.716 (4)
C5F	0.4673 (10)	0.0923 (15)	0.258 (3)	0.0182 (16)	0.284 (4)
C6F	0.4902 (6)	0.0350 (11)	0.1928 (15)	0.0231 (13)	0.284 (4)
C7F	0.4842 (5)	0.0458 (6)	0.0679 (10)	0.0254 (10)	0.284 (4)
H7FA	0.500950	0.011719	0.026745	0.030*	0.284 (4)
H7FB	0.455677	0.036907	0.048734	0.030*	0.284 (4)
C8F	0.495 (2)	0.1197 (14)	0.032 (3)	0.0219 (16)	0.284 (4)
H8FA	0.525239	0.122302	0.030151	0.026*	0.284 (4)
H8FB	0.485832	0.126208	-0.044762	0.026*	0.284 (4)
C16F	0.4713 (5)	-0.0345 (7)	0.2282 (12)	0.0347 (12)	0.284 (4)
H16J	0.442582	-0.034222	0.210125	0.052*	0.284 (4)
H16K	0.474775	-0.040681	0.308485	0.052*	0.284 (4)
H16L	0.484577	-0.073023	0.188848	0.052*	0.284 (4)
C17F	0.5351 (5)	0.0358 (8)	0.2264 (11)	0.0392 (14)	0.284 (4)
H17J	0.545785	0.083378	0.218202	0.059*	0.284 (4)
H17K	0.550199	0.003752	0.178458	0.059*	0.284 (4)
H17L	0.537749	0.020880	0.303986	0.059*	0.284 (4)
C18C	0.40349 (11)	0.22258 (16)	0.2602 (3)	0.0205 (7)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C19C	0.37983 (13)	0.23298 (19)	0.3550 (3)	0.0287 (8)	
H19C	0.392433	0.238312	0.425295	0.034*	
C20C	0.33815 (13)	0.2356 (2)	0.3474 (3)	0.0334 (9)	
H20C	0.322649	0.241551	0.413031	0.040*	
C21C	0.31872 (13)	0.22971 (19)	0.2458 (3)	0.0314 (8)	
C22C	0.34244 (13)	0.2192 (2)	0.1517 (3)	0.0307 (8)	
H22C	0.329790	0.214837	0.081296	0.037*	
C23C	0.38374 (12)	0.21487 (19)	0.1584 (3)	0.0255 (7)	
H23C	0.399005	0.206566	0.092969	0.031*	
C24C	0.27417 (14)	0.2351 (2)	0.2377 (4)	0.0413 (10)	
C25C	0.25248 (19)	0.2794 (3)	0.3068 (6)	0.0682 (17)	
H25C	0.266339	0.305737	0.361770	0.082*	
C26C	0.2112 (2)	0.2862 (4)	0.2975 (7)	0.082(2)	
H26C	0.197001	0.316292	0.346652	0.098*	
C27C	0.19067 (19)	0.2494 (4)	0.2174 (6)	0.075 (2)	
H27C	0.162381	0.255019	0.210179	0.090*	
C28C	0.21126 (18)	0.2037(3)	0.1465 (6)	0.0662 (17)	
H28C	0.197013	0.177839	0.091665	0.079*	
C29C	0.25298 (16)	0.1963 (3)	0.1569 (5)	0.0510 (12)	
H29C	0.267107	0.165141	0.109322	0.061*	
C1B	0.42485 (12)	0.13678 (18)	0.6165 (3)	0.0226 (7)	
01B	0.52165 (8)	0.27146 (15)	0.8489 (2)	0.0301 (6)	
~	0.0 - 1 00 (0)	··-··(··)	····· (-)		

O2B	0.39953 (9)	0.13889 (15)	0.9060 (2)	0.0337 (7)
O3B	0.36660 (9)	0.08654 (15)	0.7645 (2)	0.0352 (7)
N1B	0.45666 (10)	0.16087 (16)	0.5509 (2)	0.0238 (6)
H1NB	0.4580 (11)	0.1419 (18)	0.478 (3)	0.015 (9)*
C2B	0.42144 (11)	0.15947 (18)	0.7226 (3)	0.0215 (7)
C3B	0.44784 (11)	0.21896 (17)	0.7645 (3)	0.0192 (6)
H3BA	0.455138	0.208552	0.843420	0.023*
C4B	0.48650 (11)	0.22308 (17)	0.6980 (3)	0.0202 (7)
C5B	0.52170 (11)	0.25356 (17)	0.7503(3)	0.0214(7)
C6B	0.56081 (13)	0.26266(17)	0.6833 (3)	0.0283(8)
C7B	0.55222(14)	0.2021(2) 0.2632(2)	0.5602(3)	0.0203(0) 0.0353(9)
H7BA	0.578069	0.260824	0.519484	0.042*
H7BR	0.539192	0.308243	0.540951	0.042*
C8B	0.539192 0.52497 (12)	0.300243 0.2027(2)	0.5206 (3)	0.042 0.0274 (8)
HSBA	0.516517	0.2027 (2)	0.442931	0.0274 (0)
HSBR	0.540204	0.158121	0.522827	0.033*
COR	0.340204 0.48827 (12)	0.136121 0.10603 (18)	0.522027 0.5040(3)	0.033
C10D	0.40027(12)	0.19095(10)	0.3940(3)	0.0217(7)
	0.39848 (14)	0.0833(2)	0.5509 (5)	0.0327 (9)
	0.370242	0.099190	0.505157	0.049
HIUE	0.402363	0.038514	0.588696	0.049*
HIUF	0.405593	0.084498	0.477890	0.049*
CIIB	0.39505 (12)	0.12824 (19)	0.8071 (3)	0.0249 (7)
C12B	0.34032 (15)	0.0438 (2)	0.8350 (4)	0.0408 (11)
C13B	0.36627 (19)	-0.0084 (3)	0.8969 (5)	0.0636 (16)
H13D	0.382559	0.016253	0.952372	0.095*
H13E	0.384013	-0.032506	0.844298	0.095*
H13F	0.349019	-0.042810	0.934182	0.095*
C14B	0.31430 (18)	0.0074 (3)	0.7477 (4)	0.0605 (16)
H14D	0.300055	0.042709	0.703607	0.091*
H14E	0.294700	-0.023052	0.784723	0.091*
H14F	0.331456	-0.020787	0.698874	0.091*
C15B	0.31514 (17)	0.0884 (3)	0.9105 (4)	0.0538 (14)
H15D	0.332446	0.110615	0.966285	0.081*
H15E	0.295027	0.059134	0.947783	0.081*
H15F	0.301516	0.124668	0.866833	0.081*
C16B	0.58283 (17)	0.3280 (3)	0.7172 (5)	0.0588 (15)
H16D	0.567336	0.369113	0.693858	0.088*
H16E	0.609364	0.328881	0.681709	0.088*
H16F	0.586101	0.328634	0.798126	0.088*
C17B	0.58741 (17)	0.1989 (3)	0.7168 (4)	0.0548 (14)
H17D	0.614125	0.203879	0.683244	0.082*
H17E	0.574862	0.155539	0.690542	0.082*
H17F	0.590032	0.197348	0.797901	0.082*
C18B	0.42474 (11)	0.28796 (17)	0.7628 (3)	0.0201 (6)
C19B	0.40710 (11)	0.31303 (19)	0.8600 (3)	0.0236 (7)
H19B	0.411061	0.288512	0.927788	0.028*
C20B	0.38374 (12)	0.37360 (19)	0.8589 (3)	0.0278 (8)
H20B	0.372096	0.390038	0.926144	0.033*

