

Received 26 April 2022 Accepted 8 August 2022

Edited by J. T. Mague, Tulane University, USA

Keywords: crystal structure; bis(imidazolium); bidentate NHC; N-heterocyclic carbene.

CCDC references: 2195736; 2195735; 2195734; 2195733

Supporting information: this article has supporting information at journals.iucr.org/e

Emily S. Thompson, Elisa M. Olivas, Adrian Torres, Briana C. Arreaga, Hector L. Alarcon, Deandrea Dolberry, Jacob P. Brannon and S. Chantal E. Stieber*

Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA. *Correspondence e-mail: sestieber@cpp.edu

The crystal structures of ligand precursor bis(imidazolium) salts 1,1'-methylenebis(3-*tert*-butylimidazolium) dibromide monohydrate, C₁₅H₂₆N₄⁺·2Br⁻·H₂O or [^{*t*Bu}NHC₂Me][Br]₂·H₂O, 1,1'-(ethane-1,2-diyl)bis(3-*tert*-butylimidazolium) dibromide dihydrate, $C_{16}H_{28}N_4^+ \cdot 2Br^- \cdot 2H_2O$ or $['^{Bu}NHC_2Et][Br]_2 \cdot 2H_2O$, 1,1'-methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate, C25H30N4²⁺·2Br⁻·2H2O or [MesNHC2Me][Br]2·2H2O, and 1,1'-(ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate, $C_{26}H_{32}N_4^{2+}\cdot 2Br^{-}\cdot 4H_2O$ or [MesNHC₂Et][Br]₂·4H₂O, are reported. At 293 K, $[^{Bu}NHC_2Me][Br]_2 \cdot H_2O$ crystallizes in the $P2_1/c$ space group, while $[^{Bu}NH-$ NHC₂Et][Br]₂·2H₂O crystallizes in the $P2_1/n$ space group at 100 K. At 112 K, [^{Mes}NHC₂Me][Br]₂·2H₂O crystallizes in the orthorhombic space group *Pccn* while $[^{Mes}NHC_2Et][Br]_2 \cdot 4H_2O$ crystallizes in the $P2_1/c$ space group at 100 K. Bond distances and angles within the imidazolium rings are generally comparable among the four structures. All four bis(imidazolium) salts cocrystallize with one to four molecules of water.

1. Chemical context

Bis(imidazolium) salts are common precursors for the synthesis of bidentate N-heterocyclic carbene (NHC₂) ligands, which can be used to stabilize a variety of metal complexes and catalysts. Bis(imidazolium) salts, $[^{R}NHC_{2}R^{1}][X]_{2}$ are relatively modular in that modifications can be relatively easily made to exterior groups attached to each NHC (R), the moiety linking the two NHC groups (R^1) , and the counter-ion (X). One general synthetic approach for synthesizing bis-(imidazolium) salts is where two equivalents of an alkyl or aryl imidazole are combined with one equivalent of an organic dihalide reagent and refluxed to afford the final product (Gardiner et al., 1999). A simplified procedure for a variety of ligand salts using pressure tubes resulting in yields that were generally over 80% was also reported (Scherg et al., 2006). Some reports have gone even further to minimize solvent in the synthesis of these ligand precursors, including a solventfree synthesis (Cao et al., 2011, 2012). This implies that the exterior R groups can easily be modified by changing the alkyl or any group on the starting imidazole. The linking group R^1 and counter-ion X can be modified by changing the organic dihalide reagent. In this fashion, a library of bis(imidazolium) salts can be relatively easily synthesized from alkyl or aryl imidazoles, and some are also commercially available.

Some of the most widely reported bis(imidazolium) salts are those with *tert*-butyl (t Bu) and mesityl (Mes) exterior *R* groups

research communications

and methylene (Me) or ethylene (Et) linking R^1 groups. [^{Mes}NHC₂Et][Br]₂ was even reported to be a stand-alone catalyst for the conversion of arylaldehydes to carboxylic acids in combination with water and K₂CO₃ in DMSO (Yang *et al.*, 2013). Methylene linkers are quite commonly used for complexing to metals, and although examples with ethylene linkers are fewer, comparative studies report that changing the linker affects catalysis. For example, shorter methylene linkers (R^1) were reported to be more effective for hydrosilylation reactions with Rh^I complexes than ethylene linkers (Riederer *et al.*, 2010).

The bidentate NHC ligand system is highly versatile for stabilizing a range of metals, some of which result in catalytically active systems. For example, $[^{tBu}NHC_2Me][Br]_2$ and $[^{tBu}NHC_2Et][Br]_2$ were used as precursors for synthesis of rhodium complexes (Leung *et al.*, 2006). $[^{tBu}NHC_2Et][Cl]_2$ was used for synthesis of aluminum, gallium, and indium complexes (Baker *et al.*, 2002). $[^{Mes}NHC_2Et][Br]_2$ was reported for synthesizing rhenium complexes (Hock *et al.*, 2014; Hiltner *et al.*, 2010), palladium complexes *via* Pd(OAc)₂-assisted deprotometalation (Wierenga *et al.*, 2019), palladium complexes *via* silver transmetallation (Sluijter *et al.*, 2013), and for palladium catalysts for Suzuki and Heck coupling reactions (Lee *et al.*, 2004). Other reported palladium complexes were active for dehalogenation of aryl halides (Viciu *et al.*, 2001).

Examples with first row transition metals are fewer, with nickel being the most commonly reported. Nickel carbonato complexes were synthesized with [MesNHC₂Me][Cl]₂ and [MesNHC₂Et][Cl]₂ ligand precursors (Guo *et al.*, 2013). Iron complexes for use in aryl Grignard-alkyl halide cross-coupling reactions were synthesized using various bis(imidazolium) salts including [^{Mes}NHC₂Me][Cl]₂, [^{Mes}NHC₂Me][Cl]₂, [^{Mes}NHC₂Me][Br]₂, [^{Mes}NHC₂Me][Cl]₂, [^{Mes}NHC₂Me][Br]₂, and [^{Mes}NHC₂Et]-[Br]₂ (Meyer *et al.*, 2011).

When used for stabilizing bimetallic systems, $[^{tBu}NHC_2Et]$ -[Cl]₂ and $[^{Mes}NHC_2Et]$ [Cl]₂ have been used as precursors for dipalladium complexes for Heck reactions (Li *et al.*, 2013; Yang *et al.*, 2012; Cao *et al.*, 2010), while $[^{tBu}NHC_2Et]$ [Br]₂ was

Br2

a precursor for dimetallic Rh complexes (Wells *et al.*, 2008) and mixed-metal Rh/Pd (Zamora *et al.*, 2009) and Ir/Rh (Frey *et al.*, 2006). Similarly, [^{Mes}NHC₂Me][Br]₂ and [^{Mes}NH-C₂Et][Br]₂ were used to synthesize bimetallic gold catalysts for cross-coupling and hydroamination reactions (Baron *et al.*, 2018).

$$\label{eq:constraint} \begin{split} & [{}^{tBu} \textbf{NHC}_2 \textbf{Me}][\textbf{Br}]_2 \quad \textbf{R} = \textit{tert}\text{-butyl}; \ \textbf{R}^1 = \textbf{CH}_2, \ \textbf{n} = 1 \\ & [{}^{tBu} \textbf{NHC}_2 \textbf{Et}][\textbf{Br}]_2 \quad \textbf{R} = \textit{tert}\text{-butyl}; \ \textbf{R}^1 = \textbf{CH}_2 \textbf{CH}_2, \ \textbf{n} = 2 \\ & [{}^{Mes} \textbf{NHC}_2 \textbf{Me}][\textbf{Br}]_2 \quad \textbf{R} = 2,4,6\text{-trimethylphenyl}; \ \textbf{R}^1 = \textbf{CH}_2, \ \textbf{n} = 2 \\ & [{}^{Mes} \textbf{NHC}_2 \textbf{Et}][\textbf{Br}]_2 \quad \textbf{R} = 2,4,6\text{-trimethylphenyl}; \ \textbf{R}^1 = \textbf{CH}_2 \textbf{CH}_2, \ \textbf{n} = 4 \end{split}$$

While bis(imidazolium) salts are common ligand precursors, few have been structurally characterized (Rheingold, 2019). This work presents structural characterization and a comparison of supramolecular features for methylene- *versus* ethylene-linked bis(imidazolium) salts with *tert*-butyl and mesityl ancillary groups.

2. Structural commentary

All four bis(imidazolium) salts were recrystallized from hot methanol and each compound co-crystallizes with one or more molecules of water. Fig. 1 depicts $[^{rBu}NHC_2Me][Br]_2 \cdot H_2O$ while Fig. 2 depicts $[^{rBu}NHC_2Et][Br]_2 \cdot 2H_2O$.

Bond distances in the imidazolium rings of [$^{rBu}NHC_2$. 2Me][Br]₂·H₂O and [$^{rBu}NHC_2Et$][Br]₂·2H₂O are mostly the same within experimental error, with backbone C2–C3 distances of 1.348 (4) and 1.349 (3) Å, respectively. The N–C distances are also mostly comparable with [$^{rBu}NHC_2$. 2Me][Br]₂·H₂O having an N1–C2 and an N2–C3 distance of 1.389 (3) Å and N1–C1 and N2–C1 distances both being 1.337 (3) Å, while [$^{rBu}NHC_2Et$][Br]₂·2H₂O has an N1–C2 distance of 1.388 (3) Å, an N2–C3 distance of 1.384 (3) Å, an

View of ["BuNHC2Me][Br]2·H2O with 50% probability ellipsoids.

View of [^{*t*Bu}NHC₂Et][Br]₂·2H₂O with 50% probability ellipsoids.

Br2

Figure 3

View of [MesNHC2Me][Br]2·2H2O with 50% probability ellipsoids.

N1–C1 distance of 1.327 (3) Å and an N2–C1 distance of 1.331 (3) Å. For the linker, the N2–C7 distance is 1.463 (3) Å for $[^{tBu}NHC_2Me][Br]_2 \cdot H_2O$ and 1.468 (3) Å for $[^{tBu}NH-NHC_2Et][Br]_2 \cdot 2H_2O$.

Bond angles in the imidazolium rings are also quite similar in $[{}^{Bu}NHC_2Me][Br]_2 \cdot H_2O$ and $[{}^{Bu}NHC_2Et][Br]_2 \cdot 2H_2O$. For $[{}^{Bu}NHC_2Me][Br]_2 \cdot H_2O$, bond angles include C1-N1-C2 at 108.2 (2)°, N1-C2-C3 at 107.6 (2)°, C2-C3-N2 at 106.9 (2)°, C3-N2-C1 at 108.6 (2)°, and N2-C1-N1 at 108.7 (2)°. For $[{}^{Bu}NHC_2Et][Br]_2 \cdot H_2O$, bond angles include C1-N1-C2 at 108.21 (19)°, N1-C2-C3 at 107.3 (2)°, C2-C3-N2 at 106.9 (2)°, C3-N2-C1 at 108.54 (19)°, and N2-C1-N1 at 109.02 (19)°.

Fig. 3 depicts [^{Mes}NHC₂Me][Br]₂·2H₂O while Fig. 4 depicts [^{Mes}NHC₂Et][Br]₂·4H₂O. Notably, [^{Mes}NHC₂Et][Br]₂·4H₂O is the only compound of the four for which the asymmetric unit contains only half of the molecule.

Bond distances in the imidazolium rings of [^{Mes}NHC₂. Me][Br]₂·2H₂O and [^{Mes}NHC₂Et][Br]₂·4H₂O are mostly the same within experimental error, with backbone C2–C3 distances of 1.344 (3) and 1.3506 (19) Å, respectively. N–C distances are also mostly the same with [^{Mes}NHC₂. Me][Br]₂·2H₂O having an N1–C2 distance of 1.387 (3) Å, an N2–C3 distance of 1.380 (3) Å, an N1–C1 distance of 1.326 (3) Å, and an N2–C1 distance of 1.341 (3) Å. Similarly, [^{Mes}NHC₂Et][Br]₂·4H₂O has an N1–C2 distance of 1.3872 (16) Å, an N2–C3 distance of 1.3841 (16) Å, an N1– C1 distance of 1.3322 (16) Å and an N2–C1 distance of 1.3314 (16) Å. For the linker, the N2–C7 distance is 1.457 (3) Å for [^{Mes}NHC₂Me][Br]₂·2H₂O and 1.4653 (16) Å for [^{Mes}NHC₂Et][Br]₂·4H₂O.

View of [MesNHC2Et][Br]2.4H2O with 50% probability ellipsoids.

Bond angles in the imidazolium rings are also mostly the [^{Mes}NHC₂Me][Br]₂·2H₂O [MesNHfor and same C₂Et][Br]₂·4H₂O. For [^{Mes}NHC₂Me][Br]₂·2H₂O, bond angles include C1-N1-C2 at 108.92 (17)°, N1-C2-C3 at 107.20 (19)°, C2-C3-N2 at 106.95 (19)°, C3-N2-C1 at 108.96 (17)°, and N2-C1-N1 at 107.96 (18)°. For [MesNH-C₂Et][Br]₂·4H₂O, bond angles include C1-N1-C2 at $108.51 (11)^{\circ}$, N1-C2-C3 at $107.19 (11)^{\circ}$, C2-C3-N2 at 106.87 (11)°, C3-N2-C1 at 108.89 (11)°, and N2-C1-N1 at $108.54 (11)^{\circ}$. Overall, these data support that changing the linker R^1 group from methylene to ethylene does not significantly affect the imidazolium ring structures.

