

Received 5 August 2022 Accepted 10 September 2022

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; phenylpiperazinium cation; organic salt.

CCDC references: 2206380; 2206379; 2206378; 2206377; 2206376; 2206375; 2206374; 2206373; 2206372; 2206371; 2206370

Supporting information: this article has supporting information at journals.iucr.org/e

The structures of eleven (4-phenyl)piperazinium salts containing organic anions

Sreeramapura D. Archana,^a Haruvegowda Kiran Kumar,^a Hemmige S. Yathirajan,^a* Sabine Foro^b and Ray J. Butcher^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA. *Correspondence e-mail: yathirajan@hotmail.com

Eleven (4-phenyl)piperazinium salts containing organic anions have been prepared and structurally characterized, namely, 4-phenylpiperazin-1-ium 4-fluorobenzoate monohydrate, $C_{10}H_{15}N_2^+ \cdot C_7H_4FO_2^- \cdot H_2O$, **1**; 4-phenylpiperazin-1-ium 4-bromobenzoate monohydrate, C₁₀H₁₅N₂⁺·C₇H₄BrO₂⁻·H₂O, **3**; 4-phenylpiperazin-1-ium 4-iodobenzoate, $C_{10}H_{15}N_2^+ \cdot C_7H_4IO_2^-$, **4**; 4-phenylpiperazin-1-ium 4-nitrobenzoate, C₁₀H₁₅N₂⁺·C₇H₄NO₄⁻, **5**; 4-phenylpiperazin-1ium 3,5-dinitrosalicylate, C₁₀H₁₅N₂⁺·C₇H₃N₂O₇⁻, **6**; 4-phenylpiperazin-1-ium 3,5-dinitrobenzoate, $C_{10}H_{15}N_2^+ \cdot C_7H_3N_2O_6^-$, 7; 4-phenylpiperazin-1-ium picrate, $C_{10}H_{15}N_2^+ \cdot C_6H_2N_3O_7^-$, 8; 4-phenylpiperazin-1-ium benzoate monohydrate, $C_{10}H_{15}N_2^+ C_7H_5O_2^- H_2O$, **9**; 4-phenylpiperazin-1-ium *p*-toluenesulfonate, $C_{10}H_{15}N_2^+ C_7H_7O_3S^-$, **10**; 4-phenylpiperazin-1-ium tartarate monohydrate, $C_{10}H_{15}N_2^+ \cdot C_4H_5O_6^- \cdot H_2O$, **11**; and 4-phenylpiperazin-1-ium fumarate, $C_{10}H_{15}N_2^+ \cdot C_4H_3O_4^-$, 12. Compounds 1 and 3-12 are all 1:1 salts with the acid proton transferred to the phenylpiperaizine basic N atom (the secondary amine) with the exception of 3 where there is disorder in the proton position with it being 68% attached to the base and 32% attached to the acid. Of the structures with similar stoichiometries only 3 and 9 are isomorphous. The 4-phenyl substituent in all cases occupies an equatorial position except for 12 where it is in an axial position. The crystal chosen for structure 7 was refined as a nonmerohedral twin. There is disorder in 5, 6, 10 and 11. For both 5 and 6, a nitro group is disordered and was modeled with two equivalent orientations with occupancies of 0.62 (3)/0.38 (3) and 0.690 (11)/0.310 (11), respectively. For 6, 10 and 11, this disorder is associated with the phenyl ring of the phenylpiperazinium cation with occupancies of 0.687 (10)/0.313 (10), 0.51 (7)/0.49 (7) and 0.611 (13)/389 (13), respectively. For all salts, the packing is dominated by the $N-H \cdots O$ hydrogen bonds formed by the cation and anion. In addition, several structures contain C–H··· π (1, 3, 4, 8, 9, 10, and 12) and aromatic π – π stacking interactions (6 and 8) and one structure (5) contains a $-NO_2\cdots\pi$ interaction. For all structures, the Hirshfeld surface fingerprint plots show the expected prominent spikes as a result of the N-H...O and O-H...O hydrogen bonds.

1. Chemical context

The pharmacological properties of phenylpiperazines and their derivatives have been described by various researchers (Cohen *et al.* 1982; Conrado *et al.* 2010; Neves *et al.* 2003; Hanano *et al.* 2000). The design and synthesis of phenylpiperazine derivatives as potent anticancer agents for prostate cancer have been reported (Demirci *et al.*, 2019). Many pharmaceutical compounds are derived from 1-phenylpiperazine, including oxypertine (Archer *et al.*, 1962), trazodone (Alhaider, 1992) and nefazodone. Derivatives of 1-phenylpiperazine have shown other interesting properties, such as $(C_{10}H_{15}N_2)^+_4(Pb_3Cl_{10})^{4-}$ where dielectric relaxation spectroscopy has shown different molecular motions and measurements of AC conductivity as a function of frequency at different temperatures indicated a hopping conduction mechanism (Mathlouthi *et al.*, 2017) and new organic–inorganic hybrid materials of formula $(C_{10}H_{15}N_2)_7(Sb_2Cl_{10})(Sb_2Cl_9)(SbCl_5)_2(SbCl_4)_2Cl\cdot7H_2O$ (Lahbib *et al.*, 2017).

As part of our ongoing studies of hydrogen-bonding patterns in molecular salts (Sagar *et al.*, 2017; Kiran Kumar *et al.*, 2019*a,b*, 2020, Harish Chinthal *et al.*, 2020), the present paper reports the syntheses and crystal structures of eleven

Figure 1

The molecular structure of **1** with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.

Figure 2

The molecular structure of **3** with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.

molecular salts of 1-phenylpiperazine, $C_{10}H_{14}N_2$, *viz.*: 4-phenylpiperazin-1-ium 4-fluorobenzoate monohydrate, $C_{10}H_{15}N_2^+ \cdot C_7H_4FO_2^- \cdot H_2O$, **1**; phenylpiperazin-1-ium 4-bromobenzoate monohydrate, $C_{10}H_{15}N_2^+ \cdot C_7H_4BrO_2^- \cdot H_2O$, **3**; phenylpiperazin-1-ium 4-iodobenzoate, $C_{10}H_{15}N_2^+ \cdot C_7H_4IO_2^-$, **4**; phenylpiperazin-1-ium 4-nitrobenzoate, $C_{10}H_{15}N_2^+ \cdot C_7H_4NO_4^-$, **5**; phenylpiperazin-1-ium 3,5-dinitrosalicylate, $C_{10}H_{15}N_2^+ \cdot C_7H_3N_2O_7^-$, **6**; phenylpiperazin-1-ium 3,5-dinitrobenzoate, $C_{10}H_{15}N_2^+ \cdot C_7H_3N_2O_6^-$, **7**; phenylpiperazin-1-ium picrate, $C_{10}H_{15}N_2^+ \cdot C_6H_2N_3O_7^-$, **8**; phenylpiperazin-1-ium benzoate monohydrate, $C_{10}H_{15}N_2^+ \cdot C_7H_5O_2^- \cdot H_2O$, **9**; phenylpiperazin-1-ium *p*-toluenesulfonate, $C_{10}H_{15}N_2^+ \cdot C_7H_7O_3S^-$, **10**; phenylpiperazin-1-ium tartarate monohydrate, $C_{10}H_{15}N_2^+ \cdot C_4H_5O_6^- \cdot H_2O$, **11**; and phenylpiperazin-1-ium fumarate, $C_{10}H_{15}N_2^+ \cdot C_4H_3O_4^-$, **12**.

2. Structural commentary

Compounds 1 and 3–12 (Figs. 1–11) are all 1:1 molecular salts with the acid proton transferred to the secondary N atom of

Figure 4

The molecular structure of $\mathbf{5}$ with hydrogen bonds shown as dashed lines and disorder of the nitro group indicated. Atomic displacement parameters are at the 30% probability level.

research communications

Figure 5

The molecular structure of 6 with hydrogen bonds shown as dashed lines and disorder of the phenyl ring and one nitro group indicated. Atomic displacement parameters are at the 30% probability level.

Figure 6

The molecular structure of **7** with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.

Figure 7

The molecular structure of 8 with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.

Figure 8

The molecular structure of **9** with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level.

the phenylpiperaizine base with the exception of **3** where there is disorder in the proton position with it being 68%attached to the base and 32% attached to the acid. Compounds **1**, **3** and **9** crystallize as mono-hydrates but the remaining crystals are solvent free. In compounds **1**, **3**, **4**, **5** and **9**, the anions are all benzoate ions or *p*-substituted benzoates but only **3** and **9** are isomorphous. Compounds **6**, **7** and **8**

Figure 9

The molecular structure of 10 with hydrogen bonds shown as dashed lines and disorder of the phenyl rings indicated. Atomic displacement parameters are at the 30% probability level.

The molecular structure of 11 with hydrogen bonds shown as dashed lines and disorder of the phenyl ring indicated. Atomic displacement parameters are at the 30% probability level.

The molecular structure of **12** with hydrogen bonds shown as dashed lines. Atomic displacement parameters are at the 30% probability level. Note the axial conformation of the phenyl ring.

contain picrate or nitrated benzoate anions while **10** contains a tosylate anion and **11** and **12** contain hydrogen tartarate and hydrogen fumarate mono-anions. Apart from the disorder in the acidic proton position mentioned above, there is disorder in **5**, **6**, **10** and **11**. For **5** this disorder is confined to the nitro substituent on the benzoate anion, which is disordered over two orientations with occupancies of 0.62 (3)/0.38 (2). For **6**, **10** and **11** the disorder is associated with the phenyl ring of the phenylpiperazinium cation, with occupancies of 0.687 (10)/ 0.313 (10), 0.51 (7)/0.49 (7) and 0.611 (13)/389 (13), respec-

tively. This is a common feature of this moiety as shown in a recent study (Kiran Kumar *et al.*, 2019*a*) of 12 salts of the 4-methoxyphenylpiperazinium cation, of which four were found to contain similar disorder of the phenyl ring.

For the structures containing benzoate or *p*-substituted benzoate anions, the C–O distances fall into two groups. In one group (**3**, **5**), these distances are the same within experimental error at 2.246 (4) Å, while in the second group (**1**, **4**, and **9**) these are substantially different and average 2.235 (4) and 2.255 (4) Å.

For the structures containing the 3,5-dinitrosalicylic (6), 3,5dinitrobenzoate (7) and 2,3,5-trinitrophenolate ions (8), some interesting patterns emerge. In the anion of compound 6, the carboxyl group is unionized, with C-O distances of 1.211 (4) and 1.309 (4) Å and it is the phenolic H atom that has been lost (Fig. 5). The C12–O3 distance, 1.283 (4) Å, is closer to that normally found in ketones than to that typical of phenols or phenolates (Allen et al., 1987). In addition, the C11-C12 and C12-C13 distances, 1.428 (4) and 1.449 (5) Å, respectively, are significantly larger than the other C-C distances in this ring, which lie in the rather narrow range 1.370 (4)-1.398 (4) Å, but the C-N and N-O distances of the nitro substituents are all typical of their types. These observations indicate that the negative charge in this anion is delocalized over the five atoms C11, C13, C14, C15 and C16, but without any significant delocalization onto the nitro groups, as has been observed in trinitrophenolate (picrate) anions (Kavitha et al., 2006; Sagar et al., 2017; Shaibah et al., 2017a,b). The carboxylate anion in 7 contains similar C-O distances [C17-O1 = 1.251 (14); C17 - O2 = 1.256 (14) Å]. Structure 8 contains a picrate anion. Here the situation is similar to that of **6** in that the C–O distance is even shorter at 1.244 (3) Å and in the phenyl ring the C-C bonds are not equal with C11-C12 and C11-C16 being 1.443 (3) and 1.445 (3) Å, respectively, while the remaining C-C bonds range from 1.360 (3) to 1.386 (3) Å. For the nitro groups the C–N distances range from 1.441 (3) to 1.456 (3) Å, indicating that the negative charge in this anion is also delocalized over the five atoms C11, C13, C14, C15 and C16, but without any significant delocalization onto the nitro groups.

Structure 10 contains the tosylate anion. There are two formula units in the asymmetric unit and in both anions the S-O distances are almost equal within experimental error ranging from 1.448 (12) to 1.462 (11) Å and 1.430 (13) to 1.473 (11) Å. Structures 11 and 12 contain the mono-anions of the di-carboxylic acids tartaric acid and fumaric acid. For both structures the metrical parameters of both cation and anion are in the normal range for such species. It notable that in 1 and 3-11, the phenyl substituent occupies an equatorial position in the piperazinium cation, but for 12 this substituent occupies an axial position.

3. Supramolecular features

In discussing the supramolecular features of these eleven molecular salts it is convenient to break these up into four groups based on the nature of the anion and the stoichiometry

		/		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H21···O1	0.90 (2)	2.65 (4)	3.215 (6)	122 (3)
$N2-H21\cdots O2$	0.90(2)	1.89 (2)	2.791 (5)	175 (4)
$N2-H22\cdots O3^{i}$	0.88 (2)	1.96 (2)	2.812 (5)	163 (4)
$C8-H8A\cdots O2^{ii}$	0.97	2.53	3.481 (6)	168
$C8-H8B\cdots O3$	0.97	2.60	3.341 (5)	133
$C9-H9A\cdots O3^{iii}$	0.97	2.59	3.416 (6)	143
$O3-H31\cdots O1^{iv}$	0.83 (2)	1.79 (2)	2.619 (5)	176 (6)
O3−H32···O2	0.83 (2)	1.96 (2)	2.773 (5)	167 (6)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) x + 1, y, z.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for 3.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N_2 - H_2 N_1 \cdots O_2$	0.89	1.90	2.780 (11)	170
$N2 - H2N2 \cdots O3$	0.89	1.94	2.803 (12)	164
$C8-H8A\cdots O3^{i}$	0.97	2.64	3.377 (14)	133
$C8-H8B\cdots O2^{ii}$	0.97	2.53	3.475 (14)	166
$C9-H9B\cdots O3^{iii}$	0.97	2.59	3.403 (14)	142
$O2-H2O\cdots N2$	0.82	2.00	2.780 (11)	159
$O3-H31\cdots O2^i$	0.81 (2)	1.98 (2)	2.782 (12)	170 (7)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1.

Table 3

Hydrogen-bond geometry (Å, °) for 4.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C9−H9A…O3	0.97	2.63	3.218 (4)	119
$N2-H21N\cdotsO1^{i}$	0.88(2)	1.94 (2)	2.780 (4)	160 (3)
$N2-H22N\cdots O4$	0.90(2)	1.74 (2)	2.627 (4)	173 (3)
$N4-H41N\cdots O1$	0.87(2)	2.63 (3)	3.285 (4)	133 (3)
$N4-H41N\cdots O2$	0.87(2)	1.78 (2)	2.643 (4)	169 (3)
N4 $-$ H42 N ···O3 ⁱⁱ	0.85 (2)	1.97 (2)	2.809 (4)	169 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.

Table 4

Hydrogen-bond	geometry	(Å, °)	for 5
---------------	----------	--------	-------

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N2-H21\cdots O2^{i}$	0.90(1)	1.96 (2)	2.846 (2)	173 (2)
$N2 - H22 \cdot \cdot \cdot O1$	0.93 (1)	1.78 (2)	2.7135 (19)	179 (2)
$N2 - H22 \cdot \cdot \cdot O2$	0.93 (1)	2.49 (2)	3.057 (2)	120(1)
$C8-H8B\cdots O1^{ii}$	0.97	2.50	3.468 (2)	176
$C10-H10B\cdots O4A^{iii}$	0.97	2.61	3.276 (15)	126

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iii) x - 1, y, z - 1.

of the resulting salt. In the first group are structures 1, 3, 4, 5, and 9, which contain benzoate and substituted benzoate anions. In the second group are 6, 7, and 8 in which the anions contain nitrated phenyl rings. In the third group, 10 contains a tosylate anion, and in the fourth group, 11 and 12 contain the mono-deprotonated dicarboxylate anions hydrogen tartarate and hydrogen fumarate. The hydrogen bonds for 1 and 3–12 are listed in Tables 1–11.

Even though 1, 3, 4, 5, and 9 contain similar anions, only 3 and 9 are isomorphous. For 1 (Fig. 12), which contains a water molecule of crystallization, there are $R_6^3(12)$ rings (Etter *et al.*, 1990) made up of N-H···O and O-H···O hydrogen bonds,

research communications

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for 6.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H2O\cdots O3$	0.84 (2)	1.69 (2)	2.487 (3)	156 (4)
N2-H21···O3	0.88(2)	2.03(2)	2.873 (4)	159 (3)
$N2-H21\cdots O4$	0.88(2)	2.37 (3)	2.950 (6)	123 (3)
$N2-H21\cdots O4A$	0.88(2)	2.40(4)	2.966 (10)	122 (3)
$N2-H22\cdots O1^{i}$	0.87(2)	2.10(2)	2.947 (4)	164 (4)
$N2-H22\cdots O2^i$	0.87(2)	2.62 (3)	3.270 (4)	132 (3)
$C8-H8A\cdots O7^{ii}$	0.97	2.36	3.134 (5)	137
C8−H8 <i>B</i> ····O4	0.97	2.44	3.000 (6)	116
$C9-H9A\cdots O4A$	0.97	2.60	3.166 (8)	118
$C9-H9B\cdots O5^{iii}$	0.97	2.58	3.311 (8)	132
$C9-H9B\cdots O5A^{iii}$	0.97	2.29	3.040 (13)	133

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x + 1, y, z.

Table 6

Hydrogen-bond geometry (Å, $^{\circ}$) for 7.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\overline{C8-H8A\cdots O3^{i}}$	0.97	2.43	3.250 (14)	142
$C10-H10B\cdots O5^n$	0.97	2.58	3.366 (16)	138
$N2-H21\cdots O2$	0.87 (3)	1.81 (4)	2.672 (13)	172 (13)
$N2-H22\cdots O1^{iii}$	0.87 (3)	1.94 (4)	2.792 (13)	166 (12)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x + 1, y, z.

Table 7Hydrogen-bond geometry (Å, $^{\circ}$) for 8.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$C8-H8B\cdots O4^{i}$	0.97	2.42	3.265 (4)	145
$C9-H9A\cdots O4^{ii}$	0.97	2.60	3.353 (4)	134
$C9-H9A\cdots O6^{iii}$	0.97	2.61	3.455 (4)	146
$N2 - H21 \cdot \cdot \cdot O2$	0.83(3)	2.06 (3)	2.871 (3)	166 (3)
$N2-H21\cdots O7^{iv}$	0.83 (3)	2.60(3)	2.985 (3)	110(2)
$N2-H22\cdots O1^{iv}$	0.98 (3)	1.74 (3)	2.705 (3)	168 (3)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y, z.

Figure 12

Packing diagram for **1** viewed along the *a* axis showing the $R_6^3(12)$ rings made up of N-H···O and O-H···O hydrogen bonds, which involve the water molecule, and $R_4^2(10)$ rings made up of N-H···O hydrogen bonds, which do not involve the water molecule. This combination of $R_6^3(12)$ and $R_4^2(10)$ rings form ribbons propagating in the *a*-axis direction.

Table 8Hydrogen-bond geometry (Å, °) for 9.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H21\cdots O1 N2-H21\cdots O2 N2-H22\cdots O3^{i} C9-H9A\cdots O1^{ii} C9-H9B\cdots O3^{iii} C9-H9B\cdots O3^{ii} C9-H9B\cdots O3^$	0.90 (2) 0.90 (2) 0.89 (2) 0.97 0.97	1.92 (2) 2.56 (2) 1.92 (2) 2.48 2.60	2.813 (3) 3.112 (4) 2.812 (3) 3.420 (4) 3.340 (4)	173 (2) 121 (2) 173 (2) 164 133
$O3-H31\cdots O1^{W}$ $O3-H32\cdots O2$	0.83(2) 0.83(2)	1.96 (2) 1.77 (2)	2.772 (3) 2.599 (3)	166 (4) 179 (4)
		()	()	()

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 2; (iii) x - 1, y, z; (iv) x + 1, y, z.

Table 9				
Hydrogen-bond	geometry	(Å,	°) for 10 .	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H21N\cdots O6$	0.89	2.07	2.884 (18)	151
$N2 - H22N \cdots O4^{i}$	0.89	1.92	2.774 (17)	161
$C9-H9B\cdotsO1^{ii}$	0.97	2.64	3.534 (19)	154
$N4-H41N\cdots O3^{ii}$	0.89	1.92	2.788 (16)	163
N4−H42 <i>N</i> ···O1	0.89	2.09	2.890 (18)	149
N4−H42 <i>N</i> ···O5	0.89	2.43	2.865 (18)	111
$C25 - H25A \cdots O6^{iii}$	0.97	2.63	3.520 (18)	153

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) -x, $y - \frac{1}{2}$, -z; (iii) -x + 1, $y + \frac{1}{2}$, -z.

which involve the water molecule, and $R_4^2(10)$ rings made up of N-H···O hydrogen bonds, which do not involve the water molecule. This combination of $R_6^3(12)$ and $R_4^2(10)$ rings form ribbons propagating in the *a*-axis direction. In addition, there is a C-H··· π interaction involving C2-H2 and the C11-C16 phenyl ring (Cg1) [C2···Cg1 = 3.610 (6) Å; C2-H2···Cg1 = 133°; symmetry operation -x, 1 - y, 1 - z]. In the packing arrangement for **3** shown in Fig. 13, both $R_4^4(12)$ rings exhibit N-H···O and O-H···O hydrogen bonds involving the cation, anion and water molecule as well as $R_4^2(10)$ rings showing O-H···O hydrogen bonds just associated with the cation and anion. These link the cations, anions and water molecules into ribbons propagating in the [101] direction. In addition there is a C-H··· π interaction involving C2-H2

Packing diagram for **3** viewed along the [101] direction showing both $R_4^4(12)$ rings demonstrating N-H···O and O-H···O hydrogen bonds involving the cations, anions and water molecule as well as $R_4^2(10)$ rings showing O-H···O hydrogen bonds just associated with the cations and anions. These link the cations, anions and water molecules into ribbons propagating in the [101] direction.

Table 10 Hydrogen-bond geometry (Å, $^\circ)$ for 11.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H21\cdots O7^{i}$	0.88(2)	1.95 (2)	2.808 (5)	164 (4)
$N2-H22\cdots O1^{ii}$	0.86(2)	2.52 (3)	3.069 (4)	122(3)
N2-H22···O5	0.86(2)	2.22 (3)	2.820(3)	127 (3)
$N2-H22\cdots O6^{iii}$	0.86(2)	2.41 (3)	2.992 (3)	125 (3)
$C9-H9B\cdots O2^{iv}$	0.97	2.61	3.276 (4)	126
O3−H3O···O2	0.83(2)	2.17 (3)	2.614(3)	114 (3)
O3−H3O···O4 ⁱⁱ	0.83 (2)	2.04 (2)	2.789 (3)	150 (3)
O4−H4O···O1 ⁱⁱ	0.79 (2)	2.06 (3)	2.773 (3)	151 (3)
$O6-H6O\cdots O2^{v}$	0.83 (2)	1.67 (2)	2.501 (3)	174 (3)
O7−H71 <i>O</i> ···O3	0.84(2)	1.95 (2)	2.780 (3)	171 (4)
$O7-H72O\cdotsO1^{vi}$	0.85 (2)	1.97 (2)	2.821 (3)	178 (4)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (v) x, y - 1, z; (vi) x - 1, y, z.

Table 11

		0			
Hydrogen-bond	geometry	(A, '	°)	for	12.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N2-H21···O4	0.87 (2)	1.88 (2)	2.741 (2)	168 (2)
$N2-H22\cdots O1^{i}$	0.89(2)	1.89 (2)	2.775 (2)	172 (2)
$C7-H7A\cdots O2^{ii}$	0.97	2.51	3.317 (3)	141
$C8-H8B\cdots O3^{iii}$	0.97	2.55	3.203 (3)	124
$C9-H9A\cdots O2^{iv}$	0.97	2.66	3.318 (3)	126
$O2-H2O\cdots O3^{v}$	0.92 (2)	1.54 (2)	2.4610 (18)	174 (2)

Symmetry codes: (i) $-x + \frac{1}{2}$, y - 1, $z + \frac{1}{2}$; (ii) x, y - 1, z + 1; (iii) $-x + \frac{1}{2}$, y, $z + \frac{1}{2}$; (iv) x, y - 1, z; (v) x, y + 1, z.

and the C11–C16 phenyl ring (Cg1) [C2···Cg1 = 3.6040 (14) Å; C2–H2···Cg1 = 133°; symmetry operation 1 - x, 1 - y, 1 - z].

In 4, there is no water molecule of crystallization. In this case there is an $R_8^8(24)$ ring with a topology analogous to the seam of a tennis ball (Fig. 14) involving N-H···O hydrogen bonds. These collections of cations and anions linked by $R_8^8(24)$ rings pack in the *a*-axis direction (Fig. 15). In addition there is a C-H··· π interaction involving C19-H19 and the C21-C26 phenyl ring (Cg1) [C19···Cg1 = 3.750 (4) Å; C19-H19B···Cg1 = 154°; symmetry operation 1 - x, 1 - y, 1 - z]. In 5, $R_4^4(12)$ rings link the cations and anions *via* N-H···O hydrogen bonds and this collection forms ribbons in the *b*-axis direction (Fig. 16). In addition, the -NO₂ group accepts an N-

Figure 14

Partial packing diagram for **4** showing the $R_8^8(24)$ ring with a topology analogous to the seam of a tennis ball involving N-H···O hydrogen bonds.

Packing diagram for **4** viewed along the *c* axis showing how the $R_8^8(24)$ rings pack in the *a*-axis direction.

H···(O,O) bifurcated hydrogen bond. There is a further interaction with a phenyl ring (C11–C16, *Cg*1) involving the nitro substituent $[N3 \cdot \cdot Cg1 = 3.530 (14) \text{ Å}; N3-O3 \cdot \cdot Cg1 = 140.6 (13)^\circ$, symmetry operation $x, \frac{3}{2} - y, \frac{1}{2} + z]$.

Packing diagram for **5** showing how the $R_4^4(12)$ rings link the cation and anion *via* N-H···O hydrogen bonds and this collection forms ribbons propagating in the *b*-axis direction.

Figure 17

Packing diagram for **6** showing $R_4^4(16)$ loops linking the phenylpiperazinium cations and the 3,5-dintrosalicylate anions *via* N-H···O and O-H···O hydrogen bonds.

In 6, there are $R_4^4(16)$ loops linking the phenylpiperazinium cations and the 3,5-dintrosalicylate anions *via* N-H···O hydrogen bonds (Fig. 17). In addition, there are π - π interactions involving the phenyl ring (C11-C16, *Cg*1) of the 3,5-dintrosalicylate anions, which form offset stacks (slippages of 1.580 and 1.900 Å) in the [110] direction [*Cg*1···*Cg*1 = 3.3600 (15) Å; symmetry operation -x, 1 - y, 1 - z; Cg1···*Cg*1 = 3.3690 (15) Å; symmetry operation -x, 2 - y, 1 - z].

The packing of **7** is composed of $R_4^4(22)$ rings in the (101) plane made up of N-H···O hydrogen bonds involving the phenylpiperazinium cation and carboxylate group of the 3,5-dinitrobenzoate anion (Fig. 18). These planes are linked in the [111] direction by $C_2^2(6)$ chains also involving N-H···O hydrogen-bonding interactions involving the phenylpiperazinium cation and carboxylate group of the 3,5-dinitrobenzoate anion and weak C-H···O interactions (Fig. 19). In this structure there are no C-H··· π or π - π interactions.

In 8 there are $C_2^2(8)$ chains made up of N-H···O hydrogen bonds involving the phenylpiperazinium cation and a nitro group of the picrate anion (Fig. 20). In addition, the picrate

Figure 18

Partial packing diagram for **7** showing $R_4^4(22)$ rings in the (101) plane made up of N-H···O hydrogen-bonding interactions involving the phenylpiperazinium cation and carboxylate group of the 3,5-dinitrobenzoate anion.

Packing diagram for **7** showing how the $R_4^4(22)$ rings shown in the previous figure are linked in the [111] direction by $C_2^2(6)$ chains also involving N-H···O hydrogen bonds involving the phenylpiperazinium cation and carboxylate group of the 3,5-dinitrobenzoate anion and weak C-H···O interactions.

Figure 20

Partial packing diagram for **8** showing the $C_2^2(8)$ chains made up of N-H···O hydrogen bonds involving the phenylpiperazinium cation and a nitro group of the picrate anion. Hydrogen-bonding interactions are shown by dashed lines.

Figure 21

Packing diagram for **8** viewed along the *b* axis showing how the picrate anions form π - π interactions in the *a*-axis direction.

anions form strong π - π interactions (C1-C6, *Cg*1) in the *a*-axis direction $[Cg1\cdots Cg1 = 3.4395 (5) \text{ Å};$ symmetry operation $2 - x, 1 - y, -z; Cg1\cdots Cg1 = 3.4223 (5) \text{ Å};$ symmetry operation 2 - x, -y, -z] (Fig. 21). Furthermore, there are C-H $\cdots \pi$ interactions involving the phenyl ring (C1-C6, *Cg*1) of the phenylpiperazinium cation $[C3\cdots Cg1 = 3.683 (3) \text{ Å}, C3-H3\cdots Cg1 = 134^\circ$, symmetry operation $2 - x, \frac{1}{2} + y, \frac{1}{2} - z;$ (C8 $\cdots Cg1 = 3.512 (3) \text{ Å}, C8-H8A\cdots Cg1 = 160^\circ$, symmetry operation $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$] (one example shown in Fig. 22).

In the case of **9** there are two anti-parallel $C_2^2(6)$ chains linked by N-H···O hydrogen bonds as well as C-H···O interactions involving the water oxygen atom, which combine to form ribbons propagating in the *a*-axis direction (Fig. 23). In addition, there are C-H··· π interactions (C11-C16, Cg1) involving the benzoate phenyl ring [C2···Cg1 = 3.710 (4) Å, C2-H2···Cg1 = 141°, symmetry operation -x, 1 - y, 1 - z; C6···Cg1 = 3.656 (4) Å, C6-H6···Cg1 = 142°, symmetry operation 1 - x, 1 - y, 2 - z]. The overall packing is shown in Fig. 24.

Figure 22

Partial packing diagram for **8** showing one of the $C-H\cdots\pi$ interactions involving the phenyl ring of the phenylpiperazinium cation.

Partial packing diagram for **9** showing one of the two anti-parallel $C_2^2(6)$ chains linked by N-H···O hydrogen bonds and C-H···O interactions propagating in the *a*-axis direction.

The structure of **10** contains the tosylate anion, which contains the non-planar $-SO_3^-$ group. This results in a packing arrangement in which N-H···O hydrogen bonds involving the phenylpiperazinium cations and tosylate anions are arranged such that there are hydrophilic and hydrophobic (110) planes (Fig. 25). This structure also contains C-H··· π interactions involving one of the phenylpiperazinium cations (C18-C23, *Cg*1) and tosylate anions [C30···*Cg*1 = 3.74 (3) Å, C30-H30···*Cg*1 = 144°, symmetry operation 1 - x, $-\frac{1}{2} + y$, -z].

Structure **11** has a complicated packing arrangement as in addition to the phenylpiperazinium NH_2 group, the flexible tartarate anion contains four OH groups and there is a water

Packing diagram for **9** viewed along the *c*-axis direction showing the two anti-parallel $C_2^2(6)$ chains linked by N-H···O and C-H···O interactions involving the water oxygen atom, which combine to form ribbons in the *a*-axis direction.

research communications

Figure 25

Packing diagram for 10 viewed down the *b* axis showing the threedimensional network of $N-H\cdots O$ hydrogen bonds involving phenylpiperazinium cations and tosylate anions, which arrange the ions such that there are hydrophilic and hydrophobic (110) planes in the *a*-axis direction.

molecule of crystallization. Multiple $N-H\cdots O$ and $O-H\cdots O$ hydrogen-bonding interactions combine to form a three-dimensional array (Fig. 26).

