

Received 26 April 2022 Accepted 23 August 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; Hirshfeld surface; energy framework.

CCDC reference: 2023150

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 3-({4-[(4-cyanophenoxy)carbonyl]phenoxy}carbon-yl)phenyl 4-(benzyloxy)-3-chlorobenzoate

S. Selvanandan,^a H. Anil kumar,^b* H. T. Srinivasa^c and B. S. Palakshamurthy^d

^aDepartment of Physics, ACS College of Engineering, Bangalore, Karnataka-560074, India, ^bDepartment of Physics, Government First Grade College, Magadi, Karnataka-562120, India, ^cRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India, and ^dDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India. *Correspondence e-mail: anilphy1234@gmail.com

The title compound, $C_{35}H_{22}CINO_7$, is a non-liquid crystal with a bent-shaped molecule. The dihedral angles between adjacent aromatic rings in the molecule (starting from the cyanobenzene ring) are 72.61 (2), 87.69 (4), 64.08 (2) and 88.23 (2)°, indicating that adjacent rings are close to perpendicular to each other. In the crystal, the molecules are linked by weak C-H···N and C-H··· π interactions, thereby forming a two-dimensional supramolecular architecture in the *ac* plane. The most important contributions to the crystal packing arise from H···H (59.3%), S···H (27.4%) and O···H (7.5%) interactions, as determined by a Hirshfeld surface analysis.

1. Chemical context

Banana/bent-shaped liquid crystals (LCs) are of great interest in the field of display materials. In particular, the –CN groups at the terminal end (Walba *et al.*, 2000; Reddy & Sadashiva, 2004) of banana-shaped LCs have been linked to their bent or bow (twisted) anisometric phase with $C_{2\nu}$ symmetry. Furthermore, they exhibit polar order, chirality and spontaneous polarization in the fluid phase. We have reported the crystal structures of LC intermediates and found that benzyloxy group-substituted molecules are prone to be hydrophobic (Kashi *et al.*, 2012; Al-Eryani *et al.*, 2011). Benzyloxy groupsubstituted molecules also play a significant role in synthesizing bent-shaped LCs and non-LCs (Palakshamurthy *et al.*, 2012). Hence, it is useful to study benzyloxy group-substituted bent-shaped molecules to understand the structural properties and the relationship between LCs and crystal structures.

In a continuation of this work, we investigated the title molecule, which possesses five aromatic rings with three ester groups and a benzyloxy group at one terminal end, presumably making the molecule highly polar. Furthermore, it has a chloro group at one side and a cyano group at the opposite terminal end of the molecule, inducing an unsymmetrical

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg4 and Cg5 are the centroids of the C23–C28 and C30–C35 rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2 - H2 \cdots O2$	0.944 (18)	2.411 (17)	2,7213 (19)	98.9 (12)
C12-H12···O4	0.93	2.42	2.733 (2)	100
C24-H24···O6	0.93	2.40	2.721 (2)	100
$C17 - H17 \cdot \cdot \cdot N1^{i}$	0.93	2.62	3.504 (3)	158
$C25-H25\cdots Cg5^{ii}$	0.93	2.86	3.744 (2)	158
$C31 - H31 \cdots Cg4^{iii}$	0.93	2.82	3.702 (3)	158
$C31-H31\cdots Cg4^{m}$	0.93	2.82	3.702 (3)	158
$\frac{\text{C31}-\text{H31}\cdots\text{Cg4}^{\text{m}}}{\text{Symmetry codes:}}$	(i) $-x + 2, -$	2.82 -y - 1, -z + 1;	3.702 (3) (ii) $-x, -y =$	158 - 1, -z;

structure (Hartung *et al.*, 2000). The molecule was subjected to LC characterization studies, but it did not show any LC properties, which may be due to the absence of a flexible alkyl chain. The title compound was synthesized according to the procedure described by Sadashiva *et al.* (2002) and its crystal structure is reported herein.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The dihedral angles between the aromatic rings are as follows: A/B = 64.08 (2), A/C = 29.75 (2), A/D = 87.69 (4), A/E = 16.07 (3), B/C = 88.23 (2), B/D = 87.88 (4), B/E = 68.87 (4), C/D = 82.27 (3), E/D = 72.61 (2) and C/E = 37.46 (4)°, where A, B, C, D and E are the C1–C6, C23–C28, C30–C35, C8–C13 and C15–C20, rings, respectively. The torsion angles associated with the benzyloxy group are -7.2 (3) (C15–O4–C14–O3), -3.1 (3) (C8–O2–C7–O1) and -0.7 (2)° (C3–O6–C22–O5). Three short intramolecular C–H···O contacts (Table 1) may influence the molecular conformation.