C21B	0.37724 (12)	0.41026 (19)	0.7609 (3)	0.0271 (8)
C22B	0.39484 (12)	0.38486 (19)	0.6634 (3)	0.0270 (8)
H22B	0.390634	0.408871	0.595268	0.032*
C23B	0.41843 (12)	0.32481 (18)	0.6654 (3)	0.0243 (7)
H23B	0.430470	0.308722	0.598470	0.029*
C24B	0.35100 (13)	0.4735 (2)	0.7599 (3)	0.0306 (8)
C25B	0.32067 (16)	0.4813 (3)	0.6810 (4)	0.0496 (12)
H25B	0.317420	0.446661	0.624996	0.059*
C26B	0.29521 (18)	0.5386 (3)	0.6827(5)	0.0590 (15)
H26B	0.274837	0.543358	0.627813	0.071*
C27B	0.29953(17)	0 5892 (2)	0.7652 (4)	0.0494(12)
H27B	0.281795	0.628257	0.767420	0.059*
C28B	0.32936 (16)	0.5828(2)	0.8431(4)	0.0449(11)
H28B	0.332575	0.617497	0.899039	0.054*
C29B	0.35499 (15)	0.5249(2)	0.8398(4)	0.0392(10)
H29B	0.375687	0.520736	0.893877	0.0372 (10)
014	0.19045 (8)	0.90494 (14)	0.6522(2)	0.0291 (6)
024	0.15045(0)	0.70474(14) 0.77814(17)	0.0522(2)	0.0291(0) 0.0413(8)
02A	0.31373(10) 0.35740(0)	0.77814(17) 0.75149(15)	0.3880(2) 0.7200(2)	0.0413(8) 0.0327(6)
N1A	0.33749(9) 0.27887(10)	0.75149(15) 0.85463(16)	0.7299(2)	0.0327(0)
	0.27887(10) 0.2860(14)	0.83403(10)	0.9408(2)	0.0223(0) 0.034(12)*
	0.2009(14) 0.20582(12)	0.872(2)	1.013(4)	$0.034(12)^{-1}$
C1A C2A	0.30383(12) 0.20537(11)	0.01/9/(19)	0.6791(3) 0.7730(3)	0.0234(7)
C2A	0.29337(11) 0.25278(11)	0.00330(10)	0.7730(3)	0.0217(7)
	0.23278 (11)	0.81738(17)	0.7510(5)	0.0210(7)
HJAA	0.254555	0.833656	0.652/1/	0.026*
C4A	0.23328 (11)	0.8/495(17)	0.7985 (3)	0.0201 (7)
CSA	0.20096 (11)	0.91507 (18)	0.7502 (3)	0.0225 (7)
C6A	0.1/859 (12)	0.96972 (19)	0.8190 (3)	0.0248 (7)
C/A	0.20552 (13)	0.9979 (2)	0.9126 (3)	0.0334 (9)
H/AA	0.226618	1.028171	0.8/98/1	0.040*
H/AB	0.189038	1.027278	0.962894	0.040*
C8A	0.22563 (12)	0.9401 (2)	0.9804 (3)	0.0258 (8)
H8AA	0.245670	0.960979	1.031508	0.031*
H8AB	0.205142	0.915549	1.025665	0.031*
C9A	0.24611 (12)	0.88866 (17)	0.9046 (3)	0.0213 (7)
C10A	0.34394 (12)	0.8005 (2)	0.9392 (3)	0.0280 (8)
H10A	0.348828	0.749983	0.934835	0.042*
H10B	0.341518	0.814513	1.017266	0.042*
H10C	0.366455	0.825680	0.904907	0.042*
C11A	0.32364 (12)	0.77620 (19)	0.6876 (3)	0.0244 (7)
C12A	0.39117 (12)	0.7288 (2)	0.6574 (3)	0.0343 (9)
C13A	0.4052 (2)	0.7882 (3)	0.5884 (6)	0.082 (2)
H13A	0.385439	0.797594	0.529805	0.123*
H13B	0.431160	0.776395	0.554694	0.123*
H13C	0.408238	0.829931	0.635093	0.123*
C14A	0.42246 (17)	0.7077 (5)	0.7437 (5)	0.086 (2)
H14A	0.434532	0.749834	0.776152	0.128*
H14B	0.443469	0.679505	0.708135	0.128*

H14C	0.409493	0.680156	0.802371	0.128*
C15A	0.37950 (17)	0.6669 (3)	0.5897 (5)	0.0580 (15)
H15A	0.357515	0.679747	0.539431	0.087*
H15B	0.370586	0.629061	0.638992	0.087*
H15C	0.402698	0.651017	0.546218	0.087*
C16A	0.14186 (14)	0.9325 (2)	0.8690 (4)	0.0414 (11)
H16A	0.123619	0.918108	0.809204	0.062*
H16B	0.127771	0.964496	0.919351	0.062*
H16C	0.150750	0.891041	0.910324	0.062*
C17A	0.16505 (16)	1.0306 (2)	0.7470 (4)	0.0450 (11)
H17A	0.149466	1.012812	0.683909	0.068*
H17B	0.188688	1.055973	0.719545	0.068*
H17C	0.148257	1.062366	0.791092	0.068*
C18A	0.22898 (11)	0.74917 (18)	0.7339 (3)	0.0211 (7)
C19A	0.22517 (12)	0.70862 (19)	0.6374 (3)	0.0255 (8)
H19A	0.235632	0.725514	0.569005	0.031*
C20A	0.20609 (13)	0.64357 (19)	0.6413 (3)	0.0281 (8)
H20A	0.203371	0.617012	0.575007	0.034*
C21A	0.19106 (12)	0.61693 (18)	0.7399 (3)	0.0262 (7)
C22A	0.19480 (12)	0.6574 (2)	0.8352 (3)	0.0296 (8)
H22A	0.184586	0.640152	0.903634	0.035*
C23A	0.21326 (12)	0.7228 (2)	0.8321 (3)	0.0262 (8)
H23A	0.215120	0.749805	0.898261	0.031*
C24A	0.17181 (13)	0.5460 (2)	0.7452 (3)	0.0318 (9)
C25A	0.17811 (16)	0.5014 (2)	0.8345 (4)	0.0472 (12)
H25A	0.194331	0.516414	0.895040	0.057*
C26A	0.16085 (19)	0.4349 (3)	0.8364 (5)	0.0583 (15)
H26A	0.165798	0.404538	0.897385	0.070*
C27A	0.13681 (17)	0.4132 (2)	0.7507 (5)	0.0480 (12)
H27A	0.125111	0.367771	0.752173	0.058*
C28A	0.12964 (17)	0.4572 (2)	0.6627 (4)	0.0490 (13)
H28A	0.112501	0.442335	0.604053	0.059*
C29A	0.14713 (15)	0.5229 (2)	0.6584 (4)	0.0415 (11)
H29A	0.142360	0.552467	0.596335	0.050*

	Atomic	displ	lacement	parameters	(A^2)
--	--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01C	0.051 (2)	0.0247 (13)	0.0196 (12)	0.0041 (12)	0.0034 (12)	0.0022 (10)
O2C	0.069 (2)	0.0285 (14)	0.0226 (13)	-0.0081 (15)	0.0078 (13)	-0.0045 (11)
O3C	0.052 (2)	0.0240 (13)	0.0240 (13)	-0.0068 (12)	0.0055 (12)	-0.0046 (10)
N1C	0.0224 (16)	0.0256 (14)	0.0149 (12)	-0.0024 (12)	0.0018 (11)	-0.0009 (11)
C1C	0.0212 (19)	0.0229 (16)	0.0210 (15)	0.0036 (14)	-0.0036 (12)	0.0010 (12)
C2C	0.0246 (19)	0.0239 (16)	0.0161 (14)	0.0031 (14)	-0.0019 (12)	-0.0019 (12)
C3C	0.0234 (18)	0.0215 (15)	0.0136 (13)	0.0037 (13)	-0.0006 (12)	-0.0008 (12)
C4C	0.023 (2)	0.0247 (16)	0.0187 (15)	0.0021 (14)	-0.0022 (12)	-0.0013 (12)
C9C	0.0209 (19)	0.0270 (17)	0.0168 (14)	0.0012 (14)	-0.0027 (12)	-0.0021 (12)
C10C	0.035 (2)	0.0270 (17)	0.0223 (16)	-0.0047 (16)	0.0009 (15)	0.0011 (14)