Structure **12** contains a phenylpiperazinium cation and the monoanion of fumaric acid. In the packing of this structure, there are two $C_1^1(7)$ chains in the *b*-axis direction involving the fumarate anions and composed of $O-H\cdots O$ hydrogen bonds. These chains are in turn cross-linked by both $N-H\cdots O$ hydrogen bonds and $C-H\cdots O$ interactions (Fig. 27). There are also $C-H\cdots \pi$ interactions involving the phenyl ring (C1-C6, Cg1) of the phenylpiperazinium cation $[C5\cdots Cg1 = 3.723 (3) \text{ Å}, C5-H5\cdots Cg1 = 144^\circ, symmetry operation <math>-x$, 1 - y, $\frac{1}{2} + z$; C10 \cdots Cg1 = 3.608 (3) Å, C10-H10 $A\cdots$ Cg1 = 145°, symmetry operation -x, -y, $-\frac{1}{2} + z$].

Figure 26

Packing diagram for **11** viewed along the *a* axis where multiple $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds involving the phenylpiperazinium NH_2 group, the tartarate anion and water molecule of crystallization combine to form a three-dimensional network.

Figure 27

Packing diagram for 12 viewed along the *c*-axis direction showing the two $C_1^1(7)$ chains propagating in the *b*-axis direction involving the fumarate anions and composed of $O-H\cdots O$ hydrogen bonds which are in turn cross-linked by both $N-H\cdots O$ hydrogen bonds and $C-H\cdots O$ interactions.

The Hirshfeld surface fingerprint plots for 1 and 3–12 generated using *CrystalExplorer* are available in the supporting information. All of them show the distinctive 'pincer spikes' associated with the $N-H\cdots O$ and/or $O-H\cdots O$ hydrogen bonds (Spackman *et al.*, 2021).

4. Database survey

The structural versatility of the 1-phenylpiperazine moiety itself is shown by its involvement in many structural forms, including as neutral co-crystals [Cambridge Structural Database (Groom et al., 2016) refcodes HINQUR and HINRAY, Müller-Buschbaum & Zurawski, 2007], as neutral ligands (HIWJAY, Stocker et al., 1999; HIWJAY01, VIYPIE, VIYPOK, VIYPUQ; Pike et al., 2014), as simultaneously both neutral ligands and co-crystals (FITTEI and FITTIM, Quitmann & Müller-Buschbaum, 2005; HOCBEH, HOCBIL, PIYXEB, Zurawski & Müller-Buschbaum, 2008). In addition, there have been many structural investigations of 1-phenylpiperazine as a cation, combined with simple anions (DMPIPZ, Chothia & Pauling, 1978; JEHXIE, Batsanov et al., 2006; KUZWUY, Marouani et al., 2010; LOHQIL, Oueslati et al., 2019; QORVEB, Marouani et al., 2012; SUYXEQ, Essid et al., 2010), with simple anionic metal salts (BEBKAX, Lahbib et al., 2017; CEBHIB, Garbia et al., 2005; PENWAJ, Mathlouthi et al., 2017; PHPIPZ, Battaglia et al., 1979; QIZPIA, Dhieb et al., 2014; SUKKAM, Dhieb et al., 2015; ZAMHUQ, Zouari et al., 1995), combined with anionic carboxylates (IGOGUI, Pang et al., 2015; VAKCIW, Zong et al., 2016; Mahesha et al., 2022), combined with anionic pyrimidines (DUPMUY, DUPNAF, Al-Alshaikh et al., 2015), combined with anionic ligands (WOVKAW, Lo et al., 2019), combined with a clathrate (GUBHOB, Wu et al., 2009), and combined with anionic metal complexes (DUJPIK, Shin et al., 2020; SICGUJ, Nasr et al., 2018; SICGUJ01, Khedhiri et al. 2018).

Table 12Experimental details.

	1	3	4	5
Crystal data				
Chemical formula	$C_{10}H_{15}N_2^+ \cdot C_7H_4FO_2^- \cdot H_2O_2$	$C_{10}H_{15}N_2^+ \cdot C_7H_4BrO_2^- \cdot H_2O$	$C_{10}H_{15}N_2^+ \cdot C_7H_4IO_2^-$	$C_{10}H_{15}N_2^+ \cdot C_7H_4NO_4^-$
	320.36	381.27	410.24	329.35
Crystal system, space group Temperature (K)	293	Monoclinic, $P2_1/c$ 293	Monoclinic, $P2_1/c$ 293	Monoclinic, $P2_1/c$ 293
a, b, c (Å)	6.239 (1), 7.496 (1), 17.817 (3)	6.183 (2), 37.748 (7), 7.506 (2)	10.8507 (4), 23.4045 (7), 13.3019 (4)	13.0683 (9), 15.7868 (9), 7.9255 (5)
α, β, γ (°) V (Å ³)	93.55 (2), 92.94 (2), 94.87 (2) 827 3 (2)	90, 93.69 (4), 90 1748 2 (8)	90, 102.491 (4), 90 3298 13 (19)	90, 95.137 (6), 90 1628 52 (18)
7 (A)	$\frac{827.3}{2}$	1740.2 (0)	2290.13 (19) 8	1020.52 (10)
Z Padiation type		4 Mo Kai		4 Mo Ka
$\mu (\text{mm}^{-1})$	0.10	2 37	1 05	0.10
μ (mm) Crystal size (mm)	0.10 0.44 × 0.32 × 0.16	$0.46 \times 0.20 \times 0.12$	$0.48 \times 0.48 \times 0.40$	0.10 0.48 × 0.44 × 0.16
Crystal size (lilli)	0.44 × 0.52 × 0.10	0.40 × 0.20 × 0.12	0.40 × 0.40 × 0.40	0.40 × 0.44 × 0.10
Data collection				
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD			
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2007)			
Tmin, Tmax	0.613, 1.000	0.613, 1.000	0.575, 1.000	0.790, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4669, 3013, 1611	6103, 3170, 1374	14154, 7079, 4641	11699, 3587, 2088
R	0.033	0.061	0.024	0.035
$(\sin \theta / \lambda)$ $(Å^{-1})$	0.602	0.602	0.657	0.660
(Shi ono _{max} (P	0.002	0.002	0.057	0.000
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.090, 0.226, 1.10	0.138, 0.375, 1.03	0.037, 0.084, 1.02	0.054, 0.117, 1.10
No. of reflections	3013	3170	7079	3587
No. of parameters	220	215	409	251
No. of restraints	4	7	4	83
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.27, -0.20	0.49, -0.61	0.77, -1.25	0.15, -0.13
Absolute structure	_	_	_	_
Absolute structure parameter	-	-	-	-
	6	7	8	9

Crystal data				
Chemical formula	$C_{10}H_{15}N_2^+ \cdot C_7H_3N_2O_7^-$	$C_{10}H_{15}N_2^+ \cdot C_7H_3N_2O_6^-$	$C_{10}H_{15}N_2^+ \cdot C_6H_2N_3O_7^-$	$C_{10}H_{15}N_2^+ \cdot C_7H_5O_2^- \cdot H_2O$
$M_{ m r}$	390.35	374.35	391.34	302.36
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	293	293	293	293
a, b, c (Å)	7.779 (3), 7.411 (3), 31.357 (9)	5.707 (2), 12.505 (3), 13.116 (3)	8.517 (1), 6.825 (1), 30.265 (4)	6.202 (2), 34.573 (9), 7.596 (2)
α, β, γ (°)	90, 96.82 (3), 90	97.41 (2), 93.28 (2), 102.82 (2)	90, 95.33 (1), 90	90, 93.83 (2), 90
$V(A^3)$	1794.9 (11)	901.5 (4)	1751.7 (4)	1625.1 (8)
Ζ	4	2	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.11	0.11	0.12	0.09
Crystal size (mm)	$0.20 \times 0.18 \times 0.12$	$0.48 \times 0.08 \times 0.04$	$0.50\times0.36\times0.20$	$0.32 \times 0.20 \times 0.16$
Data collection				
Diffractometer	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur
	with Sapphire CCD	with Sapphire CCD	with Sapphire CCD	with Sapphire CCD
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction 2007)			
T	0.959 1.000	0.647 1.000	0.835 1.000	0.985 1.000
No. of measured, independent	7737, 3882, 1590	7800, 7800, 2647	12427, 3893, 2389	6075, 3492, 1387
and observed $[I > 2\sigma(I)]$,,,	,	,,,,	
reflections				
$R_{\rm int}$	0.055	0.087	0.076	0.039
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.661	0.663	0.660	0.656
Refinement				
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.085 0.155 1.03	0 147 0 297 1 13	0.064 0.149 1.05	0.065 0.144 0.95
No of reflections	3882	7800	3893	3492
No of parameters	321	251	260	211
No of restraints	288	2	0	4
1.0. 01 iootiumto		-		•

research communications

Table 12 (continued)

Table 12 (continueu)						
	6	7		8	9	
H-atom treatment	H atoms treated by a mi of independent and constrained refinemer	ixture H atoms treate of independent on t constrained 1	d by a mixture ent and refinement	H atoms treated by a mi of independent and constrained refinement	ixture H at of at co	oms treated by a mixture independent and nstrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.18, -0.20	0.28, -0.30		0.26, -0.20	0.24,	-0.16
Absolute structure	_	-		_	_	
Absolute structure parameter	-	-		-	-	
	10		11		12	
Crystal data						
Chemical formula	$C_{10}H_{15}N_2^+ \cdot C_7H_1$	$I_7O_3S^-$	$C_{10}H_{15}N_2^+ \cdot C$	$C_4H_5O_6^- \cdot H_2O_6$	$C_{10}H_{15}N_2$	$^{+} \cdot C_4 H_3 O_4^{-}$
M _r	334.42		330.33		278.30	
Crystal system, space group	Monoclinic, P2	1	Orthorhomb	bic, $P2_12_12_1$	Orthorho	mbic, $Pca2_1$
Temperature (K)	293		293		293	
a, b, c (Å)	8.325 (1), 10.94	9 (2), 18.418 (4)	7.1185 (7), 7	.5255 (8), 29.955 (3)	26.702 (1), 7.9626 (3), 6.7571 (3)
α, β, γ (°)	90, 92.67 (2), 90	0	90, 90, 90		90, 90, 90	l l l l l l l l l l l l l l l l l l l
$V(\dot{A}^3)$	1677.0 (5)		1604.7 (3)		1436.68 (10)
Ζ	4		4		4	
Radiation type	Μο Κα		Μο Κα		Μο Κα	
$\mu \text{ (mm}^{-1})$	0.21		0.11		0.10	
Crystal size (mm)	$0.50 \times 0.36 \times 0.36$	0.14	0.42×0.32	× 0.24	$0.48 \times 0.$	44×0.40
Data collection						
Diffractometer	Oxford Diffrac Sapphire CC	tion Xcalibur with	Oxford Diffi Sapphire	raction Xcalibur with CCD	Oxford E Sapphi	Diffraction Xcalibur with re CCD
Absorption correction	Multi-scan (<i>Cr</i>) Diffraction, 2	<i>ysAlis RED</i> ; Oxford 2007)	Multi-scan (Diffraction	<i>CrysAlis RED</i> ; Oxford n, 2007)	Multi-sca Diffrac	n (<i>CrysAlis RED</i> ; Oxford ction, 2007)
T_{\min}, T_{\max}	0.696, 1.000	,	0.883, 1.000	· · ·	0.894, 1.0	00
No. of measured, independent observed $[I > 2\sigma(I)]$ reflection	and 6123, 4918, 276	7	6773, 3354, 2	2808	9534, 312	7, 2770
R _{int}	0.044		0.019		0.018	
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.654		0.657		0.657	
Refinement						
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.126, 0.298, 1.1	12	0.045, 0.100,	1.09	0.034, 0.0	77, 1.06
No. of reflections	4918		3354		3127	
No. of parameters	480		260		191	
No. of restraints	853		211		4	
H-atom treatment	H-atom param	eters constrained	H atoms trea independe refinemen	ated by a mixture of ent and constrained t	H atoms indepe refinen	treated by a mixture of ndent and constrained nent
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	1.08, -0.41		0.20, -0.16		0.17, -0.	13
Absolute structure	Flack x determ	ined using 597	Flack x dete	rmined using 912	Flack x d	etermined using 1130
	quotients [(<i>I</i> (Parsons <i>et a</i>	$(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$	quotients (Parsons e	$[(I^+)-(I^-)]/[(I^+)+(I^-)]$ et al., 2013)	quotier (Parso	Its $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ ns <i>et al.</i> , 2013)
Absolute structure parameter	0.00 (11)	, ,	-0.2(5)	· · · /	0.3 (3)	
			1.7		V. 7	

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2007), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

5. Synthesis and crystallization

For the synthesis of salts 1–12, a solution of commercially available 1-phenylpiperazine (100 mg, 0.62 mol) (from Sigma-Aldrich) in methanol (10 ml) was mixed with an equimolar solution of (1) 4-fluorobenzoic acid (87 mg, 0.62 mol), (2) 4-chlorobenzoic acid (97 mg, 0.62 mol), (3) 4-bromobenzoic acid (125 mg, 0.62 mol), (4) 4-iodobenzoic acid (154 mg, 0.62 mol), (5) 4-nitrobenzoic acid (104 mg, 0.62 mol), (6) 3,5-dinitrosalicylic acid (104 mg, 0.62 mol), (7) 3,5-dinitrobenzoic acid (132 mg, 0.62 mol), (8) picric acid (142 mg, 0.62 mol), (9) benzoic acid (76 mg, 0.62 mol), (10) *p*-toluenesulfonic acid (107 mg, 0.62 mol), (11) tartaric acid (93 mg, 0.62 mol) and (12) fumaric acid (72 mg, 0.62 mol). The resulting mixture was stirred for 30 min at 323 K and allowed to stand at room temperature. X-ray quality crystals of 1 and 3–12 were formed

on slow evaporation after one week (m.p.: 381–384 K (1), 382– 387 K (3), 413–418 K (4), 423–428 K (5), 431–436 K (6), 427– 429 K (7), 430–433 K (8), 455–457 K (9), 377–380 K (10), 416– 420 K (11) and 438–440 K (12). No crystals of (2) (m.p. 488– 490 K) suitable for X-ray diffraction were obtained.

6. Refinement

Crystal data, data collection and structure refinement details for structures **1** and **3–12** are summarized in Table 12. All hydrogen atoms were positioned geometrically with their U_{iso} values 1.2 times that of their attached atoms. For some structures (**6**, **10**, and **11**), the phenyl ring of the piperazinium cation was disordered over two orientations in ratios of 0.687 (10)/0.313 (10); 0.51 (7)/0.49 (7), and 0.611 (13)/ 0.389 (13) for **6**, **10**, and **11**, respectively. For both **5** and **6**, a nitro group was disordered and modeled with two orientations with occupancies of 0.62 (3)/0.38 (3) and 0.690 (11)/0.310 (11), respectively.

Acknowledgements

SDA is grateful to the University of Mysore for research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

References

- Al-Alshaikh, M. A., El-Emam, A. A., Al-Deeb, O. A., Abdelbaky,
 M. S. M. & Garcia-Granda, S. (2015). Acta Cryst. E71, 956–959.
 Alhaider, A. A. (1992). J. Pharm. Sci. 81, 99–103.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Archer, S., Wylie, D. W., Harris, L. S., Lewis, T. R., Schulenberg, J. W., Bell, M. R., Kullnig, R. K. & Arnold, A. (1962). *J. Am. Chem. Soc.* 84, 1306–1307.
- Batsanov, A. S., Anderson, C. E. & Dyer, P. W. (2006). Private Communication (refcode JEHXIE). CCDC, Cambridge, England.
- Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1979). *Inorg. Chem.* 18, 148–152.
- Chothia, C. & Pauling, P. (1978). Acta Cryst. B34, 2986–2989.
- Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110–119.
- Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Costa, T. D. (2010). J. Pharm. Pharmacol. 60, 699–707.
- Demirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). *Chem. Biol. Drug Des.* 94, 1584–1595.
- Dhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m139.
- Dhieb, A. C., Valkonen, A., Rzaigui, M. & Smirani, W. (2015). J. Mol. Struct. 1102, 50–56.
- Essid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, 02244–02245.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Garbia, I. B., Kefi, R., Rayes, A. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333–334.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). *Bioorg. Med. Chem. Lett.* 10, 875–879.
- Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.
- Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, 0165–0169.
- Khedhiri, L., Hamdi, A., Soudani, S., Kaminsky, W., Lefebvre, F., Jelsch, C., Wojtaś, M. & Ben Nasr, C. (2018). J. Mol. Struct. 1171, 429–437.
- Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1494–1506.
- Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.

- Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1253–1260.
- Lahbib, I., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). J. Clust Sci. 28, 2239–2252.
- Lo, K. M., Lee, S. M. & Tiekink, E. R. T. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1309–1311.
- Mahesha, N., Kumar, H. K., Akkurt, M., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). *Acta Cryst.* E78, 709–715.
- Marouani, H., Raouafi, N., Akriche, S. T., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772–779.
- Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, 02613.
- Mathlouthi, M., Dhieb, A. C., Valkonen, A., Rzaigui, M. & Smirani, W. (2017). J. Clust Sci. 28, 3159–3174.
- Müller-Buschbaum, K. & Zurawski, A. (2007). Z. Anorg. Allg. Chem. 633, 2300–2304.
- Nasr, C. B., Kaminsky, W., Khediri, L., Hamdi, A. & Lefebvre, F. (2018). CSD Communication (recode SICGUJ). CCDC, Cambridge, England.
- Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). *Braz. J. Med. Biol. Res.* **36**, 625–629.
- Oueslati, Y., Kansız, S., Valkonen, A., Sahbani, T., Dege, N. & Smirani, W. (2019). J. Mol. Struct. 1196, 499–507.
- Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Pang, Y., Xing, P., Geng, X., Zhu, Y., Liu, F. & Wang, L. (2015). RSC Adv. 5, 40912–40923.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Pike, R. D., Dziura, T. M., deButts, J. C., Murray, C. A., Kerr, A. T. & Cahill, C. L. (2014). J. Chem. Crystallogr. 44, 42–50.
- Quitmann, C. C. & Müller-Buschbaum, K. (2005). Z. Anorg. Allg. Chem. 631, 350–354.
- Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). *Acta Cryst.* E73, 1320–1325.
- Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513–1516.
- Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488–1492.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Shin, J., Kang, J., Ok, K. M. & Do, J. (2020). Z. Kristallogr. New Cryst. Struct. 235, 511–513.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Stocker, F. B., Staeva, T. B., Rienstra, C. M. & Britton, D. (1999). *Inorg. Chem.* 38, 984–991.
- Wu, X., Meng, X. & Cheng, G. (2009). J. Incl Phenom. Macrocycl Chem. 64, 325–329.
- Zong, Y., Shao, H., Pang, Y., Wang, D., Liu, K. & Wang, L. (2016). J. Mol. Struct. 1115, 187–198.
- Zouari, F., Ben Salah, A. & Hovestreydt, E. R. (1995). *Acta Cryst.* C**51**, 1563–1565.
- Zurawski, A. & Müller-Buschbaum, K. (2008). Z. Anorg. Allg. Chem. 634, 1427–1433.

Acta Cryst. (2022). E78, 1016-1027 [https://doi.org/10.1107/S2056989022009057]

The structures of eleven (4-phenyl)piperazinium salts containing organic anions

Sreeramapura D. Archana, Haruvegowda Kiran Kumar, Hemmige S. Yathirajan, Sabine Foro and Ray J. Butcher

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED* (Oxford Diffraction, 2007). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1), (3), (4), (5), (6), (7), (8), (9), (10), (11); *SHELXT2014* (Sheldrick, 2015a) for (12). Program(s) used to refine structure: *SHELXL2018*/3 (Sheldrick, 2015b) for (1), (3), (4), (5), (6), (7), (8), (9), (10), (11); *SHELXT2014* (Sheldrick, 2015a) for (12). *SHELXL2014*/6 (Sheldrick, 2015b) for (11), (12). For all structures, molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

4-Phenylpiperazin-1-ium 4-fluorobenzoate monohydrate (1)

Crystal data

 $\begin{array}{l} C_{10}H_{15}N_{2}^{+}\cdot C_{7}H_{4}FO_{2}^{-}\cdot H_{2}O\\ M_{r}=320.36\\ Triclinic, P\overline{1}\\ a=6.239~(1)~Å\\ b=7.496~(1)~Å\\ c=17.817~(3)~Å\\ a=93.55~(2)^{\circ}\\ \beta=92.94~(2)^{\circ}\\ \gamma=94.87~(2)^{\circ}\\ V=827.3~(2)~Å^{3} \end{array}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source ω and φ scans Absorption correction: multi-scan (CrysalisRED; Oxford Diffraction, 2007) $T_{\min} = 0.613, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.090$ $wR(F^2) = 0.226$ S = 1.103013 reflections 220 parameters Z = 2 F(000) = 340 $D_x = 1.286 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1437 reflections $\theta = 2.8-27.7^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K Rod, colourless $0.44 \times 0.32 \times 0.16 \text{ mm}$

4669 measured reflections 3013 independent reflections 1611 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 25.3^\circ, \theta_{min} = 2.9^\circ$ $h = -7 \rightarrow 7$ $k = -9 \rightarrow 8$ $l = -21 \rightarrow 20$

4 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0717P)^2 + 0.6694P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.1673 (5)	0.6916 (4)	0.28754 (18)	0.0488 (8)	
N2	0.2637 (6)	0.7578 (5)	0.4474 (2)	0.0582 (10)	
H21	0.321 (6)	0.736 (6)	0.4932 (14)	0.070*	
H22	0.222 (6)	0.867 (3)	0.453 (2)	0.070*	
C1	0.1054 (6)	0.7113 (5)	0.2116 (2)	0.0517 (10)	
C2	-0.0937 (8)	0.6442 (7)	0.1796 (3)	0.0795 (15)	
H2	-0.193159	0.589826	0.210092	0.095*	
C3	-0.1510 (9)	0.6546 (8)	0.1045 (3)	0.1007 (19)	
Н3	-0.285388	0.604546	0.084997	0.121*	
C4	-0.0122 (11)	0.7376 (9)	0.0585 (3)	0.1030 (19)	
H4	-0.049909	0.745192	0.007649	0.124*	
C5	0.1822 (10)	0.8090 (10)	0.0887 (3)	0.122 (3)	
Н5	0.278723	0.865814	0.057892	0.147*	
C6	0.2409 (9)	0.7997 (8)	0.1637 (3)	0.0979 (19)	
H6	0.373978	0.853592	0.182809	0.117*	
C7	0.3620 (6)	0.8019 (6)	0.3177 (2)	0.0608 (11)	
H7A	0.332558	0.927034	0.320838	0.073*	
H7B	0.476070	0.788623	0.283301	0.073*	
C8	0.4378 (7)	0.7509 (6)	0.3946 (2)	0.0616 (12)	
H8A	0.484338	0.630572	0.390672	0.074*	
H8B	0.560050	0.832523	0.413731	0.074*	
C9	0.0695 (7)	0.6398 (6)	0.4170 (2)	0.0599 (11)	
H9A	-0.045974	0.649597	0.451027	0.072*	
H9B	0.103679	0.515781	0.413417	0.072*	
C10	-0.0033 (6)	0.6933 (6)	0.3403 (2)	0.0558 (11)	
H10A	-0.124568	0.611513	0.320378	0.067*	
H10B	-0.051786	0.812879	0.345074	0.067*	
F1	0.5316 (7)	0.7684 (6)	0.94599 (18)	0.1434 (15)	
01	0.1448 (6)	0.8383 (6)	0.6190 (2)	0.1136 (14)	
O2	0.4185 (6)	0.6849 (4)	0.59104 (18)	0.0761 (10)	
C11	0.3677 (6)	0.7628 (5)	0.7197 (2)	0.0519 (10)	
C12	0.5515 (7)	0.6900 (6)	0.7457 (2)	0.0605 (11)	
H12	0.639144	0.638731	0.711219	0.073*	
C13	0.6074 (8)	0.6918 (7)	0.8214 (3)	0.0777 (14)	
H13	0.731513	0.642435	0.838182	0.093*	
C14	0.4782 (10)	0.7668 (8)	0.8711 (3)	0.0885 (16)	

C15	0.2959 (10)	0.8423 (8)	0.8486 (3)	0.0890 (16)	
H15	0.210580	0.894321	0.883627	0.107*	
C16	0.2416 (7)	0.8393 (6)	0.7725 (3)	0.0723 (13)	
H16	0.117563	0.889726	0.756336	0.087*	
C17	0.3049 (7)	0.7617 (6)	0.6375 (3)	0.0609 (12)	
03	0.7825 (5)	0.8718 (5)	0.5423 (2)	0.0747 (10)	
H31	0.898 (5)	0.857 (8)	0.565 (3)	0.112*	
H32	0.674 (6)	0.829 (8)	0.562 (3)	0.112*	

Atomic displacement parameters $(Å^2)$
--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0464 (19)	0.0462 (19)	0.053 (2)	-0.0029 (14)	0.0061 (15)	0.0075 (14)
N2	0.072 (2)	0.048 (2)	0.055 (2)	0.0064 (18)	-0.0066 (19)	0.0061 (17)
C1	0.058 (3)	0.048 (2)	0.048 (3)	0.0003 (19)	0.005 (2)	0.0056 (18)
C2	0.079 (3)	0.094 (4)	0.060 (3)	-0.022 (3)	-0.005 (3)	0.017 (3)
C3	0.104 (4)	0.118 (5)	0.070 (4)	-0.036 (4)	-0.021 (3)	0.017 (3)
C4	0.129 (5)	0.120 (5)	0.056 (3)	-0.015 (4)	-0.006 (3)	0.014 (3)
C5	0.116 (5)	0.185 (7)	0.059 (4)	-0.045 (5)	0.008 (3)	0.029 (4)
C6	0.088 (4)	0.141 (5)	0.058 (3)	-0.039 (4)	0.003 (3)	0.020 (3)
C7	0.049 (2)	0.072 (3)	0.059 (3)	-0.009 (2)	0.004 (2)	0.009 (2)
C8	0.053 (3)	0.065 (3)	0.065 (3)	0.000 (2)	-0.002 (2)	0.003 (2)
С9	0.064 (3)	0.056 (3)	0.058 (3)	-0.008 (2)	0.005 (2)	0.007 (2)
C10	0.049 (2)	0.058 (3)	0.060 (3)	-0.0019 (19)	0.006 (2)	0.006 (2)
F1	0.180 (4)	0.187 (4)	0.060 (2)	0.003 (3)	-0.002 (2)	0.004 (2)
01	0.090 (3)	0.140 (4)	0.114 (3)	0.037 (3)	-0.027 (2)	0.029 (3)
O2	0.097 (2)	0.069 (2)	0.061 (2)	0.0018 (18)	-0.0046 (18)	0.0101 (16)
C11	0.049 (2)	0.041 (2)	0.066 (3)	-0.0054 (18)	0.007 (2)	0.0126 (19)
C12	0.062 (3)	0.056 (3)	0.062 (3)	0.004 (2)	-0.001 (2)	0.006 (2)
C13	0.082 (3)	0.083 (4)	0.067 (3)	0.009 (3)	-0.009 (3)	0.010 (3)
C14	0.105 (4)	0.098 (4)	0.059 (3)	-0.005 (3)	-0.002 (3)	0.004 (3)
C15	0.097 (4)	0.093 (4)	0.079 (4)	0.004 (3)	0.031 (3)	0.001 (3)
C16	0.057 (3)	0.066 (3)	0.096 (4)	0.002 (2)	0.012 (3)	0.018 (3)
C17	0.056 (3)	0.049 (3)	0.076 (3)	-0.012 (2)	-0.009 (2)	0.020(2)
03	0.071 (2)	0.065 (2)	0.088 (3)	0.0124 (18)	-0.0088 (18)	0.0039 (17)

Geometric parameters (Å, °)

N1-C1	1.408 (5)	C8—H8B	0.9700
N1-C10	1.456 (5)	C9—C10	1.507 (5)
N1C7	1.468 (5)	С9—Н9А	0.9700
N2—C8	1.475 (5)	C9—H9B	0.9700
N2C9	1.495 (5)	C10—H10A	0.9700
N2—H21	0.904 (19)	C10—H10B	0.9700
N2—H22	0.881 (19)	F1—C14	1.358 (6)
C1—C2	1.381 (6)	O1—C17	1.235 (5)
C1—C6	1.389 (6)	O2—C17	1.261 (5)
C2—C3	1.377 (6)	C11—C12	1.382 (5)

С2—Н2	0.9300	C11—C16	1.386 (6)
C3—C4	1.361 (8)	C11—C17	1.496 (6)
С3—Н3	0.9300	C12—C13	1.375 (6)
C4—C5	1.355 (8)	C12—H12	0.9300
C4—H4	0.9300	C13—C14	1.356 (7)
C5—C6	1.375 (7)	С13—Н13	0.9300
С5—Н5	0.9300	C14—C15	1.366 (7)
С6—Н6	0.9300	C15—C16	1.377 (7)
C7—C8	1.509 (5)	С15—Н15	0.9300
С7—Н7А	0.9700	С16—Н16	0.9300
С7—Н7В	0.9700	O3—H31	0.83(2)
C8—H8A	0.9700	03—H32	0.83(2)
			(_)
C1—N1—C10	116.2 (3)	С7—С8—Н8В	109.5
C1—N1—C7	115.9 (3)	H8A—C8—H8B	108.1
C10—N1—C7	111.5 (3)	N2—C9—C10	110.4 (3)
C8—N2—C9	110.3 (3)	N2—C9—H9A	109.6
C8—N2—H21	107 (3)	С10—С9—Н9А	109.6
C9—N2—H21	117 (3)	N2—C9—H9B	109.6
C8—N2—H22	111 (3)	С10—С9—Н9В	109.6
C9—N2—H22	106 (3)	H9A—C9—H9B	108.1
H21—N2—H22	105 (4)	N1—C10—C9	112.3 (3)
C2—C1—C6	115.5 (4)	N1—C10—H10A	109.1
C2—C1—N1	122.4 (4)	С9—С10—Н10А	109.1
C6—C1—N1	122.2 (4)	N1-C10-H10B	109.1
C3—C2—C1	122.7 (5)	С9—С10—Н10В	109.1
С3—С2—Н2	118.7	H10A—C10—H10B	107.9
C1—C2—H2	118.7	C12—C11—C16	117.8 (4)
C4—C3—C2	120.5 (5)	C12—C11—C17	121.9 (4)
С4—С3—Н3	119.8	C16—C11—C17	120.2 (4)
С2—С3—Н3	119.8	C13—C12—C11	121.4 (4)
C5—C4—C3	118.2 (5)	C13—C12—H12	119.3
C5—C4—H4	120.9	C11—C12—H12	119.3
C3—C4—H4	120.9	C14—C13—C12	118.8 (5)
C4—C5—C6	121.8 (5)	C14—C13—H13	120.6
С4—С5—Н5	119.1	C12—C13—H13	120.6
С6—С5—Н5	119.1	C13—C14—F1	119.2 (6)
C5—C6—C1	121.3 (5)	C13—C14—C15	122.3 (5)
С5—С6—Н6	119.4	F1—C14—C15	118.5 (6)
С1—С6—Н6	119.4	C14—C15—C16	118.3 (5)
N1—C7—C8	112.4 (3)	C14—C15—H15	120.9
N1—C7—H7A	109.1	C16—C15—H15	120.9
С8—С7—Н7А	109.1	C15—C16—C11	121.4 (5)
N1—C7—H7B	109.1	C15—C16—H16	119.3
С8—С7—Н7В	109.1	C11—C16—H16	119.3
H7A—C7—H7B	107.9	O1—C17—O2	123.6 (5)
N2	110.8 (3)	O1—C17—C11	117.7 (5)
N2—C8—H8A	109.5	O2—C17—C11	118.7 (4)

C7—C8—H8A N2—C8—H8B	109.5 109.5	H31—O3—H32	115 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} -33.4 \ (6) \\ -167.2 \ (4) \\ 146.6 \ (5) \\ 12.8 \ (6) \\ 3.5 \ (8) \\ -176.4 \ (5) \\ -1.9 \ (9) \\ 0.0 \ (10) \\ -0.2 \ (11) \\ 2.1 \ (11) \\ -3.6 \ (8) \\ 176.4 \ (6) \\ -170.5 \ (3) \\ 53.5 \ (5) \\ 56.3 \ (4) \\ -55.1 \ (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$170.1 (3) \\ -54.1 (4) \\ 55.9 (4) \\ 0.5 (6) \\ -180.0 (4) \\ 0.0 (7) \\ 179.7 (4) \\ -0.7 (8) \\ 0.8 (9) \\ -179.6 (4) \\ -0.3 (8) \\ -0.4 (6) \\ -179.9 (4) \\ -176.1 (4) \\ 3.4 (6) \\ 3.2 (6) $
C8—N2—C9—C10	-56.6 (4)	C16—C11—C17—O2	-177.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N2—H21…O1	0.90 (2)	2.65 (4)	3.215 (6)	122 (3)
N2—H21…O2	0.90 (2)	1.89 (2)	2.791 (5)	175 (4)
N2—H22···O3 ⁱ	0.88 (2)	1.96 (2)	2.812 (5)	163 (4)
C8—H8A···O2 ⁱⁱ	0.97	2.53	3.481 (6)	168
C8—H8 <i>B</i> ···O3	0.97	2.60	3.341 (5)	133
С9—Н9А…ОЗ ^{ііі}	0.97	2.59	3.416 (6)	143
O3—H31…O1 ^{iv}	0.83 (2)	1.79 (2)	2.619 (5)	176 (6)
O3—H32…O2	0.83 (2)	1.96 (2)	2.773 (5)	167 (6)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*.