3. Supramolecular features

The supramolecular structure of $[{}^{\prime Bu}NHC_2Me][Br]_2 \cdot H_2O$ is stabilized by hydrogen bonding (Fig. 5, Table 1). Distances between centroids of neighboring imidazoles are greater than 5 Å, suggesting no π -stacking interactions (Janiak, 2000). Hydrogen bonding between one bromide atom and one water molecule is found with Br1···H1D having a distance of 2.575 (4) Å. One *tert*-butyl group has positional disorder.

The supramolecular structure of [$^{tBu}NHC_2Et$][Br]₂·2H₂O is stabilized by extensive hydrogen bonding (Fig. 6, Table 1). Distances between centroids of neighboring imidazoles are greater than 5 Å, suggesting no π -stacking interactions (Janiak, 2000). Several hydrogen-bonding interactions are found between bromide ions and water molecules, including Br2···H1B (2.439 Å) and Br1···H1A (2.398 Å).

The supramolecular structure of $[^{Mes}NHC_2Me][Br]_2 \cdot 2H_2O$ is also stabilized by hydrogen bonding (Fig. 7, Table 1). No π -stacking interactions were found as distances between

View of four molecules of $[{}^{tBu}NHC_2Me][Br]_2 \cdot H_2O$ with 50% probability ellipsoids, highlighting intermolecular distances. Disordered *tert*-butyl groups are omitted for clarity.

research communications

Table 1

Intermolecular distances (Å) in the unit cells of $[^{R}NHC_{2}R_{1}][X]_{2}\cdot nH_{2}O$.

Standard deviations for distances including some H atoms are omitted where H atoms were positionally fixed.

Compound	Atoms	Distance
[^{tBu} NHC ₂ Me][Br] ₂ ·H ₂ O	$Br1 \cdots H1D$	2.575 (4)
[^{tBu} NHC ₂ Et][Br] ₂ ·2H ₂ O	$Br1 \cdot \cdot \cdot H1A$	2.398
	$Br2 \cdot \cdot H1B$	2.439
[^{Mes} NHC ₂ Me][Br] ₂ ·2H ₂ O	$Br1 \cdot \cdot \cdot H2A$	2.413
	$Br2 \cdot \cdot H1A$	2.463
	$O1A \cdots H2B$	2.125
[MesNHC2Et][Br]2·4H2O	$O1 \cdot \cdot \cdot H2B$	1.994 (2)
	$O2 \cdot \cdot \cdot H1E$	2.001 (3)
	$Br1 \cdots H1D$	2.585 (2)

centroids of aromatic rings of neighboring molecules are greater than 5 Å (Janiak, 2000). Several hydrogen-bonding interactions are observed between bromide ions and water molecules as well as neighboring water molecules, including Br1 \cdots H2A at 2.413 Å, Br2 \cdots H1A at 2.463 Å, and O1A \cdots H2B at 2.125 Å.

The supramolecular structure of $[^{\text{Mes}}\text{NHC}_2\text{Et}][\text{Br}]_2\cdot 4\text{H}_2\text{O}$ is also stabilized by hydrogen bonding (Fig. 8, Table 1). No π stacking is observed between mesityl groups, similar to $[^{\text{Mes}}\text{NHC}_2\text{Me}][\text{Br}]_2\cdot 2\text{H}_2\text{O}$ as the distance between centroids of the mesityl groups of neighboring fragments is greater than 4.5 Å (Janiak, 2000). Hydrogen-bonding interactions include O1…H2*B* at 1.994 (2) Å, O2…H1*E* at 2.001 (3) Å, and Br1…H1*D* at 2.585 (2) Å.

4. Database survey

A survey of the Cambridge Structural Database (Web accessed March 24, 2022; Groom *et al.*, 2016) and SciFinder (SciFinder, 2022) yielded no exact matches for the unit cells of $[^{He}NHC_2Me][Br]_2 \cdot H_2O$, $[^{He}NHC_2Et][Br]_2 \cdot 2H_2O$, or $[^{Mes}NHC_2Et][Br]_2 \cdot 4H_2O$. A deposited dataset for $[^{Mes}NHC_2Me][Br]_2 \cdot 2H_2O$ was found (Rheingold, 2019) with a slightly higher *R*1 of 3.94% and data collection at a higher

Figure 6

View of four molecules of [^{'Bu}NHC₂Et][Br]₂·2H₂O with 50% probability ellipsoids, highlighting intermolecular distances.

Figure 7

View of eight molecules of [MesNHC₂Me][Br]₂·2H₂O with 50% probability ellipsoids, highlighting intermolecular distances.

temperature of 150 K, as compared to R1 of 3.18% and temperature of 112 K in the current report. As discussed in the introduction, the syntheses of all of the reported structures are reported based on the SciFinder search; however, no additional structural data were found.

5. Synthesis and crystallization

General considerations. All reagents were purchased from commercial suppliers and used without further purification. ¹H

View of eight molecules of [^{Mes}NHC₂Et][Br]₂·4H₂O with 50% probability ellipsoids, highlighting intermolecular distances.

NMR data were collected on a Varian 400 MHz spectrometer and referenced to residual CHCl₃.

Synthesis of 1-tert-butyl-1H-imidazole, ("BuIm). The procedure was adapted from a literature procedure (Liu et al., 2003). A round-bottom flask was charged with 10.0 mL (95 mmol, 1 eq.) of tert-butylamine, 11.0 mL of 40% glyoxal (95 mmol, 1 eq.), approximately 100 mL of methanol, and approximately 25 mL of deionized water and a stir bar, then heated to 343 K under reflux. 7.81 mL of 37% formaldehyde (95 mmol, 1 eq.) were added, followed by 3.70 mL of ammonium hydroxide (95 mmol, 1 eq.) added dropwise over 5 minutes while stirring. The solution was refluxed at 343 K for 5 h, resulting in a light red-orange solution. Excess solvent was removed in vacuo, and the resulting product was diluted with approximately 150 mL of dichloromethane and washed twice with 50 mL of deionized H₂O until the aqueous layers ran clear. The product was vacuum distilled at \sim 373 K, yielding a clear liquid, which was weighed in a tared vial, resulting in 7.95 g (34% yield) of '^{Bu}Im, and characterized by ¹H NMR spectroscopy in CDCl₃.

Synthesis of 1-(2,4,6-trimethylphenyl)-1*H*-imidazole, (^{Mes}Im). The procedure was adapted from a literature procedure (Liu et al., 2003; Gardiner et al., 1999). A 250 mL threeneck round-bottom flask was charged with 15.000 g (110.9 mmol, 1 eq.) of 2,4,6-trimethylaniline, 16.090 g (110.9 mmol, 1 eq) of 40% glyoxal, and \sim 75 mL of methanol and stirred for 24 h after which the solution turned orange with a yellow precipitate. 11.86 g (221.8 mmol, 2 eq.) of ammonium chloride, 18.00 g (221.8 mmol, 2 eq.) of 37% formaldehyde, and 300 mL of methanol were added, and the solution was refluxed for 24 h at 373 K, at which point the solution was deep brown. After being cooled to room temperature, 25.57 g (221.8 mmol, 2 eq.) of 85% phosphoric acid were added dropwise over ten minutes and the solution was refluxed for 16 h at 368 K. Excess solvent was removed in vacuo at 313 K, and the viscous brown residue was poured over \sim 300 g of ice and neutralized to pH 10 with a saturated solution of potassium hydroxide, resulting in a clear solution with a chunky brown precipitate. The product was taken into diethyl ether by washing the solution three times with $\sim 100 \text{ mL}$ of diethyl ether. The diethyl ether solution was washed thrice with $\sim 100 \text{ mL}$ of water, thrice with $\sim 100 \text{ mL}$ of brine, and dried overnight over sodium sulfate. Sodium sulfate solids were gravity filtered from the solution and the solvent was removed in vacuo resulting in a brown solid. The product was recrystallized from hot ethyl acetate, resulting in 9.49 g (46% yield) of tan crystals, which were characterized by ${}^{1}H$ NMR spectroscopy and identified as ^{Mes}Im.

Synthesis of 1,1'-di(*tert*-butyl)-3,3'-methylene-diimidazolium dibromide, ['^{Bu}NHC₂Me][Br]₂. 1.850 g (14.9 mmol, 2.5 eq.) of ^{tbu}Im and 0.4194 mL (5.9 mmol, 1 eq.) of dibromomethane, a stir bar, and ~20 mL of toluene were stirred in a 50 mL round-bottomed flask. The solution was then heated to 423 K and refluxed for 46 h, resulting in the formation of a dark orange-brown solution. The solution was cooled in an ice bath, resulting in a fine white precipitate which was collected *via* vacuum filtration, washed twice with ~5 mL of cold toluene, filtered and dried. 1.120 g (78.02% yield) of a fine white solid identified as $[^{tBu}NHC_2Me][Br]_2$ were isolated. Crystals suitable for X-ray diffraction were obtained by recrystallization from hot methanol. The product was characterized by ¹H NMR spectroscopy. The ¹H NMR data were consistent with those previously reported (Scherg *et al.*, 2006).

Synthesis of 1,1'-di(*tert*-butyl)-3,3'-ethylene-diimidazolium dibromide [$^{tBu}NHC_2Et$][Br]₂. A 250 mL round-bottomed flask was charged with 2.017 g (16.2 mmol, 2.5 eq.) of ^{tbu}Im , 0.562 mL (6.45 mmol, 1 eq.) of dibromoethane, a stir bar, and ~20 mL of toluene. The mixture was refluxed at 423 K and stirred for 46 h, at which point the solution was a rusty brown color. The flask was then placed in an ice bath, and the resulting precipitate was collected *via* vacuum filtration and washed twice with ~5 mL of cold toluene. The resulting solids were dried and weighed, yielding 1.727 g (61% yield) of [$^{tBu}NHC_2Et$][Br]₂ and single crystals suitable for X-ray diffraction were obtained *via* recrystallization from hot methanol. ¹H NMR data were consistent with those previously reported (Scherg *et al.*, 2006).

Synthesis of 1,1'-di(mesityl)-3,3'-methylene-diimidazolium dibromide, [^{Mes}NHC₂Me][Br]₂. The procedure was adapted from a literature procedure (Gardiner *et al.*, 1999). 5.00 g (26.8 mmol, 2.5 eq.) of ^{Mes}Im we added to a 50 mL round-bottomed flask with a stir bar and \sim 20 mL of toluene. 0.754 mL (10.72 mmol, 1 eq.) of dibromomethane were added and the solution was refluxed at 423 K for 20 h. The solution was cooled in an ice bath, resulting in a white precipitate. The white solid was recrystallized from \sim 12 mL of hot methanol. The product was obtained in 17% yield (1.10 g) as tan crystals identified as [^{Mes}NHC₂Me][Br]₂ suitable for X-ray diffraction and characterized by ¹H NMR.

Synthesis of 1,1'-di(mesityl)-3,3'-ethylene-diimidazolium dibromide, [^{Mes}NHC₂Et][Br]₂. A 250 mL three-neck roundbottom flask was charged with 4.438 g (23.8 mmol, 2.5 eq.) of ^{Mes}Im, 0.824 mL (9.52 mmol, 1 eq.) of 1,2-dibromoethane, and \sim 20 mL of toluene. The reaction mixture was heated to 423 K and refluxed for 19 h, resulting in a cloudy yellow solution. The solution was cooled in an ice bath and the precipitate was collected and recrystallized from \sim 25 mL of hot methanol, resulting in 2.962 g (55% yield) of tan crystals which were analyzed *via* ¹H NMR spectroscopy and identified as [^{Mes}NHC₂Et][Br]₂.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Most hydrogen atoms were placed in calculated positions using the AFIX commands of *SHELXL* and included as riding contributions with distances of 0.95 Å for C–H, 0.99 Å for CH₂ and 0.98 Å for CH₃. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. U_{iso} values of riding H atoms were set to 1.2 times $U_{eq}(C)$ for CH and CH₂, and 1.5 times $U_{eq}(C)$ for CH₃ and H₂O. For [^{*t*Bu}NHC₂Me][Br]₂, the SADI command of *SHELX* was used to model disorder in one of the *tert*-butyl moieties for N4–C0*AA* and N4–C12,

research communications

Table 2 Experimental details.