3. Supramolecular features

In the crystal, the molecules are linked by weak $C-H\cdots N$ hydrogen bonds and weak $C-H\cdots \pi$ interactions (Table 1) to generate a two-dimensional supramolecular architecture propagating in the *ac* plane as shown in Fig. 2. Furthermore, the molecules are linked by centrosymmetric aromatic $\pi-\pi$ stacking interactions with $Cg4\cdots Cg4$ and $Cg3\cdots Cg3 =$

3.6387 (10) Å (slippage = 1.086 Å) and 3.7740 (10) (slippage = 1.407 Å), respectively, as shown in Fig. 3 (Cg4 is the centroid of the C23–C28 ring and Cg3 is the centroid of the C15–C20 ring).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom *et al.*, 2016) for molecules containing the (4-cyanophenoxy)carbonyl fragment resulted in four matches with CSD refcodes EWUSIA (Srinivasa *et al.*, 2015), IBUXOV (Ji *et al.*, 2017), IBUXUB (Yingchun *et al.*, 2016) and OCUTIS (Yingchun *et al.*, 2016). In all these structures there is a 4-cyanophenoxy grouping at the one end of the molecule, similar to the title compound. In IBUXOV, IBUXUB and OCUTIS the same core exists at both ends of the molecule. Sometimes the presence of a –CN group at both terminals of the molecule induces liquid-crystal properties.

In EWUSIA, the dihedral angles between the cyanobenzoate ring and the first neighbouring benzene ring, and between the second neighbour and the first and second benzene rings are 50.47 (2), 10.15 (3) and 50.02 (5)° compared to 72.61 (2), 16.06 (2) and 87.69 (4)° in the title molecule. In IBUXOV, the dihedral angles between the rings (cyanobenzoate ring and the neighbouring benzene ring) are 69.45 (2) and 64.20 (3)°, and 73.60 (3) and 84.16 (3)° between the adjacent cyanobenzoate and benzene rings themselves. In IBUXUB, the dihedral angles between the rings (cyanobenzoate and the neighbouring benzene ring) are 69.68 (2)

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 4 Hirshfeld surface of the title compound mapped with d_{norm} .

and 74.28 (4)°, and 48.87 (2) and 89.88 (4)° between the cyanobenzoate and benzene rings. In OCUTIS, the dihedral angles between adjacent cyanobenzoate and benzene rings are 81.21 (4) and 54.43 (2)° compared to angles between the cyanobenzoate and benzene rings of 55.02 (3) and 84.20 (3)°.

5. Hirshfeld surface analysis

CrystalExplorer17.5 (Turner *et al.*, 2017) was used to perform the Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) to further quantify the various intermolecular interactions.

Figure 5

Two-dimensional fingerprint plots for the title compound.

Figure 6 Hirshfeld surface of the title compound mapped over d_{norm} , showing the $C-H\cdots N$ interactions.

The Hirshfeld surface mapped over d_{norm} is illustrated in Fig. 4 and the associated two-dimensional fingerprint plots in Fig. 5. The major contributions to the crystal structure are from $H \cdots H$ (26.9%), $C \cdots H$ (27.2%) and $O \cdots H$ (19.6%) contacts. In Figs. 6 and 7, the red spots on the d_{norm} and d_{e} surfaces represent the $C-H \cdots \pi$ interactions.

6. Synthesis and crystallization

4-[(4-Cyanophenoxy)carbonyl]phenyl 3-hydroxybenzoate (1 mmol) and 4-(benzyloxy)-3-chlorobenzoic acid (1.2 mmol) were dissolved in dry chloroform (50 ml). After the addition of N,N-dicyclohexylcarbodiimide (1.2 mmol) and a catalytic amount of 4-(N,N-dimethylamino)pyridine (DMAP), the mixture was stirred at room temperature for about 12 h. The dicyclohexylurea that precipitated was filtered off and the filtrate diluted with chloroform. This solution was washed with 2% aqueous acetic acid solution

Figure 7 Hirshfeld surface of the title compound mapped over shape-index, showing the $C-H\cdots\pi$ interactions.

research communications

 Table 2

 Experimental details.

Crystal data	
Chemical formula	C ₃₅ H ₂₂ ClNO ₇
M _r	603.98
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.0202 (1), 9.8474 (2), 19.4712 (4)
α, β, γ (°)	95.422 (1), 94.693 (1), 103.857 (1)
$V(Å^3)$	1477.66 (5)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.18
Crystal size (mm)	$0.19 \times 0.18 \times 0.16$
Data collection	
Diffractometer	Bruker SMADT ADEXIL CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2017)
Tmin. Tmax	0.966, 0.971
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25466, 5207, 4255
$R_{\rm e}$	0.024
$(\sin \theta/\lambda)$ $(\dot{\Delta}^{-1})$	0.524
$(\sin \theta/\lambda)_{\max}(A)$	0.375
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.114, 1.03
No. of reflections	5207
No. of parameters	410
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.26, -0.33

Computer programs: APEX2 and SAINT (Bruker, 2017), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and Mercury (Macrae et al., 2020).

(10 ml) and 5% ice-cold sodium hydroxide solution (10 ml) and finally washed with water and dried over anhydrous sodium sulfate. The crude residue obtained was chromatographed on silica gel using chloroform as an eluent. Removal of solvent from the eluate afforded the white target material, which was crystallized from a mixture of chloroform and acetonitrile. Single crystals in the form of colourless prisms suitable for diffraction studies were grown from a solution in ethyl alcohol by slow evaporation.