4-Phenylpiperazin-1-ium 4-bromobenzoate monohydrate (3)

Crystal data

$C_{10}H_{15}N_2^+ C_7H_4BrO_2^- H_2O$	F(000) = 784
$M_r = 381.27$	$D_{\rm x} = 1.449 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.183 (2) Å	Cell parameters from 1437 reflections
b = 37.748 (7) Å	$\theta = 2.8 - 27.7^{\circ}$
c = 7.506 (2) Å	$\mu = 2.37 \text{ mm}^{-1}$
$\beta = 93.69 \ (4)^{\circ}$	T = 293 K
V = 1748.2 (8) Å ³	Rod, colourless
Z = 4	$0.46 \times 0.20 \times 0.12 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source ω and φ scans Absorption correction: multi-scan (CrysalisRED; Oxford Diffraction, 2007) $T_{\min} = 0.613, T_{\max} = 1.000$ Rafinament	6103 measured reflections 3170 independent reflections 1374 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 25.4^\circ, \ \theta_{min} = 2.8^\circ$ $h = -4 \rightarrow 7$ $k = -45 \rightarrow 24$ $l = -8 \rightarrow 9$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.138$ $wR(F^2) = 0.375$ S = 1.03 3170 reflections 215 parameters 7 restraints Primary atom site location: dual	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1282P)^2 + 10.0601P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta \sigma_{max} = 0.49 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.61 \text{ e}^{\text{A}^{-3}}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.7034 (12)	0.4002 (2)	0.2295 (10)	0.047 (2)	
N2	0.7744 (14)	0.4754 (2)	0.2661 (11)	0.057 (2)	
H2N1	0.816948	0.495983	0.221941	0.068*	0.68 (16)
H2N2	0.734325	0.479226	0.376244	0.068*	
C1	0.6526 (17)	0.3649 (3)	0.2644 (14)	0.052 (3)	
C2	0.4510 (19)	0.3499 (3)	0.2008 (17)	0.077 (4)	
H2	0.347995	0.364177	0.140653	0.092*	
C3	0.406 (2)	0.3151 (4)	0.226 (2)	0.095 (4)	
Н3	0.275365	0.305737	0.179024	0.114*	
C4	0.552 (3)	0.2938 (4)	0.320 (2)	0.101 (5)	
H4	0.518855	0.270118	0.340272	0.122*	
C5	0.745 (3)	0.3071 (4)	0.385 (2)	0.109 (5)	
Н5	0.846262	0.292510	0.444957	0.131*	
C6	0.790 (2)	0.3418 (3)	0.361 (2)	0.091 (4)	
H6	0.919874	0.350644	0.411615	0.109*	
C7	0.8936 (15)	0.4148 (3)	0.3321 (15)	0.056 (3)	
H7A	0.863266	0.416060	0.457161	0.067*	
H7B	1.015626	0.398972	0.321899	0.067*	
C8	0.9530 (18)	0.4502 (3)	0.2711 (16)	0.066 (3)	
H8A	1.070611	0.459306	0.349995	0.080*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H8B	1 005544	0 448322	0 152505	0.080*	
C9	0 5886 (17)	0.4613 (3)	0.152505 0.1532(15)	0.063 (3)	
H9A	0.628083	0.459435	0.030616	0.075*	
H9B	0.466823	0.477483	0.156218	0.075*	
C10	0.5255 (17)	0.4260 (3)	0.2189 (14)	0.057 (3)	
H10A	0.471137	0.428689	0.336512	0.069*	
H10B	0.408395	0.416774	0.140070	0.069*	
Br1	0.9708 (5)	0.72340 (4)	0.1736 (4)	0.1674 (14)	
01	0.6289 (16)	0.5558 (3)	0.3222 (15)	0.114 (4)	
O2	0.9081 (15)	0.5426 (2)	0.1687 (11)	0.077 (2)	
H2O	0.853628	0.522821	0.170738	0.093*	0.32 (16)
C11	0.8325 (17)	0.6031 (3)	0.2219 (13)	0.053 (3)	
C12	1.0163 (19)	0.6155 (3)	0.1465 (14)	0.063 (3)	
H12	1.115409	0.599557	0.104078	0.076*	
C13	1.053 (2)	0.6508 (3)	0.1343 (16)	0.072 (3)	
H13	1.177707	0.658367	0.083258	0.086*	
C14	0.919 (3)	0.6747 (4)	0.1911 (19)	0.088 (4)	
C15	0.741 (3)	0.6638 (4)	0.277 (2)	0.097 (5)	
H15	0.650657	0.680550	0.324796	0.116*	
C16	0.694 (2)	0.6281 (4)	0.2929 (17)	0.080 (4)	
H16	0.572770	0.620785	0.349992	0.096*	
C17	0.787 (2)	0.5643 (4)	0.2376 (14)	0.062 (3)	
O3	0.7207 (13)	0.4796 (2)	0.6335 (11)	0.073 (2)	
H31	0.830 (14)	0.4755 (18)	0.696 (17)	0.109*	
H32	0.697 (5)	0.5004 (5)	0.635 (5)	0.109*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.044 (5)	0.050 (5)	0.046 (5)	0.003 (4)	0.002 (4)	-0.005 (4)
N2	0.063 (6)	0.056 (5)	0.052 (5)	-0.003 (5)	0.011 (4)	0.000 (4)
C1	0.054 (6)	0.053 (6)	0.048 (6)	0.007 (5)	-0.001 (5)	-0.010 (5)
C2	0.066 (8)	0.085 (9)	0.076 (8)	-0.005 (7)	-0.021 (7)	0.021 (7)
C3	0.092 (10)	0.077 (9)	0.113 (12)	-0.021 (8)	-0.018 (9)	0.004 (9)
C4	0.119 (13)	0.067 (9)	0.116 (12)	-0.010 (9)	-0.015 (10)	0.016 (9)
C5	0.127 (13)	0.062 (9)	0.134 (14)	0.012 (9)	-0.021 (11)	0.010 (9)
C6	0.085 (9)	0.068 (8)	0.117 (12)	-0.004 (7)	-0.015 (8)	0.000 (8)
C7	0.039 (6)	0.060 (7)	0.068 (7)	0.003 (5)	0.000 (5)	-0.003 (6)
C8	0.056 (7)	0.084 (9)	0.061 (7)	-0.004 (6)	0.010 (6)	0.004 (6)
C9	0.054 (7)	0.068 (7)	0.066 (7)	0.003 (6)	0.005 (6)	0.006 (6)
C10	0.065 (7)	0.060 (7)	0.045 (6)	0.004 (6)	-0.012 (5)	-0.003 (5)
Br1	0.266 (3)	0.0626 (11)	0.169 (2)	-0.0154 (13)	-0.020 (2)	-0.0006 (12)
01	0.091 (7)	0.131 (9)	0.123 (8)	-0.028 (6)	0.036 (7)	0.037 (7)
O2	0.098 (6)	0.063 (5)	0.072 (6)	-0.005 (5)	0.015 (5)	0.005 (4)
C11	0.052 (6)	0.074 (7)	0.033 (5)	0.004 (6)	0.006 (5)	-0.005 (5)
C12	0.069 (7)	0.074 (8)	0.047 (6)	0.004 (6)	0.008 (6)	-0.003 (6)
C13	0.085 (9)	0.069 (8)	0.060 (8)	-0.015 (7)	-0.003 (6)	0.000 (7)
C14	0.128 (13)	0.067 (8)	0.071 (9)	0.011 (9)	0.012 (9)	0.006 (7)

C15	0.110 (12)	0.090 (11)	0.089 (10)	0.036 (9)	0.006 (10)	-0.016 (9)
C16	0.079 (9)	0.102 (11)	0.060 (7)	0.006 (8)	0.010 (6)	0.009 (8)
C17	0.058 (7)	0.089 (9)	0.037 (6)	-0.009 (7)	-0.013 (5)	0.008 (6)
03	0.081 (6)	0.073 (5)	0.064 (5)	-0.015 (4)	0.010 (4)	-0.006 (4)

Geometric parameters (Å, °)

N1—C1	1.398 (12)	C9—C10	1.483 (14)	
N1—C10	1.467 (12)	С9—Н9А	0.9700	
N1—C7	1.471 (12)	С9—Н9В	0.9700	
N2—C8	1.456 (13)	C10—H10A	0.9700	
N2—C9	1.481 (13)	C10—H10B	0.9700	
N2—H2N1	0.8900	Br1—C14	1.872 (14)	
N2—H2N2	0.8900	O1—C17	1.242 (13)	
C1—C6	1.387 (16)	O2—C17	1.244 (14)	
C1—C2	1.424 (15)	O2—H2O	0.8200	
C2—C3	1.356 (17)	C11—C12	1.384 (14)	
С2—Н2	0.9300	C11—C16	1.402 (16)	
C3—C4	1.38 (2)	C11—C17	1.495 (16)	
С3—Н3	0.9300	C12—C13	1.354 (16)	
C4—C5	1.35 (2)	C12—H12	0.9300	
C4—H4	0.9300	C13—C14	1.312 (18)	
C5—C6	1.352 (17)	C13—H13	0.9300	
С5—Н5	0.9300	C14—C15	1.38 (2)	
С6—Н6	0.9300	C15—C16	1.385 (19)	
C7—C8	1.467 (14)	C15—H15	0.9300	
C7—H7A	0.9700	C16—H16	0.9300	
С7—Н7В	0.9700	O3—H31	0.81 (2)	
C8—H8A	0.9700	O3—H32	0.796 (19)	
C8—H8B	0.9700			
C1—N1—C10	117.8 (8)	C7—C8—H8B	108.9	
C1—N1—C7	116.2 (8)	H8A—C8—H8B	107.7	
C10—N1—C7	110.5 (7)	N2—C9—C10	110.1 (9)	
C8—N2—C9	109.8 (8)	N2—C9—H9A	109.6	
C8—N2—H2N1	109.7	С10—С9—Н9А	109.6	
C9—N2—H2N1	109.7	N2—C9—H9B	109.6	
C8—N2—H2N2	109.7	С10—С9—Н9В	109.6	
C9—N2—H2N2	109.7	H9A—C9—H9B	108.2	
H2N1—N2—H2N2	108.2	N1—C10—C9	113.8 (9)	
C6—C1—N1	124.0 (10)	N1—C10—H10A	108.8	
C6—C1—C2	114.6 (10)	C9—C10—H10A	108.8	
N1—C1—C2	121.3 (9)	N1—C10—H10B	108.8	
C3—C2—C1	121.5 (11)	C9—C10—H10B	108.8	
С3—С2—Н2	119.3	H10A—C10—H10B	107.7	
C1—C2—H2	119.3	C17—O2—H2O	109.5	
C2—C3—C4	120.3 (13)	C12—C11—C16	117.6 (11)	
С2—С3—Н3	119.8	C12—C11—C17	121.9 (10)	

С4—С3—Н3	119.8	C16—C11—C17	120.4 (11)
C5—C4—C3	120.0 (14)	C13—C12—C11	120.4 (11)
С5—С4—Н4	120.0	C13—C12—H12	119.8
C3—C4—H4	120.0	C11—C12—H12	119.8
C6—C5—C4	119.8 (15)	C14—C13—C12	123.0 (13)
С6—С5—Н5	120.1	C14—C13—H13	118.5
С4—С5—Н5	120.1	C12—C13—H13	118.5
C5—C6—C1	123.7 (13)	C13—C14—C15	119.1 (13)
С5—С6—Н6	118.2	C13—C14—Br1	122.7 (13)
С1—С6—Н6	118.2	C15—C14—Br1	118.1 (12)
C8—C7—N1	112.7 (9)	C14—C15—C16	120.5 (13)
С8—С7—Н7А	109.0	C14—C15—H15	119.7
N1—C7—H7A	109.0	C16—C15—H15	119.7
С8—С7—Н7В	109.0	C15—C16—C11	119.2 (12)
N1—C7—H7B	109.0	C15—C16—H16	120.4
H7A—C7—H7B	107.8	C11—C16—H16	120.4
N2—C8—C7	113.5 (9)	O1—C17—O2	123.8 (12)
N2—C8—H8A	108.9	O1—C17—C11	116.9 (12)
С7—С8—Н8А	108.9	O2—C17—C11	119.3 (10)
N2—C8—H8B	108.9	H31—O3—H32	109 (4)
C10—N1—C1—C6	-147.2 (11)	C1—N1—C10—C9	-170.7 (9)
C7—N1—C1—C6	-12.7(15)	C7—N1—C10—C9	52.4 (11)
C10—N1—C1—C2	33.1 (14)	N2—C9—C10—N1	-55.9(12)
C7—N1—C1—C2	167.6 (10)	C16—C11—C12—C13	-3.5(15)
C6-C1-C2-C3	-3.4(18)	C17—C11—C12—C13	-180.0 (10)
N1—C1—C2—C3	176.3 (12)	C11—C12—C13—C14	-0.2 (19)
C1—C2—C3—C4	3 (2)	C12—C13—C14—C15	4 (2)
C2—C3—C4—C5	-2(3)	C12—C13—C14—Br1	-180.0 (9)
C3—C4—C5—C6	2 (3)	C13—C14—C15—C16	-4 (2)
C4—C5—C6—C1	-3 (3)	Br1-C14-C15-C16	179.6 (11)
N1—C1—C6—C5	-175.8 (14)	C14—C15—C16—C11	1 (2)
C2-C1-C6-C5	4 (2)	C12—C11—C16—C15	3.2 (17)
C1—N1—C7—C8	172.4 (9)	C17—C11—C16—C15	179.7 (11)
C10—N1—C7—C8	-50.0 (11)	C12—C11—C17—O1	173.4 (10)
C9—N2—C8—C7	-55.9 (12)	C16—C11—C17—O1	-3.0 (15)
N1-C7-C8-N2	53.6 (12)	C12—C11—C17—O2	-5.8 (15)
C8—N2—C9—C10	55.7 (11)	C16—C11—C17—O2	177.8 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>N</i> 1···O2	0.89	1.90	2.780 (11)	170
N2—H2 <i>N</i> 2···O3	0.89	1.94	2.803 (12)	164
C8—H8A····O3 ⁱ	0.97	2.64	3.377 (14)	133
C8—H8 <i>B</i> ···O2 ⁱⁱ	0.97	2.53	3.475 (14)	166
С9—Н9 <i>В</i> …ОЗ ^{ііі}	0.97	2.59	3.403 (14)	142

O2—H2 <i>O</i> …N2	0.82	2.00	2.780 (11)	159
O3—H31…O2 ⁱ	0.81 (2)	1.98 (2)	2.782 (12)	170 (7)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1.

4-Phenylpiperazin-1-ium 4-iodobenzoate (4)

Crystal data

 $C_{10}H_{15}N_{2}^{+}C_{7}H_{4}IO_{2}^{-}$ $M_{r} = 410.24$ Monoclinic, $P2_{1}/c$ a = 10.8507 (4) Å b = 23.4045 (7) Å c = 13.3019 (4) Å $\beta = 102.491$ (4)° V = 3298.13 (19) Å³ Z = 8

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan

(CrysalisRED; Oxford Diffraction, 2007) $T_{\min} = 0.575, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.084$ S = 1.027079 reflections 409 parameters 4 restraints Primary atom site location: dual F(000) = 1632 $D_x = 1.652 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6801 reflections $\theta = 2.6-27.8^{\circ}$ $\mu = 1.95 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.48 \times 0.48 \times 0.40 \text{ mm}$

14154 measured reflections 7079 independent reflections 4641 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 27.8^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -7 \rightarrow 13$ $k = -30 \rightarrow 15$ $l = -17 \rightarrow 17$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0402P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.77$ e Å⁻³ $\Delta\rho_{min} = -1.25$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	1	• • • •	• 1• 1		121
Fractional atomic coordinates and	i isotronic or a	auivalent isotron	ic displacement	narameters I A	141
i ractional alonite coorainates and	<i>i isoii opi</i> e oi e	<i>guivaieni isoirop</i>	ie aispiacemeni	parameters (11	- 1

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6237 (3)	0.57603 (14)	0.0843 (2)	0.0363 (8)	
C2	0.4969 (3)	0.58795 (15)	0.0505 (3)	0.0431 (9)	
H2	0.437868	0.568638	0.079160	0.052*	
C3	0.4565 (4)	0.62827 (17)	-0.0255 (3)	0.0535 (10)	
H3	0.370693	0.635548	-0.047848	0.064*	

C 1	0.5400.(4)	0 (577.4 (17)	0.0(04(2))	0.0505 (11)
C4	0.5422 (4)	0.65774 (17)	-0.0684 (3)	0.0587 (11)
H4	0.514944	0.685086	-0.119018	0.070*
C5	0.6689 (4)	0.64613 (17)	-0.0351 (3)	0.0578 (11)
H5	0.727710	0.665869	-0.063350	0.069*
C6	0.7087 (3)	0.60578 (16)	0.0390 (3)	0.0488 (9)
H6	0.794547	0.598015	0.059728	0.059*
C7	0.5780 (3)	0.49980 (14)	0.1955 (2)	0.0399 (8)
H7A	0.522273	0.482727	0.136209	0.048*
H7B	0.527435	0.523672	0.230538	0.048*
C8	0.6407 (3)	0.45316 (15)	0.2676 (3)	0.0461 (9)
H8A	0.576921	0.431322	0.291939	0.055*
H8B	0.685619	0.427387	0.231077	0.055*
С9	0.8241 (3)	0.51415 (16)	0.3220 (3)	0.0506 (10)
H9A	0.875290	0.490380	0.287377	0.061*
H9B	0.879334	0.531571	0.381165	0.061*
C10	0.7615 (3)	0.56009 (15)	0.2497 (3)	0.0437 (9)
H10A	0.716702	0.586020	0.286126	0.052*
H10B	0.825224	0.581826	0.225187	0.052*
C11	0.1383 (3)	0.57882 (14)	0.0931 (3)	0.0378 (8)
C12	0.0736 (3)	0.62745 (16)	0.1107 (3)	0.0500 (10)
H12	0.060684	0.634674	0.176404	0.060*
C13	0.0276 (4)	0.66576 (16)	0.0312 (3)	0.0604 (11)
H13	-0.014418	0.698638	0.044310	0.072*
C14	0.0443 (4)	0.65500 (19)	-0.0669(3)	0.0609 (12)
H14	0.012708	0.680304	-0.120126	0.073*
C15	0.1071 (3)	0.60727 (17)	-0.0854(3)	0.0519 (10)
H15	0.117968	0.600061	-0.151708	0.062*
C16	0.1549 (3)	0.56928 (15)	-0.0072(3)	0.0435 (9)
H16	0.198547	0.537080	-0.021249	0.052*
C17	0.1510 (4)	0.48047 (15)	0.1505 (3)	0.0540(10)
H17A	0 154730	0 470809	0.080323	0.065*
H17B	0.064339	0.476153	0 157480	0.065*
C18	0.2346(4)	0.44063 (16)	0.137100 0.2238(3)	0.000
H18A	0.203871	0.401837	0.2200 (0)	0.062*
H18R	0.319385	0.401857	0.210457	0.062*
C10	0.517505 0.1817 (3)	0.55420 (15)	0.211451 0.2758(3)	0.002
H10A	0.1017 (3)	0.550003	0.2758 (5)	0.053*
	0.094917	0.550005	0.282389	0.053*
C20	0.200022	0.595805	0.209794 0.3526(3)	0.033°
	0.2039 (3)	0.51025 (15)	0.3520 (3)	0.0480 (9)
H20A	0.333238	0.525724	0.550540	0.038
H20B	0.254904	0.525400	0.421230	0.038*
C21	0.5418(5)	0.33843 (13)	0.58/5(2)	0.0330(7)
C22	0.6116 (3)	0.31980 (14)	0.5442 (3)	0.0403 (8)
H22	0.609882	0.321099	0.4/40/5	U.U48 [*]
023	0.6838 (3)	0.27831 (14)	0.6037 (3)	0.0421 (9)
H23	0.730730	0.252638	0.5/38//	0.050*
C24	0.6857 (3)	0.27537 (14)	0.7075 (3)	0.0378 (8)
C25	0.6173 (3)	0.31365 (15)	0.7525 (3)	0.0422 (9)

H25	0.618742	0.311707	0.822587	0.051*
C26	0.5467 (3)	0.35490 (15)	0.6916 (3)	0.0439 (9)
H26	0.501084	0.381014	0.721785	0.053*
C27	0.4575 (3)	0.40162 (15)	0.5219 (3)	0.0393 (8)
C28	1.0539 (3)	0.35016 (13)	0.5371 (2)	0.0332 (7)
C29	1.0084 (3)	0.32960 (15)	0.6197 (3)	0.0435 (9)
H29	0.927288	0.339430	0.625776	0.052*
C30	1.0812 (3)	0.29473 (14)	0.6934 (3)	0.0436 (9)
H30	1.050319	0.282046	0.749431	0.052*
C31	1.2002 (3)	0.27904 (13)	0.6825 (3)	0.0365 (8)
C32	1.2455 (3)	0.29675 (14)	0.5995 (3)	0.0411 (8)
H32	1.324481	0.284729	0.591371	0.049*
C33	1.1730 (3)	0.33275 (14)	0.5275 (3)	0.0413 (8)
H33	1.204660	0.345427	0.471774	0.050*
C34	0.9773 (3)	0.39127 (14)	0.4615 (3)	0.0419 (9)
I1	0.78561 (3)	0.21027 (2)	0.79917 (2)	0.05702 (10)
I2	1.31203 (3)	0.22704 (2)	0.79616 (2)	0.05455 (10)
N1	0.6722 (2)	0.53483 (12)	0.1613 (2)	0.0367 (7)
N2	0.7303 (3)	0.47858 (13)	0.3568 (2)	0.0450 (8)
H21N	0.684 (3)	0.4978 (14)	0.392 (2)	0.054*
H22N	0.771 (3)	0.4508 (12)	0.397 (2)	0.054*
N3	0.1911 (2)	0.53973 (11)	0.1718 (2)	0.0367 (7)
N4	0.2388 (3)	0.45488 (14)	0.3322 (2)	0.0460 (8)
H41N	0.300 (3)	0.4353 (14)	0.370 (2)	0.055*
H42N	0.170 (2)	0.4466 (15)	0.350 (3)	0.055*
01	0.4122 (2)	0.44040 (11)	0.56598 (19)	0.0571 (7)
O2	0.4359 (2)	0.39436 (11)	0.42592 (19)	0.0561 (7)
O3	1.0238 (2)	0.41261 (12)	0.3931 (2)	0.0644 (8)
O4	0.8680 (2)	0.40136 (11)	0.4733 (2)	0.0645 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.043 (2)	0.033 (2)	0.0308 (18)	-0.0001 (16)	0.0052 (16)	-0.0052 (15)
C2	0.039 (2)	0.046 (2)	0.041 (2)	-0.0046 (17)	0.0016 (17)	-0.0035 (17)
C3	0.051 (2)	0.056 (3)	0.047 (2)	0.003 (2)	-0.0029 (19)	0.004 (2)
C4	0.071 (3)	0.055 (3)	0.046 (2)	0.009 (2)	0.004 (2)	0.0126 (19)
C5	0.059 (3)	0.062 (3)	0.055 (3)	-0.001 (2)	0.018 (2)	0.016 (2)
C6	0.045 (2)	0.053 (2)	0.047 (2)	0.0058 (19)	0.0084 (19)	0.0039 (19)
C7	0.039 (2)	0.040 (2)	0.038 (2)	-0.0020 (16)	0.0033 (16)	-0.0034 (16)
C8	0.049 (2)	0.043 (2)	0.047 (2)	-0.0008 (18)	0.0116 (19)	0.0044 (18)
C9	0.051 (2)	0.045 (2)	0.047 (2)	-0.0004 (19)	-0.0076 (19)	-0.0001 (18)
C10	0.045 (2)	0.040 (2)	0.041 (2)	-0.0041 (17)	-0.0035 (17)	-0.0029 (17)
C11	0.0287 (18)	0.034 (2)	0.045 (2)	-0.0064 (15)	-0.0052 (16)	0.0021 (16)
C12	0.052 (2)	0.041 (2)	0.052 (2)	0.0060 (18)	-0.0013 (19)	0.0017 (18)
C13	0.055 (3)	0.038 (2)	0.079 (3)	0.0053 (19)	-0.007 (2)	0.008 (2)
C14	0.055 (3)	0.056 (3)	0.063 (3)	-0.005 (2)	-0.006 (2)	0.025 (2)
C15	0.047 (2)	0.055 (3)	0.050 (2)	-0.011 (2)	0.0033 (19)	0.015 (2)

C16	0.038 (2)	0.042 (2)	0.048 (2)	-0.0036 (16)	0.0020 (18)	0.0056 (17)
C17	0.068 (3)	0.036 (2)	0.047 (2)	-0.0018 (19)	-0.011 (2)	0.0027 (17)
C18	0.069 (3)	0.035 (2)	0.045 (2)	0.0006 (18)	-0.001 (2)	0.0045 (17)
C19	0.047 (2)	0.042 (2)	0.040 (2)	0.0026 (17)	0.0040 (18)	0.0009 (17)
C20	0.054 (2)	0.048 (2)	0.037 (2)	0.0068 (19)	-0.0002 (18)	0.0008 (17)
C21	0.0347 (18)	0.0315 (19)	0.0323 (18)	-0.0013 (15)	0.0060 (15)	-0.0008 (15)
C22	0.042 (2)	0.045 (2)	0.0341 (19)	0.0010 (17)	0.0088 (16)	-0.0007 (16)
C23	0.050 (2)	0.035 (2)	0.043 (2)	0.0115 (16)	0.0121 (18)	-0.0007 (16)
C24	0.0397 (19)	0.0293 (19)	0.0396 (19)	-0.0034 (15)	-0.0018 (16)	0.0035 (15)
C25	0.051 (2)	0.045 (2)	0.0300 (18)	0.0019 (18)	0.0073 (17)	-0.0025 (16)
C26	0.049 (2)	0.043 (2)	0.040 (2)	0.0125 (17)	0.0076 (17)	-0.0043 (17)
C27	0.037 (2)	0.038 (2)	0.041 (2)	0.0022 (16)	0.0039 (17)	0.0011 (16)
C28	0.0345 (18)	0.0255 (18)	0.0378 (19)	-0.0007 (15)	0.0040 (16)	-0.0040 (14)
C29	0.040 (2)	0.038 (2)	0.057 (2)	0.0005 (17)	0.0202 (18)	-0.0016 (18)
C30	0.056 (2)	0.034 (2)	0.046 (2)	0.0014 (18)	0.0232 (19)	0.0025 (17)
C31	0.049 (2)	0.0234 (18)	0.0368 (19)	-0.0023 (15)	0.0091 (17)	-0.0032 (14)
C32	0.0384 (19)	0.041 (2)	0.045 (2)	0.0062 (16)	0.0121 (17)	0.0039 (17)
C33	0.047 (2)	0.040 (2)	0.039 (2)	0.0017 (17)	0.0147 (17)	0.0038 (16)
C34	0.043 (2)	0.032 (2)	0.048 (2)	-0.0049 (16)	0.0022 (19)	-0.0041 (17)
I1	0.0741 (2)	0.03693 (15)	0.05275 (17)	0.00927 (12)	-0.00227 (14)	0.00844 (12)
I2	0.07106 (19)	0.04819 (17)	0.04096 (15)	0.00624 (13)	0.00451 (13)	0.00842 (11)
N1	0.0384 (16)	0.0353 (17)	0.0340 (15)	-0.0029 (13)	0.0024 (13)	-0.0008 (13)
N2	0.055 (2)	0.039 (2)	0.0394 (18)	0.0156 (15)	0.0074 (16)	0.0050 (14)
N3	0.0403 (16)	0.0308 (16)	0.0344 (15)	-0.0016 (13)	-0.0020 (13)	-0.0011 (12)
N4	0.0415 (19)	0.050 (2)	0.0430 (19)	0.0044 (16)	0.0021 (16)	0.0144 (15)
01	0.0706 (18)	0.0487 (17)	0.0495 (16)	0.0268 (14)	0.0076 (14)	-0.0019 (13)
O2	0.0652 (18)	0.0619 (18)	0.0362 (15)	0.0221 (14)	0.0001 (13)	0.0015 (13)
03	0.0583 (18)	0.074 (2)	0.0632 (18)	0.0164 (15)	0.0181 (15)	0.0297 (16)
O4	0.0441 (16)	0.0659 (19)	0.085 (2)	0.0157 (14)	0.0169 (15)	0.0297 (16)

Geometric parameters (Å, °)

C1—C2	1.380 (4)	C18—N4	1.472 (4)
C1—C6	1.393 (5)	C18—H18A	0.9700
C1—N1	1.422 (4)	C18—H18B	0.9700
C2—C3	1.383 (5)	C19—N3	1.450 (4)
C2—H2	0.9300	C19—C20	1.506 (5)
C3—C4	1.376 (5)	C19—H19A	0.9700
С3—Н3	0.9300	C19—H19B	0.9700
C4—C5	1.377 (5)	C20—N4	1.479 (5)
C4—H4	0.9300	C20—H20A	0.9700
C5—C6	1.367 (5)	C20—H20B	0.9700
С5—Н5	0.9300	C21—C26	1.377 (4)
С6—Н6	0.9300	C21—C22	1.382 (4)
C7—N1	1.458 (4)	C21—C27	1.509 (4)
С7—С8	1.514 (4)	C22—C23	1.384 (4)
C7—H7A	0.9700	C22—H22	0.9300
С7—Н7В	0.9700	C23—C24	1.378 (4)