	$[^{Mes}NHC_2Me][Br]_2 \cdot 2H_2O$	$[^{tBu}NHC_2Me][Br]_2 \cdot H_2O$	[^{tBu} NHC ₂ Et][Br] ₂ ·2H ₂ O	[^{Mes} NHC ₂ Et][Br] ₂ ·4H ₂ O
Crystal data				
Chemical formula	$C_{25}H_{30}N_4^{2+}\cdot 2Br^-\cdot 2H_2O$	$C_{15}H_{26}N_4^+ \cdot 2Br^- \cdot H_2O$	$C_{16}H_{28}N_4^{2+}\cdot 2Br^-\cdot 2H_2O$	$C_{26}H_{32}N_4^{2+}\cdot 2Br^-\cdot 4H_2O$
M _r	582.38	440.23	472.27	632.42
Crystal system, space group	Orthorhombic, <i>Pccn</i>	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$
Temperature (K)	112	293	100	100
a, b, c (A)	21.5695 (6), 28.3385 (6), 8.9401 (2)	7.211 (5), 18.311 (17), 15.409 (5)	17.1577 (6), 7.3180 (2), 18.2712 (6)	12.4230 (3), 13.1447 (3), 9.2780 (2)
α, β, γ (°)	90, 90, 90	90, 101.35 (3), 90	90, 112.786 (1), 90	90, 108.379 (1), 90
$V(Å^3)$	5464.6 (2)	1995 (2)	2115.09 (12)	1437.78 (6)
Ζ	8	4	4	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	2.99	4.07	3.85	2.86
Crystal size (mm)	$0.4 \times 0.3 \times 0.25$	$0.3 \times 0.15 \times 0.1$	$0.2 \times 0.1 \times 0.05$	$0.15 \times 0.15 \times 0.05$
Data collection				
Diffractometer	Bruker Venture D8 Kappa	Bruker APEXII CCD	Bruker Venture D8 Kappa	Bruker Venture D8 Kappa
Absorption correction	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.386, 0.748	0.544, 0.747	0.496, 0.748	0.544, 0.750
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	39085, 5954, 5530	33565, 4402, 3780	31474, 4664, 4168	28199, 3165, 3028
R _{int}	0.035	0.043	0.059	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.641	0.641	0.641	0.641
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.066, 1.19	0.035, 0.068, 1.08	0.031, 0.066, 1.11	0.018, 0.044, 1.10
No. of reflections	5954	4402	4664	3165
No. of parameters	338	259	253	194
No. of restraints	0	3	0	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.42, -0.54	1.49, -1.10	0.60, -0.61	0.33, -0.29

Computer programs: APEX3 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

C0AA – C00N and C14–C12, and C1AA – C0AA and C13– C12 to restrain distances within a sigma of 0.02 Å. The population parameters for the disordered *tert*-butyl groups are 0.54019 for C12–C14, and 0.45981 for C00N, C0AA, and C1AA. The highest peak and deepest hole are both near a heavy atom Br1 with a distance of 0.88 Å from the highest peak of 1.49 e Å⁻³ and a distance of 0.73 Å from the deepest hole of -1.10 e Å⁻³.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. 1847926 to S. Chantal E. Stieber); National Science Foundation, Directorate for Education and Human Resources (scholarship No. 1834186 to Elisa M. Olivas; scholarship No. 1826490 to Emily S. Thompson, Adrian Torres, Briana C. Arreaga, Hector L. Alarcon); U.S. Department of Defense, U.S. Army (award No. W911NF-17-1-0537 to S. Chantal E. Stieber); National Institutes of Health, National Institute of General Medical Sciences (scholarship No. 5R25GM113748-03 to Briana C. Arreaga).

References

- Baker, R. J., Cole, M. L., Jones, C. & Mahon, M. F. (2002). J. Chem. Soc. Dalton Trans. pp. 1992–1996.
- Baron, M., Battistel, E., Tubaro, C., Biffis, A., Armelao, L., Rancan, M. & Graiff, C. (2018). *Organometallics*, **37**, 4213–4223.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, C., Zhuang, Y., Zhao, J., Liu, H., Geng, P., Pang, G. & Shi, Y. (2012). Synth. Commun. 42, 380–387.
- Cao, C., Zhuang, Y., Zhao, J., Pang, G. & Shi, Y. (2011). J. Chem. Res. 35, 320–322.
- Cao, C., Zhuang, Y., Zhao, J., Peng, Y., Li, X., Shi, Z., Pang, G. & Shi, Y. (2010). *Inorg. Chim. Acta*, **363**, 3914–3918.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Frey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725–5738.
- Gardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239–247.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Guo, J., Lv, L., Wang, X., Cao, C., Pang, G. & Shi, Y. (2013). Inorg. Chem. Commun. 31, 74–78.
- Hiltner, O., Boch, F. J., Brewitz, L., Härter, P., Drees, M., Herdtweck, E., Herrmann, W. A. & Kühn, F. E. (2010). *Eur. J. Inorg. Chem.* pp. 5284–5293.
- Hock, S. J., Schaper, L.-A., Pöthig, A., Drees, M., Herdtweck, E., Hiltner, O., Herrmann, W. A. & Kühn, F. E. (2014). *Dalton Trans.* **43**, 2259–2271.
- Janiak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Lee, H. M., Lu, C. Y., Chen, C. Y. C. W. L., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). *Tetrahedron*, **60**, 5807–5825.
- Leung, C. H., Incarvito, C. D. & Crabtree, R. H. (2006). Organometallics, 25, 6099–6107.
- Li, Y., Liu, G., Cao, C., Wang, S., Li, Y., Pang, G. & Shi, Y. (2013). *Tetrahedron*, **69**, 6241–6250.
- Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661–2666.
- Meyer, S., Orben, C. M., Demeshko, S., Dechert, S. & Meyer, F. (2011). *Organometallics*, **30**, 6692–6702.
- Rheingold, A. L. (2019). CSD Communication (CCDC 1953445). CCDC, Cambridge, England. https://doi.org/10.5517/ ccdc.csd.cc23kqcs

- Riederer, S. K. U., Gigler, P., Högerl, M. P., Herdtweck, E., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2010). Organometallics, 29, 5681–5692.
- Scherg, T., Schneider, S. K., Frey, G. D., Schwarz, J., Herdtweck, E. & Herrmann, W. A. (2006). Synlett, pp. 2894–2907.
- SciFinder (2022). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 24, 2022). https://www.cas.org/ products/scifinder
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sluijter, S. N., Warsink, S., Lutz, M. & Elsevier, C. J. (2013). Dalton Trans. 42, 7365–7372.
- Viciu, M. S., Grasa, G. A. & Nolan, S. P. (2001). Organometallics, 20, 3607–3612.
- Wells, K. D., Ferguson, M. J., McDonald, R. & Cowie, M. (2008). Organometallics, 27, 691–703.
- Wierenga, T. S., Vanston, C. R., Ariafard, A., Gardiner, M. G. & Ho, C. C. (2019). Organometallics, 38, 3032–3038.
- Yang, L., Zhao, J., Li, Y., Ge, K., Zhuang, Y., Cao, C. & Shi, Y. (2012). *Inorg. Chem. Commun.* 22, 33–36.
- Yang, W., Gou, G.-Z., Wang, Y. & Fu, W.-F. (2013). *RSC Adv.* **3**, 6334–6338.
- Zamora, M. T., Ferguson, M. J., McDonald, R. & Cowie, M. (2009). Dalton Trans. pp. 7269–7287

Acta Cryst. (2022). E78, 905-911 [https://doi.org/10.1107/S2056989022008003]

Effect of methylene *versus* ethylene linkers on structural properties of *tert*-butyl and mesityl bis(imidazolium) bromide salts

Emily S. Thompson, Elisa M. Olivas, Adrian Torres, Briana C. Arreaga, Hector L. Alarcon, Deandrea Dolberry, Jacob P. Brannon and S. Chantal E. Stieber

Computing details

For all structures, data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for sceso1006_0m, est01043_0m, est01041d_0ma; *olex2.solve* (Bourhis *et al.*, 2015) for at01019_0ma. For all structures, program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m)

Crystal data

C₁₅H₂₆N₄⁺·2Br⁻·H₂O $M_r = 440.23$ Monoclinic, $P2_1/c$ a = 7.211 (5) Å b = 18.311 (17) Å c = 15.409 (5) Å $\beta = 101.35$ (3)° V = 1995 (2) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.544, T_{\max} = 0.747$ 33565 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.068$ S = 1.084402 reflections 259 parameters F(000) = 896 $D_x = 1.466 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9889 reflections $\theta = 2.6-30.2^{\circ}$ $\mu = 4.07 \text{ mm}^{-1}$ T = 293 KPrism, clear colourless $0.3 \times 0.15 \times 0.1 \text{ mm}$

4402 independent reflections 3780 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -9 \rightarrow 8$ $k = -23 \rightarrow 23$ $l = -19 \rightarrow 19$

3 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0006P)^2 + 4.1194P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 1.49$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -1.10 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br2	0.83773 (4)	0.86331 (2)	0.55378 (2)	0.03323 (9)	
Br1	1.05299 (4)	0.61882 (2)	0.35706 (2)	0.03727 (10)	
N3	0.4514 (3)	0.71177 (11)	0.18236 (13)	0.0175 (4)	
N1	0.5823 (3)	0.48054 (11)	0.16964 (13)	0.0162 (4)	
01	0.8362 (4)	0.78047 (16)	0.35775 (17)	0.0419 (6)	
N2	0.4742 (3)	0.58205 (11)	0.21324 (13)	0.0170 (4)	
N4	0.5288 (3)	0.80162 (12)	0.10500 (14)	0.0225 (5)	
C1	0.6311 (4)	0.54357 (13)	0.21172 (16)	0.0181 (5)	
Н5	0.753852	0.558228	0.235943	0.022*	
C5	0.2905 (4)	0.73014 (14)	0.12095 (18)	0.0221 (5)	
C4	0.5935 (4)	0.75572 (14)	0.17061 (16)	0.0211 (5)	
Н9	0.716674	0.754245	0.203041	0.025*	
C7	0.4681 (4)	0.65531 (14)	0.25048 (16)	0.0212 (5)	
H8A	0.361201	0.658686	0.279890	0.025*	
H8B	0.582372	0.663573	0.294434	0.025*	
C8	0.7152 (4)	0.42139 (14)	0.15085 (18)	0.0207 (5)	
C6	0.3396 (4)	0.78602 (15)	0.07277 (19)	0.0251 (6)	
C2	0.3869 (4)	0.47957 (15)	0.14242 (18)	0.0216 (5)	
C3	0.3195 (4)	0.54263 (15)	0.16910 (19)	0.0239 (6)	
C13	0.5981 (4)	0.86039 (16)	-0.02694 (18)	0.0290 (6)	
H15A	0.613085	0.812884	-0.050991	0.043*	0.54 (3)
H15B	0.674562	0.895007	-0.050884	0.043*	0.54 (3)
H15C	0.467761	0.874789	-0.042171	0.043*	0.54 (3)
H15D	0.641328	0.812747	-0.039773	0.043*	0.46 (3)
H15E	0.674290	0.896891	-0.047847	0.043*	0.46 (3)
H15F	0.468475	0.866370	-0.055952	0.043*	0.46 (3)
C12	0.6629 (17)	0.8579 (5)	0.0781 (8)	0.014 (2)	0.54 (3)
C11	0.6634 (5)	0.35011 (16)	0.1920 (2)	0.0402 (8)	
H3A	0.676730	0.356294	0.254815	0.060*	
H3B	0.746068	0.311841	0.180278	0.060*	
H3C	0.534897	0.337462	0.166825	0.060*	
C10	0.9155 (4)	0.44460 (17)	0.1903 (3)	0.0408 (8)	
H1A	0.944282	0.489150	0.162880	0.061*	
H1B	1.002017	0.407121	0.180300	0.061*	
H1C	0.927348	0.452256	0.252799	0.061*	
C9	0.6908 (5)	0.4157 (2)	0.0510 (2)	0.0399 (8)	
H4A	0.564299	0.400122	0.026305	0.060*	

H4B	0.779299	0.380851	0.036360	0.060*	
H4C	0.713383	0.462547	0.027048	0.060*	
C15	0.8712 (15)	0.8362 (6)	0.1050 (8)	0.0245 (19)	0.54 (3)
H13A	0.906281	0.834192	0.168381	0.037*	0.54 (3)
H13B	0.948184	0.871611	0.082775	0.037*	0.54 (3)
H13C	0.889802	0.789067	0.080737	0.037*	0.54 (3)
C14	0.6197 (18)	0.9291 (5)	0.1206 (7)	0.025 (2)	0.54 (3)
H14A	0.487306	0.939908	0.103235	0.038*	0.54 (3)
H14B	0.692055	0.967891	0.101603	0.038*	0.54 (3)
H14C	0.652454	0.924641	0.183859	0.038*	0.54 (3)
H1D	0.905 (6)	0.746 (2)	0.365 (3)	0.061 (15)*	
C14A	0.530 (3)	0.9398 (5)	0.0928 (10)	0.034 (3)	0.46 (3)
H00A	0.398530	0.942603	0.064831	0.050*	0.46 (3)
H00B	0.596718	0.980230	0.074007	0.050*	0.46 (3)
H00C	0.540922	0.941501	0.155917	0.050*	0.46 (3)
C12A	0.614 (2)	0.8681 (6)	0.0668 (11)	0.021 (3)	0.46 (3)
C15A	0.823 (2)	0.8614 (11)	0.1096 (10)	0.038 (3)	0.46 (3)
H1AA	0.837624	0.866529	0.172622	0.057*	0.46 (3)
H1AB	0.893103	0.898947	0.087072	0.057*	0.46 (3)
H1AC	0.868755	0.814380	0.096076	0.057*	0.46 (3)
H1E	0.839 (5)	0.800(2)	0.399 (3)	0.041 (12)*	
H6	0.331 (4)	0.4388 (16)	0.1108 (19)	0.023 (7)*	
H11	0.270 (5)	0.8115 (18)	0.027 (2)	0.035 (9)*	
H10	0.175 (5)	0.7062 (18)	0.118 (2)	0.037 (9)*	
H7	0.201 (5)	0.5612 (17)	0.164 (2)	0.034 (9)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br2	0.02663 (15)	0.03928 (17)	0.02985 (16)	0.01469 (13)	-0.00401 (11)	-0.00144 (13)
Br1	0.02382 (15)	0.0520(2)	0.03702 (18)	-0.01154 (13)	0.00837 (12)	-0.02086 (14)
N3	0.0203 (11)	0.0185 (10)	0.0146 (10)	-0.0049 (8)	0.0058 (8)	-0.0011 (8)
N1	0.0134 (10)	0.0203 (11)	0.0140 (10)	-0.0024 (8)	0.0008 (8)	0.0046 (8)
01	0.0559 (17)	0.0417 (15)	0.0233 (13)	-0.0041 (13)	-0.0040 (11)	0.0034 (11)
N2	0.0182 (11)	0.0207 (11)	0.0125 (10)	-0.0039 (8)	0.0040 (8)	0.0026 (8)
N4	0.0315 (13)	0.0209 (11)	0.0153 (11)	-0.0117 (9)	0.0053 (9)	-0.0034 (8)
C1	0.0149 (12)	0.0223 (13)	0.0156 (12)	-0.0039 (10)	-0.0009 (9)	0.0041 (10)
C5	0.0210 (14)	0.0194 (13)	0.0241 (14)	-0.0026 (10)	0.0002 (11)	-0.0025 (10)
C4	0.0243 (14)	0.0283 (14)	0.0106 (12)	-0.0092 (11)	0.0035 (10)	-0.0022 (10)
C7	0.0285 (14)	0.0233 (13)	0.0135 (12)	-0.0036 (11)	0.0083 (10)	0.0014 (10)
C8	0.0176 (13)	0.0180 (12)	0.0271 (14)	-0.0015 (10)	0.0060 (11)	0.0024 (10)
C6	0.0304 (15)	0.0196 (13)	0.0227 (14)	-0.0033 (11)	-0.0010 (12)	-0.0013 (11)
C2	0.0126 (12)	0.0246 (14)	0.0266 (14)	-0.0068 (10)	0.0016 (10)	0.0013 (11)
C3	0.0136 (13)	0.0256 (14)	0.0328 (16)	-0.0051 (11)	0.0053 (11)	0.0022 (11)
C13	0.0353 (16)	0.0344 (16)	0.0195 (14)	-0.0012 (13)	0.0109 (12)	0.0030 (12)
C12	0.023 (5)	0.011 (3)	0.008 (4)	-0.003 (3)	0.002 (4)	0.000 (3)
C11	0.0429 (19)	0.0235 (15)	0.060 (2)	0.0033 (13)	0.0254 (17)	0.0115 (14)
C10	0.0166 (15)	0.0285 (16)	0.072 (2)	0.0027 (12)	-0.0039 (15)	-0.0055 (16)