C11C	0.034(2)	0.0207 (16)	0.0205 (16)	0.0028 (15)	0.0010 (14)	-0.0016(12)
C12C	0.053 (3)	0.0259 (19)	0.0297 (19)	-0.0027(19)	0.0014 (19)	-0.0097(16)
C13C	0.053(4)	0.0203(13)	0.061(3)	0.006(2)	-0.017(3)	-0.021(2)
C14C	0.110 (5)	0.035(2)	0.045(3)	-0.030(3)	0.015(3)	-0.012(2)
C15C	0.051(3)	0.035(2) 0.034(2)	0.013(3) 0.052(3)	0.000(2)	-0.004(2)	-0.012(2)
C5C	0.031(5)	0.031(2)	0.032(3)	-0.002(2)	0.001(2)	0.01(2)
C6C	0.017(3) 0.028(4)	0.021(3) 0.0228(17)	0.017(3)	0.002(2)	-0.002(2)	-0.002(2)
C7C	0.020(1)	0.0220(17)	0.015(3)	0.001(2)	0.002(2)	-0.002(2)
C8C	0.029(3) 0.028(4)	0.022(2)	0.020(2)	0.003(2) 0.0022(17)	0.001(2) 0.005(4)	-0.0020(19)
C16C	0.020(4)	0.0200(10)	0.009(3)	0.0022(17)	0.002(2)	-0.0020(1)
C17C	0.042(4)	0.030(3)	0.032(3)	0.001(2)	-0.002(2)	-0.003(2)
C5F	0.033(4)	0.033(3)	0.027(3)	-0.002(3)	0.002(2)	0.003(2)
CAE	0.017(3)	0.021(3)	0.017(3)	0.002(2)	-0.003(2)	-0.001(2)
C7F	0.020(4)	0.0228(17)	0.019(3)	0.004(2)	0.002(2)	-0.002(2)
CPE	0.029(3)	0.022(2)	0.020(2)	0.003(2)	0.001(2)	-0.0031(17)
C16F	0.028(4)	0.0290(18)	0.009(3)	0.0022(17)	0.003(4)	-0.0020(19)
C10F	0.042(4)	0.030(3)	0.032(3)	0.001(2)	0.002(2)	-0.003(2)
	0.038(4)	0.033(3)	0.027(3)	0.020(3)	-0.002(2)	-0.003(2)
C10C	0.0203(19)	0.0102(13)	0.0189(14)	0.0028(13)	0.0040(13)	0.0023(12)
C19C	0.035(2)	0.0301(19)	0.0229(17)	0.0003(17)	0.0003(13)	0.0023(14)
C20C	0.031(2)	0.037(2)	0.032(2)	0.0077(18)	0.0126(17)	0.0007(17)
	0.026(2)	0.02/1(18)	0.041(2)	0.0035 (16)	0.0062(17)	0.0057(16)
C22C	0.024(2)	0.035(2)	0.032(2)	-0.0013(17)	-0.0020(16)	0.0040 (16)
C23C	0.025 (2)	0.0289 (18)	0.0231 (16)	-0.0002 (15)	0.0003 (14)	0.0007(14)
C24C	0.026 (2)	0.044 (2)	0.054 (3)	0.0030 (19)	0.0069 (19)	0.012 (2)
C25C	0.034 (3)	0.071 (4)	0.099 (5)	0.014 (3)	0.014 (3)	-0.007(3)
C26C	0.035 (4)	0.084 (5)	0.126 (6)	0.016 (3)	0.021 (4)	0.003 (4)
C27C	0.024 (3)	0.084 (4)	0.116 (6)	0.011 (3)	0.006 (3)	0.031 (4)
C28C	0.035 (3)	0.082 (4)	0.082 (4)	-0.003 (3)	-0.005 (3)	0.031 (3)
C29C	0.031 (3)	0.059 (3)	0.063 (3)	-0.003 (2)	-0.001 (2)	0.017 (3)
C1B	0.026 (2)	0.0222 (16)	0.0201 (15)	0.0013 (14)	-0.0041 (13)	0.0027 (12)
O1B	0.0243 (15)	0.0471 (16)	0.0189 (12)	-0.0089 (12)	0.0020 (10)	-0.0034 (11)
O2B	0.0331 (18)	0.0481 (17)	0.0200 (12)	-0.0136 (13)	0.0004 (11)	-0.0024 (11)
O3B	0.0350 (18)	0.0450 (16)	0.0257 (13)	-0.0183 (13)	0.0066 (12)	-0.0055 (12)
N1B	0.0297 (18)	0.0278 (15)	0.0139 (12)	0.0022 (13)	-0.0001 (11)	-0.0024 (11)
C2B	0.0207 (18)	0.0262 (16)	0.0176 (15)	0.0014 (14)	-0.0003 (12)	0.0002 (12)
C3B	0.0215 (17)	0.0222 (15)	0.0140 (13)	-0.0005 (13)	-0.0007 (12)	0.0008 (12)
C4B	0.0200 (18)	0.0220 (16)	0.0187 (15)	0.0037 (13)	0.0012 (12)	0.0027 (12)
C5B	0.0205 (18)	0.0240 (16)	0.0198 (16)	0.0010 (13)	0.0025 (12)	0.0043 (12)
C6B	0.030 (2)	0.0313 (19)	0.0232 (17)	-0.0034 (17)	0.0063 (14)	-0.0010 (14)
C7B	0.032 (2)	0.042 (2)	0.031 (2)	-0.0033 (19)	0.0056 (17)	0.0034 (17)
C8B	0.025 (2)	0.038 (2)	0.0189 (15)	0.0042 (17)	0.0052 (13)	-0.0001 (14)
C9B	0.026 (2)	0.0226 (16)	0.0160 (14)	0.0043 (14)	0.0009 (13)	0.0024 (12)
C10B	0.035 (2)	0.036 (2)	0.0268 (18)	-0.0076 (18)	-0.0038 (16)	-0.0062 (16)
C11B	0.022 (2)	0.0288 (18)	0.0237 (16)	-0.0002 (15)	0.0001 (13)	-0.0028 (13)
C12B	0.044 (3)	0.043 (2)	0.035 (2)	-0.025 (2)	0.0019 (19)	0.0035 (18)
C13B	0.065 (4)	0.048 (3)	0.078 (4)	-0.016 (3)	0.009 (3)	0.020 (3)
C14B	0.059 (4)	0.073 (3)	0.050 (3)	-0.044 (3)	0.014 (2)	-0.018 (3)
C15B	0.044 (3)	0.072 (3)	0.046 (3)	-0.023 (3)	0.020 (2)	-0.005 (2)

C16B	0.038(3)	0.082(4)	0.056(3)	-0.022(3)	0.014(2)	-0.004(3)
C17B	0.030(3) 0.045(3)	0.082(1) 0.083(4)	0.036(3)	0.022(3)	0.011(2) 0.002(2)	0.009(2)
C18B	0.0179(17)	0.003(1)	0.0190(14)	0.020(3)	-0.002(2)	-0.0010(12)
C19B	0.023(2)	0.0232(13) 0.0314(18)	0.0169(15)	0.00000(15)	-0.0006(12)	-0.0004(13)
C20B	0.026(2)	0.0313(19)	0.0254(17)	0.0046 (16)	0.0028(14)	-0.0054(14)
C21B	0.0221(19)	0.0273(18)	$0.022 \times (17)$ 0.0318 (18)	0.0031 (14)	0.00020(11)	0.0012 (15)
C22B	0.0221(1))	0.0273(10) 0.0312(19)	0.0216(16) 0.0225(16)	0.0056(16)	-0.0022(14)	0.0012(13)
C23B	0.026(2)	0.0274(17)	0.0193 (16)	0.0041 (15)	0.0021(13)	-0.0009(13)
C24B	0.029(2)	0.0309(19)	0.0322(19)	0.0077 (16)	0.0048(16)	0.0023 (16)
C25B	0.040(3)	0.048 (3)	0.061 (3)	0.011 (2)	-0.007(2)	-0.001(2)
C26B	0.040(3)	0.056 (3)	0.081 (4)	0.021(3)	-0.009(3)	0.001(3)
C27B	0.043(3)	0.043(2)	0.063(3)	0.017(2)	0.008(2)	0.001(2)
C28B	0.052(3)	0.035(2)	0.047(3)	0.008(2)	0.015(2)	-0.0005(19)
C29B	0.040(3)	0.035(2)	0.043(2)	0.0089(19)	0.009(2)	0.0032 (18)
01A	0.0263(15)	0.0419(15)	0.0191(12)	0.0097(12)	-0.0028(10)	-0.0048(11)
O2A	0.0344 (18)	0.071 (2)	0.0184 (13)	0.0237 (16)	0.0006 (11)	-0.0042(13)
03A	0.0216 (15)	0.0526(17)	0.0237(13)	0.0112 (13)	0.0013 (10)	-0.0044(12)
NIA	0.0264 (17)	0.0281(15)	0.0130(12)	-0.0003(13)	-0.0024(11)	-0.0015(11)
C1A	0.024 (2)	0.0279 (17)	0.0187 (15)	-0.0025(15)	-0.0002(12)	0.0023 (12)
C2A	0.0217(19)	0.0252 (16)	0.0181 (15)	0.0023 (14)	0.0000(12)	-0.0027(13)
C3A	0.0218 (18)	0.0272 (17)	0.0158 (13)	0.0028 (14)	0.0011 (12)	-0.0007(12)
C4A	0.0225 (19)	0.0212 (15)	0.0167 (14)	0.0018 (14)	0.0018 (12)	-0.0013(12)
C5A	0.0261 (19)	0.0263 (16)	0.0150 (15)	0.0004 (14)	0.0015 (13)	-0.0008(12)
C6A	0.025 (2)	0.0272 (17)	0.0223 (16)	0.0063 (15)	0.0007 (13)	-0.0014(13)
C7A	0.031 (2)	0.037 (2)	0.0323 (19)	0.0028 (18)	0.0019 (16)	-0.0064(16)
C8A	0.026 (2)	0.0319 (19)	0.0198 (15)	0.0006 (16)	0.0022 (13)	-0.0072(14)
C9A	0.0247 (19)	0.0229 (15)	0.0162 (14)	-0.0021(14)	0.0027 (12)	-0.0017(12)
C10A	0.023 (2)	0.040 (2)	0.0214 (16)	0.0038 (16)	-0.0018(14)	-0.0011(15)
C11A	0.0205 (19)	0.0312 (18)	0.0217 (16)	0.0027 (15)	-0.0003(13)	-0.0020(13)
C12A	0.0164 (19)	0.058 (3)	0.0289 (19)	0.0097 (18)	0.0023 (14)	-0.0045 (18)
C13A	0.058 (4)	0.076 (4)	0.111 (5)	0.008 (3)	0.055 (4)	0.021 (4)
C14A	0.030 (3)	0.178 (7)	0.049 (3)	0.045 (4)	-0.011(2)	-0.028 (4)
C15A	0.035 (3)	0.076 (4)	0.063 (3)	0.013 (3)	0.010 (2)	-0.025 (3)
C16A	0.036 (3)	0.046 (2)	0.043 (2)	0.000 (2)	0.0089 (19)	-0.0111 (19)
C17A	0.052 (3)	0.039 (2)	0.044 (3)	0.014 (2)	-0.002(2)	-0.003 (2)
C18A	0.0194 (18)	0.0256 (16)	0.0184 (15)	0.0031 (14)	-0.0036 (12)	-0.0006(12)
C19A	0.029 (2)	0.0271 (17)	0.0209 (16)	0.0026 (15)	-0.0019 (14)	-0.0017 (13)
C20A	0.033 (2)	0.0278 (18)	0.0240 (17)	0.0047 (16)	-0.0043 (15)	-0.0067 (14)
C21A	0.024 (2)	0.0237 (16)	0.0306 (19)	0.0052 (14)	-0.0006 (14)	-0.0020 (14)
C22A	0.029 (2)	0.035 (2)	0.0247 (18)	-0.0005 (17)	0.0003 (15)	0.0006 (15)
C23A	0.027 (2)	0.0324 (19)	0.0188 (16)	0.0003 (16)	-0.0011 (13)	-0.0038(13)
C24A	0.029 (2)	0.0309 (19)	0.035 (2)	0.0008 (16)	0.0068 (16)	-0.0031 (16)
C25A	0.048 (3)	0.037 (2)	0.056 (3)	-0.007 (2)	-0.003 (2)	0.005 (2)
C26A	0.068 (4)	0.035 (2)	0.072 (4)	-0.005 (3)	0.010 (3)	0.012 (2)
C27A	0.050 (3)	0.033 (2)	0.061 (3)	-0.008 (2)	0.012 (2)	-0.006 (2)
C28A	0.049 (3)	0.041 (3)	0.057 (3)	-0.011 (2)	0.013 (2)	-0.016 (2)
C29A	0.044 (3)	0.035 (2)	0.045 (2)	-0.006 (2)	0.006 (2)	-0.0079 (19)
	× /	× /	× /			~ /