C8—N2	1.485 (4)	С23—Н23	0.9300
C8—H8A	0.9700	C24—C25	1.380 (5)
C8—H8B	0.9700	C24—I1	2.101 (3)
C9—N2	1.465 (5)	C25—C26	1.381 (4)
C9—C10	1.503 (5)	С25—Н25	0.9300
С9—Н9А	0.9700	C26—H26	0.9300
С9—Н9В	0.9700	C27—O1	1.238 (4)
C10—N1	1.477 (4)	С27—О2	1.258 (4)
C10—H10A	0.9700	C28—C29	1.385 (4)
C10—H10B	0.9700	C28—C33	1.387 (4)
C11—C12	1.384 (5)	C28—C34	1.506 (5)
C11—C16	1.403 (5)	C29—C30	1.384 (5)
C11—N3	1.415 (4)	С29—Н29	0.9300
C12—C13	1.394 (5)	C30—C31	1.380 (5)
C12—H12	0.9300	С30—Н30	0.9300
C13—C14	1.378 (6)	C31—C32	1.366 (4)
С13—Н13	0.9300	C31—I2	2.109 (3)
C14—C15	1.358 (5)	C32—C33	1.386 (4)
C14—H14	0.9300	С32—Н32	0.9300
C15—C16	1.381 (5)	С33—Н33	0.9300
С15—Н15	0.9300	C34—O3	1.237 (4)
С16—Н16	0.9300	C34—O4	1.253 (4)
C17—N3	1.463 (4)	N2—H21N	0.877 (18)
C17—C18	1.503 (5)	N2—H22N	0.897 (18)
С17—Н17А	0.9700	N4—H41N	0.869 (18)
С17—Н17В	0.9700	N4—H42N	0.851 (18)
C2—C1—C6	117.7 (3)	N3—C19—C20	110.5 (3)
C2-C1-N1	124.0 (3)	N3—C19—H19A	109.5
C6-C1-N1	118.3 (3)	С20—С19—Н19А	109.5
C1—C2—C3	120.8 (3)	N3—C19—H19B	109.5
C1—C2—H2	119.6	С20—С19—Н19В	109.5
С3—С2—Н2	119.6	H19A—C19—H19B	108.1
C4—C3—C2	120.6 (4)	N4—C20—C19	112.5 (3)
С4—С3—Н3	119.7	N4—C20—H20A	109.1
С2—С3—Н3	119.7	C19—C20—H20A	109.1
C3—C4—C5	119.0 (4)	N4—C20—H20B	109.1
C3—C4—H4	120.5	C19—C20—H20B	109.1
C5—C4—H4	120.5	H20A—C20—H20B	107.8
C6—C5—C4	120.4 (4)	C_{26} C_{21} C_{22}	118.3 (3)
С6—С5—Н5	119.8	$C_{26} = C_{21} = C_{27}$	120.6(3)
C4—C5—H5	119.8	C_{22} C_{21} C_{27}	120.0(2) 121.0(3)
C5-C6-C1	121 5 (3)	$C_{21} - C_{22} - C_{23}$	1209(3)
C5—C6—H6	119.3	C21—C22—H22	119.5
C1—C6—H6	119.3	C23—C22—H22	119.5
N1-C7-C8	110.7 (3)	C_{24} C_{23} C_{22}	119.5 (3)
N1—C7—H7A	109.5	C24—C23—H23	120.3
C8—C7—H7A	109.5	C22—C23—H23	120.3

NI C7 U7D	100 5	C^{12} C^{14} C^{15}	$120 \in (2)$
NI = C / = H/B	109.5	$C_{23} = C_{24} = C_{23}$	120.0(3) 120.8(2)
H_{1}^{A} C_{1}^{A} H_{2}^{A} H_{2}^{A}	109.5	$C_{25} = C_{24} = H$	120.0(2) 118 5 (3)
$\frac{11}{A} = \frac{1}{C} \frac{1}{B}$	100.1	$C_{23} = C_{24} = M$	118.5(3)
$N_2 = C_3 = C_7$ $N_2 = C_8 = H_8 \Delta$	109.6	$C_{24} = C_{25} = C_{20}$	120.6
C7 C8 H8A	109.6	$C_{24} = C_{25} = H_{25}$	120.0
$N_2 C_8 H_{8B}$	109.0	$C_{20} = C_{20} = C$	120.0 121.8(3)
C7 C8 H8B	109.6	$C_{21} = C_{20} = C_{23}$	121.0 (5)
$H_{8} = C_{8} = H_{8} B$	109.0	$C_{21} = C_{20} = H_{20}$	119.1
$N_2 - C_9 - C_{10}$	111 1 (3)	01 - 027 - 02	125.0(3)
N2 - C9 - H9A	109.4	01 - 027 - 02	123.0(3)
C10-C9-H9A	109.4	$0^{2}-0^{2}$	116.9(3)
N2_C9_H9B	109.4	C_{29} C_{28} C_{33}	110.9(3) 118.1(3)
C10-C9-H9B	109.4	$C_{29} - C_{28} - C_{34}$	120.8(3)
$H_{0}A = C_{0} = H_{0}B$	108.0	C_{23} C_{28} C_{34} C_{34}	120.0(3) 121.1(3)
N1 - C10 - C9	110.6 (3)	C_{30} C_{20} C_{30} C_{20} C_{28}	121.1(3) 121.3(3)
N1-C10-H10A	109.5	C_{30} C_{29} H_{29}	110 3
C9-C10-H10A	109.5	$C_{29} = C_{29} = H_{29}$	119.3
N1_C10_H10B	109.5	$C_{20} = C_{20} = C_{20} = C_{20}$	119.5
C_{0} C_{10} H_{10B}	109.5	$C_{31} = C_{30} = C_{29}$	120.5
$H_{10A} = C_{10} = H_{10B}$	109.5	$C_{20} = C_{30} = H_{30}$	120.5
C_{12} C_{11} C_{16}	117.8 (3)	$C_{22} = C_{30} = H_{30}$	120.3 120.8(3)
C12 - C11 - C10	117.8(3) 123.1(3)	C_{32} C_{31} C_{30} C_{31} C_{32} C_{31} C_{32} C_{31} C_{32} C_{31} C_{32} C_{31} C_{31} C_{31} C_{32} C_{31} C_{31} C_{31} C_{32} C_{31} C	120.8(3) 120.2(2)
$C_{12} = C_{11} = N_3$	123.1(3) 1101(3)	$C_{32} = C_{31} = 12$	120.2(2) 1100(3)
$C_{11} = C_{12} = C_{13}$	119.1(3) 120.8(4)	$C_{30} - C_{31} - C_{32}$	119.0(3)
$C_{11} = C_{12} = C_{13}$	120.8 (4)	$C_{31} = C_{32} = C_{33}$	119.5 (5)
$C_{12} = C_{12} = H_{12}$	119.0	$C_{31} = C_{32} = H_{32}$	120.2
$C_{13} - C_{12} - M_2$	119.0 120.1(4)	$C_{33} = C_{32} = C_{32}$	120.2 121 1 (3)
C14 - C13 - C12	120.1 (4)	$C_{32} = C_{33} = C_{28}$	121.1(3)
C12 C12 H13	119.9	$C_{32} = C_{33} = H_{33}$	119.5
$C_{12} = C_{13} = 1113$	119.9 110.7 (4)	$C_{20} = C_{33} = 1155$	119.3 124.4(3)
$C_{15} = C_{14} = C_{15}$	119.7 (4)	03 - 034 - 04	124.4(3) 1107(3)
$C_{13} = C_{14} = H_{14}$	120.1	03 - 034 - 028	119.7(3) 115.0(3)
$C_{13} - C_{14} - H_{14}$	120.1	$C_1 = 0.0000000000000000000000000000000000$	115.9(5) 115.5(2)
C14 - C15 - C10	120.9 (4)	C1 = N1 = C7	113.3(3) 112.3(3)
$C_{14} = C_{15} = 1115$	119.5	$C_1 = N_1 = C_{10}$	112.3(3) 111.1(3)
$C_{10} - C_{13} - H_{13}$	119.5	C_{1} N1 C_{10}	111.1(3) 110.8(3)
$C_{15} = C_{16} = C_{11}$	120.0 (4)	$C_9 = N_2 = C_8$	110.0(3) 112(2)
C11 C16 H16	119.7	C_{9} N_{2} H_{21N}	115(2) 106(2)
$N_{1}^{2} = C_{1}^{17} = C_{1}^{18}$	119.7	$C_0 = N_2 = H_2 N_1$	100(2) 108(2)
$N_{3} = C_{17} = C_{18}$	100.5	$C_{9} = N_{2} = H_{22}N$	100(2)
$N_{3} = C_{17} = H_{17A}$	109.5	$C_0 - N_2 - \Pi_2 Z_N$	110(2) 100(2)
10 - 17 - 17	109.5	$\frac{1}{11} \frac{1}{12} \frac$	109(3) 1160(2)
$N_{3} = C_{17} = H_{17} B$	109.5	$C_{11} = N_3 = C_{17}$	110.9(3) 114.5(3)
$U_{10} U_{17} $	109.5	C10 N2 C17	114.3(3) 1001(3)
$\frac{\Pi}{A} = \frac{\Pi}{D}$	100.1 112.4(3)	C17 - N3 - C17 C18 N4 C20	109.1(3) 111(3(2))
$\frac{104}{10} - \frac{10}{10} - \frac{110}{10}$	112.4 (3)	C19 NA HAIN	111.3(3)
104 - 10 - 110A	109.1	$C_{10} = N4 = \Pi41N$	100(2)
U1/U10H10A	109.1	U_2U IN4 H H H I IN	100(2)

N4—C18—H18B	109.1	C18—N4—H42N	112 (3)
C17—C18—H18B	109.1	C20—N4—H42N	109 (3)
H18A—C18—H18B	107.9	H41N—N4—H42N	109 (3)
C6—C1—C2—C3	-0.2 (5)	C33—C28—C29—C30	2.8 (5)
N1—C1—C2—C3	-179.4 (3)	C34—C28—C29—C30	-175.8 (3)
C1—C2—C3—C4	-0.6 (6)	C28—C29—C30—C31	-1.7 (5)
C2—C3—C4—C5	0.6 (6)	C29—C30—C31—C32	-1.0 (5)
C3—C4—C5—C6	0.2 (6)	C29—C30—C31—I2	179.0 (3)
C4—C5—C6—C1	-1.1 (6)	C30—C31—C32—C33	2.6 (5)
C2-C1-C6-C5	1.1 (5)	I2—C31—C32—C33	-177.5 (3)
N1—C1—C6—C5	-179.7 (3)	C31—C32—C33—C28	-1.4 (5)
N1-C7-C8-N2	56.9 (4)	C29—C28—C33—C32	-1.3 (5)
N2-C9-C10-N1	-56.4 (4)	C34—C28—C33—C32	177.3 (3)
C16—C11—C12—C13	-0.5 (5)	C29—C28—C34—O3	174.3 (3)
N3—C11—C12—C13	177.5 (3)	C33—C28—C34—O3	-4.3 (5)
C11—C12—C13—C14	1.1 (6)	C29—C28—C34—O4	-5.8 (5)
C12—C13—C14—C15	-0.8 (6)	C33—C28—C34—O4	175.6 (3)
C13—C14—C15—C16	-0.2 (6)	C2-C1-N1-C7	7.2 (4)
C14—C15—C16—C11	0.8 (5)	C6—C1—N1—C7	-172.0 (3)
C12-C11-C16-C15	-0.5 (5)	C2-C1-N1-C10	-121.7 (3)
N3—C11—C16—C15	-178.5 (3)	C6-C1-N1-C10	59.2 (4)
N3—C17—C18—N4	56.1 (4)	C8—C7—N1—C1	173.3 (3)
N3—C19—C20—N4	-55.9 (4)	C8—C7—N1—C10	-57.3 (3)
C26—C21—C22—C23	0.4 (5)	C9—C10—N1—C1	-172.1 (3)
C27—C21—C22—C23	-176.6 (3)	C9—C10—N1—C7	56.8 (4)
C21—C22—C23—C24	0.3 (5)	C10-C9-N2-C8	56.7 (4)
C22—C23—C24—C25	-0.6 (5)	C7—C8—N2—C9	-56.5 (4)
C22—C23—C24—I1	176.5 (2)	C12-C11-N3-C19	-3.6 (5)
C23—C24—C25—C26	0.2 (5)	C16—C11—N3—C19	174.3 (3)
I1—C24—C25—C26	-177.0 (3)	C12—C11—N3—C17	125.8 (4)
C22—C21—C26—C25	-0.9 (5)	C16—C11—N3—C17	-56.2 (4)
C27—C21—C26—C25	176.2 (3)	C20-C19-N3-C11	-167.4 (3)
C24—C25—C26—C21	0.6 (5)	C20-C19-N3-C17	60.7 (4)
C26—C21—C27—O1	13.6 (5)	C18—C17—N3—C11	165.9 (3)
C22—C21—C27—O1	-169.4 (3)	C18—C17—N3—C19	-60.9 (4)
C26—C21—C27—O2	-164.6 (3)	C17—C18—N4—C20	-50.0 (4)
C22—C21—C27—O2	12.4 (5)	C19—C20—N4—C18	49.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С9—Н9А…О3	0.97	2.63	3.218 (4)	119
N2—H21N···O1 ⁱ	0.88 (2)	1.94 (2)	2.780 (4)	160 (3)
N2—H22 <i>N</i> ···O4	0.90 (2)	1.74 (2)	2.627 (4)	173 (3)
N4—H41 <i>N</i> ···O1	0.87 (2)	2.63 (3)	3.285 (4)	133 (3)

N4—H41 <i>N</i> ···O2	0.87 (2)	1.78 (2)	2.643 (4)	169 (3)
N4—H42N····O3 ⁱⁱ	0.85 (2)	1.97 (2)	2.809 (4)	169 (4)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*.

4-Phenylpiperazin-1-ium 4-nitrobenzoate (5)

Crystal data

 $C_{10}H_{15}N_2^{+}C_7H_4NO_4^{-}M_r = 329.35$ Monoclinic, $P2_1/c$ a = 13.0683 (9) Å b = 15.7868 (9) Å c = 7.9255 (5) Å $\beta = 95.137$ (6)° V = 1628.52 (18) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan

(CrysalisRED; Oxford Diffraction, 2007) $T_{\min} = 0.790, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.117$ S = 1.103587 reflections 251 parameters 83 restraints Primary atom site location: dual F(000) = 696 $D_x = 1.343 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4084 reflections $\theta = 2.6-27.9^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.48 \times 0.44 \times 0.16 \text{ mm}$

11699 measured reflections 3587 independent reflections 2088 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -12 \rightarrow 17$ $k = -19 \rightarrow 20$ $l = -10 \rightarrow 10$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0406P)^2 + 0.2296P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å⁻³ $\Delta\rho_{min} = -0.13$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F (* 1 (*	1. /	1.	•	• 1 /	• , •	1. 1	,	1 821	
Fractional atomi	c coordinates	ana isotro	nic or ea	mivalent	isotronic a	usniacement	narameters i	(A~ I	I
1 ractional atomic	coordinates	and 150110		100000000000000000000000000000000000000	ison opie e	uspiacement	parameters,	(** /	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.31713 (11)	0.63737 (9)	0.06853 (18)	0.0443 (4)	
N2	0.42384 (12)	0.61812 (10)	0.3978 (2)	0.0497 (4)	
H21	0.4059 (14)	0.5640 (10)	0.412 (2)	0.060*	
H22	0.4650 (13)	0.6358 (11)	0.493 (2)	0.060*	
C1	0.25304 (14)	0.61655 (11)	-0.0794 (2)	0.0451 (5)	

C2	0.16112 (15)	0.66029 (13)	-0.1177 (3)	0.0592 (5)	
H2	0.141977	0.702437	-0.044776	0.071*	
C3	0.09843 (17)	0.64191 (16)	-0.2618 (3)	0.0711 (7)	
Н3	0.037601	0.671965	-0.285079	0.085*	
C4	0.12406 (19)	0.58034 (18)	-0.3709 (3)	0.0786 (7)	
H4	0.080984	0.567936	-0.467562	0.094*	
C5	0.21412 (19)	0.53709 (16)	-0.3360 (3)	0.0769 (7)	
Н5	0.232309	0.495042	-0.409926	0.092*	
C6	0.27853 (16)	0.55500 (13)	-0.1925 (2)	0.0603 (6)	
H6	0.339789	0.525251	-0.171661	0.072*	
C7	0.41360 (13)	0.59047 (11)	0.0927 (2)	0.0482 (5)	
H7A	0.450391	0.596351	-0.007625	0.058*	
H7B	0.398842	0.530823	0.107119	0.058*	
C8	0.48078 (14)	0.62161 (12)	0.2451 (2)	0.0546 (5)	
H8A	0.541877	0.586642	0.261820	0.066*	
H8B	0.502144	0.679404	0.226049	0.066*	
C9	0.33189 (14)	0.67211 (12)	0.3727 (2)	0.0551 (5)	
H9A	0.352164	0.730174	0.353462	0.066*	
H9B	0.294913	0.670810	0.473427	0.066*	
C10	0.26333 (14)	0.64092 (12)	0.2229 (2)	0.0525 (5)	
H10A	0.238174	0.584849	0.247440	0.063*	
H10B	0.204495	0.678299	0.204255	0.063*	
01	0.54550 (10)	0.66915 (8)	0.67450 (17)	0.0659 (4)	
O2	0.62576 (10)	0.55694 (8)	0.58251 (17)	0.0596 (4)	
N3	0.9330 (8)	0.6415 (18)	1.2296 (16)	0.0790 (18)	0.62 (3)
03	0.9183 (12)	0.6862 (8)	1.3520 (19)	0.108 (3)	0.62 (3)
O4	1.0096 (8)	0.5973 (11)	1.2186 (12)	0.095 (2)	0.62 (3)
N3A	0.9219 (15)	0.647 (3)	1.244 (3)	0.082 (3)	0.38 (3)
O3A	0.8898 (15)	0.6659 (14)	1.380 (2)	0.095 (3)	0.38 (3)
O4A	1.0127 (12)	0.6352 (18)	1.223 (2)	0.101 (3)	0.38 (3)
C11	0.70169 (13)	0.62778 (10)	0.8251 (2)	0.0422 (4)	
C12	0.68311 (14)	0.67242 (11)	0.9690 (2)	0.0505 (5)	
H12	0.620157	0.699232	0.974825	0.061*	
C13	0.75707 (16)	0.67767 (12)	1.1045 (3)	0.0591 (5)	
H13	0.744175	0.706602	1.202574	0.071*	
C14	0.84977 (16)	0.63922 (13)	1.0907 (3)	0.0567 (5)	
C15	0.87192 (15)	0.59666 (13)	0.9479 (3)	0.0603 (6)	
H15	0.936114	0.572184	0.940687	0.072*	
C16	0.79686 (14)	0.59106 (12)	0.8155 (2)	0.0523 (5)	
H16	0.810377	0.562065	0.717750	0.063*	
C17	0.61816 (14)	0.61734 (11)	0.6823 (2)	0.0465 (5)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0417 (9)	0.0431 (8)	0.0468 (9)	0.0018 (7)	-0.0038 (7)	0.0015 (7)
N2	0.0525 (10)	0.0434 (9)	0.0505 (10)	0.0009 (7)	-0.0110 (8)	-0.0029 (8)
C1	0.0461 (11)	0.0442 (10)	0.0437 (11)	-0.0081 (8)	-0.0027 (8)	0.0094 (9)

C2	0.0514 (12)	0.0637 (13)	0.0606 (13)	-0.0023 (10)	-0.0057 (10)	0.0071 (11)
C3	0.0526 (14)	0.0923 (17)	0.0657 (16)	-0.0093 (12)	-0.0104 (11)	0.0187 (14)
C4	0.0733 (17)	0.112 (2)	0.0476 (14)	-0.0251 (15)	-0.0141 (12)	0.0100 (14)
C5	0.092 (2)	0.0928 (18)	0.0446 (13)	-0.0129 (14)	-0.0014 (12)	-0.0059 (12)
C6	0.0661 (14)	0.0663 (13)	0.0472 (12)	0.0008 (10)	-0.0018 (10)	0.0001 (11)
C7	0.0458 (11)	0.0493 (10)	0.0489 (12)	0.0022 (9)	0.0014 (8)	0.0022 (9)
C8	0.0457 (12)	0.0565 (12)	0.0603 (13)	0.0002 (9)	-0.0025 (10)	0.0042 (10)
C9	0.0561 (12)	0.0510(11)	0.0562 (12)	0.0111 (9)	-0.0070 (9)	-0.0086 (10)
C10	0.0478 (12)	0.0564 (12)	0.0522 (12)	0.0093 (9)	-0.0026 (9)	-0.0065 (9)
01	0.0597 (9)	0.0622 (8)	0.0710 (10)	0.0133 (7)	-0.0213 (7)	-0.0130 (7)
O2	0.0715 (10)	0.0475 (7)	0.0567 (9)	0.0020 (7)	-0.0117 (7)	-0.0087 (7)
N3	0.068 (4)	0.100 (5)	0.065 (3)	-0.018 (4)	-0.019 (3)	0.005 (3)
03	0.106 (5)	0.126 (5)	0.084 (5)	-0.009 (4)	-0.036 (4)	-0.028 (4)
O4	0.056 (3)	0.140 (6)	0.084 (3)	0.000 (4)	-0.0213 (18)	0.014 (4)
N3A	0.064 (5)	0.105 (6)	0.071 (5)	-0.007 (5)	-0.024 (5)	0.007 (5)
O3A	0.091 (7)	0.124 (7)	0.066 (5)	-0.011 (5)	-0.025 (4)	-0.011 (5)
O4A	0.050 (4)	0.146 (8)	0.102 (5)	-0.018 (6)	-0.023 (3)	0.020 (6)
C11	0.0450 (11)	0.0361 (9)	0.0444 (11)	-0.0045 (8)	-0.0029 (8)	0.0032 (8)
C12	0.0491 (12)	0.0475 (11)	0.0538 (12)	0.0021 (9)	-0.0014 (9)	-0.0022 (9)
C13	0.0690 (15)	0.0557 (12)	0.0510 (12)	-0.0014 (11)	-0.0046 (10)	-0.0104 (10)
C14	0.0520 (13)	0.0599 (13)	0.0550 (13)	-0.0116 (10)	-0.0127 (10)	0.0058 (10)
C15	0.0414 (12)	0.0722 (14)	0.0664 (15)	0.0017 (10)	-0.0008 (10)	0.0060 (12)
C16	0.0500 (12)	0.0564 (12)	0.0500 (12)	0.0033 (10)	0.0016 (9)	-0.0033 (9)
C17	0.0498 (12)	0.0389 (10)	0.0492 (12)	-0.0040 (9)	-0.0044 (9)	0.0045 (9)

Geometric parameters (Å, °)

N1—C1	1.417 (2)	С9—Н9А	0.9700
N1—C7	1.460 (2)	С9—Н9В	0.9700
N1-C10	1.466 (2)	C10—H10A	0.9700
N2-C9	1.472 (2)	C10—H10B	0.9700
N2—C8	1.477 (3)	O1—C17	1.250 (2)
N2—H21	0.896 (14)	O2—C17	1.248 (2)
N2—H22	0.931 (14)	N3—O4	1.229 (10)
C1—C6	1.383 (3)	N3—O3	1.229 (9)
C1—C2	1.395 (3)	N3—C14	1.477 (8)
C2—C3	1.376 (3)	N3A—O4A	1.229 (10)
С2—Н2	0.9300	N3A—O3A	1.229 (9)
C3—C4	1.363 (3)	N3A—C14	1.474 (14)
С3—Н3	0.9300	C11—C16	1.380 (2)
C4—C5	1.367 (3)	C11—C12	1.381 (2)
C4—H4	0.9300	C11—C17	1.510 (2)
C5—C6	1.383 (3)	C12—C13	1.381 (3)
С5—Н5	0.9300	C12—H12	0.9300
С6—Н6	0.9300	C13—C14	1.368 (3)
С7—С8	1.510(2)	C13—H13	0.9300
C7—H7A	0.9700	C14—C15	1.370 (3)
С7—Н7В	0.9700	C15—C16	1.374 (3)

	C8—H8A	0.9700	С15—Н15	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—H8B	0.9700	C16—H16	0.9300
C1-N1-C7 115.50 (14) N2-C9-H9A 109.7 C1-N1-C10 114.03 (14) C10-C9-H9A 109.7 C7-N1-C10 112.51 (13) N2-C9-H9B 109.7 C9-N2-C8 109.43 (15) C10-C9-H9B 109.7 C9-N2-C11 110.4 (12) H9A-C9-H9B 108.2 C8-N2-H21 110.0 (11) N1-C10-C9 112.01 (16) C9-N2-H22 110.0 (11) N1-C10-H10A 109.2 C6-C1-C2 117.37 (17) C9-C10-H10B 109.2 C6-C1-N1 122.71 (16) H10A-C10-H10B 107.9 C2-C1 120.9 (2) O4-N3-O3 124.7 (4) C3-C2-C1 120.9 (2) O4-N3-C14 116.4 (9) C1-C2-H2 119.6 O3-N3-C14 116.4 (9) C1-C2-H2 119.6 O3-N3-C14 116.4 (9) C4-C3-C2 121.0 (2) O4A-N3A-C14 120.0 (12) C2-C3-H3 119.5 C16-C11-C12 119.07 (16) C3-C4-H4 120.5 C12-C11-C17 120.42 (17) C3-C4-H4	C9—C10	1.504 (2)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C1—N1—C7	115.50 (14)	N2—C9—H9A	109.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C1—N1—C10	114.03 (14)	С10—С9—Н9А	109.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—N1—C10	112.51 (13)	N2—C9—H9B	109.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N2—C8	109.43 (15)	С10—С9—Н9В	109.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N2—H21	110.4 (12)	H9A—C9—H9B	108.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N2—H21	107.1 (13)	N1—C10—C9	112.01 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—N2—H22	110.0 (11)	N1—C10—H10A	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N2—H22	110.9 (12)	C9—C10—H10A	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H21—N2—H22	108.9 (16)	N1—C10—H10B	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C1-C2	117.37 (17)	C9—C10—H10B	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C1-N1	122.71 (16)	H10A—C10—H10B	107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 - C_1 - N_1$	119 91 (17)	04-N3-03	124 7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3} C_{2} C_{1}	1209(2)	04 - N3 - C14	12.0.7(1) 118.9(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{3} C_{2} H_{2}	119.6	03 - N3 - C14	116.9(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{1} = C_{2} = H_{2}$	119.0	$O_{1} O_{1} O_{1$	110.4(9) 124.6(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_1 - C_2 - C_2$	119.0 121.0(2)	$O_{A} = N_{A} = O_{A}$	124.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4 - C3 - C2	121.0 (2)	O4A - N5A - C14	113.4(12) 120.0(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_4 = C_3 = H_3$	119.5	O_{A} O_{A	120.0(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_2 = C_3 = H_3$	119.5	C16-C11-C12	119.07 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_3 - C_4 - C_5$	118.9 (2)		120.49 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—H4	120.5	C12—C11—C17	120.42 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—H4	120.5	C11—C12—C13	120.68 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6	120.9 (2)	C11—C12—H12	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—H5	119.5	C13—C12—H12	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С5—Н5	119.5	C14—C13—C12	118.33 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C1	120.9 (2)	C14—C13—H13	120.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С6—Н6	119.6	С12—С13—Н13	120.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С1—С6—Н6	119.6	C13—C14—C15	122.52 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C7—C8	111.92 (15)	C13—C14—N3A	113.8 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C7—H7A	109.2	C15—C14—N3A	123.7 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С7—Н7А	109.2	C13—C14—N3	121.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C7—H7B	109.2	C15—C14—N3	115.6 (5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С7—Н7В	109.2	C14—C15—C16	118.29 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H7A—C7—H7B	107.9	C14—C15—H15	120.9
N2—C8—H8A109.6C15—C16—C11121.07 (19)C7—C8—H8A109.6C15—C16—H16119.5N2—C8—H8B109.6C11—C16—H16119.5C7—C8—H8B109.6O2—C17—O1124.86 (16)H8A—C8—H8B108.2O2—C17—C11117.72 (16)N2—C9—C10109.78 (15)O1—C17—C11117.41 (17)C7—N1—C1—C61.1 (2)C11—C12—C13—C141.5 (3)C10—N1—C1—C6-131.49 (19)C12—C13—C14—C150.6 (3)C7—N1—C1—C2-177.35 (16)C12—C13—C14—N3A-179 (2)	N2—C8—C7	110.09 (16)	С16—С15—Н15	120.9
C7-C8-H8A 109.6 $C15-C16-H16$ 119.5 $N2-C8-H8B$ 109.6 $C15-C16-H16$ 119.5 $C7-C8-H8B$ 109.6 $C11-C16-H16$ 119.5 $C7-C8-H8B$ 109.6 $02-C17-O1$ 124.86 (16) $H8A-C8-H8B$ 108.2 $02-C17-C11$ 117.72 (16) $N2-C9-C10$ 109.78 (15) $O1-C17-C11$ 117.41 (17) $C7-N1-C1-C6$ 1.1 (2) $C11-C12-C13-C14$ 1.5 (3) $C10-N1-C1-C6$ -131.49 (19) $C12-C13-C14-C15$ 0.6 (3) $C7-N1-C1-C2$ -177.35 (16) $C12-C13-C14-N3A$ -179 (2)	N2-C8-H8A	109.6	C15—C16—C11	121.07 (19)
N2—C8—H8B109.6C11—C16—H16119.5C7—C8—H8B109.6O2—C17—O1124.86 (16)H8A—C8—H8B108.2O2—C17—C11117.72 (16)N2—C9—C10109.78 (15)O1—C17—C11117.41 (17)C7—N1—C1—C61.1 (2)C11—C12—C13—C141.5 (3)C10—N1—C1—C6-131.49 (19)C12—C13—C14—C150.6 (3)C7—N1—C1—C2-177.35 (16)C12—C13—C14—N3A-179 (2)	C7—C8—H8A	109.6	C15—C16—H16	119.5
R2 = C0 = H0D $107.0 = 107.0 = 110 = 1110 = 110.0 =$	N2-C8-H8B	109.6	C_{11} C_{16} H_{16}	119.5
C7-C6 107.0 $02-C17-C1$ 124.00 (10) $H8A-C8-H8B$ 108.2 $02-C17-C11$ 117.72 (16) $N2-C9-C10$ 109.78 (15) $01-C17-C11$ 117.41 (17) $C7-N1-C1-C6$ 1.1 (2) $C11-C12-C13-C14$ 1.5 (3) $C10-N1-C1-C6$ -131.49 (19) $C12-C13-C14-C15$ 0.6 (3) $C7-N1-C1-C2$ -177.35 (16) $C12-C13-C14-N3A$ -179 (2)	C7_C8_H8B	109.6	$0^{2}-0^{1}$	124.86 (16)
N2-C9-C10 103.2 $02-C1/-C11$ 117.72 (10) $N2-C9-C10$ 109.78 (15) $01-C17-C11$ 117.41 (17) $C7-N1-C1-C6$ 1.1 (2) $C11-C12-C13-C14$ 1.5 (3) $C10-N1-C1-C6$ -131.49 (19) $C12-C13-C14-C15$ 0.6 (3) $C7-N1-C1-C2$ -177.35 (16) $C12-C13-C14-N3A$ -179 (2)		109.0	02 - C17 - C11	117 77 (16)
N2-C9-C10 $109.78(13)$ $O1-C1/-C11$ $117.41(17)$ $C7-N1-C1-C6$ $1.1(2)$ $C11-C12-C13-C14$ $1.5(3)$ $C10-N1-C1-C6$ $-131.49(19)$ $C12-C13-C14-C15$ $0.6(3)$ $C7-N1-C1-C2$ $-177.35(16)$ $C12-C13-C14-N3A$ $-179(2)$	$N_2 = C_0 = C_{10}$	100.2	01 - 017 - 011	117.72(10) 117.41(17)
C7—N1—C1—C6 1.1 (2) C11—C12—C13—C14 1.5 (3) C10—N1—C1—C6 -131.49 (19) C12—C13—C14—C15 0.6 (3) C7—N1—C1—C2 -177.35 (16) C12—C13—C14—N3A -179 (2)	112-07-010	107.70 (13)		11/.41(1/)
C10—N1—C1—C6 -131.49 (19) C12—C13—C14—C15 0.6 (3) C7—N1—C1—C2 -177.35 (16) C12—C13—C14—N3A -179 (2)	C7—N1—C1—C6	1.1 (2)	C11—C12—C13—C14	1.5 (3)
C7—N1—C1—C2 –177.35 (16) C12—C13—C14—N3A –179 (2)	C10—N1—C1—C6	-131.49 (19)	C12—C13—C14—C15	0.6 (3)
	C7—N1—C1—C2	-177.35 (16)	C12—C13—C14—N3A	-179 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.0(2) 0.6(3) 179.11(18) 0.2(3) -0.6(3) 0.1(4) 0.7(3) -1.0(3) -179.50(18) 175.30(15) -51.4(2) -60.00(19) 55.4(2) 60.4(2) -173.98(14) 52.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.8 (14) -160 (3) 18 (5) 21 (5) -161 (3) 171.1 (17) -7 (3) -9 (3) 173.1 (18) -1.5 (3) 177 (2) 178.8 (13) 0.4 (3) 1.5 (3) -176.86 (17) 20.4 (3)
C1_N1_C10_C9	-173.98 (14)	C17-C11-C16-C15	-176.86 (17)
C7_N1_C10_C9	52.0 (2)	C16-C11-C17-O2	20.4 (3)
N2_C9_C10_N1	-56.4 (2)	C12-C11-C17-O2	-157.93 (17)
C16_C11_C12_C13	-2.5 (3)	C16-C11-C17-O1	-160.75 (18)
C17_C11_C12_C13	175.88 (17)	C12-C11-C17-O1	20.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H21···O2 ⁱ	0.90(1)	1.96 (2)	2.846 (2)	173 (2)
N2—H22…O1	0.93 (1)	1.78 (2)	2.7135 (19)	179 (2)
N2—H22…O2	0.93 (1)	2.49 (2)	3.057 (2)	120 (1)
C8—H8 <i>B</i> ···O1 ⁱⁱ	0.97	2.50	3.468 (2)	176
C10—H10 B ····O4 A^{iii}	0.97	2.61	3.276 (15)	126

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, -*y*+3/2, *z*-1/2; (iii) *x*-1, *y*, *z*-1.