C9	0.0406 (19)	0.050 (2)	0.0316(17)	0.0052 (15)	0.0133 (14)	-0.0072(15)
C15	0.014 (4)	0.028 (5)	0.031 (3)	-0.009(3)	0.003 (3)	0.000 (3)
C14	0.032 (5)	0.020 (3)	0.028 (4)	-0.006 (3)	0.014 (3)	-0.002 (3)
C14A	0.066 (9)	0.011 (3)	0.030 (5)	-0.003 (4)	0.026 (6)	0.000 (3)
C12A	0.025 (6)	0.022 (5)	0.014 (4)	-0.005 (4)	-0.004 (4)	0.008 (3)
C15A	0.028 (6)	0.047 (8)	0.032 (5)	-0.018 (5)	-0.010 (5)	0.022 (5)

Geometric parameters (Å, °)

N3—C5	1.387 (3)	C13—H15D	0.9600
N3—C4	1.343 (3)	С13—Н15Е	0.9600
N3—C7	1.461 (3)	C13—H15F	0.9600
N1—C1	1.337 (3)	C13—C12	1.595 (13)
N1—C8	1.512 (3)	C13—C12A	1.434 (16)
N1—C2	1.389 (3)	C12—C15	1.530 (10)
O1—H1D	0.80 (4)	C12—C14	1.519 (10)
O1—H1E	0.73 (4)	С11—НЗА	0.9600
N2—C1	1.337 (3)	С11—НЗВ	0.9600
N2—C7	1.463 (3)	С11—НЗС	0.9600
N2—C3	1.389 (3)	C10—H1A	0.9600
N4—C4	1.327 (3)	C10—H1B	0.9600
N4C6	1.387 (4)	C10—H1C	0.9600
N4—C12	1.525 (9)	C9—H4A	0.9600
N4—C12A	1.531 (11)	C9—H4B	0.9600
С1—Н5	0.9300	С9—Н4С	0.9600
C5—C6	1.352 (4)	C15—H13A	0.9600
C5—H10	0.94 (3)	C15—H13B	0.9600
С4—Н9	0.9300	C15—H13C	0.9600
C7—H8A	0.9700	C14—H14A	0.9600
С7—Н8В	0.9700	C14—H14B	0.9600
C8—C11	1.529 (4)	C14—H14C	0.9600
C8—C10	1.514 (4)	C14A—H00A	0.9600
C8—C9	1.518 (4)	C14A—H00B	0.9600
C6—H11	0.91 (3)	C14A—H00C	0.9600
C2—C3	1.348 (4)	C14A—C12A	1.531 (12)
С2—Н6	0.94 (3)	C12A—C15A	1.527 (11)
С3—Н7	0.91 (3)	C15A—H1AA	0.9600
C13—H15A	0.9600	C15A—H1AB	0.9600
С13—Н15В	0.9600	C15A—H1AC	0.9600
C13—H15C	0.9600		
C5—N3—C7	127.0 (2)	C12A—C13—H15F	109.5
C4—N3—C5	108.7 (2)	N4—C12—C13	102.7 (7)
C4—N3—C7	124.3 (2)	N4—C12—C15	113.1 (8)
C1—N1—C8	126.5 (2)	C15—C12—C13	111.0 (8)
C1—N1—C2	108.2 (2)	C14—C12—N4	105.6 (7)
C2—N1—C8	125.2 (2)	C14—C12—C13	111.6 (6)
H1D—O1—H1E	112 (4)	C14—C12—C15	112.4 (7)

C1—N2—C7	125.5 (2)	С8—С11—НЗА	109.5
C1—N2—C3	108.6 (2)	C8—C11—H3B	109.5
C3—N2—C7	125.8 (2)	C8—C11—H3C	109.5
C4—N4—C6	108.4 (2)	H3A—C11—H3B	109.5
C4—N4—C12	119.2 (6)	H3A—C11—H3C	109.5
C4—N4—C12A	133.6 (7)	H3B—C11—H3C	109.5
C6—N4—C12	132.4 (6)	C8—C10—H1A	109.5
C6—N4—C12A	117.7 (7)	C8—C10—H1B	109.5
N1—C1—N2	108.7 (2)	C8—C10—H1C	109.5
N1—C1—H5	125.6	H1A—C10—H1B	109.5
N2-C1-H5	125.6	H1A—C10—H1C	109.5
N3-C5-H10	123 (2)	H1B-C10-H1C	109.5
C6-C5-N3	1065(2)	C8—C9—H4A	109.5
C6-C5-H10	131(2)	C8-C9-H4B	109.5
N3_C4_H9	125 7	C8-C9-H4C	109.5
N4-C4-N3	108.6 (2)	H_{4A} C_{9} H_{4B}	109.5
NA CA HQ	125.7	$H_{4A} = C_{9} = H_{4C}$	109.5
N3 C7 N2	125.7 111 8 (2)		109.5
$N_3 = C_7 = H_8 \Lambda$	111.0 (2)	$H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H$	109.5
$N_2 = C_7 = H_2 D_2$	109.5	C12 C15 U12D	109.5
$N_{2} = C_{7} = H_{2} A$	109.5	С12—С15—П15В	109.5
$N_2 = C_7 = H_{8}P_{8}$	109.5		109.5
$N_2 - C_1 - H_{\delta B}$	109.5	HI3A—CI5—HI3B	109.5
H8A - C / - H8B	107.9	H13A-C15-H13C	109.5
	108.4 (2)	HI3B—CI5—HI3C	109.5
NI-C8-C10	108.2 (2)	C12—C14—H14A	109.5
NI-C8-C9	107.0 (2)	C12—C14—H14B	109.5
C10—C8—C11	111.4 (3)	C12—C14—H14C	109.5
C10—C8—C9	109.7 (3)	H14A—C14—H14B	109.5
C9—C8—C11	111.9 (3)	H14A—C14—H14C	109.5
N4—C6—H11	122 (2)	H14B—C14—H14C	109.5
C5—C6—N4	107.7 (2)	H00A—C14A—H00B	109.5
C5—C6—H11	131 (2)	H00A—C14A—H00C	109.5
N1—C2—H6	118.1 (18)	H00B—C14A—H00C	109.5
C3—C2—N1	107.6 (2)	C12A—C14A—H00A	109.5
С3—С2—Н6	134.3 (18)	C12A—C14A—H00B	109.5
N2—C3—H7	120 (2)	C12A—C14A—H00C	109.5
C2—C3—N2	106.9 (2)	N4—C12A—C14A	111.9 (9)
С2—С3—Н7	133 (2)	C13—C12A—N4	110.5 (9)
H15A—C13—H15B	109.5	C13—C12A—C14A	113.1 (8)
H15A—C13—H15C	109.5	C13—C12A—C15A	107.5 (10)
H15B—C13—H15C	109.5	C15A—C12A—N4	101.8 (9)
H15D—C13—H15E	109.5	C15A—C12A—C14A	111.4 (10)
H15D—C13—H15F	109.5	C12A—C15A—H1AA	109.5
H15E—C13—H15F	109.5	C12A—C15A—H1AB	109.5
C12—C13—H15A	109.5	C12A—C15A—H1AC	109.5
C12—C13—H15B	109.5	H1AA—C15A—H1AB	109.5
С12—С13—Н15С	109.5	H1AA—C15A—H1AC	109.5
C12A—C13—H15D	109.5	H1AB—C15A—H1AC	109.5

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12A—C13—H15E	109.5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C5—C6—N4	-0.3 (3)	C7—N2—C1—N1	-177.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C3—N2	-0.4 (3)	C7—N2—C3—C2	177.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C8—C11	122.5 (3)	C8—N1—C1—N2	178.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C8—C10	1.6 (3)	C8—N1—C2—C3	-177.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C8—C9	-116.6 (3)	C6—N4—C4—N3	-0.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—C2—C3	-0.3 (3)	C6—N4—C12—C13	-36.8 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—C7—N3	97.2 (3)	C6—N4—C12—C15	-156.5 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—C3—C2	0.9 (3)	C6—N4—C12—C14	80.3 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N3—C4—N4	0.6 (3)	C6—N4—C12A—C13	-59.5 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N3—C7—N2	75.7 (3)	C6—N4—C12A—C14A	67.4 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N3—C5—C6	-0.2 (3)	C6—N4—C12A—C15A	-173.5 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N3—C7—N2	-105.5 (3)	C2—N1—C1—N2	0.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N4—C6—C5	0.7 (3)	C2—N1—C8—C11	-60.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N4—C12—C13	142.2 (5)	C2-N1-C8-C10	178.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N4—C12—C15	22.6 (10)	C2—N1—C8—C9	60.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N4—C12—C14	-100.7 (6)	C3—N2—C1—N1	-1.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—N4—C12A—C13	127.1 (8)	C3—N2—C7—N3	-78.8 (3)
C4—N4—C12A—C15A13.1 (14)C12—N4—C6—C5179.8 (6)C7—N3—C5—C6178.7 (2)C12A—N4—C4—N3173.0 (8)C7—N3—C4—N4-178.3 (2)C12A—N4—C6—C5-174.3 (7)	C4—N4—C12A—C14A	-105.9 (8)	C12—N4—C4—N3	179.9 (5)
C7-N3-C5-C6178.7 (2)C12A-N4-C4-N3173.0 (8)C7-N3-C4-N4-178.3 (2)C12A-N4-C6-C5-174.3 (7)	C4—N4—C12A—C15A	13.1 (14)	C12—N4—C6—C5	179.8 (6)
C7—N3—C4—N4 –178.3 (2) C12A—N4—C6—C5 –174.3 (7)	C7—N3—C5—C6	178.7 (2)	C12A—N4—C4—N3	173.0 (8)
	C7—N3—C4—N4	-178.3 (2)	C12A—N4—C6—C5	-174.3 (7)

1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m)

Crystal data

C₁₆H₂₈N₄^{2+.}2Br^{-.}2H₂O $M_r = 472.27$ Monoclinic, $P2_1/n$ a = 17.1577 (6) Å b = 7.3180 (2) Å c = 18.2712 (6) Å $\beta = 112.786$ (1)° V = 2115.09 (12) Å³ Z = 4

Data collection

Bruker Venture D8 Kappa diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.496, T_{\max} = 0.748$ 31474 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.066$ F(000) = 968 $D_x = 1.483 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9074 reflections $\theta = 2.4-38.4^{\circ}$ $\mu = 3.85 \text{ mm}^{-1}$ T = 100 KPrism, clear colourless $0.2 \times 0.1 \times 0.05 \text{ mm}$

4664 independent reflections 4168 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -21 \rightarrow 21$ $k = -9 \rightarrow 9$ $l = -23 \rightarrow 23$