IR (nujol) λ_{max} : 3105, 3080, 2237, 1738, 1733, 1614, 1523, 1452, 1253, 1054 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ H: 8.22 (*m*, 3H, Ar–H), 8.19 (*m*, 3H, Ar-H), 8.02 (*m*, 2H, Ar–H), 7.98–7.30 (*m*, 7H, Ar–H), 6.99 (*m*, 5H, Ar–H), 5.22 (*s*, 2H, Ar–O–CH₂–) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 165.2, 159.8, 154.6, 153.7, 151.2, 136.7, 132.6, 130.2, 129, 128.9, 128.6, 127.6, 127.1, 126.8, 123.9, 122.3, 121.3, 112.4 ppm. Micro elemental analysis calculated for C₃₅H₂₂ClNO₇; C, 69.60; H, 3.67; Cl, 5.87; N, 2.32; found C, 69.68; H, 3.72; Cl, 5.91; N, 2.35%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms H2, H4 and H6 were fully refined. Other H atoms were positioned with idealized geometry and refined using a riding model with C-H = 0.93-0.97 Å and $U_{\rm iso}({\rm H}) = 1.2-1.5U_{\rm eq}({\rm C})$.

Funding information

The authors thank the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISEE scheme (reference No. VGST/ CISEE/GRD-319/2014–15) to carry out this work at the Department of PG Studies and Research in Physics, UCS, Tumkur University.

References

- Al-Eryani, W. F. A., Srinivasa, H. T., Jeyaseelan, S., Sadashivaiah, T. & Devarajegowda, H. C. (2011). Acta Cryst. E67, 0840.
- Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hartung, H., Stettler, A. & Weissflog, W. (2000). J. Mol. Struct. 526, 31–40.
- Ji, Y., Peng, Z., Tong, B., Shi, J., Zhi, J. & Dong, Y. (2017). Dyes Pigments, 139, 664–671.
- Kashi, H. K. A., Palakshamurthy, B. S., VinduVahini, M., Srinivasa, H. T. & Devarajegowda, H. C. (2010). *Acta Cryst.* E66, o2126.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Palakshamurthy, B. S., Srinivasa, H. T., Kumar, V., Sreenivasa, S. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3382.
- Reddy, R. A. & Sadashiva, B. K. (2004). J. Mater. Chem. 14, 310-319.
- Sadashiva, B. K., Amaranatha Reddy, R., Pratibha, R. & Madhusudana, N. V. (2002). J. Mater. Chem. 12, 943–950.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Srinivasa, H. T., Siddagangappa, P. B., Velmurugan, D., Chickegowda, D. H. & Suresh, H. (2015). Acta Chim. Slov. 62, 768–774.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17.5*. University of Western Australia. http:// hirshfeldsurface. net.
- Walba, D. M., Körblova, E., Shao, R., Maclennan, J. E., Link, D. R., Glaser, M. A. & Clark, N. A. (2000). Science, 288, 2181–2184.
- Yingchun, J., Zhe, P., Bin, T., Jianbing, S., Junge, Z. & Yuping, D. (2016). Dyes Pigm. 16, S0143–7208.

supporting information

Acta Cryst. (2022). E78, 989-992 [https://doi.org/10.1107/S2056989022008441]

Crystal structure and Hirshfeld surface analysis of 3-({4-[(4-cyanophenoxy)carbonyl]phenoxy}carbonyl)phenyl 4-(benzyloxy)-3-chlorobenzoate

S. Selvanandan, H. Anil kumar, H. T. Srinivasa and B. S. Palakshamurthy

Computing details

Data collection: *APEX2* (Bruker, 2017),; cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *SHELXL* (Sheldrick, 2015b).

3-({4-[(4-Cyanophenoxy)carbonyl]phenoxy}carbonyl)phenyl 4-(benzyloxy)-3-chlorobenzoate

Crystal data

C₃₅H₂₂ClNO₇ $M_r = 603.98$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.0202 (1) Å b = 9.8474 (2) Å c = 19.4712 (4) Å a = 95.422 (1)° $\beta = 94.693$ (1)° $\gamma = 103.857$ (1)° V = 1477.66 (5) Å³ Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 2.06 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2017) $T_{\min} = 0.966, T_{\max} = 0.971$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.114$ S = 1.035207 reflections F(000) = 624Prism $D_x = 1.357 \text{ Mg m}^{-3}$ Melting point: 445 K Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5212 reflections $\theta = 1.0-25.0^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.19 \times 0.18 \times 0.16 \text{ mm}$

25466 measured reflections 5207 independent reflections 4255 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -23 \rightarrow 23$