Geometric parameters (Å, °)

01C—C5F	1.11 (4)	C10B—H10D	0.9800
01C—C5C	1.282 (12)	C10B—H10E	0.9800
O2C—C11C	1.219 (4)	C10B—H10F	0.9800
O3C—C11C	1.332 (4)	C12B—C15B	1.501 (7)
O3C—C12C	1.468 (4)	C12B—C13B	1.514 (7)
N1C—C9C	1.363 (4)	C12B—C14B	1.528 (6)
N1C—C1C	1.392 (4)	C13B—H13D	0.9800
N1C—H1NC	0.92 (5)	C13B—H13E	0.9800
C1C—C2C	1.351 (5)	C13B—H13F	0.9800
C1C—C10C	1.495 (5)	C14B—H14D	0.9800
C2C—C11C	1.474 (5)	C14B—H14E	0.9800
C2C—C3C	1.519 (5)	C14B—H14F	0.9800
C3C—C18C	1.518 (5)	C15B—H15D	0.9800
C3C—C4C	1.523 (5)	C15B—H15E	0.9800
C3C—H3CA	1.0000	C15B—H15F	0.9800
C4C—C9C	1.352 (5)	C16B—H16D	0.9800
C4C—C5C	1.416 (13)	C16B—H16E	0.9800
C4C—C5F	1.57 (3)	C16B—H16F	0.9800
C9C—C8F	1.41 (4)	C17B—H17D	0.9800
C9C—C8C	1.537 (15)	C17B—H17E	0.9800
C10C—H10G	0.9800	C17B—H17F	0.9800
С10С—Н10Н	0.9800	C18B—C23B	1.384 (5)
C10C—H10I	0.9800	C18B—C19B	1.393 (5)
C12C—C15C	1.507 (6)	C19B—C20B	1.393 (5)
C12C—C13C	1.518 (7)	C19B—H19B	0.9500
C12C—C14C	1.519 (6)	C20B—C21B	1.389 (5)
C13C—H13G	0.9800	C20B—H20B	0.9500
С13С—Н13Н	0.9800	C21B—C22B	1.398 (5)
C13C—H13I	0.9800	C21B—C24B	1.488 (5)
C14C—H14G	0.9800	C22B—C23B	1.389 (5)
С14С—Н14Н	0.9800	C22B—H22B	0.9500
C14C—H14I	0.9800	C23B—H23B	0.9500
C15C—H15G	0.9800	C24B—C29B	1.381 (6)
С15С—Н15Н	0.9800	C24B—C25B	1.393 (6)
C15C—H15I	0.9800	C25B—C26B	1.383 (7)
C5C—C6C	1.543 (8)	C25B—H25B	0.9500
C6C—C16C	1.529 (8)	C26B—C27B	1.394 (7)
C6C—C17C	1.534 (8)	C26B—H26B	0.9500
C6C—C7C	1.534 (9)	C27B—C28B	1.370 (7)
C7C—C8C	1.514 (13)	C27B—H27B	0.9500
С7С—Н7СА	0.9900	C28B—C29B	1.396 (6)
C7C—H7CB	0.9900	C28B—H28B	0.9500
C8C—H8CA	0.9900	C29B—H29B	0.9500
C8C—H8CB	0.9900	O1A—C5A	1.246 (4)
C16C—H16G	0.9800	O2A—C11A	1.221 (4)
С16С—Н16Н	0.9800	O3A—C11A	1.322 (5)

С16С—Н16І	0.9800	O3A - C12A	1483(5)
C17C - H17G	0.9800	N1A—C9A	1.405(5)
C17C—H17H	0.9800	N1A—C1A	1.303(5)
	0.9800	N1A_H1NA	0.92(4)
C5E_C6E	1 548 (18)	C14-C24	1.353(5)
C6F C16F	1.576 (10)	C1A = C10A	1.333(3) 1.406(5)
C6F C7F	1.520(19) 1.530(17)	C_{1A} C_{11A}	1.490(5) 1.486(5)
C6F = C17F	1.550(17) 1 547 (10)	$C_{2A} = C_{1A}$	1.400(5) 1.525(5)
C7E C8E	1.347(19) 1.52(2)	$C_{2A} = C_{3A}$	1.525(5) 1.506(5)
	1.32(2)	$C_{3A} = C_{4A}$	1.500(5) 1.527(5)
	0.9900		1.327(3)
C^{Γ}	0.9900	C_{A}	1.0000
	0.9900	C4A = C5A	1.372(3)
CACE HIG	0.9900	C4A - C5A	1.442(5) 1.525(5)
	0.9800	CSA = COA	1.525 (5)
CIGF—HIGK	0.9800	C6A - C1/A	1.518 (6)
Cl6F—Hl6L	0.9800	C6A—C16A	1.535 (6)
C17F—H17J	0.9800	C6A—C/A	1.537 (5)
C17F—H17K	0.9800	C7A—C8A	1.527 (6)
C17F—H17L	0.9800	С7А—Н7АА	0.9900
C18C—C23C	1.398 (5)	С7А—Н7АВ	0.9900
C18C—C19C	1.399 (5)	C8A—C9A	1.503 (5)
C19C—C20C	1.389 (6)	C8A—H8AA	0.9900
C19C—H19C	0.9500	C8A—H8AB	0.9900
C20C—C21C	1.387 (6)	C10A—H10A	0.9800
C20C—H20C	0.9500	C10A—H10B	0.9800
C21C—C22C	1.394 (6)	C10A—H10C	0.9800
C21C—C24C	1.487 (6)	C12A—C13A	1.480 (7)
C22C—C23C	1.377 (6)	C12A—C15A	1.488 (7)
C22C—H22C	0.9500	C12A—C14A	1.524 (7)
С23С—Н23С	0.9500	C13A—H13A	0.9800
C24C—C25C	1.387 (7)	C13A—H13B	0.9800
C24C—C29C	1.411 (7)	C13A—H13C	0.9800
C25C—C26C	1.382 (9)	C14A—H14A	0.9800
С25С—Н25С	0.9500	C14A—H14B	0.9800
C26C—C27C	1.374 (10)	C14A—H14C	0.9800
С26С—Н26С	0.9500	C15A—H15A	0.9800
C27C—C28C	1.400 (9)	C15A—H15B	0.9800
С27С—Н27С	0.9500	C15A—H15C	0.9800
C28C—C29C	1.399 (8)	C16A—H16A	0.9800
C28C—H28C	0.9500	C16A—H16B	0.9800
С29С—Н29С	0.9500	C16A—H16C	0.9800
C1B—C2B	1.354 (5)	C17A—H17A	0.9800
C1B—N1B	1.397 (5)	С17А—Н17В	0.9800
C1B—C10B	1.500 (5)	C17A—H17C	0.9800
O1B—C5B	1.235 (4)	C18A—C23A	1.387 (5)
O2B—C11B	1.216 (4)	C18A—C19A	1.402 (5)
O3B—C11B	1.338 (5)	C19A—C20A	1.395 (5)
O3B—C12B	1,466 (5)	C19A—H19A	0.9500
		· · · · · · · · ·	