S = 1.114664 reflections 253 parameters 0 restraints

Primary atom site location: dual	$w = 1/[\sigma^2(F_o^2) + (0.013P)^2 + 2.745P]$
Hydrogen site location: mixed	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $U_{\rm iso} * / U_{\rm eq}$ х Ζ v Br2 0.42021 (2) 1.06846 (3) 0.17436 (2) 0.01794(7)Br1 0.64204(2)0.01716(7) 1.22356(3)0.46410(2)02 0.60635(11) 0.9669(3)0.30798 (12) 0.0253 (4) H₂C 0.612198 1.048204 0.344458 0.038* 0.988924 0.038* H2D 0.556728 0.271398 01 0.84726(12) 1.2201(3)0.50226(12)0.0273(4)H1C 0.874519 1.260282 0.550269 0.041* H1D 0.793229 1.222132 0.491369 0.041* N1 0.63968 (11) 0.5405(3)0.63652(11) 0.0097(4)N2 0.70265 (12) 0.7072(3)0.57816(11) 0.0111(4)N3 0.79306 (12) 0.7383(3)0.42286 (12) 0.0113 (4) N4 0.86030(11) 0.8912(2)0.36416(11) 0.0103(4)C1 0.70549 (14) 0.5497(3)0.61555 (13) 0.0100(4)C9 0.61678 (14) 0.3834(3)0.67751 (14) 0.0119 (5) C7 0.76212 (14) 0.7620(3) 0.54214 (14) 0.0123 (5) H1A 0.818644 0.709890 0.572987 0.015* H1B 0.767285 0.896775 0.543092 0.015* C4 0.79441 (14) 0.8939(3)0.38544(13)0.0108(4)C3 0.63152 (15) 0.8025(3)0.57441(15)0.0152(5)C10 0.68416 (16) 0.2364(3)0.69468 (15) 0.0165(5)H9A 0.025* 0.688285 0.198067 0.644913 0.025* H9B 0.668875 0.719524 0.131113 H9C 0.025* 0.738750 0.285198 0.730682 C2 0.59238 (15) 0.6988 (3) 0.61096 (15) 0.0154(5)C8 0.73079 (14) 0.6942 (3) 0.45708 (14) 0.0133 (5) H2A 0.721968 0.560336 0.455808 0.016* H2B 0.676038 0.752701 0.425349 0.016* C11 0.61411 (16) 0.4549(3)0.75498 (15) 0.0176 (5) H7A 0.670172 0.500229 0.789205 0.026* H7B 0.597527 0.355834 0.782054 0.026* H7C 0.026* 0.572921 0.554573 0.743410 C5 0.86096 (15) 0.6322(3)0.42626(15) 0.0155(5)C12 0.53083 (15) 0.3119 (4) 0.62096 (16) 0.0196 (5) H8A 0.488167 0.407825 0.611530 0.029*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8B	0.515078	0.205199	0.644608	0.029*	
H8C	0.534144	0.276943	0.570466	0.029*	
C16	0.81928 (16)	1.1913 (3)	0.30107 (15)	0.0170 (5)	
H16A	0.764854	1.140422	0.265770	0.025*	
H16B	0.835344	1.291111	0.273954	0.025*	
H16C	0.814374	1.238204	0.349352	0.025*	
C13	0.88640 (14)	1.0428 (3)	0.32301 (14)	0.0126 (5)	
C15	0.89362 (16)	0.9645 (3)	0.24873 (15)	0.0186 (5)	
H15A	0.935772	0.866340	0.263706	0.028*	
H15B	0.911020	1.061099	0.221125	0.028*	
H15C	0.838699	0.915498	0.213542	0.028*	
C6	0.90270 (15)	0.7277 (3)	0.38943 (15)	0.0157 (5)	
C14	0.97108 (15)	1.1159 (4)	0.38186 (16)	0.0195 (5)	
H14A	0.964657	1.157067	0.430264	0.029*	
H14B	0.989184	1.218801	0.357887	0.029*	
H14C	1.013621	1.018734	0.395112	0.029*	
Н5	0.7461 (15)	0.464 (3)	0.6249 (15)	0.006 (6)*	
H4	0.5430 (18)	0.717 (4)	0.6210 (17)	0.023 (8)*	
H12	0.7552 (15)	0.985 (3)	0.3754 (14)	0.003 (6)*	
H11	0.9505 (17)	0.698 (4)	0.3796 (16)	0.018 (7)*	
H3	0.6180 (17)	0.910 (4)	0.5485 (17)	0.018 (7)*	
H10	0.8680 (18)	0.521 (4)	0.4505 (18)	0.028 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br2	0.01224 (11)	0.01866 (13)	0.02260 (14)	-0.00149 (9)	0.00642 (10)	0.00053 (10)
Br1	0.02064 (13)	0.01617 (12)	0.01448 (13)	-0.00222 (9)	0.00658 (10)	0.00156 (9)
O2	0.0199 (9)	0.0299 (11)	0.0227 (11)	0.0067 (8)	0.0046 (8)	-0.0070(8)
01	0.0261 (10)	0.0346 (11)	0.0234 (11)	0.0008 (9)	0.0120 (8)	-0.0035 (9)
N1	0.0115 (9)	0.0117 (9)	0.0082 (9)	-0.0001 (7)	0.0063 (7)	0.0017 (7)
N2	0.0120 (9)	0.0141 (9)	0.0088 (10)	-0.0008 (7)	0.0059 (8)	0.0006 (8)
N3	0.0135 (9)	0.0113 (9)	0.0118 (10)	-0.0022 (7)	0.0078 (8)	0.0015 (7)
N4	0.0129 (9)	0.0103 (9)	0.0098 (10)	-0.0010 (7)	0.0068 (8)	0.0018 (7)
C1	0.0114 (10)	0.0116 (11)	0.0084 (11)	0.0009 (9)	0.0054 (9)	0.0002 (8)
C9	0.0148 (11)	0.0132 (11)	0.0103 (11)	-0.0025 (9)	0.0078 (9)	0.0027 (9)
C7	0.0146 (11)	0.0155 (11)	0.0094 (11)	-0.0034 (9)	0.0075 (9)	0.0031 (9)
C4	0.0125 (10)	0.0127 (11)	0.0087 (11)	-0.0010 (9)	0.0056 (9)	0.0005 (9)
C3	0.0170 (12)	0.0142 (12)	0.0157 (13)	0.0041 (9)	0.0079 (10)	0.0038 (10)
C10	0.0214 (12)	0.0145 (11)	0.0168 (13)	0.0004 (9)	0.0110 (10)	0.0029 (10)
C2	0.0150 (11)	0.0157 (12)	0.0182 (13)	0.0048 (9)	0.0094 (10)	0.0032 (10)
C8	0.0135 (11)	0.0177 (12)	0.0121 (12)	-0.0047 (9)	0.0085 (9)	0.0008 (9)
C11	0.0228 (12)	0.0200 (12)	0.0166 (13)	0.0004 (10)	0.0149 (10)	0.0027 (10)
C5	0.0192 (12)	0.0108 (11)	0.0182 (13)	0.0020 (9)	0.0092 (10)	0.0024 (9)
C12	0.0157 (12)	0.0218 (13)	0.0207 (14)	-0.0074 (10)	0.0065 (10)	0.0012 (10)
C16	0.0217 (12)	0.0160 (12)	0.0179 (13)	0.0024 (10)	0.0127 (10)	0.0053 (10)
C13	0.0143 (11)	0.0132 (11)	0.0133 (12)	-0.0032 (9)	0.0085 (9)	0.0034 (9)
C15	0.0240 (13)	0.0212 (13)	0.0166 (13)	-0.0010 (10)	0.0144 (11)	0.0019 (10)

C6	0.0173 (12)	0.0140 (11)	0.0200 (13)	0.0027 (9)	0.0120 (10)	0.0014 (10)
C14	0.0164 (12)	0.0215 (13)	0.0199 (13)	-0.0055 (10)	0.0063 (10)	0.0031 (10)

Geometric parameters (Å, °)

O2—H2C	0.8695	С10—Н9В	0.9800
O2—H2D	0.8698	С10—Н9С	0.9800
01—H1C	0.8699	C2—H4	0.94 (3)
O1—H1D	0.8697	C8—H2A	0.9900
N1—C1	1.327 (3)	C8—H2B	0.9900
N1—C9	1.505 (3)	С11—Н7А	0.9800
N1—C2	1.388 (3)	C11—H7B	0.9800
N2—C1	1.331 (3)	C11—H7C	0.9800
N2—C7	1.468 (3)	C5—C6	1.352 (3)
N2—C3	1.384 (3)	C5—H10	0.91 (3)
N3—C4	1.333 (3)	C12—H8A	0.9800
N3—C8	1.468 (3)	C12—H8B	0.9800
N3—C5	1.381 (3)	C12—H8C	0.9800
N4—C4	1.330 (3)	C16—H16A	0.9800
N4—C13	1.503 (3)	C16—H16B	0.9800
N4—C6	1.384 (3)	C16—H16C	0.9800
C1—H5	0.91 (2)	C16—C13	1.520 (3)
C9—C10	1.520 (3)	C13—C15	1.522 (3)
C9—C11	1.526 (3)	C13—C14	1.531 (3)
C9—C12	1.528 (3)	C15—H15A	0.9800
C7—H1A	0.9900	C15—H15B	0.9800
C7—H1B	0.9900	C15—H15C	0.9800
C7—C8	1.518 (3)	C6—H11	0.93 (3)
C4—H12	0.91 (2)	C14—H14A	0.9800
C3—C2	1.349 (3)	C14—H14B	0.9800
С3—Н3	0.90 (3)	C14—H14C	0.9800
С10—Н9А	0.9800		
H2C—O2—H2D	104.5	N3—C8—H2B	109.7
H1C—O1—H1D	109.5	C7—C8—H2A	109.7
C1—N1—C9	126.71 (19)	C7—C8—H2B	109.7
C1—N1—C2	108.21 (19)	H2A—C8—H2B	108.2
C2—N1—C9	125.02 (18)	С9—С11—Н7А	109.5
C1—N2—C7	124.95 (19)	С9—С11—Н7В	109.5
C1—N2—C3	108.54 (19)	C9—C11—H7C	109.5
C3—N2—C7	126.4 (2)	H7A—C11—H7B	109.5
C4—N3—C8	124.51 (19)	H7A—C11—H7C	109.5
C4—N3—C5	108.75 (19)	H7B—C11—H7C	109.5
C5—N3—C8	126.7 (2)	N3—C5—H10	118.4 (19)
C4—N4—C13	125.94 (19)	C6—C5—N3	106.7 (2)
C4—N4—C6	108.16 (19)	C6—C5—H10	134.9 (19)
C6—N4—C13	125.85 (19)	C9—C12—H8A	109.5
N1—C1—N2	109.02 (19)	C9—C12—H8B	109.5

N1—C1—H5	126.1 (16)	С9—С12—Н8С	109.5
N2—C1—H5	124.9 (16)	H8A—C12—H8B	109.5
N1—C9—C10	108.60 (18)	H8A—C12—H8C	109.5
N1—C9—C11	107.87 (18)	H8B—C12—H8C	109.5
N1-C9-C12	107.13 (18)	H16A—C16—H16B	109.5
C10—C9—C11	110.2 (2)	H16A - C16 - H16C	109.5
C10-C9-C12	110.8 (2)	H16B—C16—H16C	109.5
$C_{11} - C_{9} - C_{12}$	112.13 (19)	C13—C16—H16A	109.5
N2-C7-H1A	109 7	C13—C16—H16B	109.5
N2-C7-H1B	109.7	C_{13} $-C_{16}$ $-H_{16}$	109.5
$N_{2} - C_{7} - C_{8}$	109.74 (18)	N4-C13-C16	109.5 108.52(18)
H1A - C7 - H1B	108.2	N4-C13-C15	108.32(10) 108.11(19)
C8-C7-H1A	109.7	N4-C13-C14	107.00(19)
C8-C7-H1B	109.7	C_{16} C_{13} C_{15}	107.00(17)
N3-C4-H12	124.6 (15)	C_{16} C_{13} C_{14}	110.4(2)
N4 - C4 - N3	108.8(2)	C_{15} C_{13} C_{14}	110.0(2) 112.0(2)
N4 C4 H12	100.0(2) 126.5(15)	C_{13} C_{15} H_{15A}	100 5
N2 C2 H2	120.5(17)	C13 C15 H15R	109.5
$N_2 = C_3 = N_2$	120.3(17) 106.0(2)	C_{13} C_{15} $H_{15}C$	109.5
$C_2 = C_3 = N_2$	100.9(2) 122.5(17)	$U_{15} = C_{15} = H_{15}C$	109.5
$C_2 = C_3 = H_3$	152.5 (17)	H15A - C15 - H15C	109.5
C_{9} C_{10} H_{9} H_{9}	109.5	HI5A - CI5 - HI5C	109.5
$C_9 = C_{10} = H_9B$	109.5	HISB-CIS-HISC	109.5
	109.5	N4—C0—H11	121.8(17)
H9A—C10—H9B	109.5	C5—C6—N4	107.6 (2)
H9A—C10—H9C	109.5	C5—C6—H11	130.7 (17)
H9B—C10—H9C	109.5	C13—C14—H14A	109.5
N1—C2—H4	120.4 (18)	C13—C14—H14B	109.5
C3—C2—N1	107.3 (2)	C13—C14—H14C	109.5
С3—С2—Н4	132.3 (17)	H14A—C14—H14B	109.5
N3—C8—C7	109.68 (18)	H14A—C14—H14C	109.5
N3—C8—H2A	109.7	H14B—C14—H14C	109.5
			/
N2—C7—C8—N3	-176.23 (18)	C4—N4—C6—C5	0.0 (3)
N2—C3—C2—N1	-0.2(3)	C3—N2—C1—N1	-0.5(3)
N3—C5—C6—N4	0.2 (3)	C3—N2—C7—C8	-86.8 (3)
C1—N1—C9—C10	2.3 (3)	C2—N1—C1—N2	0.4 (3)
C1—N1—C9—C11	121.7 (2)	C2—N1—C9—C10	179.3 (2)
C1—N1—C9—C12	-117.4 (2)	C2—N1—C9—C11	-61.3 (3)
C1—N1—C2—C3	-0.1 (3)	C2—N1—C9—C12	59.6 (3)
C1—N2—C7—C8	88.3 (3)	C8—N3—C4—N4	178.2 (2)
C1—N2—C3—C2	0.5 (3)	C8—N3—C5—C6	-178.1 (2)
C9—N1—C1—N2	177.7 (2)	C5—N3—C4—N4	0.4 (3)
C9—N1—C2—C3	-177.5 (2)	C5—N3—C8—C7	88.4 (3)
C7—N2—C1—N1	-176.37 (19)	C13—N4—C4—N3	-177.8 (2)
C7—N2—C3—C2	176.3 (2)	C13—N4—C6—C5	177.6 (2)
C4—N3—C8—C7	-88.9 (3)	C6—N4—C4—N3	-0.3 (3)
C4—N3—C5—C6	-0.4 (3)	C6—N4—C13—C16	176.4 (2)
C4—N4—C13—C16	-6.5 (3)	C6—N4—C13—C15	56.6 (3)