410 parameters6 restraints0 constraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} = 0.002$
map	$\Delta \rho_{\rm max} = 0.26 \text{ e A}^{-5}$
Hydrogen site location: mixed	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	Extinction correction: SHELXL2018
and constrained refinement	(Sheldrick, 2015b),
$w = 1/[\sigma^2(F_o^2) + (0.0619P)^2 + 0.2788P]$	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
where $P = (F_o^2 + 2F_c^2)/3$	Extinction coefficient: 0.0158 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O7	0.66155 (14)	1.37557 (12)	1.06583 (6)	0.0604 (3)	
06	0.23387 (14)	0.91624 (11)	0.82866 (6)	0.0562 (3)	
O2	0.31260 (15)	0.47851 (13)	0.70608 (7)	0.0701 (4)	
O4	0.70509 (18)	0.04285 (14)	0.58733 (6)	0.0691 (4)	
05	0.07952 (16)	0.85138 (14)	0.91636 (6)	0.0683 (4)	
03	0.6173 (2)	-0.06006 (17)	0.67969 (8)	0.0920 (5)	
01	0.06206 (16)	0.37006 (13)	0.64386 (7)	0.0734 (4)	
N1	1.2423 (3)	-0.3715 (2)	0.52599 (11)	0.0906 (6)	
C33	1.1312 (3)	1.7706 (3)	1.18897 (11)	0.0805 (6)	
H33	1.200300	1.842548	1.220743	0.097*	
C34	1.1522 (3)	1.6373 (3)	1.18768 (11)	0.0812 (6)	
H34	1.235250	1.618164	1.218912	0.097*	
C35	1.0499 (3)	1.5295 (2)	1.13982 (10)	0.0710 (5)	
H35	1.066616	1.439064	1.138300	0.085*	
C30	0.9239 (2)	1.55720 (18)	1.09471 (8)	0.0561 (4)	
C29	0.8184 (2)	1.44647 (19)	1.03988 (9)	0.0652 (5)	
H29A	0.790624	1.489441	0.999036	0.078*	
H29B	0.883975	1.378979	1.026758	0.078*	
C26	0.5546 (2)	1.27075 (17)	1.02142 (8)	0.0496 (4)	
C25	0.5822 (2)	1.23457 (18)	0.95365 (9)	0.0599 (4)	
H25	0.678848	1.285319	0.935657	0.072*	
C24	0.4681 (2)	1.12408 (17)	0.91246 (8)	0.0550 (4)	
H24	0.488830	1.101130	0.867042	0.066*	
C23	0.32400 (19)	1.04740 (15)	0.93774 (8)	0.0456 (3)	
C22	0.19929 (19)	0.92835 (16)	0.89583 (8)	0.0472 (4)	
C3	0.1246 (2)	0.80725 (15)	0.78186 (8)	0.0476 (4)	
C2	0.1912 (2)	0.69862 (16)	0.75737 (8)	0.0479 (4)	
C1	0.08826 (19)	0.59329 (16)	0.70854 (7)	0.0449 (3)	
C7	0.1464 (2)	0.46904 (17)	0.68174 (8)	0.0517 (4)	
C8	0.3800 (2)	0.36353 (18)	0.68774 (9)	0.0577 (4)	
C13	0.4822 (2)	0.37070 (19)	0.63451 (10)	0.0608 (4)	
H13	0.499046	0.447392	0.609152	0.073*	

~				0.0550 (1)
C12	0.5600 (2)	0.26220 (18)	0.61907 (9)	0.0572 (4)
H12	0.630774	0.266133	0.583388	0.069*
C11	0.53291 (19)	0.14754 (17)	0.65663 (8)	0.0494 (4)
C14	0.6184 (2)	0.03171 (19)	0.64397 (9)	0.0551 (4)
C15	0.8124 (2)	-0.04890 (18)	0.57562 (9)	0.0566 (4)
C20	0.9844 (2)	0.00167 (19)	0.59635 (10)	0.0654 (5)
H20	1.027213	0.091840	0.619681	0.078*
C19	1.0936 (2)	-0.08343 (19)	0.58204 (10)	0.0657 (5)
H19	1.211388	-0.050869	0.595875	0.079*
C18	1.0288 (2)	-0.21700 (18)	0.54721 (9)	0.0564 (4)
C21	1.1458 (3)	-0.3048 (2)	0.53442 (10)	0.0671 (5)
C27	0.40785 (19)	1.19401 (19)	1.04630 (8)	0.0526 (4)
C28	0.29494 (19)	1.08363 (18)	1.00565 (8)	0.0530 (4)
H28	0.198360	1.032683	1.023589	0.064*
C9	0.3515 (2)	0.2511 (2)	0.72563 (10)	0.0674 (5)
Н9	0.281420	0.248249	0.761511	0.081*
C10	0.4279 (2)	0.1426 (2)	0.70986 (9)	0.0615 (4)
H10	0.408968	0.065641	0.735040	0.074*
C17	0.8540 (2)	-0.26542 (19)	0.52624 (9)	0.0621 (5)
H17	0.810392	-0.354934	0.502276	0.074*
C16	0.7448 (2)	-0.18100 (19)	0.54090 (9)	0.0632 (5)
H16	0.626763	-0.212940	0.527475	0.076*
C6	-0.0776 (2)	0.59977 (17)	0.68582 (8)	0.0501 (4)
C5	-0.1410 (2)	0.71063 (18)	0.71118 (9)	0.0558 (4)
Н5	-0.252302	0.714786	0.695759	0.067*
C4	-0.0391 (2)	0.81545 (17)	0.75948 (9)	0.0538 (4)
C31	0.9056 (3)	1.6916 (2)	1.09726 (13)	0.0897 (7)
H31	0.821394	1.711933	1.066993	0.108*
C32	1.0097 (3)	1.7978 (3)	1.14393 (15)	0.1065 (9)
H32	0.996215	1.889094	1.144422	0.128*
Cl	0.37075 (6)	1.23731 (8)	1.13083 (2)	0.0967 (2)
Н6	-0.146 (2)	0.5267 (19)	0.6546 (9)	0.057 (5)*
H2	0.303 (2)	0.6937 (18)	0.7740 (9)	0.061 (5)*
H4	-0.080 (2)	0.8914 (19)	0.7778 (9)	0.057 (5)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
07	0.0531 (6)	0.0670 (7)	0.0505 (6)	0.0008 (5)	0.0086 (5)	-0.0123 (5)
O6	0.0596 (7)	0.0465 (6)	0.0544 (6)	0.0017 (5)	0.0134 (5)	-0.0115 (5)
O2	0.0542 (7)	0.0636 (8)	0.0892 (9)	0.0284 (6)	-0.0096 (6)	-0.0289 (6)
O4	0.0899 (9)	0.0714 (8)	0.0624 (7)	0.0493 (7)	0.0188 (6)	0.0061 (6)
05	0.0600(7)	0.0755 (8)	0.0566 (7)	-0.0063 (6)	0.0056 (6)	0.0044 (6)
03	0.1290 (13)	0.0867 (10)	0.0914 (10)	0.0694 (10)	0.0423 (9)	0.0305 (9)
01	0.0672 (8)	0.0598 (8)	0.0861 (9)	0.0257 (6)	-0.0185 (7)	-0.0296 (7)
N1	0.0917 (13)	0.0785 (12)	0.1191 (16)	0.0446 (10)	0.0413 (11)	0.0130 (11)
C33	0.0729 (13)	0.0866 (16)	0.0667 (12)	0.0043 (11)	-0.0038 (10)	-0.0185 (11)
C34	0.0696 (12)	0.0989 (17)	0.0638 (12)	-0.0017 (11)	-0.0122 (9)	0.0277 (11)