N1B—C9B	1.358 (5)	C20A—C21A	1.384 (5)
N1B—H1NB	0.95 (4)	C20A—H20A	0.9500
C2B—C11B	1.469 (5)	C21A—C22A	1.389 (5)
C2B—C3B	1.521 (5)	C21A—C24A	1.499 (5)
C3B—C4B	1.515 (5)	C22A—C23A	1.392 (5)
C3B—C18B	1.525 (5)	C22A—H22A	0.9500
СЗВ—НЗВА	1.0000	C23A—H23A	0.9500
C4B—C9B	1.350 (5)	C24A—C25A	1.387 (6)
C4B—C5B	1.450 (5)	C24A—C29A	1.399 (6)
C5B—C6B	1.538 (5)	C25A—C26A	1.393 (7)
C6B—C16B	1.507 (7)	С25А—Н25А	0.9500
C6B—C7B	1.510 (5)	C26A—C27A	1.369 (8)
C6B—C17B	1.553 (7)	C26A—H26A	0.9500
C7B—C8B	1.543 (6)	C27A—C28A	1.373 (7)
С7В—Н7ВА	0.9900	C27A—H27A	0.9500
C7B—H7BB	0.9900	C28A—C29A	1.384 (6)
C8B—C9B	1.509 (5)	C28A—H28A	0.9500
C8B—H8BA	0.9900	С29А—Н29А	0.9500
C8B—H8BB	0.9900		
C11C—O3C—C12C	122.1 (3)	C1B-C10B-H10E	109.5
C9C—N1C—C1C	122.2 (3)	H10D—C10B—H10E	109.5
C9C—N1C—H1NC	123 (3)	C1B-C10B-H10F	109.5
C1C—N1C—H1NC	113 (3)	H10D—C10B—H10F	109.5
C2C—C1C—N1C	119.1 (3)	H10E—C10B—H10F	109.5
C2C—C1C—C10C	128.3 (3)	O2B—C11B—O3B	124.1 (4)
N1C—C1C—C10C	112.5 (3)	O2B—C11B—C2B	122.4 (4)
C1C—C2C—C11C	124.7 (3)	O3B—C11B—C2B	113.4 (3)
C1C—C2C—C3C	120.4 (3)	O3B—C12B—C15B	111.5 (4)
C11C—C2C—C3C	114.9 (3)	O3B—C12B—C13B	108.2 (4)
C18C—C3C—C2C	111.1 (3)	C15B—C12B—C13B	113.1 (4)
C18C—C3C—C4C	112.5 (3)	O3B—C12B—C14B	101.1 (3)
C2C—C3C—C4C	109.3 (3)	C15B—C12B—C14B	111.1 (4)
С18С—С3С—Н3СА	107.9	C13B—C12B—C14B	111.2 (4)
С2С—С3С—Н3СА	107.9	C12B—C13B—H13D	109.5
C4C—C3C—H3CA	107.9	C12B—C13B—H13E	109.5
C9C—C4C—C5C	119.4 (5)	H13D—C13B—H13E	109.5
C9C—C4C—C3C	120.3 (3)	C12B—C13B—H13F	109.5
C5C—C4C—C3C	120.3 (4)	H13D—C13B—H13F	109.5
C9C—C4C—C5F	124.6 (9)	H13E—C13B—H13F	109.5
C3C—C4C—C5F	114.6 (9)	C12B—C14B—H14D	109.5
C4C—C9C—N1C	120.0 (3)	C12B—C14B—H14E	109.5
C4C—C9C—C8F	118.8 (10)	H14D—C14B—H14E	109.5
N1C—C9C—C8F	121.2 (10)	C12B—C14B—H14F	109.5
C4C—C9C—C8C	125.4 (4)	H14D—C14B—H14F	109.5
N1C—C9C—C8C	114.5 (4)	H14E—C14B—H14F	109.5
C1C-C10C-H10G	109.5	C12B—C15B—H15D	109.5
С1С—С10С—Н10Н	109.5	C12B—C15B—H15E	109.5

H10G—C10C—H10H	109.5	H15D—C15B—H15E	109.5
C1C-C10C-H10I	109.5	C12B—C15B—H15F	109.5
H10G-C10C-H10I	109.5	H15D—C15B—H15F	109.5
H10H-C10C-H10I	109.5	H15E—C15B—H15F	109.5
O2C—C11C—O3C	123.9 (3)	C6B—C16B—H16D	109.5
O2C—C11C—C2C	122.6 (3)	C6B—C16B—H16E	109.5
O3C—C11C—C2C	113.5 (3)	H16D—C16B—H16E	109.5
O3C—C12C—C15C	109.9 (4)	C6B—C16B—H16F	109.5
O3C—C12C—C13C	110.2 (3)	H16D—C16B—H16F	109.5
C15C—C12C—C13C	112.8 (4)	H16E—C16B—H16F	109.5
O3C—C12C—C14C	101.7 (3)	C6B—C17B—H17D	109.5
C15C—C12C—C14C	111.0 (4)	C6B—C17B—H17E	109.5
C13C—C12C—C14C	110.6 (5)	H17D—C17B—H17E	109.5
C12C—C13C—H13G	109.5	C6B—C17B—H17F	109.5
С12С—С13С—Н13Н	109.5	H17D—C17B—H17F	109.5
Н13G—С13С—Н13Н	109.5	H17E—C17B—H17F	109.5
C12C—C13C—H13I	109.5	C23B—C18B—C19B	118.3 (3)
H13G—C13C—H13I	109.5	C23B—C18B—C3B	121.8 (3)
H13H—C13C—H13I	109.5	C19B—C18B—C3B	119.8 (3)
C12C—C14C—H14G	109.5	C18B—C19B—C20B	120.8 (3)
C12C—C14C—H14H	109.5	C18B—C19B—H19B	119.6
H14G—C14C—H14H	109.5	C20B—C19B—H19B	119.6
C12C—C14C—H14I	109.5	C21B—C20B—C19B	120.9 (3)
H14G—C14C—H14I	109.5	C21B—C20B—H20B	119.6
H14H—C14C—H14I	109.5	C19B—C20B—H20B	119.6
C12C—C15C—H15G	109.5	C20B—C21B—C22B	118.2 (3)
С12С—С15С—Н15Н	109.5	C20B—C21B—C24B	120.5 (3)
Н15G—С15С—Н15Н	109.5	C22B—C21B—C24B	121.2 (3)
C12C—C15C—H15I	109.5	C23B—C22B—C21B	120.5 (3)
H15G—C15C—H15I	109.5	C23B—C22B—H22B	119.7
H15H—C15C—H15I	109.5	C21B—C22B—H22B	119.7
O1C—C5C—C4C	121.1 (6)	C18B—C23B—C22B	121.3 (3)
O1C—C5C—C6C	118.3 (8)	C18B—C23B—H23B	119.4
C4C—C5C—C6C	119.5 (9)	C22B—C23B—H23B	119.4
C16C—C6C—C17C	109.5 (6)	C29B—C24B—C25B	117.9 (4)
C16C—C6C—C7C	111.1 (5)	C29B—C24B—C21B	120.9 (4)
C17C—C6C—C7C	110.0 (6)	C25B—C24B—C21B	121.1 (4)
C16C—C6C—C5C	108.4 (7)	C26B—C25B—C24B	121.2 (5)
C17C—C6C—C5C	109.4 (7)	C26B—C25B—H25B	119.4
C7C—C6C—C5C	108.4 (6)	C24B—C25B—H25B	119.4
C8C—C7C—C6C	113.2 (8)	C25B—C26B—C27B	119.8 (5)
C8C—C7C—H7CA	108.9	C25B—C26B—H26B	120.1
C6C—C7C—H7CA	108.9	C27B—C26B—H26B	120.1
C8C—C7C—H7CB	108.9	C28B—C27B—C26B	120.0 (4)
C6C—C7C—H7CB	108.9	C28B—C27B—H27B	120.0
Н7СА—С7С—Н7СВ	107.7	C26B—C27B—H27B	120.0
C7C—C8C—C9C	109.1 (8)	C27B—C28B—C29B	119.5 (5)
С7С—С8С—Н8СА	109.9	C27B—C28B—H28B	120.2

С9С—С8С—Н8СА	109.9	C29B—C28B—H28B	120.2
C7C—C8C—H8CB	109.9	C24B—C29B—C28B	121.6 (5)
C9C—C8C—H8CB	109.9	C24B—C29B—H29B	119.2
H8CA—C8C—H8CB	108.3	C28B—C29B—H29B	119.2
C6C—C16C—H16G	109.5	C11A—O3A—C12A	121.3 (3)
С6С—С16С—Н16Н	109.5	C9A—N1A—C1A	122.2 (3)
H16G—C16C—H16H	109.5	C9A—N1A—H1NA	113 (3)
C6C—C16C—H16I	109.5	C1A—N1A—H1NA	121 (3)
H16G—C16C—H16I	109.5	C2A—C1A—N1A	119.2 (3)
H16H—C16C—H16I	109.5	C2A—C1A—C10A	128.9 (3)
C6C—C17C—H17G	109.5	N1A—C1A—C10A	111.8 (3)
С6С—С17С—Н17Н	109.5	C1A—C2A—C11A	124.3 (3)
H17G—C17C—H17H	109.5	C1A—C2A—C3A	120.7 (3)
C6C—C17C—H17I	109.5	C11A—C2A—C3A	115.0 (3)
H17G—C17C—H17I	109.5	C4A—C3A—C2A	110.7 (3)
H17H—C17C—H17I	109.5	C4A—C3A—C18A	112.9 (3)
O1C—C5F—C6F	120 (3)	C2A—C3A—C18A	108.8 (3)
01C—C5F—C4C	121.6 (19)	С4А—С3А—НЗАА	108.1
C6F—C5F—C4C	113 (2)	С2А—С3А—НЗАА	108.1
C16F—C6F—C7F	109.8 (14)	С18А—СЗА—НЗАА	108.1
C16F—C6F—C17F	109.4 (14)	C9A—C4A—C5A	120.4 (3)
C7F—C6F—C17F	112.4 (14)	C9A—C4A—C3A	120.2 (3)
C16F—C6F—C5F	105.7 (17)	C5A—C4A—C3A	119.4 (3)
C7F—C6F—C5F	109.8 (19)	O1A—C5A—C4A	120.6 (3)
C17F—C6F—C5F	109.5 (19)	O1A—C5A—C6A	118.9 (3)
C8F—C7F—C6F	112 (2)	C4A—C5A—C6A	120.5 (3)
C8F—C7F—H7FA	109.3	C17A—C6A—C5A	111.0 (3)
C6F—C7F—H7FA	109.3	C17A—C6A—C16A	110.1 (4)
C8F—C7F—H7FB	109.3	C5A—C6A—C16A	106.5 (3)
C6F—C7F—H7FB	109.3	C17A—C6A—C7A	108.8 (3)
H7FA—C7F—H7FB	107.9	C5A—C6A—C7A	110.7 (3)
C9C—C8F—C7F	119 (3)	C16A—C6A—C7A	109.7 (3)
C9C—C8F—H8FA	107.5	C8A—C7A—C6A	113.2 (3)
C7F—C8F—H8FA	107.5	С8А—С7А—Н7АА	108.9
C9C—C8F—H8FB	107.5	С6А—С7А—Н7АА	108.9
C7F—C8F—H8FB	107.5	C8A—C7A—H7AB	108.9
H8FA—C8F—H8FB	107.0	С6А—С7А—Н7АВ	108.9
C6F—C16F—H16J	109.5	Н7АА—С7А—Н7АВ	107.8
C6F—C16F—H16K	109.5	C9A—C8A—C7A	110.3 (3)
H16J—C16F—H16K	109.5	С9А—С8А—Н8АА	109.6
C6F—C16F—H16L	109.5	С7А—С8А—Н8АА	109.6
H16J—C16F—H16L	109.5	С9А—С8А—Н8АВ	109.6
H16K—C16F—H16L	109.5	C7A—C8A—H8AB	109.6
C6F—C17F—H17J	109.5	Н8АА—С8А—Н8АВ	108.1
C6F—C17F—H17K	109.5	N1A—C9A—C4A	120.2 (3)
H17J—C17F—H17K	109.5	N1A—C9A—C8A	116.5 (3)
C6F—C17F—H17L	109.5	C4A—C9A—C8A	123.3 (3)
H17J—C17F—H17L	109.5	C1A-C10A-H10A	109.5