C4—N4—C13—C15	-126.3 (2)	C6—N4—C13—C14	-64.3 (3)
C4—N4—C13—C14	112.8 (2)		

 $D_{\rm x} = 1.416 {\rm ~Mg} {\rm ~m}^{-3}$

Prism, clear colourless

 $0.4 \times 0.3 \times 0.25$ mm

 $\theta = 2.6 - 39.4^{\circ}$

 $\mu = 2.99 \text{ mm}^{-1}$

T = 112 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9959 reflections

1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma)

Crystal data

C₂₅H₃₀N₄^{2+.}2Br^{-.}2H₂O $M_r = 582.38$ Orthorhombic, *Pccn* a = 21.5695 (6) Å b = 28.3385 (6) Å c = 8.9401 (2) Å V = 5464.6 (2) Å³ Z = 8F(000) = 2384

Data collection

Refinement

Refinement on F^2 Hydrogen site location: mixed H atoms treated by a mixture of independent Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ and constrained refinement $wR(F^2) = 0.066$ $w = 1/[\sigma^2(F_o^2) + (0.0149P)^2 + 6.9269P]$ S = 1.19where $P = (F_0^2 + 2F_c^2)/3$ 5954 reflections $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$ 338 parameters $\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$ 0 restraints Primary atom site location: iterative

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.32147 (2)	0.59206 (2)	0.51936 (2)	0.01792 (6)	
Br2	0.33241 (2)	0.42996 (2)	0.77256 (2)	0.01874 (6)	
N2	0.14868 (8)	0.40218 (6)	0.76624 (19)	0.0134 (3)	
N3	0.17753 (8)	0.54615 (6)	0.5774 (2)	0.0167 (4)	
N1	0.17956 (8)	0.47256 (6)	0.7130 (2)	0.0158 (4)	
N4	0.14048 (8)	0.61532 (6)	0.53485 (19)	0.0151 (3)	
C4	0.17963 (9)	0.42757 (7)	0.6667 (2)	0.0165 (4)	
H4	0.198554	0.415943	0.578146	0.020*	

C16	0.17313 (9)	0.59006 (7)	0.6302 (2)	0.0154 (4)	
H16	0.190588	0.601214	0.721117	0.018*	
C17	0.12153 (9)	0.66386 (7)	0.5581 (2)	0.0146 (4)	
C5	0.13900 (9)	0.35172 (7)	0.7556 (2)	0.0141 (4)	
O2A	0.4650 (10)	0.5643 (7)	0.601 (3)	0.037 (3)	0.47 (9)
H2AA	0.482702	0.563311	0.513609	0.055*	0.47 (9)
H2AB	0.427586	0.574062	0.582766	0.055*	0.47 (9)
C12	0.22444 (10)	0.34048 (8)	0.9479(2)	0.0201 (4)	
H12A	0.256440	0.357156	0.890780	0.030*	
H12B	0.243324	0.314106	1.002226	0.030*	
H12C	0.205240	0.362270	1 019314	0.030*	
C14	0.14765(13)	0.502270 0.54398 (8)	0 4406 (3)	0.020	
C18	0.07474(9)	0.67224(7)	0.6624 (2)	0.0279(3) 0.0150(4)	
C22	0.07171(9)	0.69938(7)	0.0021(2) 0.4754(2)	0.0179 (4)	
C6	0.13021(10) 0.17572(9)	0.32189(7)	0.1731(2) 0.8424(2)	0.0173(4)	
C24	0.17572(9)	0.52109(7) 0.63259(7)	0.0424(2) 0.7507(2)	0.0199(4)	
024 Н24 Δ	0.037277	0.605939	0.683916	0.0190 (4)	
H24A	0.0057277	0.643518	0.705745	0.028	
H24C	0.000907	0.622543	0.795745	0.028	
1124C	0.074401 0.12848(12)	0.022545 0.43164(8)	0.829093	0.028	
C10	0.12848(12) 0.00270(10)	0.43104(8) 0.23558(7)	0.8801(3)	0.0244(3)	
C10 C15	0.09279(10) 0.12434(13)	0.55558(7)	0.0389(2) 0.4142(3)	0.0103(4)	
	0.12434(13) 0.21637(10)	0.58715(8)	0.4143(3) 0.6422(3)	0.0272(3)	
	0.21037 (10)	0.50905 (7)	0.0432(3)	0.0231 (3)	
HIA	0.243891	0.524045	0.719194	0.028*	
	0.242845	0.493038	0.564401	0.028^{*}	
U19	0.05625 (10)	0.71804 (7)	0.0822 (2)	0.01/4 (4)	
H19 C11	0.024420	0.725449	0.752452	0.021*	
	0.05222 (11)	0.36931 (8)	0.5741 (3)	0.0242 (5)	
HIIA	0.036347	0.393487	0.642452	0.036*	
HIIB	0.01/393	0.352060	0.529724	0.036*	
HIIC	0.076445	0.384406	0.494617	0.036*	
OIA	0.47220 (10)	0.47135 (8)	0.6838 (4)	0.0715 (9)	
HIAA	0.487824	0.450597	0.622561	0.107*	
HIAB	0.436751	0.459386	0.710574	0.107*	
C/	0.16563 (9)	0.27361 (7)	0.8269 (2)	0.0175 (4)	
H7	0.189642	0.252345	0.885177	0.021*	
C2	0.14808 (12)	0.47542 (8)	0.8472 (3)	0.0245 (5)	
C20	0.08292 (10)	0.75565 (7)	0.6021 (2)	0.0182 (4)	
C23	0.20108 (11)	0.68858 (8)	0.3644 (3)	0.0263 (5)	
H23A	0.236552	0.674719	0.416963	0.040*	
H23B	0.214017	0.717788	0.314740	0.040*	
H23C	0.185662	0.666212	0.289523	0.040*	
C8	0.12146 (10)	0.25546 (7)	0.7288 (2)	0.0184 (4)	
C9	0.08556 (10)	0.28686 (7)	0.6465 (2)	0.0179 (4)	
H9	0.055181	0.274754	0.579845	0.021*	
C13	0.11192 (11)	0.20288 (7)	0.7166 (3)	0.0243 (5)	
H13A	0.152068	0.186833	0.723425	0.036*	
H13B	0.092477	0.195470	0.620360	0.036*	

H13C	0.085012	0.192160	0.798149	0.036*	
C21	0.12978 (10)	0.74543 (7)	0.5009 (2)	0.0197 (4)	
H21	0.148577	0.770574	0.447203	0.024*	
C25	0.06032 (11)	0.80563 (7)	0.6251 (3)	0.0256 (5)	
H25A	0.020408	0.809802	0.574412	0.038*	
H25B	0.090640	0.827784	0.583474	0.038*	
H25C	0.055261	0.811696	0.732324	0.038*	
H2	0.1460 (13)	0.5020 (10)	0.892 (3)	0.031*	
H15	0.1018 (13)	0.5989 (9)	0.332 (3)	0.031*	
H3	0.1080 (13)	0.4191 (10)	0.963 (3)	0.031*	
H14	0.1479 (13)	0.5182 (10)	0.388 (3)	0.031*	
O2	0.4729 (8)	0.5614 (8)	0.556 (4)	0.043 (5)	0.53 (9)
H2A	0.438 (4)	0.569 (4)	0.542 (11)	0.064*	0.53 (9)
H2B	0.465 (4)	0.542 (3)	0.606 (11)	0.064*	0.53 (9)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.01793 (11)	0.01900 (10)	0.01682 (11)	-0.00262 (8)	0.00203 (8)	-0.00139 (8)
Br2	0.02215 (11)	0.01532 (10)	0.01876 (11)	-0.00184 (8)	0.00044 (8)	-0.00160 (8)
N2	0.0173 (8)	0.0108 (8)	0.0120 (8)	-0.0006 (6)	0.0010 (6)	-0.0006 (6)
N3	0.0177 (9)	0.0101 (8)	0.0222 (9)	0.0009 (6)	0.0016 (7)	0.0035 (7)
N1	0.0145 (8)	0.0116 (8)	0.0213 (9)	0.0005 (6)	0.0008 (7)	0.0025 (7)
N4	0.0207 (9)	0.0114 (8)	0.0133 (8)	0.0006 (6)	-0.0008 (7)	0.0006 (7)
C4	0.0157 (10)	0.0147 (9)	0.0190 (10)	0.0021 (8)	0.0023 (8)	0.0000 (8)
C16	0.0150 (10)	0.0125 (9)	0.0186 (10)	-0.0017 (7)	-0.0002 (8)	0.0012 (8)
C17	0.0179 (10)	0.0113 (9)	0.0147 (10)	0.0014 (7)	-0.0043 (8)	-0.0008(8)
C5	0.0186 (10)	0.0101 (9)	0.0135 (10)	-0.0020 (7)	0.0038 (8)	0.0000 (7)
O2A	0.026 (5)	0.040 (4)	0.045 (6)	0.008 (4)	0.005 (4)	0.005 (5)
C12	0.0208 (11)	0.0196 (10)	0.0200 (11)	-0.0019 (8)	-0.0023 (9)	0.0016 (9)
C14	0.0443 (15)	0.0135 (10)	0.0248 (12)	0.0035 (10)	-0.0058 (11)	-0.0070 (9)
C18	0.0174 (10)	0.0128 (9)	0.0148 (10)	-0.0008 (7)	-0.0047 (8)	0.0020 (8)
C22	0.0198 (11)	0.0149 (10)	0.0192 (10)	-0.0008 (8)	-0.0009 (8)	0.0011 (8)
C6	0.0135 (10)	0.0168 (9)	0.0157 (10)	-0.0010 (7)	0.0034 (8)	0.0016 (8)
C24	0.0206 (11)	0.0157 (10)	0.0205 (11)	0.0016 (8)	0.0014 (9)	0.0045 (8)
C3	0.0376 (14)	0.0183 (11)	0.0174 (11)	0.0000 (9)	0.0088 (10)	-0.0005 (9)
C10	0.0177 (10)	0.0163 (10)	0.0150 (10)	-0.0026 (8)	0.0008 (8)	0.0027 (8)
C15	0.0446 (15)	0.0182 (11)	0.0188 (11)	0.0055 (10)	-0.0107 (11)	-0.0043 (9)
C1	0.0170 (11)	0.0122 (10)	0.0402 (14)	0.0011 (8)	0.0022 (10)	0.0103 (9)
C19	0.0182 (10)	0.0151 (10)	0.0188 (10)	0.0023 (8)	-0.0018 (8)	-0.0007 (8)
C11	0.0257 (12)	0.0202 (11)	0.0266 (12)	-0.0037 (9)	-0.0083 (10)	0.0042 (9)
O1A	0.0296 (12)	0.0545 (14)	0.130 (3)	0.0055 (10)	0.0180 (14)	0.0468 (16)
C7	0.0168 (10)	0.0147 (9)	0.0208 (10)	0.0018 (8)	0.0026 (8)	0.0041 (8)
C2	0.0364 (14)	0.0154 (10)	0.0216 (12)	0.0015 (9)	0.0050 (10)	-0.0040 (9)
C20	0.0212 (11)	0.0107 (9)	0.0227 (11)	0.0007 (8)	-0.0062 (9)	-0.0007 (8)
C23	0.0283 (13)	0.0216 (11)	0.0291 (13)	0.0004 (9)	0.0091 (10)	0.0042 (10)
C8	0.0202 (10)	0.0147 (10)	0.0201 (10)	-0.0028 (8)	0.0083 (8)	-0.0002 (8)
C9	0.0203 (11)	0.0170 (10)	0.0164 (10)	-0.0057 (8)	0.0002 (8)	-0.0013 (8)

C13	0.0267 (12)	0.0148 (10)	0.0313 (13)	-0.0033 (8)	0.0054 (10)	-0.0026 (9)
C21	0.0225 (11)	0.0125 (9)	0.0242 (11)	-0.0027 (8)	-0.0021 (9)	0.0036 (9)
C25	0.0283 (12)	0.0120 (10)	0.0366 (14)	0.0028 (9)	0.0002 (10)	-0.0008 (10)
O2	0.023 (4)	0.045 (5)	0.060 (13)	0.013 (3)	0.006 (5)	0.026 (7)