4-Phenylpiperazin-1-ium 2-hydroxy-4,6-dinitrophenolate (6)

Crystal data	
$C_{10}H_{15}N_2^+ \cdot C_7H_3N_2O_7^-$	F(000) = 816
$M_r = 390.35$	$D_{\rm x} = 1.444 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.779 (3) Å	Cell parameters from 1200 reflections
b = 7.411 (3) Å	$\theta = 2.6 - 27.9^{\circ}$
c = 31.357(9) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 96.82 (3)^{\circ}$	T = 293 K
V = 1794.9 (11) Å ³	Prism, yellow
Z = 4	$0.20 \times 0.18 \times 0.12 \text{ mm}$
Data collection	
Oxford Diffraction X calibur with Sapphire	Absorption correction: multi-scan
CCD	(CrysalisRED; Oxford Diffraction, 2007)
diffractometer	$T_{\min} = 0.959, \ T_{\max} = 1.000$
Radiation source: Enhance (Mo) X-ray Source	7737 measured reflections
Rotation method data acquisition using ω scans.	3882 independent reflections
	1590 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.055$	$k = -9 \rightarrow 9$
$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$	$l = -40 \rightarrow 26$
$h = -9 \rightarrow 9$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.085$	Hydrogen site location: mixed
$wR(F^2) = 0.155$	H atoms treated by a mixture of independent
S = 1.03	and constrained refinement
3882 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2 + 0.7929P]$
321 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
288 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: dual	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
-	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.2174 (3)	0.5690 (4)	0.40623 (8)	0.0678 (9)	
O2	0.3815 (3)	0.5542 (4)	0.46760 (8)	0.0644 (9)	
H2O	0.372 (5)	0.581 (6)	0.4933 (7)	0.077*	
O3	0.2737 (3)	0.6604 (4)	0.53481 (7)	0.0538 (8)	
N3	0.0028 (7)	0.8237 (11)	0.57913 (17)	0.0504 (16)	0.690 (11)
O4	0.1059(7)	0.7315 (9)	0.60356 (18)	0.069 (2)	0.690 (11)
05	-0.0948 (7)	0.9353 (9)	0.5930(2)	0.0602 (19)	0.690 (11)
N3A	-0.0015 (11)	0.825 (2)	0.5769 (3)	0.053 (3)	0.310 (11)
O4A	0.1438 (10)	0.818 (2)	0.5983 (4)	0.065 (4)	0.310(11)
O5A	-0.1263 (11)	0.898 (2)	0.5910 (5)	0.053 (4)	0.310 (11)
06	-0.4591 (3)	0.9346 (4)	0.45916 (8)	0.0725 (9)	
O7	-0.3746 (3)	0.8095 (4)	0.40327 (8)	0.0738 (9)	
N4	-0.3514 (4)	0.8515 (5)	0.44113 (10)	0.0517 (9)	
C11	0.0978 (4)	0.6775 (5)	0.46853 (11)	0.0390 (9)	
C12	0.1281 (4)	0.7048 (5)	0.51389 (11)	0.0418 (9)	
C13	-0.0142 (4)	0.7862 (5)	0.53288 (10)	0.0400 (9)	
C14	-0.1672 (4)	0.8346 (5)	0.50932 (11)	0.0398 (9)	
H14	-0.254887	0.888430	0.522579	0.048*	
C15	-0.1890 (4)	0.8024 (5)	0.46600 (11)	0.0393 (9)	
C16	-0.0579 (4)	0.7232 (5)	0.44552 (11)	0.0413 (10)	
H16	-0.075920	0.701222	0.416128	0.050*	
C17	0.2359 (5)	0.5974 (5)	0.44453 (12)	0.0477 (10)	
N1	0.6156 (4)	0.6931 (4)	0.70321 (9)	0.0467 (8)	
N2	0.4692 (4)	0.6095 (6)	0.61759 (11)	0.0666 (11)	
H21	0.387 (4)	0.620 (5)	0.5958 (9)	0.080*	

H22	0.548 (4)	0.538 (4)	0.6091 (11)	0.080*	
C1	0.7285 (5)	0.6958 (7)	0.74341 (14)	0.0502 (14)	0.687 (10)
C2	0.8534 (7)	0.8298 (8)	0.75105 (14)	0.0631 (17)	0.687 (10)
H2A	0.863427	0.918478	0.730495	0.076*	0.687 (10)
C3	0.9631 (6)	0.8314 (9)	0.78940 (16)	0.0671 (17)	0.687 (10)
H3A	1.046662	0.921115	0.794514	0.081*	0.687 (10)
C4	0.9481 (6)	0.6989 (9)	0.82012 (14)	0.0613 (17)	0.687 (10)
H4A	1.021562	0.699993	0.845781	0.074*	0.687 (10)
C5	0.8233 (7)	0.5649 (7)	0.81248 (16)	0.0652 (17)	0.687 (10)
H5A	0.813228	0.476232	0.833028	0.078*	0.687 (10)
C6	0.7135 (7)	0.5633 (7)	0.77412 (17)	0.0585 (16)	0.687 (10)
H6A	0.629992	0.473592	0.769009	0.070*	0.687 (10)
C1A	0.7263 (12)	0.7159 (17)	0.7414 (3)	0.054 (2)	0.313 (10)
C2A	0.8039 (15)	0.8840 (16)	0.7482 (3)	0.062 (2)	0.313 (10)
H2AA	0.782198	0.974477	0.727712	0.075*	0.313 (10)
C3A	0.9139 (16)	0.9170 (17)	0.7856 (4)	0.066 (2)	0.313 (10)
H3AA	0.965778	1.029454	0.790219	0.080*	0.313 (10)
C4A	0.9463 (13)	0.782 (2)	0.8163 (3)	0.064 (2)	0.313 (10)
H4AA	1.019913	0.803779	0.841325	0.076*	0.313 (10)
C5A	0.8688 (16)	0.6136 (17)	0.8094 (4)	0.059 (2)	0.313 (10)
H5AA	0.890467	0.523125	0.829924	0.070*	0.313 (10)
C6A	0.7588 (16)	0.5806 (15)	0.7720 (4)	0.059 (2)	0.313 (10)
H6AA	0.706886	0.468144	0.767417	0.071*	0.313 (10)
C7	0.5365 (5)	0.5189 (6)	0.69241 (12)	0.0624 (12)	
H7A	0.488024	0.471054	0.717189	0.075*	
H7B	0.624264	0.435314	0.685038	0.075*	
C8	0.3961 (5)	0.5342 (6)	0.65535 (12)	0.0674 (13)	
H8A	0.346810	0.416157	0.648371	0.081*	
H8B	0.304749	0.612321	0.663122	0.081*	
C9	0.5459 (5)	0.7883 (6)	0.62835 (12)	0.0652 (13)	
H9A	0.456601	0.870777	0.635373	0.078*	
H9B	0.595482	0.836462	0.603764	0.078*	
C10	0.6842 (5)	0.7725 (6)	0.66592 (12)	0.0645 (13)	
H10A	0.777785	0.697905	0.657962	0.077*	
H10B	0.730882	0.891256	0.673425	0.077*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0641 (18)	0.097 (2)	0.0424 (17)	0.0242 (16)	0.0060 (13)	-0.0135 (18)
O2	0.0490 (17)	0.099 (2)	0.0463 (17)	0.0219 (16)	0.0089 (14)	0.0024 (19)
03	0.0412 (15)	0.077 (2)	0.0425 (16)	0.0074 (14)	0.0000 (12)	0.0002 (15)
N3	0.047 (3)	0.068 (4)	0.037 (3)	-0.003 (3)	0.006 (3)	-0.006 (3)
O4	0.062 (3)	0.104 (5)	0.040 (3)	0.015 (3)	0.000 (2)	0.005 (3)
05	0.059 (3)	0.070 (4)	0.053 (3)	-0.002 (3)	0.015 (3)	-0.018 (3)
N3A	0.045 (5)	0.072 (6)	0.042 (6)	-0.001 (5)	0.003 (5)	-0.006 (6)
O4A	0.053 (5)	0.093 (8)	0.045 (6)	0.009 (6)	-0.008 (5)	-0.005 (6)
O5A	0.049 (5)	0.078 (8)	0.032 (6)	-0.002 (5)	0.006 (5)	-0.021 (6)

06	0.0612 (18)	0.096(2)	0.0589 (19)	0.0335 (17)	0.0024 (14)	-0.0098(18)
07	0.074 (2)	0.103 (3)	0.0416 (17)	0.0259 (17)	-0.0089(13)	-0.0162(18)
N4	0.049 (2)	0.059 (2)	0.047 (2)	0.0105 (18)	0.0045 (16)	-0.004(2)
C11	0.041(2)	0.039(2)	0.037(2)	0.0007 (18)	0.0059 (17)	0.001 (2)
C12	0.040 (2)	0.044 (2)	0.042 (2)	-0.0043(19)	0.0037 (17)	-0.001(2)
C13	0.048 (2)	0.043 (3)	0.030(2)	-0.0043(19)	0.0082 (17)	-0.007(2)
C14	0.041 (2)	0.036 (2)	0.044 (2)	0.0019 (18)	0.0103 (17)	-0.002(2)
C15	0.038 (2)	0.043 (2)	0.037 (2)	0.0041 (18)	0.0025 (16)	-0.002(2)
C16	0.051 (2)	0.040 (3)	0.032 (2)	0.0016 (19)	0.0056 (17)	-0.0001(19)
C17	0.042 (2)	0.056 (3)	0.046 (3)	0.006 (2)	0.0065 (19)	0.001 (2)
N1	0.0485 (18)	0.055 (2)	0.0368 (18)	-0.0090(17)	0.0049 (14)	0.0003 (18)
N2	0.054 (2)	0.103 (3)	0.042 (2)	0.022 (2)	-0.0011 (16)	-0.015 (2)
C1	0.047 (3)	0.067 (3)	0.038 (3)	-0.006 (3)	0.010 (2)	-0.006(3)
C2	0.061 (3)	0.076 (4)	0.050 (3)	-0.016 (3)	-0.004(3)	0.007 (3)
C3	0.065 (3)	0.080 (4)	0.055 (3)	-0.019 (3)	-0.001 (3)	0.008 (3)
C4	0.069 (3)	0.076 (4)	0.038 (3)	-0.015 (3)	0.003 (2)	-0.004 (3)
C5	0.064 (3)	0.089 (4)	0.043 (3)	-0.020(3)	0.011 (3)	0.009 (3)
C6	0.057 (3)	0.081 (3)	0.038 (3)	-0.014 (3)	0.008 (2)	0.007 (3)
C1A	0.051 (4)	0.075 (4)	0.037 (4)	-0.011 (4)	0.011 (4)	0.003 (4)
C2A	0.058 (4)	0.081 (5)	0.049 (4)	-0.014 (4)	0.010 (4)	-0.004 (4)
C3A	0.062 (4)	0.084 (5)	0.053 (4)	-0.013 (4)	0.007 (4)	-0.001 (4)
C4A	0.064 (4)	0.084 (5)	0.043 (4)	-0.025 (4)	0.011 (4)	0.002 (4)
C5A	0.060 (4)	0.080 (4)	0.037 (4)	-0.023 (4)	0.008 (4)	0.009 (4)
C6A	0.057 (4)	0.079 (4)	0.041 (4)	-0.020 (4)	0.005 (4)	0.005 (4)
C7	0.073 (3)	0.067 (3)	0.046 (3)	-0.008(2)	-0.001 (2)	0.003 (2)
C8	0.069 (3)	0.081 (4)	0.051 (3)	-0.013 (2)	0.002 (2)	-0.009 (3)
C9	0.059 (3)	0.086 (4)	0.050 (3)	-0.001 (3)	0.0037 (19)	0.018 (3)
C10	0.058 (3)	0.089 (4)	0.045 (2)	-0.013 (2)	0.0022 (19)	0.015 (3)

Geometric parameters (Å, °)

01—C17	1.211 (4)	C1—C6	1.3900	
O2—C17	1.309 (4)	C2—C3	1.3900	
O2—H2O	0.841 (18)	C2—H2A	0.9300	
O3—C12	1.283 (4)	C3—C4	1.3900	
N3—O5	1.236 (4)	С3—НЗА	0.9300	
N3—O4	1.246 (5)	C4—C5	1.3900	
N3—C13	1.467 (6)	C4—H4A	0.9300	
N3A—O5A	1.237 (4)	C5—C6	1.3900	
N3A—O4A	1.246 (5)	C5—H5A	0.9300	
N3A—C13	1.401 (10)	С6—Н6А	0.9300	
O6—N4	1.230 (3)	C1A—C2A	1.3900	
O7—N4	1.220 (3)	C1A—C6A	1.3900	
N4—C15	1.450 (4)	C2A—C3A	1.3900	
C11—C16	1.376 (4)	C2A—H2AA	0.9300	
C11—C12	1.428 (4)	C3A—C4A	1.3900	
C11—C17	1.505 (5)	СЗА—НЗАА	0.9300	
C12—C13	1.449 (5)	C4A—C5A	1.3900	

C13—C14	1.372 (4)	С4А—Н4АА	0.9300
C14—C15	1.370 (4)	C5A—C6A	1.3900
C14—H14	0.9300	С5А—Н5АА	0.9300
C15—C16	1.398 (4)	С6А—Н6АА	0.9300
C16—H16	0.9300	С7—С8	1.501 (5)
N1—C1A	1.399 (9)	C7—H7A	0.9700
N1—C1	1.448 (5)	С7—Н7В	0.9700
N1—C7	1.453 (5)	C8—H8A	0.9700
N1—C10	1.465 (4)	C8—H8B	0.9700
N2—C9	1.476 (5)	C9—C10	1.503 (5)
N2—C8	1.482 (5)	С9—Н9А	0.9700
N2—H21	0.884 (18)	С9—Н9В	0.9700
N2—H22	0.874 (18)	C10—H10A	0.9700
C1—C2	1.3900	C10—H10B	0.9700
С17—О2—Н2О	108 (3)	С4—С3—НЗА	120.0
O5—N3—O4	121.9 (4)	C5—C4—C3	120.0
O5—N3—C13	119.2 (5)	C5—C4—H4A	120.0
O4—N3—C13	118.7 (5)	C3—C4—H4A	120.0
O5A—N3A—O4A	121.8 (6)	C6—C5—C4	120.0
O5A—N3A—C13	118.4 (8)	С6—С5—Н5А	120.0
O4A—N3A—C13	118.4 (8)	С4—С5—Н5А	120.0
O7—N4—O6	123.1 (3)	C5—C6—C1	120.0
O7—N4—C15	118.5 (3)	С5—С6—Н6А	120.0
O6—N4—C15	118.4 (3)	С1—С6—Н6А	120.0
C16—C11—C12	121.2 (3)	C2A—C1A—C6A	120.0
C16—C11—C17	118.1 (3)	C2A—C1A—N1	116.8 (8)
C12—C11—C17	120.7 (3)	C6A—C1A—N1	123.1 (8)
O3—C12—C11	120.3 (3)	C1A—C2A—C3A	120.0
O3—C12—C13	124.6 (3)	C1A—C2A—H2AA	120.0
C11—C12—C13	115.1 (3)	СЗА—С2А—Н2АА	120.0
C14—C13—N3A	115.6 (4)	C4A—C3A—C2A	120.0
C14—C13—C12	122.9 (3)	С4А—С3А—НЗАА	120.0
N3A—C13—C12	121.5 (4)	С2А—С3А—НЗАА	120.0
C14—C13—N3	117.0 (3)	C3A—C4A—C5A	120.0
C12—C13—N3	120.1 (3)	СЗА—С4А—Н4АА	120.0
C15—C14—C13	119.1 (3)	С5А—С4А—Н4АА	120.0
C15—C14—H14	120.5	C4A—C5A—C6A	120.0
C13—C14—H14	120.5	С4А—С5А—Н5АА	120.0
C14—C15—C16	121.2 (3)	С6А—С5А—Н5АА	120.0
C14—C15—N4	119.1 (3)	C5A—C6A—C1A	120.0
C16—C15—N4	119.7 (3)	С5А—С6А—Н6АА	120.0
C11—C16—C15	120.5 (3)	С1А—С6А—Н6АА	120.0
C11—C16—H16	119.8	N1—C7—C8	111.2 (3)
C15—C16—H16	119.8	N1—C7—H7A	109.4
O1—C17—O2	119.9 (3)	С8—С7—Н7А	109.4
O1—C17—C11	123.8 (3)	N1—C7—H7B	109.4
O2—C17—C11	116.2 (3)	С8—С7—Н7В	109.4

C1A—N1—C7	120.5 (6)	H7A—C7—H7B	108.0
C1—N1—C7	114.3 (3)	N2—C8—C7	109.5 (3)
C1A—N1—C10	112.9 (5)	N2—C8—H8A	109.8
C1—N1—C10	116.6 (3)	С7—С8—Н8А	109.8
C7—N1—C10	110.8 (3)	N2—C8—H8B	109.8
C9—N2—C8	109.8 (3)	C7—C8—H8B	109.8
C9—N2—H21	109 (3)	H8A—C8—H8B	108.2
C8—N2—H21	110 (3)	N2—C9—C10	110.0 (4)
C9—N2—H22	109 (3)	N2—C9—H9A	109.7
C8—N2—H22	111 (3)	С10—С9—Н9А	109.7
H21—N2—H22	107 (4)	N2—C9—H9B	109.7
C2—C1—C6	120.0	С10—С9—Н9В	109.7
C2—C1—N1	119.9 (3)	H9A—C9—H9B	108.2
C6—C1—N1	120.1 (3)	N1—C10—C9	111.2 (3)
C3—C2—C1	120.0	N1—C10—H10A	109.4
C3—C2—H2A	120.0	C9—C10—H10A	109.4
C1—C2—H2A	120.0	N1—C10—H10B	109.4
C2—C3—C4	120.0	C9—C10—H10B	109.4
С2—С3—НЗА	120.0	H10A—C10—H10B	108.0
C16—C11—C12—O3	179.6 (3)	C7—N1—C1—C2	159.1 (3)
C17—C11—C12—O3	-0.4 (5)	C10—N1—C1—C2	27.7 (5)
C16—C11—C12—C13	-1.2 (5)	C7—N1—C1—C6	-20.2(4)
C17—C11—C12—C13	178.8 (3)	C10—N1—C1—C6	-151.6 (3)
O5A—N3A—C13—C14	0.4 (19)	C6—C1—C2—C3	0.0
O4A—N3A—C13—C14	-166.2 (13)	N1—C1—C2—C3	-179.3 (4)
O5A—N3A—C13—C12	178.7 (12)	C1—C2—C3—C4	0.0
O4A—N3A—C13—C12	12 (2)	C2—C3—C4—C5	0.0
O3—C12—C13—C14	179.0 (4)	C3—C4—C5—C6	0.0
C11—C12—C13—C14	-0.2 (5)	C4—C5—C6—C1	0.0
O3—C12—C13—N3A	0.8 (10)	C2—C1—C6—C5	0.0
C11—C12—C13—N3A	-178.4 (9)	N1—C1—C6—C5	179.3 (4)
O3—C12—C13—N3	0.2 (6)	C7—N1—C1A—C2A	176.7 (5)
C11—C12—C13—N3	-179.0 (5)	C10—N1—C1A—C2A	42.6 (8)
O5—N3—C13—C14	-18.9 (9)	C7—N1—C1A—C6A	-4.1 (9)
O4—N3—C13—C14	155.4 (6)	C10—N1—C1A—C6A	-138.2 (6)
O5—N3—C13—C12	160.0 (6)	C6A—C1A—C2A—C3A	0.0
O4—N3—C13—C12	-25.7 (9)	N1—C1A—C2A—C3A	179.2 (8)
N3A—C13—C14—C15	179.4 (9)	C1A—C2A—C3A—C4A	0.0
C12—C13—C14—C15	1.1 (5)	C2A—C3A—C4A—C5A	0.0
N3—C13—C14—C15	179.9 (5)	C3A—C4A—C5A—C6A	0.0
C13—C14—C15—C16	-0.6 (6)	C4A—C5A—C6A—C1A	0.0
C13—C14—C15—N4	179.3 (3)	C2A—C1A—C6A—C5A	0.0
O7—N4—C15—C14	-174.3 (4)	N1—C1A—C6A—C5A	-179.2 (9)
O6—N4—C15—C14	6.1 (5)	C1A—N1—C7—C8	168.3 (6)
O7—N4—C15—C16	5.6 (5)	C1—N1—C7—C8	168.9 (3)
O6—N4—C15—C16	-174.0 (3)	C10—N1—C7—C8	-56.9 (4)
C12—C11—C16—C15	1.7 (5)	C9—N2—C8—C7	-58.8 (4)

C17—C11—C16—C15	-178.3 (3)	N1—C7—C8—N2	58.3 (5)
C14—C15—C16—C11	-0.8 (6)	C8—N2—C9—C10	58.3 (4)
N4-C15-C16-C11	179.3 (3)	C1A—N1—C10—C9	-165.4 (6)
C16—C11—C17—O1	-0.9 (6)	C1—N1—C10—C9	-170.9 (4)
C12—C11—C17—O1	179.1 (4)	C7—N1—C10—C9	56.1 (5)
C16—C11—C17—O2	-179.4 (3)	N2-C9-C10-N1	-57.0 (5)
C12—C11—C17—O2	0.6 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
02—H2 <i>O</i> ···O3	0.84 (2)	1.69 (2)	2.487 (3)	156 (4)
N2—H21…O3	0.88 (2)	2.03 (2)	2.873 (4)	159 (3)
N2—H21…O4	0.88 (2)	2.37 (3)	2.950 (6)	123 (3)
N2—H21…O4A	0.88 (2)	2.40 (4)	2.966 (10)	122 (3)
N2—H22···O1 ⁱ	0.87 (2)	2.10(2)	2.947 (4)	164 (4)
N2—H22···O2 ⁱ	0.87 (2)	2.62 (3)	3.270 (4)	132 (3)
C8—H8A····O7 ⁱⁱ	0.97	2.36	3.134 (5)	137
C8—H8 <i>B</i> ···O4	0.97	2.44	3.000 (6)	116
С9—Н9А…О4А	0.97	2.60	3.166 (8)	118
C9—H9 <i>B</i> ···O5 ⁱⁱⁱ	0.97	2.58	3.311 (8)	132
С9—Н9 <i>В</i> …О5 <i>А</i> ^{ііі}	0.97	2.29	3.040 (13)	133

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*.

4-Phenylpiperazin-1-ium 2-hydroxy-4,6-dinitrophenolate (7)

Crystal data

$C_{10}H_{15}N_2^+ \cdot C_7H_3N_2O_6^-$	Z = 2
$M_r = 374.35$	F(000) = 392
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.379 {\rm ~Mg} {\rm ~m}^{-3}$
a = 5.707 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 12.505 (3) Å	Cell parameters from 838 reflections
c = 13.116 (3) Å	$\theta = 3.1 - 28.1^{\circ}$
$\alpha = 97.41 \ (2)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 93.28 \ (2)^{\circ}$	T = 293 K
$\gamma = 102.82 \ (2)^{\circ}$	Needle, yellow
V = 901.5 (4) Å ³	$0.48 \times 0.08 \times 0.04 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire	7800 measured reflections
CCD	7800 independent reflections
diffractometer	2647 reflections with $I > 2\sigma(I)$
Radiation source: Enhance (Mo) X-ray Source	$R_{\rm int} = 0.087$
Rotation method data acquisition using ω scans.	$\theta_{\rm max} = 28.1^{\circ}, \theta_{\rm min} = 3.2^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(CrysalisRED; Oxford Diffraction, 2007)	$k = -16 \rightarrow 15$
$T_{\min} = 0.647, \ T_{\max} = 1.000$	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.147$	Secondary atom site location: difference Fourier map Hydrogen site location: mixed
$wR(F^2) = 0.297$ S = 1.13	H atoms treated by a mixture of independent
7800 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 3.195P]$
251 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints Primary atom site location: dual	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \alpha = 0.28 \text{ e} ^{\Delta-3}$
Timary atom site rocation, dual	$\Delta \rho_{\min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.122 (2)	0.6276 (12)	0.8824 (9)	0.051 (4)	
C2	1.091 (2)	0.7342 (12)	0.9003 (10)	0.062 (4)	
H2	0.954536	0.750440	0.869306	0.074*	
C3	1.256 (3)	0.8180 (14)	0.9629 (11)	0.089 (5)	
Н3	1.229141	0.889054	0.974939	0.107*	
C4	1.462 (3)	0.7954 (17)	1.0076 (11)	0.090 (6)	
H4	1.577146	0.850571	1.049126	0.108*	
C5	1.491 (3)	0.6892 (17)	0.9888 (11)	0.084 (5)	
Н5	1.626416	0.672664	1.019709	0.101*	
C6	1.329 (2)	0.6064 (13)	0.9265 (10)	0.066 (4)	
H6	1.358012	0.535803	0.913969	0.079*	
C7	0.956 (2)	0.4298 (10)	0.8199 (9)	0.055 (4)	
H7A	0.973803	0.416389	0.890828	0.066*	
H7B	1.095257	0.415218	0.786306	0.066*	
C8	0.729 (2)	0.3532 (10)	0.7652 (9)	0.056 (4)	
H8A	0.738219	0.276750	0.765936	0.067*	
H8B	0.590703	0.365439	0.800390	0.067*	
C9	0.700(2)	0.4918 (11)	0.6524 (9)	0.063 (4)	
H9A	0.557086	0.508210	0.681256	0.076*	
H9B	0.694830	0.504487	0.580979	0.076*	
C10	0.920 (2)	0.5662 (10)	0.7114 (9)	0.055 (4)	
H10A	1.061481	0.555114	0.677531	0.066*	
H10B	0.911569	0.642726	0.711107	0.066*	
C11	-0.018 (2)	0.1731 (10)	0.4335 (9)	0.041 (3)	
C12	0.037 (2)	0.0713 (10)	0.4039 (8)	0.046 (3)	
H12	0.169558	0.053646	0.436202	0.055*	
C13	-0.106 (2)	-0.0027 (11)	0.3270 (10)	0.046 (3)	

C14	-0.307 (2)	0.0161 (10)	0.2780 (9)	0.054 (4)
H14	-0.406231	-0.036584	0.227934	0.065*
C15	-0.353 (2)	0.1182 (12)	0.3079 (10)	0.052 (4)
C16	-0.219 (2)	0.1950 (10)	0.3858 (9)	0.047 (3)
H16	-0.264440	0.261054	0.406096	0.056*
C17	0.144 (3)	0.2554 (12)	0.5164 (10)	0.056 (4)
N1	0.9454 (16)	0.5450 (8)	0.8180 (7)	0.046 (3)
N2	0.7030 (19)	0.3750 (10)	0.6575 (9)	0.060(3)
H21	0.585 (14)	0.323 (8)	0.625 (8)	0.072*
H22	0.817 (15)	0.354 (9)	0.624 (8)	0.072*
N3	-0.040 (2)	-0.1092 (10)	0.2942 (9)	0.063 (3)
N4	-0.560(2)	0.1460 (14)	0.2536 (10)	0.075 (4)
01	0.0892 (15)	0.3455 (7)	0.5441 (7)	0.069 (3)
O2	0.3327 (15)	0.2290 (7)	0.5475 (7)	0.071 (3)
03	0.1442 (18)	-0.1237 (7)	0.3359 (7)	0.076 (3)
O4	-0.1697 (18)	-0.1757 (8)	0.2251 (7)	0.099 (4)
05	-0.5922 (18)	0.2403 (11)	0.2752 (8)	0.094 (4)
06	-0.6948 (17)	0.0739 (10)	0.1901 (8)	0.090 (4)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.045 (9)	0.059 (11)	0.043 (8)	0.005 (8)	-0.004 (7)	-0.001 (7)
C2	0.068 (10)	0.053 (11)	0.064 (10)	0.012 (9)	0.006 (8)	0.005 (8)
C3	0.102 (14)	0.073 (13)	0.072 (11)	-0.006 (12)	0.001 (10)	-0.014 (9)
C4	0.074 (13)	0.108 (17)	0.057 (10)	-0.029 (12)	-0.011 (9)	-0.012 (11)
C5	0.082 (13)	0.111 (16)	0.055 (10)	0.012 (13)	0.004 (9)	0.017 (10)
C6	0.054 (10)	0.080 (13)	0.053 (9)	0.002 (9)	-0.004 (8)	-0.001 (8)
C7	0.058 (9)	0.061 (11)	0.052 (8)	0.023 (8)	0.007 (7)	0.012 (7)
C8	0.064 (10)	0.039 (9)	0.062 (9)	0.008 (7)	0.011 (8)	0.000 (7)
C9	0.069 (10)	0.055 (11)	0.062 (9)	0.011 (8)	-0.010 (8)	0.006 (7)
C10	0.055 (9)	0.047 (9)	0.058 (9)	0.013 (7)	-0.005 (7)	-0.005 (7)
C11	0.035 (7)	0.026 (8)	0.058 (8)	0.002 (6)	0.010 (7)	0.006 (6)
C12	0.048 (8)	0.048 (9)	0.036 (8)	0.000(7)	-0.004 (7)	0.013 (6)
C13	0.035 (8)	0.055 (10)	0.050 (8)	0.015 (7)	-0.001 (7)	0.010 (7)
C14	0.050 (9)	0.038 (10)	0.061 (9)	-0.012 (8)	0.004 (8)	0.000 (7)
C15	0.039 (9)	0.067 (11)	0.047 (8)	0.001 (8)	-0.006 (7)	0.018 (8)
C16	0.038 (8)	0.042 (9)	0.068 (9)	0.019 (7)	0.016 (7)	0.010 (7)
C17	0.058 (10)	0.050 (11)	0.052 (9)	0.004 (8)	0.016 (8)	-0.008 (8)
N1	0.048 (7)	0.045 (8)	0.045 (7)	0.015 (6)	0.001 (6)	0.004 (5)
N2	0.050 (8)	0.058 (10)	0.061 (9)	0.005 (6)	0.005 (6)	-0.015 (6)
N3	0.078 (10)	0.053 (9)	0.062 (8)	0.026 (8)	0.003 (7)	-0.002 (7)
N4	0.055 (9)	0.111 (14)	0.069 (9)	0.028 (10)	0.012 (8)	0.028 (9)
01	0.070 (7)	0.048 (7)	0.083 (7)	0.008 (5)	0.019 (5)	-0.009 (5)
O2	0.051 (6)	0.063 (7)	0.087 (7)	0.012 (5)	-0.013 (6)	-0.021 (5)
O3	0.079 (8)	0.056 (7)	0.096 (8)	0.028 (6)	0.000 (6)	0.001 (5)
O4	0.136 (9)	0.061 (8)	0.083 (7)	0.022 (7)	-0.022 (7)	-0.032 (6)
05	0.077 (8)	0.130 (12)	0.100 (9)	0.060 (8)	0.019 (6)	0.042 (8)