H17K—C17F—H17L	109.5	C1A—C10A—H10B	109.5
C23C—C18C—C19C	117.8 (3)	H10A—C10A—H10B	109.5
C23C—C18C—C3C	120.9 (3)	C1A—C10A—H10C	109.5
C19C—C18C—C3C	121.2 (3)	H10A-C10A-H10C	109.5
C20C—C19C—C18C	120.8 (4)	H10B-C10A-H10C	109.5
C20C—C19C—H19C	119.6	O2A—C11A—O3A	124.7 (3)
C18C—C19C—H19C	119.6	O2A—C11A—C2A	122.0 (3)
C21C—C20C—C19C	121.3 (4)	O3A—C11A—C2A	113.3 (3)
C21C—C20C—H20C	119.4	C13A—C12A—O3A	110.1 (4)
C19C—C20C—H20C	119.4	C13A—C12A—C15A	112.6 (5)
C20C—C21C—C22C	117.7 (4)	Q3A—C12A—C15A	110.9 (4)
C20C—C21C—C24C	121.0 (4)	C13A—C12A—C14A	111.8 (5)
$C_{22}C_{-}C_{21}C_{-}C_{24}C_{$	121.3 (4)	O3A - C12A - C14A	101.0(3)
$C_{23}C_{-}C_{22}C_{-}C_{21}C_{$	121.6 (4)	C15A - C12A - C14A	109.9 (5)
$C_{23}C_{-}C_{22}C_{-}H_{22}C$	119.2	C12A - C13A - H13A	109.5
$C_{21}C_{-}C_{22}C_{-}H_{22}C$	119.2	C12A - C13A - H13B	109.5
$C_{22}C_{-}C_{23}C_{-}C_{18}C_{$	120.8 (4)	H_{13A} $-C_{13A}$ $-H_{13B}$	109.5
$C_{22}C_{-}C_{23}C_{-}H_{23}C_{-}$	119.6	C12A - C13A - H13C	109.5
$C_{18C} - C_{23C} - H_{23C}$	119.6	H_{13A} $-C_{13A}$ $-H_{13C}$	109.5
$C_{25}C_{-}C_{24}C_{-}C_{29}C_{$	118.3 (5)	H_{13B} C_{13A} H_{13C}	109.5
$C_{25}C_{-}C_{24}C_{-}C_{21}C_{-}C_{-}C_{21}C_{-}C_{-$	1214(5)	C12A - C14A - H14A	109.5
$C_{29}C_{}C_{24}C_{}C_{21}C_{}C_{-$	1203(4)	C12A - C14A - H14B	109.5
$C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}$	120.5(4) 1216(7)	H_{14A} $-C_{14A}$ $-H_{14B}$	109.5
$C_{26C} = C_{25C} = C_{24C}$	119.2	C12A - C14A - H14C	109.5
$C_{20} = C_{25} = H_{25} = H$	119.2	H_{14A} $-C_{14A}$ $-H_{14C}$	109.5
$C_{27}C_{-}C_{26}C_{-}C_{25}C_{-}C_{-}C_{25}C_{-}C_{2$	120.1 (6)	$H_{14B} - C_{14A} - H_{14C}$	109.5
$C_{27}C_{-}C_{26}C_{-}H_{26}C_{-}$	120.0	C12A - C15A - H15A	109.5
$C_{25}C_{}C_{26}C_{}H_{26}C_{}$	120.0	C12A = C15A = H15R	109.5
$C_{25}C_{-}C_{27}C_{-}C_{28}C_{$	120.3 (6)	H15A - C15A - H15B	109.5
$C_{26C} = C_{27C} = C_{26C}$	119.9	C12A - C15A - H15C	109.5
$C_{28C} = C_{27C} = H_{27C}$	119.9	H_{15A} $-C_{15A}$ $-H_{15C}$	109.5
$C_{29}C_{-}C_{28}C_{-}C_{27}C_{$	119.5 (6)	H15B-C15A-H15C	109.5
$C_{29}C_{-}C_{28}C_{-}H_{28}C_{-}$	120.3	C6A - C16A - H16A	109.5
$C_{27}C_{-}C_{28}C_{-}H_{28}C_{-}$	120.3	C6A - C16A - H16B	109.5
$C_{28}C_{-}C_{29}C_{-}C_{24}C_{$	120.2 (6)	H_{16A} $-C_{16A}$ $-H_{16B}$	109.5
$C_{28C} = C_{29C} = H_{29C}$	119.9	C6A - C16A - H16C	109.5
$C_{24C} = C_{29C} = H_{29C}$	119.9	H_{16A} $-C_{16A}$ $-H_{16C}$	109.5
C2B-C1B-N1B	119.4 (3)	H_{16B} $-C_{16A}$ $-H_{16C}$	109.5
C2B $C1B$ $C10B$	127 8 (4)	C6A - C17A - H17A	109.5
N1B-C1B-C10B	112.8 (3)	C6A - C17A - H17B	109.5
C11B - O3B - C12B	122.0(3)	H17A - C17A - H17B	109.5
C9B-N1B-C1B	122.0(3) 122.4(3)	C6A - C17A - H17C	109.5
C9B_N1B_H1NB	122.1(3)	H17A - C17A - H17C	109.5
CIB—NIB—HINB	115 (2)	H17B $C17A$ $H17C$	109.5
C1B - C2B - C11B	125 0 (3)	C_{23A} C_{18A} C_{19A}	118 2 (3)
C1B - C2B - C3B	120.2 (3)	C_{23A} C_{18A} C_{3A}	1214(3)
C11B - C2B - C3B	114.7(3)	C19A - C18A - C3A	121.7(3) 120.3(3)
C4B $C2B$ $C2B$	110.6 (3)	$C_{10A} = C_{10A} = C_{18A}$	120.3(3) 120.3(3)
C1D-C3D-C2D	110.0 (3)	C20/1-C17/1-C10/	120.3 (3)