supporting information

C35	0.0744 (12)	0.0626 (11)	0.0720 (12)	0.0052 (9)	0.0026 (10)	0.0236 (9)
C30	0.0519 (9)	0.0587 (10)	0.0518 (9)	0.0056 (7)	0.0090 (7)	-0.0046 (7)
C29	0.0636 (10)	0.0634 (11)	0.0573 (10)	-0.0031 (8)	0.0135 (8)	-0.0061 (8)
C26	0.0488 (8)	0.0514 (9)	0.0461 (8)	0.0120 (7)	0.0033 (6)	-0.0037 (7)
C25	0.0622 (10)	0.0569 (10)	0.0510 (9)	-0.0031 (8)	0.0164 (8)	-0.0036 (7)
C24	0.0620 (10)	0.0524 (9)	0.0458 (8)	0.0062 (7)	0.0139 (7)	-0.0049 (7)
C23	0.0461 (8)	0.0443 (8)	0.0471 (8)	0.0146 (6)	0.0034 (6)	0.0019 (6)
C22	0.0464 (8)	0.0473 (8)	0.0490 (8)	0.0142 (7)	0.0053 (7)	0.0046 (7)
C3	0.0507 (8)	0.0411 (8)	0.0476 (8)	0.0066 (6)	0.0103 (7)	-0.0032 (6)
C2	0.0439 (8)	0.0497 (9)	0.0487 (8)	0.0123 (7)	0.0051 (7)	-0.0034 (7)
C1	0.0470 (8)	0.0447 (8)	0.0433 (8)	0.0145 (6)	0.0046 (6)	-0.0011 (6)
C7	0.0513 (9)	0.0517 (9)	0.0515 (9)	0.0187 (7)	-0.0001 (7)	-0.0068 (7)
C8	0.0485 (9)	0.0568 (10)	0.0656 (10)	0.0224 (7)	-0.0064 (8)	-0.0173 (8)
C13	0.0616 (10)	0.0555 (10)	0.0678 (11)	0.0238 (8)	0.0021 (8)	0.0005 (8)
C12	0.0581 (10)	0.0600 (10)	0.0575 (9)	0.0249 (8)	0.0076 (8)	-0.0016 (8)
C11	0.0477 (8)	0.0524 (9)	0.0474 (8)	0.0189 (7)	-0.0041 (6)	-0.0060 (7)
C14	0.0588 (10)	0.0564 (10)	0.0518 (9)	0.0239 (8)	-0.0010 (7)	-0.0045 (8)
C15	0.0700 (11)	0.0565 (10)	0.0516 (9)	0.0327 (8)	0.0109 (8)	0.0006 (7)
C20	0.0719 (12)	0.0497 (10)	0.0717 (11)	0.0170 (8)	0.0076 (9)	-0.0112 (8)
C19	0.0564 (10)	0.0588 (11)	0.0800 (12)	0.0158 (8)	0.0080 (9)	-0.0055 (9)
C18	0.0646 (10)	0.0527 (10)	0.0578 (9)	0.0240 (8)	0.0177 (8)	0.0026 (8)
C21	0.0734 (12)	0.0601 (11)	0.0766 (12)	0.0275 (9)	0.0263 (10)	0.0079 (9)
C27	0.0433 (8)	0.0724 (11)	0.0414 (8)	0.0163 (7)	0.0051 (6)	-0.0021 (7)
C28	0.0406 (8)	0.0688 (10)	0.0467 (8)	0.0082 (7)	0.0061 (6)	0.0052 (7)
C9	0.0664 (11)	0.0776 (13)	0.0630 (11)	0.0300 (9)	0.0144 (9)	-0.0054 (10)
C10	0.0645 (10)	0.0645 (11)	0.0591 (10)	0.0247 (8)	0.0076 (8)	0.0028 (8)
C17	0.0723 (11)	0.0507 (10)	0.0618 (10)	0.0198 (8)	0.0057 (8)	-0.0105 (8)
C16	0.0602 (10)	0.0657 (11)	0.0629 (10)	0.0224 (8)	-0.0004 (8)	-0.0083 (9)
C6	0.0513 (9)	0.0478 (9)	0.0492 (8)	0.0137 (7)	-0.0005 (7)	-0.0029 (7)
C5	0.0518 (9)	0.0562 (10)	0.0623 (10)	0.0225 (7)	0.0017 (7)	0.0016 (8)
C4	0.0614 (10)	0.0446 (9)	0.0594 (10)	0.0215 (7)	0.0121 (8)	-0.0013 (7)
C31	0.0782 (14)	0.0788 (14)	0.1071 (17)	0.0395 (11)	-0.0310 (12)	-0.0313 (12)
C32	0.0958 (17)	0.0809 (15)	0.133 (2)	0.0416 (13)	-0.0338 (16)	-0.0495 (15)
Cl	0.0578 (3)	0.1601 (6)	0.0491 (3)	-0.0054 (3)	0.0139 (2)	-0.0263 (3)