06	0.056 (7)	0.132 (11)	0.080 (7)	0.017 (7)	-0.009 (6)	0.029 (7)
Geome	tric parameters (A	Å, ')				
C1—C	6	1.377 (1	5)	C10—N1		1.461 (13)
C1—C2	2	1.377 (1	6)	C10—H10A		0.9700
C1—N	1	1.418 (1-	4)	C10—H10B		0.9700
C2—C	3	1.384 (1	7)	C11—C16		1.374 (14)
С2—Н	2	0.9300	,	C11—C12		1.390 (15)
C3—C4	4	1.385 (1	9)	C11—C17		1.507 (15)
С3—Н	3	0.9300	,	C12—C13		1.367 (14)
C4—C	5	1.37 (2)		С12—Н12		0.9300
C4—H	4	0.9300		C13—C14		1.363 (14)
С5—С	6	1.365 (1)	8)	C13—N3		1.481 (15)
С5—Н	5	0.9300	- /	C14—C15		1.373 (16)
С6—Н	6	0.9300		C14—H14		0.9300
C7—N	1	1.459 (1)	3)	C15—C16		1.372 (14)
C7—C	8	1.507 (1	4)	C15—N4		1.473 (15)
С7—Н	7A	0.9700	.)	C16—H16		0.9300
С7—Н	7B	0.9700		C17-01		1.251 (14)
C8—N	2	1 479 (1	5)	C17 - 02		1 256 (14)
С8—Н	2 8A	0.9700		N2—H21		0.87(3)
С8—Н	8B	0.9700		N2—H22		0.87(3)
C9—N	2	1 475 (1)	6)	N3-03		1 219 (11)
C9-C	- 10	1 492 (1	4)	N3-04		1.219(11) 1.230(12)
C9—H	94	0.9700	.)	N4-05		1.233(12)
C9—H	9B	0.9700		N4-06		1 234 (14)
0, 11		0.9700				1.231 (11)
С6—С	1—C2	118.0 (1	3)	N1-C10-H10B		109.2
С6—С	1—N1	122.7 (1-	4)	C9-C10-H10B		109.2
С2—С	1—N1	119.3 (1	3)	H10A—C10—H10B		107.9
C1—C2	2—С3	121.9 (1	5)	C16—C11—C12		118.5 (11)
C1—C2	2—Н2	119.1		C16—C11—C17		122.3 (12)
C3—C2	2—Н2	119.1		C12—C11—C17		119.2 (12)
C2—C	3—C4	119.5 (1	7)	C13—C12—C11		119.5 (11)
C2—C	3—Н3	120.2		C13—C12—H12		120.2
C4—C	3—Н3	120.2		C11—C12—H12		120.2
C5—C4	4—C3	117.8 (1	6)	C14—C13—C12		123.6 (13)
C5—C4	4—H4	121.1		C14—C13—N3		117.6 (12)
C3—C4	4—H4	121.1		C12—C13—N3		118.7 (12)
C6—C	5—C4	122.9 (1	7)	C13—C14—C15		115.2 (12)
C6—C	5—H5	118.5		C13—C14—H14		122.4
C4—C:	5—H5	118.5		C15—C14—H14		122.4
С5—С	6—C1	119.8 (1	5)	C16—C15—C14		123.7 (13)
C5—C	6—H6	120.1	/	C16—C15—N4		118.4 (14)
C1—C	6—H6	120.1		C14—C15—N4		117.9 (13)
N1—C	7—С8	110.1 (10	0)	C15—C16—C11		119.2 (12)
N1—C	7—H7A	109.6	/	C15—C16—H16		120.4

С8—С7—Н7А	109.6	C11—C16—H16	120.4
N1—C7—H7B	109.6	O1—C17—O2	125.5 (13)
С8—С7—Н7В	109.6	O1—C17—C11	118.5 (14)
H7A—C7—H7B	108.2	O2—C17—C11	115.8 (13)
N2—C8—C7	109.2 (10)	C1—N1—C7	117.2 (11)
N2—C8—H8A	109.8	C1—N1—C10	113.8 (10)
С7—С8—Н8А	109.8	C7—N1—C10	110.0 (9)
N2—C8—H8B	109.8	C9—N2—C8	111.8 (9)
С7—С8—Н8В	109.8	C9—N2—H21	119 (9)
H8A—C8—H8B	108.3	C8—N2—H21	107 (8)
N2-C9-C10	109.9 (10)	C9—N2—H22	112 (8)
N2—C9—H9A	109.7	C8—N2—H22	109 (8)
С10—С9—Н9А	109.7	H21—N2—H22	96 (10)
N2—C9—H9B	109.7	O3—N3—O4	124.1 (13)
С10—С9—Н9В	109.7	O3—N3—C13	117.2 (12)
H9A—C9—H9B	108.2	O4—N3—C13	118.6 (13)
N1—C10—C9	111.9 (11)	O5—N4—O6	123.1 (15)
N1—C10—H10A	109.2	O5—N4—C15	118.1 (15)
C9—C10—H10A	109.2	O6—N4—C15	118.8 (15)
C6—C1—C2—C3	-2 (2)	C16—C11—C17—O1	1.7 (18)
N1—C1—C2—C3	179.6 (12)	C12-C11-C17-O1	-178.2 (12)
C1—C2—C3—C4	1 (2)	C16—C11—C17—O2	-174.2 (12)
C2—C3—C4—C5	-1 (2)	C12-C11-C17-O2	5.8 (17)
C3—C4—C5—C6	1 (3)	C6-C1-N1-C7	15.3 (16)
C4—C5—C6—C1	-2 (2)	C2-C1-N1-C7	-166.4 (11)
C2-C1-C6-C5	2.3 (19)	C6-C1-N1-C10	-115.1 (13)
N1—C1—C6—C5	-179.3 (12)	C2-C1-N1-C10	63.3 (15)
N1—C7—C8—N2	58.8 (12)	C8—C7—N1—C1	168.3 (10)
N2-C9-C10-N1	-55.4 (13)	C8—C7—N1—C10	-59.6 (12)
C16—C11—C12—C13	1.7 (17)	C9—C10—N1—C1	-167.8 (10)
C17—C11—C12—C13	-178.4 (11)	C9—C10—N1—C7	58.3 (13)
C11—C12—C13—C14	-1.8 (18)	C10—C9—N2—C8	55.0 (13)
C11—C12—C13—N3	178.0 (11)	C7—C8—N2—C9	-56.9 (13)
C12—C13—C14—C15	2.8 (18)	C14—C13—N3—O3	177.5 (12)
N3—C13—C14—C15	-177.0 (12)	C12-C13-N3-O3	-2.3 (17)
C13—C14—C15—C16	-4.0 (19)	C14—C13—N3—O4	-0.4 (18)
C13—C14—C15—N4	176.5 (11)	C12-C13-N3-O4	179.8 (12)
C14—C15—C16—C11	4.2 (19)	C16—C15—N4—O5	5.4 (18)
N4-C15-C16-C11	-176.4 (11)	C14—C15—N4—O5	-175.0 (14)
C12—C11—C16—C15	-2.8 (16)	C16—C15—N4—O6	-173.4 (13)
C17—C11—C16—C15	177.3 (11)	C14—C15—N4—O6	6.1 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C8—H8A···O3 ⁱ	0.97	2.43	3.250 (14)	142
C10—H10 <i>B</i> ····O5 ⁱⁱ	0.97	2.58	3.366 (16)	138

N2—H21…O2	0.87 (3)	1.81 (4)	2.672 (13)	172 (13)
N2—H22····O1 ⁱⁱⁱ	0.87 (3)	1.94 (4)	2.792 (13)	166 (12)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*.

4-Phenylpiperazin-1-ium 2,4,6-trinitrophenolate (8)

Crystal data

 $C_{10}H_{15}N_{2}^{+}\cdot C_{6}H_{2}N_{3}O_{7}^{-}M_{r} = 391.34$ Monoclinic, $P2_{1}/c$ a = 8.517 (1) Å b = 6.825 (1) Å c = 30.265 (4) Å $\beta = 95.33$ (1)° V = 1751.7 (4) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source ω and φ scans Absorption correction: multi-scan (CrysalisRED; Oxford Diffraction, 2007) $T_{\min} = 0.835, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.149$ S = 1.053893 reflections 260 parameters 0 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed F(000) = 816 $D_x = 1.484 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2640 reflections $\theta = 2.6-27.9^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.50 \times 0.36 \times 0.20 \text{ mm}$

12427 measured reflections 3893 independent reflections 2389 reflections with $I > 2\sigma(I)$ $R_{int} = 0.076$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -10 \rightarrow 10$ $k = -8 \rightarrow 4$ $l = -34 \rightarrow 38$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0504P)^2 + 0.8725P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0131 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.7177 (3)	0.4179 (4)	0.26101 (7)	0.0433 (6)	
C2	0.7900 (3)	0.5991 (4)	0.25921 (9)	0.0570 (7)	
H2	0.780507	0.690261	0.281649	0.068*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C3	0.8768 (3)	0.6449 (5)	0.22386 (10)	0.0688 (9)
H3	0.923005	0.768012	0.222678	0.083*
C4	0.8954 (3)	0.5133 (6)	0.19100 (10)	0.0694 (9)
H4	0.953581	0.545868	0.167535	0.083*
C5	0.8277 (3)	0.3334 (5)	0.19292 (9)	0.0669 (8)
Н5	0.841487	0.241929	0.170835	0.080*
C6	0.7388 (3)	0.2847 (4)	0.22725 (8)	0.0556 (7)
H6	0.692475	0.161451	0.227796	0.067*
C7	0.6520 (3)	0.1721 (4)	0.31432 (9)	0.0593 (7)
H7A	0.753277	0.171429	0.331875	0.071*
H7B	0.656412	0.077286	0.290590	0.071*
C8	0.5257 (3)	0.1140 (4)	0.34299 (9)	0.0608 (8)
H8A	0.425199	0.106259	0.325154	0.073*
H8B	0.549272	-0.014205	0.355756	0.073*
C9	0.4869 (3)	0.4552 (5)	0.35981 (10)	0.0659 (8)
H9A	0.485333	0.550341	0.383577	0.079*
H9B	0.384923	0.457927	0.342652	0.079*
C10	0.6136 (3)	0.5090 (4)	0.33044 (9)	0.0574 (7)
H10A	0.591245	0.637189	0.317528	0.069*
H10B	0.714497	0.515872	0.348122	0.069*
C11	-0.1176 (3)	0.2795 (3)	0.46054 (8)	0.0401 (5)
C12	0.0517 (3)	0.2586 (3)	0.46416 (7)	0.0378 (5)
C13	0.1453 (3)	0.2289 (3)	0.50261 (8)	0.0403 (5)
H13	0.253635	0.212835	0.502247	0.048*
C14	0.0762 (3)	0.2232 (3)	0.54215 (7)	0.0393 (5)
C15	-0.0855 (3)	0.2447 (3)	0.54264 (8)	0.0406 (6)
H15	-0.131175	0.242523	0.569377	0.049*
C16	-0.1766 (3)	0.2689 (3)	0.50371 (8)	0.0395 (5)
N1	0.6227 (2)	0.3663 (3)	0.29532 (6)	0.0426 (5)
N2	0.5157 (3)	0.2589 (4)	0.37874 (8)	0.0600(7)
H21	0.446 (4)	0.227 (4)	0.3950 (10)	0.072*
H22	0.614 (4)	0.265 (4)	0.3984 (10)	0.072*
N3	0.1308 (3)	0.2645 (3)	0.42356 (7)	0.0491 (5)
N4	0.1728 (3)	0.1928 (3)	0.58323 (7)	0.0551 (6)
N5	-0.3455 (3)	0.2877 (4)	0.50670 (8)	0.0561 (6)
01	-0.1980 (2)	0.3022 (3)	0.42443 (6)	0.0645 (6)
O2	0.2413 (2)	0.1487 (3)	0.42128 (6)	0.0648 (6)
O3	0.0884 (3)	0.3800 (3)	0.39444 (6)	0.0705 (6)
O4	0.3160 (3)	0.1892 (4)	0.58218 (7)	0.0770 (7)
05	0.1098 (3)	0.1737 (3)	0.61764 (6)	0.0763 (7)
O6	-0.3873 (3)	0.3692 (4)	0.53943 (8)	0.0982 (9)
07	-0.4365 (2)	0.2218 (4)	0.47735 (8)	0.0836 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0335 (12)	0.0615 (16)	0.0346 (12)	0.0028 (11)	0.0017 (10)	0.0009 (11)
C2	0.0524 (16)	0.0688 (19)	0.0505 (16)	-0.0122 (14)	0.0088 (13)	-0.0012 (14)

C3	0.0500 (17)	0.092 (2)	0.0650 (19)	-0.0185 (15)	0.0072 (14)	0.0147 (18)
C4	0.0457 (16)	0.117 (3)	0.0474 (17)	0.0019 (17)	0.0123 (13)	0.0096 (18)
C5	0.0599 (18)	0.098 (3)	0.0439 (16)	0.0138 (17)	0.0087 (13)	-0.0068 (16)
C6	0.0541 (16)	0.0721 (19)	0.0410 (14)	0.0017 (13)	0.0066 (12)	-0.0043 (14)
C7	0.0650 (18)	0.0619 (18)	0.0530 (16)	0.0100 (14)	0.0154 (13)	0.0096 (14)
C8	0.0599 (17)	0.0671 (19)	0.0548 (17)	-0.0037 (14)	0.0028 (13)	0.0169 (15)
C9	0.0609 (18)	0.079 (2)	0.0621 (18)	-0.0024 (15)	0.0273 (15)	-0.0079 (16)
C10	0.0589 (17)	0.0638 (18)	0.0524 (16)	-0.0096 (13)	0.0198 (13)	-0.0097 (14)
C11	0.0419 (13)	0.0392 (13)	0.0393 (13)	-0.0045 (10)	0.0040 (10)	-0.0039 (10)
C12	0.0437 (13)	0.0337 (12)	0.0375 (12)	-0.0070 (10)	0.0114 (10)	-0.0035 (10)
C13	0.0387 (12)	0.0326 (12)	0.0501 (14)	-0.0034 (10)	0.0059 (10)	-0.0017 (11)
C14	0.0481 (14)	0.0324 (12)	0.0369 (13)	-0.0025 (10)	0.0012 (10)	0.0030 (10)
C15	0.0519 (14)	0.0337 (12)	0.0377 (13)	-0.0024 (10)	0.0119 (11)	-0.0022 (10)
C16	0.0401 (12)	0.0337 (12)	0.0458 (14)	-0.0007 (10)	0.0094 (10)	-0.0039 (10)
N1	0.0411 (11)	0.0501 (12)	0.0374 (10)	-0.0014 (9)	0.0082 (8)	-0.0003 (9)
N2	0.0369 (12)	0.102 (2)	0.0419 (13)	-0.0107 (12)	0.0070 (10)	0.0129 (13)
N3	0.0497 (13)	0.0538 (14)	0.0456 (13)	-0.0141 (11)	0.0136 (10)	-0.0062 (11)
N4	0.0633 (15)	0.0533 (14)	0.0476 (13)	-0.0044 (11)	-0.0016 (11)	0.0095 (11)
N5	0.0466 (13)	0.0710 (16)	0.0522 (14)	0.0037 (11)	0.0115 (11)	-0.0040 (12)
01	0.0492 (11)	0.0992 (16)	0.0439 (11)	-0.0128 (10)	-0.0022 (8)	0.0049 (10)
O2	0.0475 (11)	0.0813 (15)	0.0695 (13)	-0.0011 (10)	0.0256 (9)	-0.0093 (11)
03	0.0900 (16)	0.0759 (15)	0.0487 (11)	-0.0030 (11)	0.0225 (11)	0.0104 (11)
O4	0.0533 (13)	0.1053 (18)	0.0699 (14)	0.0007 (11)	-0.0073 (10)	0.0184 (12)
05	0.0829 (15)	0.1026 (18)	0.0430 (11)	-0.0078 (12)	0.0044 (10)	0.0215 (11)
06	0.0651 (15)	0.161 (3)	0.0722 (15)	0.0199 (15)	0.0266 (12)	-0.0310 (16)
O7	0.0460 (12)	0.131 (2)	0.0738 (15)	-0.0125 (12)	0.0081 (11)	-0.0182 (14)

Geometric parameters (Å, °)

C1—C2	1.385 (4)	C10—N1	1.449 (3)
C1—C6	1.392 (3)	C10—H10A	0.9700
C1—N1	1.419 (3)	C10—H10B	0.9700
С2—С3	1.391 (4)	C11—O1	1.244 (3)
С2—Н2	0.9300	C11—C12	1.443 (3)
C3—C4	1.361 (4)	C11—C16	1.445 (3)
С3—Н3	0.9300	C12—C13	1.363 (3)
C4—C5	1.359 (4)	C12—N3	1.456 (3)
C4—H4	0.9300	C13—C14	1.382 (3)
С5—С6	1.382 (4)	C13—H13	0.9300
С5—Н5	0.9300	C14—C15	1.386 (3)
С6—Н6	0.9300	C14—N4	1.441 (3)
C7—N1	1.457 (3)	C15—C16	1.360 (3)
С7—С8	1.497 (4)	C15—H15	0.9300
C7—H7A	0.9700	C16—N5	1.455 (3)
С7—Н7В	0.9700	N2—H21	0.83 (3)
C8—N2	1.474 (4)	N2—H22	0.98 (3)
C8—H8A	0.9700	N3—O3	1.212 (3)
C8—H8B	0.9700	N3—O2	1.236 (3)

C9—N2	1.469 (4)	N4—O5	1.222 (3)
C9—C10	1.506 (3)	N4—O4	1.223 (3)
С9—Н9А	0.9700	N5—O7	1.210 (3)
С9—Н9В	0.9700	N5—O6	1.218 (3)
			~ /
C2—C1—C6	117.8 (2)	N1-C10-H10B	109.4
C2-C1-N1	122.4 (2)	C9—C10—H10B	109.4
C6—C1—N1	119.8 (2)	H10A—C10—H10B	108.0
C1—C2—C3	120.1 (3)	O1—C11—C12	122.9 (2)
C1—C2—H2	120.0	O1—C11—C16	126.2 (2)
С3—С2—Н2	120.0	C12—C11—C16	110.8 (2)
C4—C3—C2	121.3 (3)	C13—C12—C11	125.5 (2)
С4—С3—Н3	119.3	C13—C12—N3	116.4 (2)
С2—С3—Н3	119.3	C11—C12—N3	118.1 (2)
C5—C4—C3	119.1 (3)	C12—C13—C14	118.7 (2)
C5—C4—H4	120.4	C12—C13—H13	120.6
C3—C4—H4	120.4	C14—C13—H13	120.6
C4—C5—C6	120.9 (3)	C13—C14—C15	120.6 (2)
C4—C5—H5	119.6	C13—C14—N4	119.7 (2)
C6-C5-H5	119.6	C15-C14-N4	119.6(2)
C5-C6-C1	120.8 (3)	C16-C15-C14	119.4 (2)
C5—C6—H6	119.6	C16—C15—H15	120.3
C1—C6—H6	119.6	C14—C15—H15	120.3
N1-C7-C8	111 3 (2)	C15-C16-C11	120.0 124.8(2)
N1-C7-H7A	109.4	C15-C16-N5	1164(2)
С8—С7—Н7А	109.4	C11 - C16 - N5	118.7(2)
N1-C7-H7B	109.4	C1 - N1 - C10	116.7(2)
C8—C7—H7B	109.4	C1 - N1 - C7	115.2 (2)
H7A—C7—H7B	108.0	C10-N1-C7	109.9 (2)
N2-C8-C7	110.0 (2)	C9 - N2 - C8	110.2(2)
N2-C8-H8A	109.7	C9 - N2 - H21	112 (2)
C7—C8—H8A	109.7	C8 - N2 - H21	111 (2)
N2-C8-H8B	109.7	C9 - N2 - H22	107.5(17)
C7—C8—H8B	109.7	C8 - N2 - H22	111.7(17)
H8A—C8—H8B	108.2	$H_{21} = N_{2} = H_{22}$	105 (3)
N2-C9-C10	110.5 (2)	03—N3—02	123.5 (2)
N2-C9-H9A	109.6	03 - N3 - C12	120.1(2)
C10—C9—H9A	109.6	02 - N3 - C12	116.3 (2)
N2-C9-H9B	109.6	05—N4—04	122.5 (2)
C10—C9—H9B	109.6	O5—N4—C14	119.4 (2)
H9A—C9—H9B	108.1	04 - N4 - C14	118.1 (2)
N1-C10-C9	111.0 (2)	07-N5-06	123.4(2)
N1-C10-H10A	109.4	07 - N5 - C16	119.4 (2)
C9-C10-H10A	109.4	06 - N5 - C16	117.1 (2)
C6-C1-C2-C3	1.7 (4)	O1-C11-C16-N5	-0.6(4)
N1-C1-C2-C3	-177.4 (2)	C12-C11-C16-N5	179.8 (2)
C1-C2-C3-C4	-1.3(4)	C2-C1-N1-C10	-4.1(3)
	(•)		

C2—C3—C4—C5	-0.1 (5)	C6-C1-N1-C10	176.8 (2)
C3—C4—C5—C6	1.1 (5)	C2-C1-N1-C7	-134.9 (3)
C4—C5—C6—C1	-0.7 (4)	C6-C1-N1-C7	46.0 (3)
C2-C1-C6-C5	-0.7 (4)	C9-C10-N1-C1	169.3 (2)
N1—C1—C6—C5	178.5 (2)	C9—C10—N1—C7	-57.6 (3)
N1—C7—C8—N2	-58.0 (3)	C8—C7—N1—C1	-168.0(2)
N2-C9-C10-N1	57.4 (3)	C8—C7—N1—C10	58.3 (3)
O1—C11—C12—C13	-178.4 (2)	C10—C9—N2—C8	-56.6 (3)
C16—C11—C12—C13	1.2 (3)	C7—C8—N2—C9	56.8 (3)
O1—C11—C12—N3	0.0 (3)	C13—C12—N3—O3	-141.4(2)
C16—C11—C12—N3	179.6 (2)	C11—C12—N3—O3	40.1 (3)
C11—C12—C13—C14	-2.0(3)	C13—C12—N3—O2	37.9 (3)
N3—C12—C13—C14	179.6 (2)	C11—C12—N3—O2	-140.6(2)
C12—C13—C14—C15	0.8 (3)	C13—C14—N4—O5	-174.7 (2)
C12—C13—C14—N4	-179.8 (2)	C15—C14—N4—O5	4.7 (3)
C13—C14—C15—C16	0.9 (3)	C13—C14—N4—O4	6.0 (3)
N4—C14—C15—C16	-178.5 (2)	C15—C14—N4—O4	-174.6 (2)
C14—C15—C16—C11	-1.7 (4)	C15—C16—N5—O7	-146.1 (3)
C14—C15—C16—N5	179.1 (2)	C11—C16—N5—O7	34.6 (3)
O1-C11-C16-C15	-179.7 (2)	C15-C16-N5-O6	33.4 (3)
C12—C11—C16—C15	0.6 (3)	C11—C16—N5—O6	-145.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C8—H8 <i>B</i> ···O4 ⁱ	0.97	2.42	3.265 (4)	145
С9—Н9А…О4 ^{іі}	0.97	2.60	3.353 (4)	134
С9—Н9А…Об ^{ііі}	0.97	2.61	3.455 (4)	146
N2—H21…O2	0.83 (3)	2.06 (3)	2.871 (3)	166 (3)
N2—H21····O7 ^{iv}	0.83 (3)	2.60 (3)	2.985 (3)	110 (2)
N2—H22····O1 ^{iv}	0.98 (3)	1.74 (3)	2.705 (3)	168 (3)
N2— $H21$ ···O7 ^{iv}	0.83 (3)	2.60 (3)	2.985 (3)	110 (2)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y, z.

4-Phenylpiperazin-1-ium benzoate monohydrate (9)

Crystal data

 $\begin{array}{l} C_{10}H_{15}N_{2}^{+} \cdot C_{7}H_{5}O_{2}^{-} \cdot H_{2}O\\ M_{r} = 302.36\\ \text{Monoclinic, } P2_{1}/c\\ a = 6.202 \ (2) \ \text{\AA}\\ b = 34.573 \ (9) \ \text{\AA}\\ c = 7.596 \ (2) \ \text{\AA}\\ \beta = 93.83 \ (2)^{\circ}\\ V = 1625.1 \ (8) \ \text{\AA}^{3}\\ Z = 4 \end{array}$

F(000) = 648 $D_x = 1.236 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 885 reflections $\theta = 2.7-27.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KRod, colourless $0.32 \times 0.20 \times 0.16 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source ω and φ scans Absorption correction: multi-scan (CrysalisRED; Oxford Diffraction, 2007) $T_{min} = 0.985, T_{max} = 1.000$ <i>Refinement</i>	6075 measured reflections 3492 independent reflections 1387 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.8^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -7 \rightarrow 8$ $k = -32 \rightarrow 44$ $l = -8 \rightarrow 9$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.144$ S = 0.95 3492 reflections 211 parameters 4 restraints Primary atom site location: dual	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0549P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³ $\Delta\rho_{min} = -0.16$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.2813 (3)	0.60989 (6)	0.7704 (3)	0.0434 (6)
N2	0.2143 (4)	0.52769 (7)	0.7340 (3)	0.0540 (7)
H21	0.175 (4)	0.5046 (6)	0.776 (3)	0.065*
H22	0.244 (4)	0.5249 (8)	0.621 (2)	0.065*
C1	0.3322 (4)	0.64902 (8)	0.7364 (3)	0.0458 (7)
C2	0.1985 (5)	0.67263 (9)	0.6301 (4)	0.0732 (9)
H2	0.073519	0.662304	0.574143	0.088*
C3	0.2469 (6)	0.71136 (9)	0.6050 (5)	0.0890 (11)
H3	0.153321	0.726509	0.533416	0.107*
C4	0.4287 (7)	0.72754 (10)	0.6834 (5)	0.0871 (11)
H4	0.460834	0.753486	0.666273	0.105*
C5	0.5623 (6)	0.70463 (10)	0.7878 (5)	0.0849 (11)
Н5	0.687062	0.715266	0.842693	0.102*
C6	0.5172 (5)	0.66585 (9)	0.8144 (4)	0.0684 (9)
H6	0.612551	0.650963	0.885571	0.082*
C7	0.4623 (4)	0.58257 (7)	0.7779 (4)	0.0500 (7)
H7A	0.579852	0.592960	0.854289	0.060*
H7B	0.513636	0.579710	0.660752	0.060*
C8	0.4003 (4)	0.54349 (7)	0.8453 (4)	0.0554 (8)
H8A	0.522296	0.525995	0.842923	0.067*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H8B	0.361408	0.545749	0.966498	0.067*
C9	0.0303 (4)	0.55502 (8)	0.7319 (4)	0.0586 (8)
H9A	-0.018777	0.557418	0.849982	0.070*
H9B	-0.088519	0.545041	0.655591	0.070*
C10	0.0951 (4)	0.59416 (8)	0.6670 (4)	0.0544 (7)
H10A	0.129289	0.592100	0.544591	0.065*
H10B	-0.025699	0.611834	0.672570	0.065*
01	0.0826 (4)	0.45352 (6)	0.8352 (3)	0.0739 (6)
O2	0.3636 (4)	0.44271 (8)	0.6833 (4)	0.1271 (11)
C11	0.1746 (4)	0.38836 (9)	0.7732 (3)	0.0488 (7)
C12	0.3158 (5)	0.36281 (11)	0.6979 (4)	0.0710 (9)
H12	0.434100	0.372529	0.643180	0.085*
C13	0.2834 (6)	0.32351 (12)	0.7030 (4)	0.0850 (11)
H13	0.378578	0.306980	0.650576	0.102*
C14	0.1131 (7)	0.30867 (10)	0.7841 (5)	0.0841 (10)
H14	0.092772	0.282041	0.788617	0.101*
C15	-0.0285 (5)	0.33305 (10)	0.8592 (4)	0.0758 (10)
H15	-0.145442	0.322946	0.914408	0.091*
C16	0.0017 (4)	0.37282 (8)	0.8532 (4)	0.0566 (8)
H16	-0.096028	0.389140	0.903761	0.068*
C17	0.2108 (5)	0.43133 (10)	0.7647 (4)	0.0605 (8)
O3	0.7231 (3)	0.47794 (7)	0.6283 (3)	0.0737 (7)
H31	0.816 (5)	0.4679 (11)	0.697 (4)	0.111*
H32	0.609 (4)	0.4665 (9)	0.645 (5)	0.111*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0406 (13)	0.0418 (14)	0.0472 (14)	-0.0004 (11)	-0.0012 (10)	-0.0001 (11)
N2	0.0689 (17)	0.0449 (15)	0.0493 (16)	-0.0092 (14)	0.0112 (14)	0.0018 (14)
C1	0.0524 (17)	0.0389 (16)	0.0463 (17)	-0.0012 (14)	0.0049 (13)	-0.0033 (14)
C2	0.074 (2)	0.050 (2)	0.092 (2)	-0.0010 (17)	-0.0224 (19)	0.0050 (19)
C3	0.109 (3)	0.048 (2)	0.106 (3)	0.004 (2)	-0.026 (2)	0.010 (2)
C4	0.133 (3)	0.044 (2)	0.082 (3)	-0.014 (2)	-0.012 (2)	0.000 (2)
C5	0.105 (3)	0.060 (2)	0.086 (3)	-0.031 (2)	-0.024 (2)	0.000 (2)
C6	0.074 (2)	0.054 (2)	0.075 (2)	-0.0112 (18)	-0.0153 (17)	0.0072 (17)
C7	0.0442 (16)	0.0485 (18)	0.0566 (18)	-0.0019 (14)	-0.0008 (13)	-0.0016 (15)
C8	0.0595 (18)	0.0498 (18)	0.0556 (18)	0.0000 (15)	-0.0066 (15)	0.0025 (15)
C9	0.0512 (17)	0.0590 (19)	0.0659 (19)	-0.0085 (16)	0.0071 (14)	-0.0031 (17)
C10	0.0434 (16)	0.0507 (18)	0.068 (2)	-0.0008 (14)	-0.0024 (14)	0.0025 (16)
01	0.0960 (16)	0.0529 (14)	0.0741 (15)	-0.0102 (12)	0.0157 (13)	0.0002 (12)
O2	0.0889 (17)	0.104 (2)	0.195 (3)	-0.0264 (15)	0.0568 (19)	0.035 (2)
C11	0.0447 (16)	0.0594 (19)	0.0417 (16)	0.0016 (15)	-0.0014 (13)	0.0053 (15)
C12	0.062 (2)	0.089 (3)	0.063 (2)	0.017 (2)	0.0069 (16)	0.0160 (19)
C13	0.106 (3)	0.077 (3)	0.072 (2)	0.040 (2)	0.007 (2)	0.002 (2)
C14	0.125 (3)	0.053 (2)	0.073 (2)	0.003 (2)	-0.009 (2)	-0.004 (2)
C15	0.087 (2)	0.062 (2)	0.079 (2)	-0.023 (2)	0.0130 (19)	0.000 (2)
C16	0.0602 (18)	0.055 (2)	0.0557 (18)	-0.0061 (16)	0.0122 (15)	-0.0043 (15)