C4B—C3B—C18B	112.0 (3)	C20A—C19A—H19A	119.9
C2B—C3B—C18B	110.5 (3)	C18A—C19A—H19A	119.9
С4В—С3В—Н3ВА	107.8	C21A-C20A-C19A	121.3 (3)
С2В—С3В—НЗВА	107.8	C21A—C20A—H20A	119.3
C18B—C3B—H3BA	107.8	C19A—C20A—H20A	119.3
C9B—C4B—C5B	121.0 (3)	C20A—C21A—C22A	118.1 (3)
C9B—C4B—C3B	120.5 (3)	C20A—C21A—C24A	121.5 (3)
C5B—C4B—C3B	118.4 (3)	C22A—C21A—C24A	120.3 (3)
O1B—C5B—C4B	121.8 (3)	C21A—C22A—C23A	121.1 (3)
O1B—C5B—C6B	118.3 (3)	C21A—C22A—H22A	119.4
C4B—C5B—C6B	119.9 (3)	C23A—C22A—H22A	119.4
C16B—C6B—C7B	110.4 (4)	C18A—C23A—C22A	120.9 (3)
C16B—C6B—C5B	111.1 (3)	C18A—C23A—H23A	119.5
C7B—C6B—C5B	110.8 (3)	C22A—C23A—H23A	119.5
C16B—C6B—C17B	107.6 (4)	C25A—C24A—C29A	118.3 (4)
C7B—C6B—C17B	111.8 (3)	C25A—C24A—C21A	121.5 (4)
C5B—C6B—C17B	105.0 (3)	C29A—C24A—C21A	120.2 (4)
C6B—C7B—C8B	114.0 (3)	C24A—C25A—C26A	120.6 (5)
C6B—C7B—H7BA	108.8	C24A—C25A—H25A	119.7
C8B—C7B—H7BA	108.8	C26A—C25A—H25A	119.7
C6B—C7B—H7BB	108.8	C27A—C26A—C25A	120.3 (5)
C8B—C7B—H7BB	108.8	C27A—C26A—H26A	119.9
H7BA—C7B—H7BB	107.7	C25A—C26A—H26A	119.9
C9B—C8B—C7B	110.4 (3)	C26A—C27A—C28A	119.8 (4)
C9B—C8B—H8BA	109.6	C26A—C27A—H27A	120.1
C7B—C8B—H8BA	109.6	C28A—C27A—H27A	120.1
C9B—C8B—H8BB	109.6	C27A—C28A—C29A	120.7 (5)
C7B—C8B—H8BB	109.6	C27A—C28A—H28A	119.7
H8BA—C8B—H8BB	108.1	C29A—C28A—H28A	119.7
C4B—C9B—N1B	120.5 (3)	C28A—C29A—C24A	120.3 (5)
C4B—C9B—C8B	123.4 (3)	C28A—C29A—H29A	119.9
N1B—C9B—C8B	116.0 (3)	С24А—С29А—Н29А	119.9
C1B—C10B—H10D	109.5		
C9C—N1C—C1C—C2C	-13.3 (5)	C5B—C6B—C7B—C8B	-49.0 (5)
C9C—N1C—C1C—C10C	165.7 (3)	C17B—C6B—C7B—C8B	67.8 (5)
N1C—C1C—C2C—C11C	167.0 (3)	C6B—C7B—C8B—C9B	48.9 (5)
C10C—C1C—C2C—C11C	-11.9 (6)	C5B—C4B—C9B—N1B	171.9 (3)
N1C—C1C—C2C—C3C	-11.3 (5)	C3B—C4B—C9B—N1B	-6.1 (5)
C10C—C1C—C2C—C3C	169.8 (4)	C5B—C4B—C9B—C8B	-5.5 (5)
C1C—C2C—C3C—C18C	-94.9 (4)	C3B—C4B—C9B—C8B	176.5 (3)
C11C—C2C—C3C—C18C	86.6 (4)	C1B—N1B—C9B—C4B	-13.2(5)
C1C—C2C—C3C—C4C	29.8 (4)	C1B—N1B—C9B—C8B	164.3 (3)
C11C—C2C—C3C—C4C	-148.6 (3)	C7B—C8B—C9B—C4B	-21.2 (5)
C18C—C3C—C4C—C9C	96.0 (4)	C7B—C8B—C9B—N1B	161.3 (3)
C2C—C3C—C4C—C9C	-27.9 (5)	C12B—O3B—C11B—O2B	-6.2 (6)
C18C—C3C—C4C—C5C	-83.8 (7)	C12B—O3B—C11B—C2B	172.5 (4)
C2C—C3C—C4C—C5C	152.3 (7)	C1B—C2B—C11B—O2B	162.4 (4)
			(.)

C18C—C3C—C4C—C5F	-76.5 (17)	C3B—C2B—C11B—O2B	-14.1 (5)
C2C—C3C—C4C—C5F	159.6 (16)	C1B—C2B—C11B—O3B	-16.4 (6)
C5C—C4C—C9C—N1C	-172.9 (7)	C3B—C2B—C11B—O3B	167.1 (3)
C3C—C4C—C9C—N1C	7.3 (5)	C11B—O3B—C12B—C15B	62.0 (6)
C5F—C4C—C9C—N1C	179.1 (18)	C11B—O3B—C12B—C13B	-63.1 (5)
C3C—C4C—C9C—C8F	-173 (3)	C11B—O3B—C12B—C14B	-179.9 (4)
C5F—C4C—C9C—C8F	-1 (4)	C4B—C3B—C18B—C23B	46.4 (4)
C5C—C4C—C9C—C8C	6.9 (14)	C2B-C3B-C18B-C23B	-77.4 (4)
C3C—C4C—C9C—C8C	-172.9 (11)	C4B—C3B—C18B—C19B	-137.8 (3)
C1C—N1C—C9C—C4C	15.4 (5)	C2B-C3B-C18B-C19B	98.3 (4)
C1C—N1C—C9C—C8F	-164(3)	C23B—C18B—C19B—C20B	0.0 (5)
C1C—N1C—C9C—C8C	-164.4 (10)	C3B-C18B-C19B-C20B	-175.9 (3)
C12C—O3C—C11C—O2C	3.1 (6)	C18B—C19B—C20B—C21B	0.4 (6)
C12C—O3C—C11C—C2C	-174.1 (4)	C19B—C20B—C21B—C22B	-0.1 (6)
C1C—C2C—C11C—O2C	-175.7 (4)	C19B—C20B—C21B—C24B	177.7 (4)
C3C—C2C—C11C—O2C	2.7 (6)	C20B—C21B—C22B—C23B	-0.5 (6)
C1C—C2C—C11C—O3C	1.6 (6)	C24B—C21B—C22B—C23B	-178.4 (4)
C3C—C2C—C11C—O3C	-180.0 (3)	C19B—C18B—C23B—C22B	-0.7 (6)
C11C—O3C—C12C—C15C	-66.1 (5)	C3B—C18B—C23B—C22B	175.2 (3)
C11C—O3C—C12C—C13C	58.8 (5)	C21B—C22B—C23B—C18B	0.9 (6)
C11C—O3C—C12C—C14C	176.2 (4)	C20B—C21B—C24B—C29B	46.5 (6)
C9C—C4C—C5C—O1C	176.3 (8)	C22B—C21B—C24B—C29B	-135.7 (4)
C3C—C4C—C5C—O1C	-3.9(14)	C20B—C21B—C24B—C25B	-131.0(5)
C9C—C4C—C5C—C6C	-15.8 (12)	C22B—C21B—C24B—C25B	46.9 (6)
C3C—C4C—C5C—C6C	164.0 (6)	C29B—C24B—C25B—C26B	-0.2(8)
O1C—C5C—C6C—C16C	87.0 (11)	C21B—C24B—C25B—C26B	177.3 (5)
C4C—C5C—C6C—C16C	-81.2 (9)	C24B—C25B—C26B—C27B	-0.6(9)
O1C—C5C—C6C—C17C	-32.3 (12)	C25B—C26B—C27B—C28B	1.1 (9)
C4C—C5C—C6C—C17C	159.4 (8)	C26B—C27B—C28B—C29B	-0.7(8)
O1C—C5C—C6C—C7C	-152.3 (9)	C25B—C24B—C29B—C28B	0.7 (7)
C4C—C5C—C6C—C7C	39.5 (11)	C21B—C24B—C29B—C28B	-176.9 (4)
C16C—C6C—C7C—C8C	62.9 (10)	C27B—C28B—C29B—C24B	-0.2 (7)
C17C—C6C—C7C—C8C	-175.6(9)	C9A—N1A—C1A—C2A	-13.7 (5)
C5C—C6C—C7C—C8C	-56.1 (11)	C9A—N1A—C1A—C10A	166.0 (3)
C6C—C7C—C8C—C9C	47.6 (15)	N1A—C1A—C2A—C11A	168.8 (3)
C4C—C9C—C8C—C7C	-22.9(18)	C10A—C1A—C2A—C11A	-10.8(6)
N1C—C9C—C8C—C7C	156.9 (8)	N1A—C1A—C2A—C3A	-8.3(5)
C9C—C4C—C5F—O1C	165 (2)	C10A—C1A—C2A—C3A	172.1 (3)
C3C—C4C—C5F—O1C	-23 (4)	C1A—C2A—C3A—C4A	25.7 (4)
C9C—C4C—C5F—C6F	12 (3)	C11A—C2A—C3A—C4A	-151.7(3)
C3C—C4C—C5F—C6F	-175.9 (17)	C1A—C2A—C3A—C18A	-99.0 (4)
O1C—C5F—C6F—C16F	50 (3)	C11A—C2A—C3A—C18A	83.6 (4)
C4C—C5F—C6F—C16F	-156 (2)	C2A—C3A—C4A—C9A	-24.3(4)
01C—C5F—C6F—C7F	169 (3)	C18A—C3A—C4A—C9A	98.0 (4)
C4C—C5F—C6F—C7F	-37 (3)	C2A—C3A—C4A—C5A	155.9 (3)
O1C—C5F—C6F—C17F	-67 (3)	C18A—C3A—C4A—C5A	-81.7 (4)
C4C—C5F—C6F—C17F	86 (3)	C9A—C4A—C5A—O1A	176.7 (3)
C16F—C6F—C7F—C8F	170 (3)	C3A—C4A—C5A—O1A	-3.5 (5)