Geometric parameters (Å, °)

07—C26	1.3545 (19)	C1—C6	1.385 (2)
O7—C29	1.441 (2)	C1—C7	1.476 (2)
O6—C22	1.3591 (19)	C8—C13	1.370 (3)
O6—C3	1.4086 (17)	C8—C9	1.372 (3)
O2—C7	1.3563 (19)	C13—C12	1.382 (2)
O2—C8	1.396 (2)	C13—H13	0.9300
O4—C14	1.350 (2)	C12—C11	1.386 (2)
O4—C15	1.4052 (19)	C12—H12	0.9300
O5—C22	1.1953 (19)	C11—C10	1.385 (2)
O3—C14	1.190 (2)	C11—C14	1.477 (2)
O1—C7	1.1909 (19)	C15—C20	1.363 (3)

supporting information

N1—C21	1.141 (2)	C15—C16	1.371 (2)
C33—C32	1.349 (3)	C20—C19	1.376 (3)
C33—C34	1.360 (3)	С20—Н20	0.9300
С33—Н33	0.9300	C19—C18	1.381 (2)
C34—C35	1.393 (3)	С19—Н19	0.9300
С34—Н34	0.9300	C18—C17	1.382 (3)
C35—C30	1.378 (3)	C18—C21	1.441 (2)
С35—Н35	0.9300	$C_{27} - C_{28}$	1 370(2)
C30-C31	1 363 (3)	C_{27} C_{20}	1.378(2) 1.7284(15)
C_{30} C_{29}	1 495 (2)	C28—H28	0.9300
C29_H29A	0.9700	C_{20} C_{10}	1.376(3)
C29_H29R	0.9700	C9H9	0.9300
C26 C25	1.384(2)		0.9300
$C_{20} = C_{23}$	1.364(2) 1.388(2)	C17 $C16$	0.9300
$C_{20} = C_{27}$	1.300(2) 1.370(2)	C17 = U17	1.372(2)
$C_{23} = C_{24}$	1.379(2)	C1/-H1/	0.9300
C23—H23	0.9300		0.9300
C24—C23	1.376 (2)		1.378 (2)
C24—H24	0.9300	С6—Н6	0.929 (18)
C23—C28	1.390 (2)	C5—C4	1.380 (2)
C23—C22	1.471 (2)	C5—H5	0.9300
C3—C2	1.369 (2)	C4—H4	0.940 (18)
C3—C4	1.373 (2)	C31—C32	1.376 (3)
C2—C1	1.392 (2)	C31—H31	0.9300
С2—Н2	0.944 (18)	С32—Н32	0.9300
C26—O7—C29	115 72 (12)	C8—C13—H13	120.5
$C^{22} - C^{2} - C^{3}$	118 29 (12)	C12—C13—H13	120.5
$C_{22} = 00 = 00$	117.25(12)	C_{13} C_{12} C_{11}	120.3
$C_{14} = 04 = C_{15}$	117.53 (13)	C_{13} C_{12} H_{12}	110.0
$C_{14} = C_{14} = C_{15}$	117.55 (15)	$C_{11} = C_{12} = H_{12}$	119.9
$C_{32} = C_{33} = C_{34}$	119.00 (19)	$C_{11} = C_{12} = 112$	119.9
$C_{32} = C_{33} = H_{33}$	120.2	$C_{10} = C_{11} = C_{12}$	119.02(13)
$C_{34} = C_{35} = H_{35}$	120.2 120.22 (10)	C12 - C11 - C14	110.11(10) 122.22(15)
$C_{33} = C_{34} = C_{33}$	120.55 (19)	C12 - C14 - C14	122.22(13)
C35—C34—H34	119.8	03 - C14 - 04	122.49 (15)
С33—С34—П34	119.8	03 - 014 - 04	122.49 (13)
$C_{30} = C_{35} = C_{34}$	119.8 (2)	03-014-011	125.25 (16)
С30—С35—Н35	120.1	04-014-011	112.23 (15)
С34—С35—Н35	120.1		112.23 (15)
C31—C30—C35	118.56 (17)	C20—C15—C16	122.31 (16)
C31—C30—C29	119.80 (18)	C20—C15—O4	117.50 (16)
C35—C30—C29	121.44 (18)	C16—C15—O4	120.08 (16)
O7—C29—C30	109.61 (13)	C20—C15—O4	117.50 (16)
O7—C29—H29A	109.7	C16—C15—O4	120.08 (16)
С30—С29—Н29А	109.7	C15—C20—C19	118.63 (16)
O7—C29—H29B	109.7	C15—C20—H20	120.7
С30—С29—Н29В	109.7	С19—С20—Н20	120.7
H29A—C29—H29B	108.2	C20—C19—C18	120.22 (17)
O7—C26—C25	124.66 (14)	С20—С19—Н19	119.9