C17	0.056 (2)	0.066 (2)	0.059 (2)	-0.0128 (18)	-0.0014 (16)	0.0198 (18)
O3	0.0697 (16)	0.0830 (17)	0.0700 (15)	-0.0213 (13)	0.0159 (12)	-0.0070 (13)

Geometric parameters (Å, °)

N1—C1	1.417 (3)	C8—H8B	0.9700	
N1-C10	1.458 (3)	C9—C10	1.504 (3)	
N1—C7	1.465 (3)	С9—Н9А	0.9700	
N2—C9	1.481 (3)	C9—H9B	0.9700	
N2—C8	1.488 (3)	C10—H10A	0.9700	
N2—H21	0.898 (17)	C10—H10B	0.9700	
N2—H22	0.893 (16)	O1—C17	1.251 (3)	
C1—C6	1.384 (3)	O2—C17	1.230 (3)	
C1—C2	1.384 (3)	C11—C16	1.376 (3)	
C2—C3	1.388 (4)	C11—C12	1.393 (4)	
С2—Н2	0.9300	C11—C17	1.504 (4)	
C3—C4	1.360 (4)	C12—C13	1.375 (4)	
С3—Н3	0.9300	C12—H12	0.9300	
C4—C5	1.362 (4)	C13—C14	1.358 (4)	
C4—H4	0.9300	C13—H13	0.9300	
C5—C6	1.387 (4)	C14—C15	1.369 (4)	
С5—Н5	0.9300	C14—H14	0.9300	
С6—Н6	0.9300	C15—C16	1.389 (4)	
С7—С8	1.504 (3)	C15—H15	0.9300	
С7—Н7А	0.9700	C16—H16	0.9300	
С7—Н7В	0.9700	O3—H31	0.830 (18)	
C8—H8A	0.9700	O3—H32	0.826 (18)	
C1—N1—C10	115.8 (2)	C7—C8—H8B	109.7	
C1—N1—C7	116.32 (19)	H8A—C8—H8B	108.2	
C10—N1—C7	110.9 (2)	N2—C9—C10	110.8 (2)	
C9—N2—C8	109.8 (2)	N2—C9—H9A	109.5	
C9—N2—H21	110.3 (17)	С10—С9—Н9А	109.5	
C8—N2—H21	110.0 (17)	N2—C9—H9B	109.5	
C9—N2—H22	105.5 (17)	С10—С9—Н9В	109.5	
C8—N2—H22	112.5 (17)	Н9А—С9—Н9В	108.1	
H21—N2—H22	109 (3)	N1C10C9	112.3 (2)	
C6—C1—C2	116.7 (3)	N1—C10—H10A	109.2	
C6—C1—N1	120.8 (2)	C9—C10—H10A	109.2	
C2—C1—N1	122.5 (3)	N1-C10-H10B	109.2	
C1—C2—C3	121.5 (3)	C9—C10—H10B	109.2	
C1—C2—H2	119.3	H10A—C10—H10B	107.9	
C3—C2—H2	119.3	C16—C11—C12	117.6 (3)	
C4—C3—C2	121.2 (3)	C16—C11—C17	121.8 (3)	
С4—С3—Н3	119.4	C12—C11—C17	120.6 (3)	
С2—С3—Н3	119.4	C13—C12—C11	121.2 (3)	
C3—C4—C5	118.0 (3)	C13—C12—H12	119.4	
C3—C4—H4	121.0	C11—C12—H12	119.4	

C5—C4—H4	121.0	C14—C13—C12	120.4 (3)
C4—C5—C6	121.7 (3)	C14—C13—H13	119.8
С4—С5—Н5	119.1	С12—С13—Н13	119.8
С6—С5—Н5	119.1	C13—C14—C15	119.7 (3)
C1—C6—C5	120.9 (3)	C13—C14—H14	120.1
C1—C6—H6	119.5	C15—C14—H14	120.1
С5—С6—Н6	119.5	C14—C15—C16	120.3 (3)
N1—C7—C8	112.3 (2)	C14—C15—H15	119.9
N1—C7—H7A	109.1	C16—C15—H15	119.9
С8—С7—Н7А	109.1	C11—C16—C15	120.8 (3)
N1—C7—H7B	109.1	C11—C16—H16	119.6
С8—С7—Н7В	109.1	C15—C16—H16	119.6
H7A—C7—H7B	107.9	O2—C17—O1	123.5 (3)
N2—C8—C7	110.0 (2)	O2—C17—C11	117.4 (3)
N2—C8—H8A	109.7	O1—C17—C11	119.1 (3)
С7—С8—Н8А	109.7	H31—O3—H32	106 (4)
N2—C8—H8B	109.7		
C10—N1—C1—C6	-173.8 (2)	C8—N2—C9—C10	57.0 (3)
C7—N1—C1—C6	-40.8 (3)	C1—N1—C10—C9	-170.5 (2)
C10—N1—C1—C2	8.5 (3)	C7—N1—C10—C9	54.1 (3)
C7—N1—C1—C2	141.5 (3)	N2-C9-C10-N1	-56.0 (3)
C6—C1—C2—C3	-0.8 (4)	C16—C11—C12—C13	0.1 (4)
N1—C1—C2—C3	177.0 (3)	C17—C11—C12—C13	-179.3 (3)
C1—C2—C3—C4	0.4 (5)	C11—C12—C13—C14	-0.8 (5)
C2—C3—C4—C5	-0.1 (5)	C12-C13-C14-C15	0.9 (5)
C3—C4—C5—C6	0.2 (5)	C13-C14-C15-C16	-0.2 (5)
C2-C1-C6-C5	0.8 (4)	C12-C11-C16-C15	0.5 (4)
N1—C1—C6—C5	-177.0 (3)	C17—C11—C16—C15	179.9 (3)
C4—C5—C6—C1	-0.6 (5)	C14-C15-C16-C11	-0.5 (5)
C1—N1—C7—C8	170.0 (2)	C16—C11—C17—O2	-176.6 (3)
C10—N1—C7—C8	-54.7 (3)	C12—C11—C17—O2	2.8 (4)
C9 - N2 - C8 - C7			
C_{1} C_{2} C_{0} C_{1}	-57.2 (3)	C16—C11—C17—O1	1.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A
N2—H21…O1	0.90 (2)	1.92 (2)	2.813 (3)	173 (2)
N2—H21…O2	0.90 (2)	2.56 (2)	3.112 (4)	121 (2)
N2—H22···O3 ⁱ	0.89(2)	1.92 (2)	2.812 (3)	173 (2)
C9—H9A…O1 ⁱⁱ	0.97	2.48	3.420 (4)	164
C9—H9 <i>B</i> ···O3 ⁱⁱⁱ	0.97	2.60	3.340 (4)	133
O3—H31…O1 ^{iv}	0.83 (2)	1.96 (2)	2.772 (3)	166 (4)
O3—H32…O2	0.83 (2)	1.77 (2)	2.599 (3)	179 (4)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+2; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*.

4-Phenylpiperazin-1-ium 4-methylbenzenesulfonate (10)

Crystal data

 $C_{10}H_{15}N_2^{+}C_7H_7O_3S^{-}M_r = 334.42$ Monoclinic, *P*2₁ a = 8.325 (1) Å b = 10.949 (2) Å c = 18.418 (4) Å $\beta = 92.67$ (2)° V = 1677.0 (5) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysalisRED; Oxford Diffraction, 2007)

 $T_{\min} = 0.696, \ T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.126$ $wR(F^2) = 0.298$ S = 1.124918 reflections 480 parameters 853 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map F(000) = 712 $D_x = 1.325 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2252 reflections $\theta = 2.9-27.6^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 293 KPlate, colourless $0.50 \times 0.36 \times 0.14 \text{ mm}$

6123 measured reflections 4918 independent reflections 2767 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 27.7^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -10 \rightarrow 9$ $k = -14 \rightarrow 11$ $l = -24 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0541P)^2 + 11.2654P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.08$ e Å⁻³ $\Delta\rho_{min} = -0.41$ e Å⁻³ Absolute structure: Flack *x* determined using 597 quotients [(*I*⁺)-(*I*)]/[(*I*⁺)+(*I*)] (Parsons *et al.*, 2013) Absolute structure parameter: 0.00 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.3198 (15)	0.0451 (12)	0.1981 (8)	0.044 (3)	
N2	0.3315 (13)	-0.0070 (11)	0.0453 (8)	0.041 (3)	
H21N	0.301100	0.008772	-0.000733	0.050*	
H22N	0.400866	-0.068854	0.045658	0.050*	
C1	0.345 (5)	0.050 (4)	0.2756 (14)	0.056 (4)	0.49(7)
C2	0.244 (4)	-0.010 (4)	0.322 (2)	0.058 (4)	0.49 (7)
				. ,	

H2	0.163707	-0.061632	0.302457	0.069*	0.49 (7)
C3	0.263 (4)	0.006 (5)	0.3965 (19)	0.060 (4)	0.49 (7)
Н3	0.195547	-0.034965	0.427260	0.073*	0.49 (7)
C4	0.383 (5)	0.082 (4)	0.4252 (14)	0.062 (4)	0.49 (7)
H4	0.395978	0.092749	0.475215	0.074*	0.49(7)
C5	0.484 (6)	0.143 (3)	0.3791 (18)	0.061 (4)	0.49(7)
Н5	0.564573	0.193797	0.398368	0.074*	0.49(7)
C6	0.465 (5)	0.127 (4)	0.3044 (17)	0.058 (4)	0.49(7)
H6	0.532736	0.167132	0.273565	0.070*	0.49(7)
C1A	0.338 (4)	0.047 (3)	0.2748 (13)	0.055 (3)	0.51 (7)
C2A	0.259 (5)	-0.042(4)	0.3132 (19)	0.057 (4)	0.51 (7)
H2A	0.204660	-0.104759	0.288426	0.069*	0.51 (7)
C3A	0.261 (4)	-0.038(4)	0.3887(19)	0.061 (4)	0.51 (7)
H3A	0.207972	-0.097323	0.414372	0.073*	0.51 (7)
C4A	0.342(5)	0.056(4)	0.4258(13)	0.062 (4)	0.51(7)
H4A	0.342913	0.059306	0 476246	0.075*	0.51(7)
C5A	0.312913 0.420(7)	0.146(2)	0.3874(18)	0.060(4)	0.51(7)
Н5А	0.120(7) 0.474543	0.208501	0.412173	0.072*	0.51(7)
C6A	0.418(5)	0.141(3)	0.412173 0.3119(18)	0.072	0.51(7)
Нба	0.471233	0.201067	0.286226	0.070*	0.51(7)
C7	0.471233 0.4521(18)	0.201007 0.0840 (15)	0.1564 (9)	0.070	0.51 (7)
U7 Н74	0.537245	0.023733	0.161521	0.059*	
H7R	0.493647	0.023733	0.176389	0.059*	
11/D C8	0.411(2)	0.100201	0.170309	0.052(4)	
	0.411(2) 0.330420	0.1017(13)	0.071858	0.052 (4)	
LIOA	0.533429	0.171309	0.071838	0.063*	
	0.307744	-0.0412(16)	0.032790	0.005	
	0.1307(17) 0.144478	-0.115015	0.065528	0.040 (4)	
119A 110D	0.144478	0.113913	0.003328	0.056*	
П9D С10	0.110120 0.2260(10)	-0.022310	0.060773 0.1652 (10)	0.030°	
	0.2309 (19)	-0.076606	0.1033 (10)	0.049 (4)	
	0.140031	-0.070090	0.191334	0.039*	
	0.306204	-0.131343	0.1/0331	0.039°	
01	0.1379(4)	0.7481(4)	-0.1011(2)	0.0439(10)	
01	0.1/8/(12) 0.2028(18)	0.0159(9)	-0.0944(6)	0.049(3)	
02	0.2928(18)	0.8173(11) 0.78(2(12))	-0.0703(7)	0.070(4)	
03 C11	0.0028(10)	0.7802(13)	-0.0762(7)	0.082(5)	
	0.1500(10)	0.7750(15)	-0.1938(8)	0.030(3)	
U12	0.2554 (19)	0.8740(17)	-0.2240(10)	0.054 (4)	
H12	0.298418	0.925481	-0.193938	0.065*	
C13	0.224 (2)	0.8952 (19)	-0.2971 (11)	0.067 (5)	
H13	0.283222	0.959399	-0.315160	0.081*	
C14	0.133(2)	0.830 (2)	-0.3450 (11)	0.070 (5)	
C15	0.042 (2)	0.735 (2)	-0.3146 (10)	0.069 (5)	
HIS	-0.025524	0.687927	-0.344//0/	0.083*	
C16	0.051 (2)	0./130(15)	-0.2414 (9)	0.060 (5)	
H16	-0.013532	0.652069	-0.223331	0.072*	
C17	0.121 (3)	0.853 (3)	-0.4249 (11)	0.101 (8)	
H17A	0.138438	0.778329	-0.450528	0.152*	

H17B	0.200838	0.911924	-0.437227	0.152*	
H17C	0.015970	0.884299	-0.438319	0.152*	
N3	0.2216 (15)	0.5462 (13)	0.1956 (8)	0.046 (3)	
N4	0.1795 (13)	0.4911 (11)	0.0439 (8)	0.041 (3)	
H41N	0.110853	0.428961	0.045763	0.049*	
H42N	0.200180	0.504089	-0.002420	0.049*	
C18	0.212 (4)	0.553 (3)	0.2730 (13)	0.052 (3)	0.53 (7)
C19	0.321 (4)	0.490 (4)	0.3187 (18)	0.055 (4)	0.53 (7)
H19	0.395669	0.437535	0.299289	0.066*	0.53 (7)
C20	0.319 (3)	0.506 (4)	0.3935 (17)	0.058 (4)	0.53 (7)
H20	0.392116	0.464559	0.424139	0.070*	0.53 (7)
C21	0.208 (5)	0.585 (3)	0.4226 (13)	0.060 (4)	0.53 (7)
H21	0.206786	0.596177	0.472606	0.071*	0.53 (7)
C22	0.099 (6)	0.648 (3)	0.3768 (17)	0.058 (4)	0.53 (7)
H22	0.025007	0.700772	0.396224	0.070*	0.53 (7)
C23	0.101 (5)	0.632 (3)	0.3020 (16)	0.056 (4)	0.53 (7)
H23	0.028557	0.673749	0.271374	0.067*	0.53 (7)
C18A	0.222 (5)	0.547 (4)	0.2737 (15)	0.053 (3)	0.47 (7)
C19A	0.308 (5)	0.459 (4)	0.313 (2)	0.054 (4)	0.47 (7)
H19A	0.355887	0.394865	0.289012	0.065*	0.47 (7)
C20A	0.322 (4)	0.466 (4)	0.388 (2)	0.057 (4)	0.47 (7)
H20A	0.379451	0.406632	0.414826	0.069*	0.47 (7)
C21A	0.250 (6)	0.562 (4)	0.4245 (15)	0.059 (4)	0.47 (7)
H21A	0.259318	0.566251	0.474911	0.071*	0.47 (7)
C22A	0.164 (7)	0.650 (3)	0.385 (2)	0.058 (4)	0.47 (7)
H22A	0.115621	0.714105	0.409183	0.070*	0.47 (7)
C23A	0.150 (6)	0.643 (3)	0.310(2)	0.057 (4)	0.47 (7)
H23A	0.092056	0.702341	0.283368	0.068*	0.47 (7)
C24	0.2995 (19)	0.4424 (17)	0.1647 (10)	0.053 (4)	
H24A	0.233128	0.370513	0.170301	0.064*	
H24B	0.401590	0.428310	0.190816	0.064*	
C25	0.3281 (16)	0.4609 (14)	0.0851 (9)	0.042 (3)	
H25A	0.405263	0.526314	0.079855	0.051*	
H25B	0.373358	0.386948	0.065500	0.051*	
C26	0.107 (2)	0.6013 (14)	0.0745 (9)	0.049 (4)	
H26A	0.005379	0.618567	0.048646	0.058*	
H26B	0.177715	0.670632	0.068350	0.058*	
C27	0.0796 (19)	0.5836 (16)	0.1541 (9)	0.050 (4)	
H27A	0.040882	0.659632	0.173988	0.059*	
H27B	-0.003443	0.522492	0.159258	0.059*	
S2	0.3197 (4)	0.2483 (4)	-0.1000(2)	0.0434 (10)	
O4	0.4827 (15)	0.2874 (13)	-0.0758 (7)	0.082 (5)	
05	0.1897 (18)	0.3143 (12)	-0.0704 (7)	0.076 (4)	
O6	0.3029 (13)	0.1184 (10)	-0.0925 (6)	0.055 (3)	
C28	0.3101 (15)	0.2744 (12)	-0.1926 (7)	0.030 (3)	
C29	0.398 (2)	0.2104 (14)	-0.2397 (9)	0.056 (4)	
H29	0.464748	0.148626	-0.221269	0.067*	
C30	0.393 (2)	0.2318 (19)	-0.3126 (9)	0.069 (5)	

H30	0.454820	0.183365	-0.341942	0.083*
C31	0.299 (3)	0.3227 (19)	-0.3444 (11)	0.067 (5)
C32	0.213 (2)	0.3916 (17)	-0.2971 (11)	0.063 (5)
H32	0.149972	0.455303	-0.315993	0.076*
C33	0.2151 (19)	0.3708 (15)	-0.2229 (11)	0.051 (4)
H33	0.154699	0.419715	-0.193132	0.061*
C34	0.291 (3)	0.347 (3)	-0.4236 (12)	0.108 (9)
H34A	0.211715	0.408803	-0.434536	0.163*
H34B	0.261493	0.273269	-0.449234	0.163*
H34C	0.393878	0.374298	-0.438393	0.163*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.035 (6)	0.025 (6)	0.073 (6)	-0.004 (5)	0.003 (5)	0.004 (5)
N2	0.022 (6)	0.028 (7)	0.075 (9)	-0.001 (5)	0.003 (5)	-0.001 (6)
C1	0.057 (8)	0.041 (8)	0.070 (6)	-0.002 (7)	0.006 (6)	0.002 (6)
C2	0.060 (8)	0.043 (8)	0.070 (7)	-0.006 (7)	0.006 (6)	0.000 (7)
C3	0.065 (8)	0.046 (9)	0.071 (7)	-0.008 (8)	0.007 (6)	-0.001 (7)
C4	0.065 (9)	0.049 (9)	0.072 (7)	-0.009 (8)	0.005 (7)	0.000(7)
C5	0.062 (9)	0.049 (8)	0.073 (7)	-0.007 (8)	0.006 (7)	-0.002 (7)
C6	0.059 (9)	0.045 (8)	0.071 (6)	-0.004 (7)	0.007 (7)	-0.001 (7)
C1A	0.056 (8)	0.041 (7)	0.070 (6)	-0.002 (7)	0.007 (6)	0.002 (6)
C2A	0.058 (8)	0.044 (8)	0.071 (6)	-0.004 (7)	0.007 (6)	0.001 (7)
C3A	0.065 (8)	0.046 (9)	0.071 (7)	-0.009 (8)	0.007 (7)	0.001 (7)
C4A	0.065 (9)	0.050 (8)	0.072 (7)	-0.009 (8)	0.005 (7)	0.001 (7)
C5A	0.061 (9)	0.048 (8)	0.072 (7)	-0.007 (8)	0.006 (7)	-0.001 (7)
C6A	0.059 (9)	0.046 (8)	0.071 (6)	-0.006 (7)	0.007 (7)	0.000 (6)
C7	0.033 (7)	0.041 (10)	0.073 (7)	-0.010 (7)	0.004 (6)	-0.009 (8)
C8	0.051 (9)	0.029 (8)	0.077 (8)	-0.016 (7)	0.004 (7)	0.005 (8)
C9	0.031 (7)	0.036 (9)	0.073 (8)	-0.007 (6)	0.009 (6)	-0.010 (8)
C10	0.038 (9)	0.035 (9)	0.076 (8)	-0.012 (7)	0.012 (7)	0.003 (7)
S1	0.042 (2)	0.029 (2)	0.061 (3)	0.009 (2)	0.0026 (17)	-0.003 (2)
01	0.046 (7)	0.018 (5)	0.083 (8)	0.002 (5)	0.006 (5)	0.004 (5)
O2	0.114 (10)	0.036 (7)	0.076 (9)	-0.037 (7)	-0.030 (8)	0.007 (7)
03	0.077 (8)	0.095 (11)	0.078 (8)	0.057 (8)	0.038 (7)	0.019 (8)
C11	0.031 (4)	0.034 (4)	0.043 (4)	0.001 (3)	0.002 (3)	-0.003 (3)
C12	0.037 (9)	0.057 (10)	0.068 (8)	-0.018 (8)	0.000(7)	0.005 (8)
C13	0.064 (12)	0.068 (13)	0.070 (9)	-0.016 (9)	0.011 (8)	0.013 (9)
C14	0.067 (12)	0.080 (13)	0.062 (9)	0.005 (9)	0.002 (8)	0.000 (9)
C15	0.076 (11)	0.064 (12)	0.067 (8)	-0.009 (10)	-0.017 (8)	-0.012 (9)
C16	0.069 (10)	0.039 (11)	0.069 (8)	-0.017 (8)	-0.013 (8)	-0.002 (7)
C17	0.108 (19)	0.13 (2)	0.068 (10)	0.026 (17)	0.009 (11)	0.013 (12)
N3	0.033 (6)	0.037 (7)	0.067 (5)	-0.005 (5)	-0.002 (5)	0.001 (6)
N4	0.024 (6)	0.023 (6)	0.076 (8)	-0.006 (5)	0.006 (5)	0.005 (6)
C18	0.048 (8)	0.040 (7)	0.067 (6)	-0.001 (7)	-0.002 (5)	0.004 (6)
C19	0.052 (7)	0.044 (8)	0.068 (6)	0.004 (7)	-0.003 (6)	0.002 (7)
C20	0.058 (8)	0.046 (9)	0.069 (6)	0.007 (8)	-0.002 (6)	0.003 (7)

C21	0.058 (9)	0.049 (8)	0.071 (7)	0.008 (8)	-0.002 (6)	0.003 (7)
C22	0.055 (9)	0.048 (8)	0.071 (7)	0.007 (8)	-0.003 (7)	0.000(7)
C23	0.051 (8)	0.045 (7)	0.071 (6)	0.005 (7)	-0.003 (6)	0.001 (7)
C18A	0.049 (8)	0.041 (7)	0.067 (6)	-0.001 (7)	-0.002 (6)	0.003 (6)
C19A	0.051 (8)	0.043 (8)	0.068 (6)	0.002 (7)	-0.002 (6)	0.003 (7)
C20A	0.057 (8)	0.045 (9)	0.069 (6)	0.008 (8)	-0.003 (6)	0.003 (7)
C21A	0.058 (9)	0.048 (8)	0.071 (7)	0.009 (8)	-0.001 (7)	0.002 (7)
C22A	0.056 (9)	0.047 (8)	0.072 (7)	0.007 (8)	-0.002 (7)	0.000(7)
C23A	0.053 (9)	0.045 (7)	0.071 (6)	0.003 (8)	-0.003 (7)	0.000 (6)
C24	0.029 (8)	0.052 (10)	0.079 (8)	0.010 (7)	0.000 (7)	0.004 (8)
C25	0.022 (6)	0.022 (8)	0.083 (8)	-0.004 (6)	0.003 (6)	-0.005 (7)
C26	0.052 (9)	0.021 (7)	0.073 (8)	0.012 (7)	0.003 (7)	0.008 (7)
C27	0.047 (4)	0.047 (5)	0.054 (4)	0.005 (3)	0.001 (3)	-0.002 (3)
S2	0.041 (2)	0.030 (2)	0.059 (3)	-0.014 (2)	0.0019 (17)	-0.002 (2)
O4	0.072 (7)	0.087 (11)	0.082 (9)	-0.056 (7)	-0.035 (6)	0.031 (8)
05	0.107 (10)	0.048 (8)	0.076 (9)	0.008 (7)	0.035 (8)	0.000(7)
06	0.058 (7)	0.026 (6)	0.082 (9)	-0.017 (5)	-0.004 (6)	0.009 (6)
C28	0.025 (4)	0.025 (4)	0.039 (4)	-0.008 (3)	0.002 (3)	-0.003 (3)
C29	0.075 (11)	0.033 (10)	0.061 (8)	0.011 (7)	0.011 (8)	-0.004 (7)
C30	0.097 (13)	0.053 (12)	0.059 (8)	0.003 (9)	0.018 (8)	-0.015 (8)
C31	0.069 (12)	0.063 (12)	0.068 (9)	-0.021 (8)	-0.005 (8)	0.005 (8)
C32	0.058 (12)	0.044 (11)	0.087 (9)	0.000 (8)	-0.008 (8)	0.019 (9)
C33	0.035 (8)	0.031 (8)	0.087 (9)	0.005 (6)	0.001 (8)	0.007 (8)
C34	0.11 (2)	0.13 (2)	0.076 (10)	-0.039 (18)	-0.012 (11)	0.022 (13)

Geometric parameters (Å, °)

N1—C1A	1.41 (3)	N3—C18	1.43 (3)
N1-C1	1.44 (3)	N3—C27	1.437 (19)
N1—C7	1.437 (19)	N3—C18A	1.44 (3)
N1-C10	1.461 (19)	N3—C24	1.44 (2)
N2—C9	1.467 (18)	N4—C25	1.459 (19)
N2—C8	1.475 (19)	N4—C26	1.473 (18)
N2—H21N	0.8900	N4—H41N	0.8900
N2—H22N	0.8900	N4—H42N	0.8900
C1—C2	1.3900	C18—C19	1.3900
C1—C6	1.3900	C18—C23	1.3900
С2—С3	1.3900	C19—C20	1.3900
С2—Н2	0.9300	C19—H19	0.9300
C3—C4	1.3900	C20—C21	1.3900
С3—Н3	0.9300	C20—H20	0.9300
C4—C5	1.3900	C21—C22	1.3900
C4—H4	0.9300	C21—H21	0.9300
С5—С6	1.3900	C22—C23	1.3900
С5—Н5	0.9300	C22—H22	0.9300
С6—Н6	0.9300	С23—Н23	0.9300
C1A—C2A	1.3900	C18A—C19A	1.3900
C1A—C6A	1.3900	C18A—C23A	1.3900

C2A—C3A	1.3900	C19A—C20A	1.3900
C2A—H2A	0.9300	C19A—H19A	0.9300
C3A—C4A	1.3900	C20A—C21A	1.3900
СЗА—НЗА	0.9300	C20A—H20A	0.9300
C4A—C5A	1.3900	C21A—C22A	1.3900
C4A—H4A	0.9300	C21A—H21A	0.9300
C5A—C6A	1.3900	C22A—C23A	1.3900
С5А—Н5А	0.9300	C22A—H22A	0.9300
С6А—Н6А	0.9300	C23A—H23A	0.9300
С7—С8	1.48 (2)	C24—C25	1.51 (2)
C7—H7A	0.9700	C24—H24A	0.9700
C7—H7B	0.9700	C24—H24B	0.9700
C8—H8A	0.9700	C25—H25A	0.9700
C8—H8B	0.9700	C25—H25B	0.9700
C9-C10	1 51 (2)	C26—C27	1 51 (2)
С9—Н9А	0.9700	C26—H26A	0.9700
C9—H9B	0.9700	C26—H26B	0.9700
C10—H10A	0.9700	C27—H27A	0.9700
C10—H10R	0.9700	C27—H27B	0.9700
S1-02	1.448(12)	S205	1430(13)
S1-02 S1-03	1.440(12) 1 451 (12)	S2-05 S2-06	1.436(13) 1 436(11)
\$1_01	1.462(11)	S2-00 S2-04	1.130(11) 1.473(11)
S1	1.731 (15)	S2-C28	1 728 (14)
C11-C16	1 358 (19)	$C_{28} - C_{29}$	1 355 (19)
C11-C12	1.330(1)	C_{28} C_{33}	1.555(1)
C12 - C13	1.15(2) 1.36(2)	$C_{29} - C_{30}$	1.12(2) 1.36(2)
С12—Н12	0.9300	C29—H29	0.9300
C13 - C14	1.34(3)	C_{30} C_{31}	1.38(3)
С13—Н13	0.9300	C30—H30	0.9300
C14 - C15	141(3)	$C_{31} - C_{32}$	1.38(3)
C14 - C17	1.11(3) 1 49(3)	$C_{31} - C_{34}$	1.38(3)
C15-C16	1.17(3) 1.37(2)	C_{32} C_{33}	1.10(3) 1.39(3)
C15—H15	0.9300	C32—H32	0.9300
C16—H16	0.9300	C33—H33	0.9300
C17—H17A	0.9500	C34—H34A	0.9600
C17—H17B	0.9600	C34—H34B	0.9600
C17—H17C	0.9600	C34—H34C	0.9600
	0.9000		0.9000
C1A—N1—C7	118.8 (19)	C18—N3—C27	115.7 (18)
C1-N1-C7	116.1 (19)	C27 - N3 - C18A	119 (2)
C1A - N1 - C10	116.9 (19)	C18 - N3 - C24	119(-)
C1-N1-C10	119.1 (19)	$C_{27} = N_{3} = C_{24}$	112.9 (14)
C7-N1-C10	111.9 (13)	C18A - N3 - C24	115 (2)
C9-N2-C8	110.6 (13)	$C_{25} N_{4} C_{26}$	109.8(13)
C9—N2—H21N	109.5	C25—N4—H41N	109.7
C8—N2—H21N	109.5	C26—N4—H41N	109.7
C9—N2—H22N	109.5	C25—N4—H42N	109.7
C8—N2—H22N	109.5	C26—N4—H42N	109.7