Geometric parameters (Å, °)

N2—C4	1.325 (3)	C3—C2	1.343 (3)
N2—C5	1.448 (2)	С3—Н3	0.93 (3)
N2—C3	1.387 (3)	C10—C11	1.502 (3)
N3—C16	1.334 (3)	C10—C9	1.394 (3)
N3—C14	1.384 (3)	C15—H15	0.94 (3)
N3—C1	1.455 (3)	C1—H1A	0.9900
N1—C4	1.340 (3)	C1—H1B	0.9900
N1—C1	1.458 (3)	C19—H19	0.9500
N1—C2	1.380 (3)	C19—C20	1.394 (3)
N4	1.317 (3)	C11—H11A	0.9800
N4—C17	1.450 (2)	C11—H11B	0.9800
N4—C15	1.386 (3)	C11—H11C	0.9800
C4—H4	0.9500	O1A—H1AA	0.8712
C16—H16	0.9500	O1A—H1AB	0.8701
C17—C18	1.394 (3)	С7—Н7	0.9500
C17—C22	1.394 (3)	C7—C8	1.394 (3)
C5—C6	1.394 (3)	C2—H2	0.86 (3)
C5—C10	1.396 (3)	C20—C21	1.387 (3)
O2A—H2AA	0.8694	C20—C25	1.512 (3)
O2A—H2AB	0.8679	С23—Н23А	0.9800
C12—H12A	0.9800	С23—Н23В	0.9800
C12—H12B	0.9800	С23—Н23С	0.9800
C12—H12C	0.9800	C8—C9	1.390 (3)
C12—C6	1.507 (3)	C8—C13	1.508 (3)
C14—C15	1.343 (3)	С9—Н9	0.9500
C14—H14	0.87 (3)	C13—H13A	0.9800
C18—C24	1.508 (3)	C13—H13B	0.9800
C18—C19	1.386 (3)	C13—H13C	0.9800
C22—C23	1.511 (3)	C21—H21	0.9500
C22—C21	1.396 (3)	C25—H25A	0.9800
C6—C7	1.392 (3)	C25—H25B	0.9800
C24—H24A	0.9800	C25—H25C	0.9800
C24—H24B	0.9800	O2—H2A	0.79 (9)
C24—H24C	0.9800	O2—H2B	0.74 (11)
C4—N2—C5	124.39 (17)	C14—C15—N4	107.1 (2)
C4—N2—C3	108.93 (17)	C14—C15—H15	130.8 (17)
C3—N2—C5	126.68 (17)	N3—C1—N1	111.83 (17)
C16—N3—C14	108.72 (18)	N3—C1—H1A	109.3
C16—N3—C1	124.13 (19)	N3—C1—H1B	109.3
C14—N3—C1	126.41 (19)	N1—C1—H1A	109.3

C4—N1—C1	123.56 (19)	N1—C1—H1B	109.3
C4—N1—C2	108.94 (18)	H1A—C1—H1B	107.9
C2—N1—C1	126.71 (19)	C18—C19—H19	119.0
C16—N4—C17	124.98 (17)	C18—C19—C20	122.0 (2)
C16—N4—C15	108.91 (17)	С20—С19—Н19	119.0
C15—N4—C17	126.00 (18)	C10-C11-H11A	109.5
N2—C4—N1	107.98 (18)	C10-C11-H11B	109.5
N2—C4—H4	126.0	C10-C11-H11C	109.5
N1—C4—H4	126.0	H11A—C11—H11B	109.5
N3—C16—H16	125.8	H11A—C11—H11C	109.5
N4—C16—N3	108.43 (19)	H11B—C11—H11C	109.5
N4—C16—H16	125.8	H1AA—O1A—H1AB	104.5
C18—C17—N4	117.50 (17)	С6—С7—Н7	118.9
C22—C17—N4	118.93 (18)	C6—C7—C8	122.13 (19)
C22—C17—C18	123.56 (18)	С8—С7—Н7	118.9
C6—C5—N2	118.71 (18)	N1—C2—H2	119.2 (19)
C6—C5—C10	123.44 (18)	C3—C2—N1	106.9 (2)
C10—C5—N2	117.85 (18)	С3—С2—Н2	133.8 (19)
H2AA—O2A—H2AB	104.6	C19—C20—C25	120.1 (2)
H12A—C12—H12B	109.5	C21—C20—C19	118.61 (19)
H12A—C12—H12C	109.5	C21—C20—C25	121.3 (2)
H12B—C12—H12C	109.5	С22—С23—Н23А	109.5
C6—C12—H12A	109.5	С22—С23—Н23В	109.5
C6—C12—H12B	109.5	С22—С23—Н23С	109.5
C6—C12—H12C	109.5	H23A—C23—H23B	109.5
N3—C14—H14	121.0 (18)	H23A—C23—H23C	109.5
C15—C14—N3	106.8 (2)	H23B—C23—H23C	109.5
C15—C14—H14	132.2 (19)	C7—C8—C13	120.2 (2)
C17—C18—C24	121.48 (18)	C9—C8—C7	118.53 (19)
C19—C18—C17	117.11 (19)	C9—C8—C13	121.2 (2)
C19—C18—C24	121.41 (19)	С10—С9—Н9	119.0
C17—C22—C23	121.64 (19)	C8—C9—C10	122.0 (2)
C17—C22—C21	116.6 (2)	С8—С9—Н9	119.0
C21—C22—C23	121.72 (19)	C8—C13—H13A	109.5
C5—C6—C12	122.16 (18)	C8—C13—H13B	109.5
C7—C6—C5	116.87 (19)	C8—C13—H13C	109.5
C7—C6—C12	120.96 (19)	H13A—C13—H13B	109.5
C18—C24—H24A	109.5	H13A—C13—H13C	109.5
C18—C24—H24B	109.5	H13B—C13—H13C	109.5
C18—C24—H24C	109.5	C22—C21—H21	118.9
H24A—C24—H24B	109.5	C20—C21—C22	122.1 (2)
H24A—C24—H24C	109.5	C20—C21—H21	118.9
H24B—C24—H24C	109.5	С20—С25—Н25А	109.5
N2—C3—H3	120.2 (17)	C20—C25—H25B	109.5
C2—C3—N2	107.2 (2)	C20—C25—H25C	109.5
С2—С3—Н3	132.4 (17)	H25A—C25—H25B	109.5
C5—C10—C11	121.33 (18)	H25A—C25—H25C	109.5
C9—C10—C5	116.98 (19)	H25B—C25—H25C	109.5
	× /		

C9—C10—C11	121.68 (19)	H2A—O2—H2B	94 (10)
N4—C15—H15	122.0 (17)		
N2—C5—C6—C12	0.8 (3)	C18—C17—C22—C23	179.6 (2)
N2C5C7	-178.95 (18)	C18—C17—C22—C21	-0.1 (3)
N2-C5-C10-C11	-2.9 (3)	C18—C19—C20—C21	-0.7 (3)
N2-C5-C10-C9	177.94 (18)	C18—C19—C20—C25	178.7 (2)
N2-C3-C2-N1	0.5 (3)	C22—C17—C18—C24	-179.1 (2)
N3—C14—C15—N4	0.3 (3)	C22-C17-C18-C19	0.4 (3)
N4—C17—C18—C24	1.4 (3)	C6-C5-C10-C11	176.7 (2)
N4—C17—C18—C19	-178.99 (18)	C6C5C10C9	-2.5 (3)
N4—C17—C22—C23	-1.0 (3)	C6—C7—C8—C9	-1.5 (3)
N4—C17—C22—C21	179.30 (18)	C6—C7—C8—C13	-179.6 (2)
C4—N2—C5—C6	101.6 (2)	C24—C18—C19—C20	179.5 (2)
C4—N2—C5—C10	-78.8 (3)	C3—N2—C4—N1	-0.4 (2)
C4—N2—C3—C2	-0.1 (3)	C3—N2—C5—C6	-77.5 (3)
C4—N1—C1—N3	116.6 (2)	C3—N2—C5—C10	102.1 (3)
C4—N1—C2—C3	-0.8 (3)	C10-C5-C6-C12	-178.8 (2)
C16—N3—C14—C15	-1.2 (3)	C10—C5—C6—C7	1.5 (3)
C16—N3—C1—N1	110.9 (2)	C15—N4—C16—N3	-1.4 (2)
C16—N4—C17—C18	-72.6 (3)	C15—N4—C17—C18	103.3 (3)
C16—N4—C17—C22	108.0 (2)	C15—N4—C17—C22	-76.2 (3)
C16—N4—C15—C14	0.7 (3)	C1—N3—C16—N4	172.30 (18)
C17—N4—C16—N3	175.03 (18)	C1—N3—C14—C15	-171.6 (2)
C17—N4—C15—C14	-175.7 (2)	C1—N1—C4—N2	171.14 (19)
C17—C18—C19—C20	0.0 (3)	C1—N1—C2—C3	-170.8 (2)
C17—C22—C21—C20	-0.6 (3)	C19—C20—C21—C22	1.0 (3)
C5—N2—C4—N1	-179.63 (18)	C11—C10—C9—C8	-177.7 (2)
C5—N2—C3—C2	179.1 (2)	C7—C8—C9—C10	0.4 (3)
C5—C6—C7—C8	0.6 (3)	C2—N1—C4—N2	0.7 (2)
C5—C10—C9—C8	1.5 (3)	C2-N1-C1-N3	-74.7 (3)
C12—C6—C7—C8	-179.16 (19)	C23—C22—C21—C20	179.7 (2)
C14—N3—C16—N4	1.6 (2)	C13—C8—C9—C10	178.5 (2)
C14—N3—C1—N1	-80.1 (3)	C25—C20—C21—C22	-178.4 (2)

1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma)

Crystal data	
$C_{26}H_{32}N_4^{2+}\cdot 2Br^{-}\cdot 4H_2O$	F(000) = 652
$M_r = 632.42$	$D_{\rm x} = 1.461 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.4230 (3) Å	Cell parameters from 9565 reflections
b = 13.1447 (3) Å	$\theta = 2.3 - 44.6^{\circ}$
c = 9.2780 (2) Å	$\mu = 2.86 \text{ mm}^{-1}$
$\beta = 108.379 \ (1)^{\circ}$	T = 100 K
V = 1437.78 (6) Å ³	Prism, clear colourless
Z = 2	$0.15 \times 0.15 \times 0.05 \text{ mm}$

Data collection

Bruker Venture D8 Kappa	3165 independent reflections
diffractometer	3028 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.025$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.1^\circ, \theta_{\rm min} = 2.8^\circ$
(SADABS; Bruker, 2016)	$h = -15 \rightarrow 15$
$T_{\min} = 0.544, T_{\max} = 0.750$	$k = -16 \rightarrow 16$
28199 measured reflections	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.018$	and constrained refinement
$wR(F^2) = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0151P)^2 + 0.8539P]$
S = 1.10	where $P = (F_o^2 + 2F_c^2)/3$
3165 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
194 parameters	$\Delta ho_{ m max} = 0.33 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.29$ e Å ⁻³
Primary atom site location: dual	•

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates an	d isotropic or e	quivalent isotropic	displacement	parameters	$(Å^2$)
----------------------------------	------------------	---------------------	--------------	------------	--------	---