O7—C26—C27	117.23 (13)	С18—С19—Н19	119.9
C25—C26—C27	118.10 (14)	C19—C18—C17	120.04 (16)
C24—C25—C26	120.76 (15)	C19—C18—C21	118.90 (17)
C24—C25—H25	119.6	C17—C18—C21	121.06 (16)
С26—С25—Н25	119.6	N1—C21—C18	177.7 (2)
C23—C24—C25	120.81 (14)	C28—C27—C26	121.24 (14)
С23—С24—Н24	119.6	C28—C27—Cl	119.84 (12)
C25—C24—H24	119.6	C26—C27—C1	118.91 (12)
C24—C23—C28	118.75 (14)	C27—C28—C23	120.32 (14)
C24—C23—C22	122.69 (14)	C27—C28—H28	119.8
C28—C23—C22	118.56 (14)	C23—C28—H28	119.8
05-C22-O6	122.68 (14)	C8—C9—C10	119.15 (17)
05—C22—O6	122.68 (14)	С8—С9—Н9	120.4
O5—C22—C23	125.70 (14)	С10—С9—Н9	120.4
Q6—C22—C23	111.61 (13)	C9—C10—C11	120.26 (18)
O6—C22—C23	111.61 (13)	C9—C10—H10	119.9
C2—C3—C4	122.09 (14)	С11—С10—Н10	119.9
$C_2 - C_3 - C_6$	117 58 (14)	C_{16} C_{17} C_{18}	119 79 (16)
C4-C3-O6	120.24 (14)	C16—C17—H17	120.1
$C^2 - C^3 - O^6$	117 58 (14)	C18—C17—H17	120.1
C4-C3-O6	120.24 (14)	C_{15} C_{16} C_{17}	119.01 (17)
$C_{3}-C_{2}-C_{1}$	118.53 (15)	C15—C16—H16	120.5
C3—C2—H2	120.9 (11)	C17—C16—H16	120.5
C1—C2—H2	120.5 (11)	C5—C6—C1	120.23 (15)
C6-C1-C2	119.99 (14)	С5—С6—Н6	120.9 (11)
C6—C1—C7	117.75 (14)	C1—C6—H6	118.8 (11)
C2-C1-C7	122.20 (14)	C6—C5—C4	119.93 (15)
01	122.12 (14)	C6—C5—H5	120.0
O1—C7—O2	122.12 (14)	C4—C5—H5	120.0
O1—C7—C1	126.23 (15)	C3—C4—C5	119.21 (15)
O2—C7—C1	111.65 (13)	C3—C4—H4	119.5 (11)
O2—C7—C1	111.65 (13)	C5—C4—H4	121.3 (11)
C13—C8—C9	121.82 (16)	C30—C31—C32	121.0 (2)
C13—C8—O2	118.33 (17)	С30—С31—Н31	119.5
C9—C8—O2	119.73 (16)	С32—С31—Н31	119.5
C13—C8—O2	118.33 (17)	C33—C32—C31	120.6 (2)
C9—C8—O2	119.73 (16)	С33—С32—Н32	119.7
C8—C13—C12	118.98 (17)	С31—С32—Н32	119.7
C32—C33—C34—C35	0.5 (4)	C15—O4—C14—C11	170.88 (14)
C33—C34—C35—C30	-1.6 (3)	C10—C11—C14—O3	-7.1 (3)
C34—C35—C30—C31	1.5 (3)	C12—C11—C14—O3	170.25 (19)
C34—C35—C30—C29	176.40 (17)	C10—C11—C14—O4	174.84 (15)
C26—O7—C29—C30	-179.10 (15)	C12—C11—C14—O4	-7.8 (2)
C31—C30—C29—O7	-92.2 (2)	C10—C11—C14—O4	174.84 (15)
C35—C30—C29—O7	93.0 (2)	C12—C11—C14—O4	-7.8 (2)
C29—O7—C26—C25	-3.6 (3)	C14—O4—C15—C20	-98.2 (2)
C29—O7—C26—C27	175.84 (15)	C14—O4—C15—C16	85.5 (2)