C17F—C6F—C7F—C8F	-68 (3)	C9A—C4A—C5A—C6A	-4.4(5)
C5F—C6F—C7F—C8F	54 (3)	C3A—C4A—C5A—C6A	175.4 (3)
C4C—C9C—C8F—C7F	18 (6)	O1A—C5A—C6A—C17A	-33.9(5)
N1C—C9C—C8F—C7F	-162 (3)	C4A—C5A—C6A—C17A	147.2 (4)
C6F—C7F—C8F—C9C	-46 (5)	O1A—C5A—C6A—C16A	85.9 (4)
C2C—C3C—C18C—C23C	74.7 (4)	C4A—C5A—C6A—C16A	-93.1 (4)
C4C—C3C—C18C—C23C	-48.2 (4)	O1A—C5A—C6A—C7A	-154.9 (3)
C2C—C3C—C18C—C19C	-100.8 (4)	C4A—C5A—C6A—C7A	26.2 (5)
C4C—C3C—C18C—C19C	136.3 (3)	C17A—C6A—C7A—C8A	-171.9 (3)
C23C—C18C—C19C—C20C	-0.1 (5)	C5A—C6A—C7A—C8A	-49.6 (4)
C3C—C18C—C19C—C20C	175.6 (3)	C16A—C6A—C7A—C8A	67.6 (4)
C18C—C19C—C20C—C21C	-1.6 (6)	C6A—C7A—C8A—C9A	50.7 (4)
C19C—C20C—C21C—C22C	1.7 (6)	C1A—N1A—C9A—C4A	15.1 (5)
C19C—C20C—C21C—C24C	-177.8 (4)	C1A—N1A—C9A—C8A	-165.3 (3)
C20C—C21C—C22C—C23C	-0.2 (6)	C5A—C4A—C9A—N1A	-174.5 (3)
C24C—C21C—C22C—C23C	179.3 (4)	C3A—C4A—C9A—N1A	5.7 (5)
C21C—C22C—C23C—C18C	-1.5 (6)	C5A—C4A—C9A—C8A	5.9 (5)
C19C—C18C—C23C—C22C	1.6 (5)	C3A—C4A—C9A—C8A	-173.9 (3)
C3C—C18C—C23C—C22C	-174.1 (3)	C7A—C8A—C9A—N1A	151.4 (3)
C20C—C21C—C24C—C25C	34.4 (6)	C7A—C8A—C9A—C4A	-29.0(5)
C22C—C21C—C24C—C25C	-145.0 (5)	C12A—O3A—C11A—O2A	5.4 (6)
C20C—C21C—C24C—C29C	-147.3 (4)	C12A—O3A—C11A—C2A	-173.6 (3)
C22C—C21C—C24C—C29C	33.3 (6)	C1A—C2A—C11A—O2A	-163.6 (4)
C29C—C24C—C25C—C26C	-0.2 (9)	C3A—C2A—C11A—O2A	13.6 (5)
C21C—C24C—C25C—C26C	178.1 (5)	C1A—C2A—C11A—O3A	15.4 (5)
C24C—C25C—C26C—C27C	-1.0 (10)	C3A—C2A—C11A—O3A	-167.3 (3)
C25C—C26C—C27C—C28C	1.5 (10)	C11A—O3A—C12A—C13A	60.1 (6)
C26C—C27C—C28C—C29C	-0.8 (9)	C11A—O3A—C12A—C15A	-65.2 (5)
C27C—C28C—C29C—C24C	-0.5 (8)	C11A—O3A—C12A—C14A	178.3 (5)
C25C—C24C—C29C—C28C	0.9 (7)	C4A—C3A—C18A—C23A	-44.9 (5)
C21C—C24C—C29C—C28C	-177.4 (4)	C2A—C3A—C18A—C23A	78.5 (4)
C2B—C1B—N1B—C9B	11.4 (5)	C4A—C3A—C18A—C19A	140.0 (3)
C10B—C1B—N1B—C9B	-167.1 (3)	C2A—C3A—C18A—C19A	-96.6 (4)
N1B—C1B—C2B—C11B	-166.7 (3)	C23A—C18A—C19A—C20A	-0.1 (5)
C10B—C1B—C2B—C11B	11.5 (6)	C3A—C18A—C19A—C20A	175.1 (3)
N1B—C1B—C2B—C3B	9.6 (5)	C18A—C19A—C20A—C21A	-1.0 (6)
C10B—C1B—C2B—C3B	-172.2 (4)	C19A—C20A—C21A—C22A	1.1 (6)
C1B—C2B—C3B—C4B	-25.4 (4)	C19A—C20A—C21A—C24A	-177.8 (4)
C11B—C2B—C3B—C4B	151.2 (3)	C20A—C21A—C22A—C23A	-0.2 (6)
C1B—C2B—C3B—C18B	99.2 (4)	C24A—C21A—C22A—C23A	178.8 (4)
C11B—C2B—C3B—C18B	-84.1 (4)	C19A—C18A—C23A—C22A	1.0 (6)
C2B—C3B—C4B—C9B	23.8 (4)	C3A—C18A—C23A—C22A	-174.1 (4)
C18B—C3B—C4B—C9B	-100.0 (4)	C21A—C22A—C23A—C18A	-0.9 (6)
C2B—C3B—C4B—C5B	-154.2 (3)	C20A—C21A—C24A—C25A	140.7 (4)
C18B—C3B—C4B—C5B	82.0 (4)	C22A—C21A—C24A—C25A	-38.3 (6)
C9B—C4B—C5B—O1B	-172.8 (3)	C20A—C21A—C24A—C29A	-38.7 (6)
C3B—C4B—C5B—O1B	5.1 (5)	C22A—C21A—C24A—C29A	142.3 (4)
C9B—C4B—C5B—C6B	5.4 (5)	C29A—C24A—C25A—C26A	1.2 (7)

C3B—C4B—C5B—C6B O1B—C5B—C6B—C16B C4B—C5B—C6B—C16B O1B—C5B—C6B—C7B C4B—C5B—C6B—C7B O1B—C5B—C6B—C7B O1B—C5B—C6B—C17B C4B—C5B—C6B—C17B	-176.6 (3) -36.6 (5) 145.1 (4) -159.7 (3) 22.0 (5) 79.4 (4) -98.9 (4)	C21A—C24A—C25A—C26A C24A—C25A—C26A—C27A C25A—C26A—C27A—C28A C26A—C27A—C28A—C29A C27A—C28A—C29A—C24A C25A—C24A—C29A—C28A C21A—C24A—C29A—C28A	-178.2 (5) -1.2 (8) -0.1 (9) 1.3 (8) -1.3 (7) 0.0 (7) 179.4 (4)
C4B—C5B—C6B—C17B C16B—C6B—C7B—C8B	-98.9 (4) -172.5 (4)	C21A—C24A—C29A—C28A	179.4 (4)

Hydrogen-bond geometry (Å, °)

Cg4, Cg8, Cg12 and Cg13 are the centroids of the C18C-C23C, C18A-C23A, C18B-C23B, and C18B-C29B rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
$N1C$ — $H1NC$ ···O1 B^{i}	0.92 (5)	1.94 (5)	2.843 (4)	165 (5)
N1 <i>B</i> —H1 <i>NB</i> ···O1 <i>C</i>	0.95 (4)	1.88 (4)	2.811 (4)	168 (3)
$N1A$ — $H1NA$ ···· $O1A^{ii}$	0.93 (5)	1.92 (5)	2.842 (4)	174 (4)
C3 <i>C</i> —H3 <i>CA</i> ···O2 <i>C</i>	1.00	2.41	2.793 (4)	102
C10A—H10B…O1A ⁱⁱ	0.98	2.60	3.443 (5)	145
C10 <i>B</i> —H10 <i>F</i> ···O1 <i>C</i>	0.98	2.47	3.302 (5)	143
C10 <i>C</i> —H10 <i>G</i> ···O3 <i>C</i>	0.98	2.31	2.704 (4)	103
C3 <i>B</i> —H3 <i>BA</i> ···O2 <i>B</i>	1.00	2.40	2.795 (4)	103
C13A—H13A····O2A	0.98	2.45	2.978 (7)	113
C13 <i>B</i> —H13 <i>D</i> ···O2 <i>B</i>	0.98	2.47	3.023 (6)	115
C13 <i>C</i> —H13 <i>G</i> ···O2 <i>C</i>	0.98	2.53	2.958 (7)	106
C15A—H15A····O2A	0.98	2.41	2.999 (7)	118
C15 <i>B</i> —H15 <i>D</i> ···O2 <i>B</i>	0.98	2.41	2.965 (6)	116
C15C—H15G…O2C	0.98	2.49	3.022 (5)	114
C3 <i>A</i> —H3 <i>AA</i> ···O2 <i>A</i>	1.00	2.42	2.812 (5)	103
C23A—H23A····O2A ⁱⁱ	0.95	2.57	3.403 (4)	147
C23 <i>B</i> —H23 <i>B</i> ···O2 <i>C</i>	0.95	2.55	3.389 (5)	147
$C23C$ — $H23C$ ···O $2B^{i}$	0.95	2.60	3.407 (4)	144
C15A—H15B…Cg13	0.98	2.82	3.771 (6)	165
C27A—H27A····Cg4 ⁱⁱ	0.95	2.75	3.578 (4)	146
C27 <i>B</i> —H27 <i>B</i> ··· <i>Cg</i> 8	0.95	2.63	3.493 (5)	150
C27 C —H27 C ··· Cg 12 ⁱⁱⁱ	0.95	2.84	3.632 (7)	142

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) –*x*+1/2, *y*, *z*+1/2; (iii) –*x*+1/2, *y*, *z*-1/2.