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
-0.19328 (2)	0.01828 (2)	0.22033 (2)	0.01558 (5)	
-0.07000 (10)	0.23627 (9)	0.37843 (13)	0.0268 (2)	
-0.1073 (18)	0.1876 (18)	0.340 (2)	0.036 (5)*	
-0.0360 (18)	0.2528 (17)	0.326 (3)	0.039 (6)*	
0.28176 (8)	0.55577 (8)	0.81318 (11)	0.0117 (2)	
0.12491 (9)	0.48768 (8)	0.67428 (12)	0.0123 (2)	
0.04964 (10)	0.29104 (10)	0.18398 (14)	0.0276 (2)	
0.0823 (18)	0.3420 (18)	0.200 (2)	0.036 (6)*	
0.016 (2)	0.2902 (19)	0.096 (3)	0.051 (7)*	
0.71245 (12)	0.75891 (11)	0.97675 (18)	0.0250 (3)	
0.736386	0.766617	0.886291	0.037*	
0.768542	0.718094	1.052694	0.037*	
0.706272	0.826152	1.019087	0.037*	
0.59853 (11)	0.70628 (10)	0.93381 (15)	0.0166 (3)	
0.51141 (11)	0.74146 (10)	0.98445 (14)	0.0166 (3)	
0.523920	0.800361	1.046905	0.020*	
0.40605 (11)	0.69326 (10)	0.94673 (14)	0.0148 (2)	
0.39084 (10)	0.60639 (9)	0.85679 (13)	0.0117 (2)	
0.21894 (10)	0.53490 (9)	0.67103 (14)	0.0126 (2)	
0.2362 (13)	0.5503 (13)	0.5832 (19)	0.015 (4)*	
0.03385 (10)	0.45390 (10)	0.53959 (14)	0.0132 (2)	
-0.016689	0.406014	0.569818	0.016*	
	x -0.19328 (2) -0.07000 (10) -0.1073 (18) -0.0360 (18) 0.28176 (8) 0.12491 (9) 0.04964 (10) 0.0823 (18) 0.016 (2) 0.71245 (12) 0.736386 0.768542 0.706272 0.59853 (11) 0.51141 (11) 0.523920 0.40605 (11) 0.39084 (10) 0.2362 (13) 0.03385 (10) -0.016689	x y $-0.19328 (2)$ $0.01828 (2)$ $-0.07000 (10)$ $0.23627 (9)$ $-0.1073 (18)$ $0.1876 (18)$ $-0.0360 (18)$ $0.2528 (17)$ $0.28176 (8)$ $0.55577 (8)$ $0.12491 (9)$ $0.48768 (8)$ $0.04964 (10)$ $0.29104 (10)$ $0.0823 (18)$ $0.3420 (18)$ $0.016 (2)$ $0.2902 (19)$ $0.71245 (12)$ $0.75891 (11)$ 0.768542 0.718094 0.706272 0.826152 $0.59853 (11)$ $0.76628 (10)$ 0.523920 0.800361 $0.40605 (11)$ $0.69326 (10)$ $0.39084 (10)$ $0.5503 (13)$ $0.03385 (10)$ $0.45390 (10)$ -0.016689 0.406014	xyz $-0.19328 (2)$ $0.01828 (2)$ $0.22033 (2)$ $-0.07000 (10)$ $0.23627 (9)$ $0.37843 (13)$ $-0.1073 (18)$ $0.1876 (18)$ $0.340 (2)$ $-0.0360 (18)$ $0.2528 (17)$ $0.326 (3)$ $0.28176 (8)$ $0.55577 (8)$ $0.81318 (11)$ $0.12491 (9)$ $0.48768 (8)$ $0.67428 (12)$ $0.04964 (10)$ $0.29104 (10)$ $0.18398 (14)$ $0.0823 (18)$ $0.3420 (18)$ $0.200 (2)$ $0.016 (2)$ $0.2902 (19)$ $0.096 (3)$ $0.71245 (12)$ $0.75891 (11)$ $0.97675 (18)$ 0.736386 0.766617 0.886291 0.768542 0.718094 1.052694 0.706272 0.826152 1.019087 $0.59853 (11)$ $0.70628 (10)$ $0.93381 (15)$ $0.51141 (11)$ $0.69326 (10)$ $0.94673 (14)$ $0.39084 (10)$ $0.633490 (9)$ $0.67103 (14)$ $0.23920 (13)$ $0.5503 (13)$ $0.5832 (19)$ $0.03385 (10)$ $0.445390 (10)$ $0.53959 (14)$ -0.016689 0.406014 0.569818	xyz $U_{iso}*/U_{eq}$ -0.19328 (2)0.01828 (2)0.22033 (2)0.01558 (5)-0.07000 (10)0.23627 (9)0.37843 (13)0.0268 (2)-0.1073 (18)0.1876 (18)0.340 (2)0.036 (5)*-0.0360 (18)0.2528 (17)0.326 (3)0.039 (6)*0.28176 (8)0.55577 (8)0.81318 (11)0.0117 (2)0.12491 (9)0.48768 (8)0.67428 (12)0.0123 (2)0.04964 (10)0.29104 (10)0.18398 (14)0.0276 (2)0.0823 (18)0.3420 (18)0.200 (2)0.036 (6)*0.016 (2)0.2902 (19)0.096 (3)0.051 (7)*0.71245 (12)0.75891 (11)0.97675 (18)0.0250 (3)0.7363860.7666170.8862910.037*0.7685420.7180941.0526940.037*0.7685420.7180941.0526940.037*0.5239200.803611.0469050.020*0.40605 (11)0.69326 (10)0.94673 (14)0.0166 (3)0.5239200.8003611.0469050.020*0.40605 (11)0.69326 (10)0.94673 (14)0.0148 (2)0.39084 (10)0.53490 (9)0.67103 (14)0.0126 (2)0.2362 (13)0.5503 (13)0.5832 (19)0.015 (4)*0.03385 (10)0.45390 (10)0.53959 (14)0.0132 (2)-0.0166890.4060140.5698180.016*

H7B	0.066579	0.418089	0.469255	0.016*	
C4	0.47678 (10)	0.56704 (10)	0.80436 (13)	0.0128 (2)	
C5	0.57920 (10)	0.61949 (10)	0.84337 (14)	0.0147 (2)	
H9	0.637928	0.595239	0.807044	0.018*	
C13	0.46334 (11)	0.47141 (10)	0.71025 (16)	0.0183 (3)	
H10A	0.418593	0.486447	0.604922	0.027*	
H10B	0.424390	0.419506	0.751255	0.027*	
H10C	0.538291	0.446186	0.713460	0.027*	
C11	0.31461 (12)	0.73712 (11)	1.00412 (16)	0.0225 (3)	
H11A	0.240263	0.726481	0.927945	0.034*	
H11B	0.327739	0.810168	1.022662	0.034*	
H11C	0.316568	0.703141	1.098930	0.034*	
C3	0.12649 (11)	0.47941 (11)	0.82365 (15)	0.0166 (3)	
H12	0.0660 (15)	0.4502 (14)	0.8469 (19)	0.023 (4)*	
C2	0.22470 (11)	0.52150 (11)	0.91051 (15)	0.0162 (3)	
H13	0.2517 (15)	0.5293 (13)	1.016 (2)	0.022 (4)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br01	0.01802 (7)	0.01898 (8)	0.01231 (7)	-0.00240 (5)	0.00847 (5)	-0.00121 (5)
01	0.0320 (6)	0.0288 (6)	0.0207 (5)	-0.0124 (5)	0.0100 (5)	-0.0066 (5)
N1	0.0124 (5)	0.0137 (5)	0.0093 (5)	0.0009 (4)	0.0037 (4)	0.0012 (4)
N2	0.0122 (5)	0.0141 (5)	0.0108 (5)	-0.0002 (4)	0.0039 (4)	0.0020 (4)
O2	0.0332 (6)	0.0284 (6)	0.0201 (6)	-0.0086 (5)	0.0068 (5)	0.0010 (5)
C12	0.0165 (6)	0.0195 (7)	0.0338 (8)	-0.0033 (5)	0.0007 (6)	-0.0009 (6)
C6	0.0159 (6)	0.0141 (6)	0.0158 (6)	-0.0007(5)	-0.0005 (5)	0.0031 (5)
C10	0.0206 (6)	0.0125 (6)	0.0133 (6)	0.0006 (5)	0.0003 (5)	-0.0027 (5)
C8	0.0168 (6)	0.0150 (6)	0.0112 (5)	0.0045 (5)	0.0024 (4)	0.0008 (5)
C9	0.0116 (5)	0.0134 (6)	0.0087 (5)	-0.0002 (4)	0.0012 (4)	0.0018 (4)
C1	0.0141 (6)	0.0132 (6)	0.0109 (6)	-0.0006 (4)	0.0046 (5)	0.0007 (4)
C7	0.0125 (5)	0.0136 (6)	0.0120 (5)	-0.0024 (5)	0.0021 (4)	-0.0005 (5)
C4	0.0153 (6)	0.0127 (6)	0.0094 (5)	0.0015 (5)	0.0027 (4)	0.0008 (5)
C5	0.0136 (5)	0.0161 (6)	0.0140 (6)	0.0018 (5)	0.0036 (4)	0.0020 (5)
C13	0.0178 (6)	0.0179 (7)	0.0200 (6)	-0.0004 (5)	0.0070 (5)	-0.0070(5)
C11	0.0222 (7)	0.0238 (7)	0.0219 (7)	0.0057 (5)	0.0076 (5)	-0.0074 (6)
C3	0.0155 (6)	0.0228 (7)	0.0127 (6)	0.0005 (5)	0.0064 (5)	0.0050 (5)
C2	0.0164 (6)	0.0224(7)	0.0109 (6)	0.0025(5)	0.0059(5)	0.0036(5)

Geometric parameters (Å, °)

O1—H1D	0.80 (2)	C8—C11	1.5126 (17)
O1—H1E	0.77 (2)	C9—C4	1.4042 (17)
N1—C9	1.4481 (15)	С1—Н6	0.928 (17)
N1—C1	1.3322 (16)	C7—C7 ⁱ	1.525 (2)
N1—C2	1.3872 (16)	С7—Н7А	0.9900
N2—C1	1.3314 (16)	C7—H7B	0.9900
N2—C7	1.4653 (16)	C4—C5	1.3909 (17)

N2	1 3841 (16)	C4-C13	1 5095 (17)
Ω_{2} H2A	0.77 (2)	C5—H9	0.9500
02 H2B	0.79(3)	C13—H10A	0.9800
C12—H1A	0.9800	C13—H10B	0.9800
C12—H1B	0.9800	C13—H10C	0.9800
	0.9800		0.9800
C12—IIIC	1.5114(18)	C11 H11B	0.9800
$C_{12} = C_{0}$	1.3114(10) 1.3880(10)		0.9800
C6_C5	1.3000(19) 1.3015(18)		0.9800
C_{10} H2	0.0500	$C_3 = C_2$	0.928(18)
C_{10}	1 2050 (19)	C_{3} C_{2} C_{2} C_{3} C_{2} C_{3} C_{3	1.3300(19)
C_{10}^{cond}	1.3939(18) 1.3015(18)	C2—H15	0.932 (19)
0-09	1.3913 (18)		
HID OI HIE	107(2)	N2 C7 H7A	100.8
$\Gamma = 01 - \Pi E$	107(2) 125.15(10)	N2 C7 H7R	109.8
C1 = N1 = C2	123.13(10) 108.51(11)	N2 - C7 - H7A	109.8
$C_1 = N_1 = C_2$	106.31(11) 126.24(10)	C/-C/-H/A	109.8
C2-N1-C9	120.34(10)	C/-C/-D/D	109.8
CI = N2 = C7	124.67 (11)	H/A - C/ - H/B	108.3
C1 - N2 - C3	108.89 (11)	C_{9} C_{4} C_{13}	123.34 (11)
$C_3 = N_2 = C_7$	126.41 (11)	C_{5} C_{4} C_{9}	11/.41 (11)
H2A—O2—H2B	106 (2)	C_{5} C_{4} C_{13}	119.25 (11)
HIA—CI2—HIB	109.5	С6—С5—Н9	118.9
H1A—C12—H1C	109.5	C4—C5—C6	122.21 (12)
H1B—C12—H1C	109.5	С4—С5—Н9	118.9
C6—C12—H1A	109.5	C4—C13—H10A	109.5
C6—C12—H1B	109.5	C4—C13—H10B	109.5
C6—C12—H1C	109.5	C4—C13—H10C	109.5
C10—C6—C12	121.57 (12)	H10A—C13—H10B	109.5
C10—C6—C5	118.20 (12)	H10A—C13—H10C	109.5
C5—C6—C12	120.23 (12)	H10B—C13—H10C	109.5
С6—С10—Н3	118.9	C8—C11—H11A	109.5
C6—C10—C8	122.24 (12)	C8—C11—H11B	109.5
С8—С10—Н3	118.9	C8—C11—H11C	109.5
C10—C8—C11	119.19 (12)	H11A—C11—H11B	109.5
C9—C8—C10	117.53 (12)	H11A—C11—H11C	109.5
C9—C8—C11	123.28 (12)	H11B—C11—H11C	109.5
C8—C9—N1	118.87 (11)	N2—C3—H12	120.6 (11)
C8—C9—C4	122.39 (11)	C2—C3—N2	106.87 (11)
C4—C9—N1	118.73 (11)	C2—C3—H12	132.6 (11)
N1—C1—H6	126.8 (10)	N1—C2—H13	123.8 (11)
N2—C1—N1	108.54 (11)	C3—C2—N1	107.19 (11)
N2—C1—H6	124.6 (10)	C3—C2—H13	129.0 (11)
$N2-C7-C7^{i}$	109.28 (13)		
N1—C9—C4—C5	177.64 (10)	C1—N1—C9—C4	-53.80 (17)
N1—C9—C4—C13	-2.91 (18)	C1—N1—C2—C3	0.17 (15)
N2—C3—C2—N1	0.44 (15)	C1-N2-C7-C7 ⁱ	-73.94 (17)
C12—C6—C10—C8	-179.51 (12)	C1—N2—C3—C2	-0.90 (15)

C12—C6—C5—C4	178.27 (12)	C7—N2—C1—N1	$\begin{array}{c} 179.04 \ (11) \\ -178.88 \ (12) \\ -0.48 \ (19) \\ -177.92 \ (12) \\ 1.04 \ (18) \\ 179.84 \ (12) \\ 1.01 \ (14) \\ 103.73 \ (16) \\ -54.53 \ (17) \\ 126.64 \ (13) \\ -0.73 \ (14) \end{array}$
C6—C10—C8—C9	0.85 (19)	C7—N2—C3—C2	
C6—C10—C8—C11	-179.00 (12)	C5—C6—C10—C8	
C10—C6—C5—C4	-0.78 (19)	C13—C4—C5—C6	
C10—C8—C9—N1	-178.79 (11)	C11—C8—C9—N1	
C10—C8—C9—C4	0.00 (18)	C11—C8—C9—C4	
C8—C9—C4—C5	-1.16 (18)	C3—N2—C1—N1	
C8—C9—C4—C13	178.30 (12)	C3—N2—C7—C7 ⁱ	
C9—N1—C1—N2	179.64 (11)	C2—N1—C9—C8	
C9—N1—C1—N2	179.79 (12)	C2—N1—C9—C4	
C9—C4—C5—C6	1.56 (18)	C2—N1—C9—C4	
C9—C4—C5—C6 C1—N1—C9—C8	1.56 (18) 125.04 (13)	C2—N1—C1—N2	-0.73 (14)

Symmetry code: (i) -x, -y+1, -z+1.