O7—C26—C25—C24	178.60 (17)	C16—C15—C20—C19	-0.3 (3)
C27—C26—C25—C24	-0.9 (3)	O4—C15—C20—C19	-176.45 (16)
C26—C25—C24—C23	0.1 (3)	O4—C15—C20—C19	-176.45 (16)
C25—C24—C23—C28	0.2 (3)	C15—C20—C19—C18	0.2 (3)
C25—C24—C23—C22	-179.69 (16)	C20-C19-C18-C17	0.4 (3)
C3—O6—C22—O5	-0.7 (2)	C20-C19-C18-C21	-178.57 (18)
C3—O6—C22—C23	-179.61 (13)	O7—C26—C27—C28	-178.18 (15)
C24—C23—C22—O5	173.94 (17)	C25—C26—C27—C28	1.3 (3)
C28—C23—C22—O5	-6.0 (3)	O7—C26—C27—Cl	0.5 (2)
C24—C23—C22—O6	-7.2 (2)	C25—C26—C27—Cl	179.98 (14)
C28—C23—C22—O6	172.84 (14)	C26—C27—C28—C23	-1.0 (3)
C24—C23—C22—O6	-7.2 (2)	Cl-C27-C28-C23	-179.65 (13)
C28—C23—C22—O6	172.84 (14)	C24—C23—C28—C27	0.2 (2)
C22—O6—C3—C2	-110.45 (16)	C22—C23—C28—C27	-179.86 (15)
C22—O6—C3—C4	72.9 (2)	C13—C8—C9—C10	0.1 (3)
C4—C3—C2—C1	-0.3 (2)	O2-C8-C9-C10	-175.81 (15)
O6—C3—C2—C1	-176.95 (13)	O2—C8—C9—C10	-175.81 (15)
O6—C3—C2—C1	-176.95 (13)	C8—C9—C10—C11	0.3 (3)
C3—C2—C1—C6	-0.1 (2)	C12-C11-C10-C9	-0.3 (3)
C3—C2—C1—C7	-177.12 (15)	C14—C11—C10—C9	177.15 (16)
C8—O2—C7—O1	-3.1 (3)	C19—C18—C17—C16	-0.8 (3)
C8—O2—C7—C1	176.36 (15)	C21-C18-C17-C16	178.11 (17)
C6-C1-C7-O1	-2.8 (3)	C20-C15-C16-C17	-0.2 (3)
C2-C1-C7-01	174.35 (17)	O4—C15—C16—C17	175.92 (16)
C6—C1—C7—O2	177.76 (14)	O4—C15—C16—C17	175.92 (16)
C2-C1-C7-O2	-5.1 (2)	C18—C17—C16—C15	0.7 (3)
C6—C1—C7—O2	177.76 (14)	C2-C1-C6-C5	0.3 (2)
C2-C1-C7-O2	-5.1 (2)	C7—C1—C6—C5	177.48 (15)
C7—O2—C8—C13	99.95 (19)	C1—C6—C5—C4	-0.1 (3)
C7—O2—C8—C9	-84.0 (2)	C2—C3—C4—C5	0.5 (3)
C9—C8—C13—C12	-0.6 (3)	O6—C3—C4—C5	177.03 (14)
O2—C8—C13—C12	175.35 (14)	O6—C3—C4—C5	177.03 (14)
O2—C8—C13—C12	175.35 (14)	C6—C5—C4—C3	-0.3 (3)
C8—C13—C12—C11	0.7 (2)	C35—C30—C31—C32	-0.3 (4)
C13—C12—C11—C10	-0.2 (2)	C29—C30—C31—C32	-175.3 (2)
C13—C12—C11—C14	-177.55 (15)	C34—C33—C32—C31	0.7 (4)
C15—O4—C14—O3	-7.2 (3)	C30—C31—C32—C33	-0.9 (4)

Hydrogen-bond geometry (Å, °)

Cg4 and cg5 are the centroids of the C23–C28 and C30–C35 rings, respectively.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
С2—Н2…О2	0.944 (18)	2.411 (17)	2.7213 (19)	98.9 (12)
C12—H12…O4	0.93	2.42	2.733 (2)	100
C24—H24…O6	0.93	2.40	2.721 (2)	100
$C17$ — $H17$ ··· $N1^{i}$	0.93	2.62	3.504 (3)	158

			supporting information	
C25—H25…Cg5 ⁱⁱ	0.93	2.86	3.744 (2)	158
C31—H31····Cg4 ⁱⁱⁱ	0.93	2.82	3.702 (3)	158

Symmetry codes: (i) -x+2, -y-1, -z+1; (ii) -x, -y-1, -z; (iii) -x+1, -y-1, -z.