H21N—N2—H22N	108.1	H41N—N4—H42N	108.2
C2—C1—C6	120.0	C19—C18—C23	120.0
C2-C1-N1	122 (2)	C19—C18—N3	121 (2)
C6-C1-N1	118 (2)	C23—C18—N3	119 (2)
C3—C2—C1	120.0	C20-C19-C18	120.0
С3—С2—Н2	120.0	С20—С19—Н19	120.0
C1—C2—H2	120.0	C18—C19—H19	120.0
C2—C3—C4	120.0	C21—C20—C19	120.0
С2—С3—Н3	120.0	C21—C20—H20	120.0
С4—С3—Н3	120.0	С19—С20—Н20	120.0
C3—C4—C5	120.0	C22—C21—C20	120.0
C3—C4—H4	120.0	C22—C21—H21	120.0
C5—C4—H4	120.0	C20—C21—H21	120.0
C6—C5—C4	120.0	C21—C22—C23	120.0
С6—С5—Н5	120.0	C21—C22—H22	120.0
С4—С5—Н5	120.0	С23—С22—Н22	120.0
C5—C6—C1	120.0	C22—C23—C18	120.0
С5—С6—Н6	120.0	C22—C23—H23	120.0
C1—C6—H6	120.0	C18—C23—H23	120.0
C2A— $C1A$ — $C6A$	120.0	C19A - C18A - C23A	120.0
C2A— $C1A$ — $N1$	118 (2)	C19A - C18A - N3	119 (3)
C6A-C1A-N1	122 (2)	$C_{23}A - C_{18}A - N_{3}$	120 (3)
C1A - C2A - C3A	120.0	$C_{20}A - C_{19}A - C_{18}A$	120.0
C1A—C2A—H2A	120.0	C20A—C19A—H19A	120.0
C3A - C2A - H2A	120.0	C18A—C19A—H19A	120.0
C4A - C3A - C2A	120.0	C19A - C20A - C21A	120.0
C4A—C3A—H3A	120.0	C19A—C20A—H20A	120.0
C2A - C3A - H3A	120.0	$C_{21}A - C_{20}A - H_{20}A$	120.0
C3A - C4A - C5A	120.0	C_{20A} C_{21A} C_{22A}	120.0
C3A - C4A - H4A	120.0	C_{20A} C_{21A} H_{21A}	120.0
C5A-C4A-H4A	120.0	C22A - C21A - H21A	120.0
C6A - C5A - C4A	120.0	C_{23A} C_{22A} C_{21A}	120.0
C6A - C5A - H5A	120.0	C_{23A} C_{22A} H_{22A}	120.0
C4A - C5A - H5A	120.0	C_{21A} C_{22A} H_{22A}	120.0
C5A - C6A - C1A	120.0	C22A - C23A - C18A	120.0
C5A - C6A - H6A	120.0	C22A - C23A - H23A	120.0
C1A - C6A - H6A	120.0	C18A - C23A - H23A	120.0
N1-C7-C8	114 2 (13)	N3-C24-C25	111.9 (14)
N1-C7-H7A	108 7	N3—C24—H24A	109.2
C8—C7—H7A	108.7	C25—C24—H24A	109.2
N1-C7-H7B	108.7	N3—C24—H24B	109.2
C8-C7-H7B	108.7	C_{25} C_{24} H_{24B}	109.2
H7A - C7 - H7B	107.6	$H_{24} = C_{24} = H_{24}B$	107.9
$N_2 - C_8 - C_7$	111.8 (13)	N4-C25-C24	107.5 111.5(12)
N2-C8-H8A	109 3	N4—C25—H25A	109 3
C7-C8-H8A	109.3	C24-C25-H25A	109.3
N2-C8-H8B	109.3	N4—C25—H25B	109.3
C7-C8-H8B	109.3	C_{24} C_{25} H_{25B}	109.3
	107.5	CET CEJ 112JD	107.5

H8A—C8—H8B	107.9	H25A—C25—H25B	108.0
N2-C9-C10	110.8 (12)	N4—C26—C27	110.5 (13)
N2—C9—H9A	109.5	N4—C26—H26A	109.6
С10—С9—Н9А	109.5	C27—C26—H26A	109.6
N2—C9—H9B	109.5	N4—C26—H26B	109.6
С10—С9—Н9В	109.5	C27—C26—H26B	109.6
H9A—C9—H9B	108.1	H26A—C26—H26B	108.1
N1—C10—C9	112.7 (13)	N3—C27—C26	113.3 (13)
N1—C10—H10A	109.1	N3—C27—H27A	108.9
C9—C10—H10A	109.1	С26—С27—Н27А	108.9
N1—C10—H10B	109.1	N3—C27—H27B	108.9
C9—C10—H10B	109.1	С26—С27—Н27В	108.9
H10A—C10—H10B	107.8	H27A—C27—H27B	107.7
O2—S1—O3	114.3 (10)	O5—S2—O6	112.7 (8)
O2—S1—O1	113.6 (8)	O5—S2—O4	116.2 (9)
O3—S1—O1	111.2 (8)	O6—S2—O4	110.6 (8)
O2—S1—C11	106.6 (7)	O5—S2—C28	106.9 (8)
O3—S1—C11	105.8 (7)	O6—S2—C28	105.0 (7)
01—S1—C11	104.5 (7)	O4—S2—C28	104.5 (7)
C16—C11—C12	115.3 (15)	C29—C28—C33	116.1 (14)
C16—C11—S1	123.0 (12)	C29—C28—S2	123.0 (12)
C12—C11—S1	121.3 (12)	C33—C28—S2	120.7 (12)
C13—C12—C11	119.8 (17)	C28—C29—C30	123.4 (16)
С13—С12—Н12	120.1	С28—С29—Н29	118.3
C11—C12—H12	120.1	С30—С29—Н29	118.3
C14—C13—C12	124.9 (19)	C29—C30—C31	122.3 (18)
C14—C13—H13	117.5	С29—С30—Н30	118.9
C12—C13—H13	117.5	С31—С30—Н30	118.9
C13—C14—C15	115.2 (19)	C30—C31—C32	115.3 (19)
C13—C14—C17	124 (2)	C30—C31—C34	123 (2)
C15—C14—C17	120 (2)	C32—C31—C34	121 (2)
C16—C15—C14	121.0 (18)	C31—C32—C33	123.4 (18)
C16—C15—H15	119.5	С31—С32—Н32	118.3
C14—C15—H15	119.5	С33—С32—Н32	118.3
C11—C16—C15	123.5 (17)	C32—C33—C28	119.5 (16)
C11—C16—H16	118.3	С32—С33—Н33	120.2
C15—C16—H16	118.3	С28—С33—Н33	120.2
C14—C17—H17A	109.5	C31—C34—H34A	109.5
C14—C17—H17B	109.5	C31—C34—H34B	109.5
H17A—C17—H17B	109.5	H34A—C34—H34B	109.5
C14—C17—H17C	109.5	C31—C34—H34C	109.5
H17A—C17—H17C	109.5	H34A—C34—H34C	109.5
H17B—C17—H17C	109.5	H34B—C34—H34C	109.5
C7—N1—C1—C2	-165 (2)	C27—N3—C18—C19	163 (2)
C10—N1—C1—C2	-26 (3)	C24—N3—C18—C19	23 (3)
C7—N1—C1—C6	21 (3)	C27—N3—C18—C23	-23 (3)
C10—N1—C1—C6	159 (2)	C24—N3—C18—C23	-162 (2)
	~ /		

C6—C1—C2—C3	0.0	C23—C18—C19—C20	0.0
N1—C1—C2—C3	-174 (3)	N3-C18-C19-C20	174 (3)
C1—C2—C3—C4	0.0	C18—C19—C20—C21	0.0
C2—C3—C4—C5	0.0	C19—C20—C21—C22	0.0
C3—C4—C5—C6	0.0	C20—C21—C22—C23	0.0
C4—C5—C6—C1	0.0	C21—C22—C23—C18	0.0
C2-C1-C6-C5	0.0	C19—C18—C23—C22	0.0
N1—C1—C6—C5	174 (3)	N3—C18—C23—C22	-174 (3)
C7—N1—C1A—C2A	-147 (2)	C27—N3—C18A—C19A	146 (2)
C10—N1—C1A—C2A	-8 (3)	C24—N3—C18A—C19A	6 (3)
C7—N1—C1A—C6A	39 (3)	C27—N3—C18A—C23A	-41(3)
C10-N1-C1A-C6A	178 (2)	C24—N3—C18A—C23A	-180(2)
C6A - C1A - C2A - C3A	0.0	C23A—C18A—C19A—C20A	0.0
N1-C1A-C2A-C3A	-174(3)	N3—C18A—C19A—C20A	174 (3)
C1A - C2A - C3A - C4A	0.0	C18A - C19A - C20A - C21A	0.0
C2A—C3A—C4A—C5A	0.0	C19A—C20A—C21A—C22A	0.0
C3A - C4A - C5A - C6A	0.0	$C_{20}A - C_{21}A - C_{22}A - C_{23}A$	0.0
C4A - C5A - C6A - C1A	0.0	$C_{21A} - C_{22A} - C_{23A} - C_{18A}$	0.0
C_{2A} C_{1A} C_{6A} C_{5A}	0.0	C19A - C18A - C23A - C22A	0.0
N1-C1A-C6A-C5A	174 (3)	N3—C18A—C23A—C22A	-174(3)
C1A-N1-C7-C8	-168(2)	$C_{18} - N_{3} - C_{24} - C_{25}$	-168.7(18)
C1—N1—C7—C8	-168(2)	C27—N3—C24—C25	51.1 (17)
C10—N1—C7—C8	50.7 (18)	C18A—N3—C24—C25	-167(2)
C9—N2—C8—C7	54.6 (17)	C26—N4—C25—C24	57.4 (16)
N1—C7—C8—N2	-52.8(19)	N3—C24—C25—N4	-54.9(17)
C8—N2—C9—C10	-55.4 (17)	C25—N4—C26—C27	-56.2 (16)
C1A—N1—C10—C9	167 (2)	C18—N3—C27—C26	167.3 (19)
C1—N1—C10—C9	169 (2)	C18A—N3—C27—C26	169 (2)
C7—N1—C10—C9	-51.2 (17)	C24—N3—C27—C26	-51.3 (19)
N2-C9-C10-N1	54.4 (18)	N4—C26—C27—N3	53.6 (19)
O2—S1—C11—C16	171.6 (14)	O5—S2—C28—C29	-168.7 (13)
O3—S1—C11—C16	-66.3 (15)	O6—S2—C28—C29	-48.8 (14)
O1—S1—C11—C16	51.1 (15)	O4—S2—C28—C29	67.7 (14)
O2—S1—C11—C12	-16.1 (15)	O5—S2—C28—C33	15.2 (14)
O3—S1—C11—C12	105.9 (14)	O6—S2—C28—C33	135.1 (12)
O1—S1—C11—C12	-136.7 (13)	O4—S2—C28—C33	-108.5 (13)
C16—C11—C12—C13	-5 (2)	C33—C28—C29—C30	-3 (2)
S1—C11—C12—C13	-178.3 (14)	S2-C28-C29-C30	-178.9 (14)
C11—C12—C13—C14	2 (3)	C28—C29—C30—C31	1 (3)
C12—C13—C14—C15	2 (3)	C29—C30—C31—C32	1 (3)
C12—C13—C14—C17	180 (2)	C29—C30—C31—C34	-179.4 (19)
C13—C14—C15—C16	-2 (3)	C30—C31—C32—C33	-1 (3)
C17—C14—C15—C16	-179.9 (19)	C34—C31—C32—C33	178.8 (19)
C12—C11—C16—C15	6 (3)	C31—C32—C33—C28	0 (3)
S1—C11—C16—C15	178.4 (15)	C29—C28—C33—C32	2 (2)
C14—C15—C16—C11	-2 (3)	S2—C28—C33—C32	178.3 (13)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H21 <i>N</i> ···O6	0.89	2.07	2.884 (18)	151
N2—H22 <i>N</i> ···O4 ⁱ	0.89	1.92	2.774 (17)	161
С9—Н9 <i>В</i> …О1 ^{іі}	0.97	2.64	3.534 (19)	154
N4—H41 <i>N</i> ···O3 ⁱⁱ	0.89	1.92	2.788 (16)	163
N4—H42 <i>N</i> …O1	0.89	2.09	2.890 (18)	149
N4—H42 <i>N</i> …O5	0.89	2.43	2.865 (18)	111
C25—H25A····O6 ⁱⁱⁱ	0.97	2.63	3.520 (18)	153

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, y-1/2, -z; (ii) -x, y-1/2, -z; (iii) -x+1, y+1/2, -z.

4-Phenylpiperazin-1-ium 4-carboxy-2,3-dihydroxybutanoate monohydrate (11)

Crystal data

 $C_{10}H_{15}N_2^{+} \cdot C_4H_5O_6^{-} \cdot H_2O$ $M_r = 330.33$ Orthorhombic, $P2_12_12_12_1$ a = 7.1185 (7) Å b = 7.5255 (8) Å c = 29.955 (3) Å V = 1604.7 (3) Å³ Z = 4F(000) = 704

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysalisRED; Oxford Diffraction, 2007) $T_{\min} = 0.883, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.100$ S = 1.093354 reflections 260 parameters 211 restraints Primary atom site location: dual Secondary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed $D_x = 1.367 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3790 reflections $\theta = 2.9-27.8^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.42 \times 0.32 \times 0.24 \text{ mm}$

6773 measured reflections 3354 independent reflections 2808 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 27.8^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -6 \rightarrow 9$ $l = -36 \rightarrow 38$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0359P)^2 + 0.5036P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 912 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.2 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.2138 (4)	0.3376 (4)	0.69293 (7)	0.0428 (6)	
N2	0.0481 (4)	0.3028 (5)	0.60649 (9)	0.0515 (8)	
H21	0.057 (6)	0.189 (3)	0.6004 (13)	0.062*	
H22	-0.007 (5)	0.338 (5)	0.5825 (9)	0.062*	
C1	0.3025 (8)	0.3071 (7)	0.7352 (2)	0.0393 (16)	0.611 (13)
C2	0.4926 (8)	0.2687 (11)	0.73967 (16)	0.0489 (16)	0.611 (13)
H2	0.566167	0.250879	0.714417	0.059*	0.611 (13)
C3	0.5726 (8)	0.2568 (12)	0.78189 (19)	0.0596 (18)	0.611 (13)
Н3	0.699769	0.231094	0.784885	0.071*	0.611 (13)
C4	0.4626 (12)	0.2834 (8)	0.81965 (16)	0.0629 (19)	0.611 (13)
H4	0.516140	0.275436	0.847893	0.076*	0.611 (13)
C5	0.2725 (11)	0.3218 (11)	0.8152 (2)	0.0565 (19)	0.611 (13)
Н5	0.198908	0.339564	0.840434	0.068*	0.611 (13)
C6	0.1925 (8)	0.3336 (10)	0.7730 (3)	0.0469 (17)	0.611 (13)
H6	0.065303	0.359351	0.769967	0.056*	0.611 (13)
C1A	0.3005 (14)	0.3277 (13)	0.7366 (4)	0.044 (2)	0.389 (13)
C2A	0.4913 (13)	0.3634 (19)	0.7408 (3)	0.054 (2)	0.389 (13)
H2A	0.561166	0.395753	0.715828	0.065*	0.389 (13)
C3A	0.5777 (13)	0.3508 (18)	0.7823 (3)	0.058 (2)	0.389 (13)
H3A	0.705291	0.374729	0.785092	0.069*	0.389 (13)
C4A	0.4732 (18)	0.3026 (13)	0.8196 (3)	0.060 (3)	0.389 (13)
H4A	0.531021	0.294126	0.847328	0.073*	0.389 (13)
C5A	0.2825 (18)	0.2669 (16)	0.8154 (4)	0.052 (2)	0.389 (13)
H5A	0.212626	0.234547	0.840300	0.062*	0.389 (13)
C6A	0.1961 (13)	0.2795 (15)	0.7739 (5)	0.044 (2)	0.389 (13)
H6A	0.068497	0.255570	0.771037	0.053*	0.389 (13)
C7	0.0322 (4)	0.2513 (6)	0.68665 (10)	0.0600 (10)	
H7A	-0.044378	0.269546	0.713032	0.072*	
H7B	0.051046	0.124480	0.683019	0.072*	
C8	-0.0694 (5)	0.3230 (6)	0.64654 (11)	0.0615 (11)	
H8A	-0.186632	0.259277	0.642510	0.074*	
H8B	-0.098445	0.447573	0.651123	0.074*	
C9	0.2345 (5)	0.3864 (6)	0.61270 (11)	0.0626 (11)	
H9A	0.219400	0.513976	0.615495	0.075*	
H9B	0.311852	0.363336	0.586672	0.075*	
C10	0.3310 (4)	0.3153 (6)	0.65361 (9)	0.0516 (9)	
H10A	0.358743	0.190224	0.649445	0.062*	
H10B	0.448994	0.377545	0.657941	0.062*	
01	0.3807 (3)	0.8465 (3)	0.42742 (7)	0.0391 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O2	0.0905 (3)	0.9424 (3)	0.44164 (9)	0.0536 (6)
03	-0.0601 (3)	0.6256 (3)	0.44303 (8)	0.0403 (5)
H3O	-0.097 (5)	0.721 (3)	0.4540 (10)	0.048*
04	0.1952 (3)	0.6293 (3)	0.51830 (6)	0.0405 (5)
H4O	0.091 (3)	0.613 (5)	0.5267 (11)	0.049*
05	0.0826 (3)	0.2841 (3)	0.51284 (7)	0.0513 (6)
O6	0.1893 (3)	0.2612 (2)	0.44300 (6)	0.0369 (5)
H6O	0.153 (4)	0.156 (3)	0.4444 (11)	0.044*
C11	0.2097 (4)	0.8232 (3)	0.43575 (9)	0.0323 (6)
C12	0.1380 (3)	0.6322 (3)	0.43867 (9)	0.0277 (5)
H12	0.173538	0.569709	0.411225	0.033*
C13	0.2286 (4)	0.5366 (3)	0.47836 (8)	0.0284 (6)
H13	0.364670	0.533612	0.473374	0.034*
C14	0.1588 (4)	0.3466 (4)	0.48051 (8)	0.0311 (6)
07	-0.3916 (4)	0.5658 (4)	0.39633 (9)	0.0629 (7)
H71O	-0.286 (4)	0.586 (6)	0.4077 (13)	0.075*
H72O	-0.462 (5)	0.649 (4)	0.4054 (14)	0.075*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0367 (13)	0.0643 (16)	0.0275 (11)	-0.0036 (13)	-0.0040 (10)	0.0023 (12)
N2	0.0418 (14)	0.083 (2)	0.0299 (13)	-0.0080 (17)	-0.0080 (11)	0.0064 (15)
C1	0.042 (3)	0.047 (3)	0.029 (3)	0.000 (3)	-0.004(3)	-0.009 (3)
C2	0.044 (3)	0.067 (4)	0.037 (2)	0.012 (3)	-0.003(2)	0.001 (3)
C3	0.056 (3)	0.075 (5)	0.048 (3)	0.012 (4)	-0.017 (2)	0.003 (4)
C4	0.074 (4)	0.079 (4)	0.036 (3)	0.007 (4)	-0.016 (3)	0.002 (3)
C5	0.067 (3)	0.069 (5)	0.033 (3)	0.005 (4)	-0.002(3)	-0.002 (3)
C6	0.048 (3)	0.056 (4)	0.037 (3)	0.009 (3)	-0.002(2)	-0.005 (3)
C1A	0.044 (4)	0.051 (5)	0.036 (4)	0.003 (4)	-0.005 (4)	0.010 (4)
C2A	0.050 (4)	0.072 (5)	0.039 (4)	-0.001 (5)	-0.003 (3)	0.006 (4)
C3A	0.052 (4)	0.078 (6)	0.043 (4)	0.000 (5)	-0.016 (3)	-0.001 (5)
C4A	0.068 (5)	0.078 (5)	0.036 (4)	0.001 (5)	-0.017 (4)	-0.002 (4)
C5A	0.065 (4)	0.058 (5)	0.032 (4)	0.005 (4)	0.001 (4)	0.001 (4)
C6A	0.048 (4)	0.048 (5)	0.036 (4)	0.002 (4)	-0.001 (3)	0.003 (4)
C7	0.0388 (17)	0.108 (3)	0.0335 (16)	-0.015 (2)	0.0016 (13)	0.0005 (19)
C8	0.0405 (18)	0.101 (3)	0.0431 (18)	0.007 (2)	-0.0058 (14)	-0.010 (2)
C9	0.051 (2)	0.097 (3)	0.0398 (17)	-0.023 (2)	-0.0084 (15)	0.0173 (19)
C10	0.0357 (16)	0.085 (3)	0.0343 (15)	-0.0079 (18)	-0.0012 (12)	0.0073 (17)
O1	0.0305 (10)	0.0412 (11)	0.0458 (11)	-0.0059 (9)	0.0039 (9)	-0.0013 (10)
O2	0.0379 (12)	0.0274 (10)	0.0954 (18)	0.0020 (9)	0.0058 (12)	-0.0045 (12)
O3	0.0255 (10)	0.0319 (10)	0.0635 (14)	-0.0007 (9)	-0.0047 (10)	-0.0087 (11)
O4	0.0355 (11)	0.0538 (12)	0.0323 (10)	-0.0080 (11)	0.0028 (9)	-0.0162 (10)
05	0.0641 (15)	0.0544 (13)	0.0354 (11)	-0.0131 (12)	0.0138 (10)	0.0052 (10)
O6	0.0472 (12)	0.0257 (9)	0.0379 (10)	-0.0018 (9)	0.0084 (9)	-0.0025 (9)
C11	0.0325 (14)	0.0308 (14)	0.0336 (14)	-0.0019 (13)	-0.0026 (12)	-0.0016 (12)
C12	0.0231 (12)	0.0276 (13)	0.0326 (13)	0.0017 (11)	-0.0013 (11)	-0.0044 (12)
C13	0.0249 (13)	0.0353 (14)	0.0248 (12)	-0.0001 (12)	0.0015 (11)	-0.0045 (11)

C14	0.0291 (14)	0.0349 (14)	0.0293 (13)	0.0013 (12)	0.0002 (11)	0.0009 (12)
07	0.0411 (13)	0.0784 (19)	0.0691 (16)	0.0049 (14)	-0.0092 (12)	-0.0320 (15)

Geometric parameters (Å, °)

N1—C1	1.434 (6)	С5А—Н5А	0.9300	
N1—C1A	1.448 (9)	C6A—H6A	0.9300	
N1-C10	1.453 (4)	C7—C8	1.502 (5)	
N1—C7	1.459 (4)	C7—H7A	0.9700	
N2—C8	1.470 (4)	C7—H7B	0.9700	
N2—C9	1.480 (4)	C8—H8A	0.9700	
N2—H21	0.88 (2)	C8—H8B	0.9700	
N2—H22	0.86 (2)	C9—C10	1.503 (4)	
C1—C2	1.3900	С9—Н9А	0.9700	
C1—C6	1.3900	С9—Н9В	0.9700	
C2—C3	1.3900	C10—H10A	0.9700	
C2—H2	0.9300	C10—H10B	0.9700	
C3—C4	1.3900	O1—C11	1.255 (3)	
С3—Н3	0.9300	O2—C11	1.247 (3)	
C4—C5	1.3900	O3—C12	1.417 (3)	
C4—H4	0.9300	O3—H3O	0.83 (2)	
C5—C6	1.3900	O4—C13	1.405 (3)	
С5—Н5	0.9300	O4—H4O	0.79 (2)	
С6—Н6	0.9300	O5—C14	1.205 (3)	
C1A—C2A	1.3900	O6—C14	1.312 (3)	
C1A—C6A	1.3900	O6—H6O	0.83 (2)	
C2A—C3A	1.3900	C11—C12	1.528 (4)	
C2A—H2A	0.9300	C12—C13	1.532 (4)	
C3A—C4A	1.3900	C12—H12	0.9800	
СЗА—НЗА	0.9300	C13—C14	1.516 (4)	
C4A—C5A	1.3900	C13—H13	0.9800	
C4A—H4A	0.9300	O7—H71O	0.84 (2)	
C5A—C6A	1.3900	O7—H72O	0.85 (2)	
C1-N1-C10	116.4 (3)	N1	111.7 (3)	
C1A—N1—C10	118.8 (5)	N1—C7—H7A	109.3	
C1—N1—C7	115.6 (3)	C8—C7—H7A	109.3	
C1A—N1—C7	118.1 (5)	N1—C7—H7B	109.3	
C10—N1—C7	110.7 (2)	C8—C7—H7B	109.3	
C8—N2—C9	111.3 (3)	H7A—C7—H7B	107.9	
C8—N2—H21	108 (3)	N2—C8—C7	110.0 (3)	
C9—N2—H21	112 (3)	N2—C8—H8A	109.7	
C8—N2—H22	113 (3)	C7—C8—H8A	109.7	
C9—N2—H22	112 (3)	N2—C8—H8B	109.7	
H21—N2—H22	99 (4)	C7—C8—H8B	109.7	
C2-C1-C6	120.0	H8A—C8—H8B	108.2	
C2-C1-N1	123.2 (5)	N2-C9-C10	111.2 (3)	
C6-C1-N1	116.6 (5)	N2—C9—H9A	109.4	

C1—C2—C3	120.0	С10—С9—Н9А	109.4
C1—C2—H2	120.0	N2—C9—H9B	109.4
C3—C2—H2	120.0	С10—С9—Н9В	109.4
C4—C3—C2	120.0	H9A—C9—H9B	108.0
С4—С3—Н3	120.0	N1—C10—C9	110.9 (3)
С2—С3—Н3	120.0	N1—C10—H10A	109.5
C3—C4—C5	120.0	C9—C10—H10A	109.5
C3—C4—H4	120.0	N1—C10—H10B	109.5
C5—C4—H4	120.0	C9—C10—H10B	109.5
C4—C5—C6	120.0	H10A—C10—H10B	108.0
C4—C5—H5	120.0	С12—О3—НЗО	109 (2)
С6—С5—Н5	120.0	C13—O4—H4O	111 (3)
C5—C6—C1	120.0	С14—О6—Н6О	112 (2)
С5—С6—Н6	120.0	O2—C11—O1	126.0 (3)
С1—С6—Н6	120.0	O2—C11—C12	116.2 (2)
C2A—C1A—C6A	120.0	O1—C11—C12	117.8 (2)
C2A—C1A—N1	119.3 (7)	O3—C12—C11	111.7 (2)
C6A—C1A—N1	120.7 (7)	O3—C12—C13	109.3 (2)
C1A—C2A—C3A	120.0	C11—C12—C13	110.2 (2)
C1A—C2A—H2A	120.0	O3—C12—H12	108.5
C3A—C2A—H2A	120.0	C11—C12—H12	108.5
C4A—C3A—C2A	120.0	C13—C12—H12	108.5
С4А—С3А—Н3А	120.0	O4—C13—C14	112.1 (2)
С2А—С3А—Н3А	120.0	O4—C13—C12	110.9 (2)
C3A—C4A—C5A	120.0	C14—C13—C12	109.7 (2)
C3A—C4A—H4A	120.0	O4—C13—H13	108.0
C5A—C4A—H4A	120.0	C14—C13—H13	108.0
C4A—C5A—C6A	120.0	С12—С13—Н13	108.0
С4А—С5А—Н5А	120.0	O5—C14—O6	124.9 (3)
С6А—С5А—Н5А	120.0	O5—C14—C13	123.3 (2)
C5A—C6A—C1A	120.0	O6—C14—C13	111.8 (2)
С5А—С6А—Н6А	120.0	H710—O7—H72O	105 (4)
С1А—С6А—Н6А	120.0		
C10—N1—C1—C2	3.8 (6)	N1—C1A—C6A—C5A	178.6 (8)
C7—N1—C1—C2	136.3 (5)	C1—N1—C7—C8	166.9 (4)
C10—N1—C1—C6	178.1 (4)	C1A—N1—C7—C8	160.3 (5)
C7—N1—C1—C6	-49.5 (5)	C10—N1—C7—C8	-58.0 (4)
C6—C1—C2—C3	0.0	C9—N2—C8—C7	-54.9 (5)
N1—C1—C2—C3	174.0 (5)	N1—C7—C8—N2	56.7 (5)
C1—C2—C3—C4	0.0	C8—N2—C9—C10	54.9 (5)
C2—C3—C4—C5	0.0	C1—N1—C10—C9	-168.4 (4)
C3—C4—C5—C6	0.0	C1A—N1—C10—C9	-161.7(5)
C4—C5—C6—C1	0.0	C7—N1—C10—C9	56.8 (4)
C2—C1—C6—C5	0.0	N2-C9-C10-N1	-55.5 (4)
N1-C1-C6-C5	-174.4 (5)	O2—C11—C12—O3	6.3 (3)
C10—N1—C1A—C2A	23.7 (8)	O1—C11—C12—O3	-173.2 (2)
C7-N1-C1A-C2A	162.3 (6)	02-C11-C12-C13	-115.4(3)
	(-)		

C10-N1-C1A-C6A	-154.9 (6)	O1—C11—C12—C13	65.1 (3)
C7—N1—C1A—C6A	-16.3 (9)	O3—C12—C13—O4	-66.8 (3)
C6A—C1A—C2A—C3A	0.0	C11—C12—C13—O4	56.4 (3)
N1—C1A—C2A—C3A	-178.6 (8)	O3—C12—C13—C14	57.7 (3)
C1A—C2A—C3A—C4A	0.0	C11—C12—C13—C14	-179.2 (2)
C2A—C3A—C4A—C5A	0.0	O4—C13—C14—O5	0.4 (4)
C3A—C4A—C5A—C6A	0.0	C12—C13—C14—O5	-123.3 (3)
C4A—C5A—C6A—C1A	0.0	O4-C13-C14-O6	179.5 (2)
C2A—C1A—C6A—C5A	0.0	C12—C13—C14—O6	55.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
N2—H21…O7 ⁱ	0.88 (2)	1.95 (2)	2.808 (5)	164 (4)
N2—H22…O1 ⁱⁱ	0.86 (2)	2.52 (3)	3.069 (4)	122 (3)
N2—H22…O5	0.86 (2)	2.22 (3)	2.820 (3)	127 (3)
N2—H22…O6 ⁱⁱⁱ	0.86 (2)	2.41 (3)	2.992 (3)	125 (3)
C9—H9 <i>B</i> ···O2 ^{iv}	0.97	2.61	3.276 (4)	126
O3—H3 <i>O</i> ···O2	0.83 (2)	2.17 (3)	2.614 (3)	114 (3)
O3—H3 <i>O</i> …O4 ⁱⁱ	0.83 (2)	2.04 (2)	2.789 (3)	150 (3)
O4—H4 <i>O</i> …O1 ⁱⁱ	0.79 (2)	2.06 (3)	2.773 (3)	151 (3)
O6—H6 <i>O</i> ····O2 ^v	0.83 (2)	1.67 (2)	2.501 (3)	174 (3)
O7—H71 <i>O</i> ···O3	0.84 (2)	1.95 (2)	2.780 (3)	171 (4)
O7—H72 <i>O</i> ···O1 ^{vi}	0.85 (2)	1.97 (2)	2.821 (3)	178 (4)

Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) x-1/2, -y+3/2, -z+1; (iii) x-1/2, -y+1/2, -z+1; (iv) x+1/2, -y+3/2, -z+1; (v) x, y-1, z; (vi) x-1, y, z.

4-Phenylpiperazin-1-ium fumarate (12)

Crystal data

$C_{10}H_{15}N_{2}^{+}C_{4}H_{3}O_{4}^{-}$ $M_{r} = 278.30$ Orthorhombic, <i>Pca2</i> ₁ <i>a</i> = 26.702 (1) Å <i>b</i> = 7.9626 (3) Å <i>c</i> = 6.7571 (3) Å <i>V</i> = 1436.68 (10) Å ³ <i>Z</i> = 4 <i>F</i> (000) = 592	$D_x = 1.287 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6248 reflections $\theta = 2.7-27.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K Prism, light brown $0.48 \times 0.44 \times 0.40 \text{ mm}$
Data collection Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysalisRED; Oxford Diffraction, 2007) $T_{\min} = 0.894, T_{\max} = 1.000$	9534 measured reflections 3127 independent reflections 2770 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 27.9^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -33 \rightarrow 33$ $k = -10 \rightarrow 5$ $l = -8 \rightarrow 8$

Refinement

5	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0296P)^2 + 0.3161P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.034$	$(\Delta/\sigma)_{\rm max} < 0.001$
$wR(F^2) = 0.077$	$\Delta ho_{ m max} = 0.17 \ m e \ m \AA^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
3127 reflections	Extinction correction: SHELXL-2018/3
191 parameters	(Sheldrick 2018),
4 restraints	$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: dual	Extinction coefficient: 0.024 (5)
Secondary atom site location: difference Fourier map	Absolute structure: Flack x determined using 1130 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
Hydrogen site location: mixed	<i>al.</i> , 2013)
H atoms treated by a mixture of independent and constrained refinement	Absolute structure parameter: 0.3 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.07139 (6)	0.0974 (2)	0.4560 (3)	0.0396 (4)
N2	0.15289 (7)	0.1889 (2)	0.2018 (3)	0.0359 (4)
H21	0.1639 (9)	0.258 (3)	0.111 (3)	0.043*
H22	0.1758 (8)	0.112 (3)	0.231 (4)	0.043*
C1	0.02675 (7)	0.1920 (3)	0.4495 (3)	0.0341 (5)
C2	-0.01118 (8)	0.1565 (3)	0.3155 (4)	0.0460 (5)
H2	-0.006524	0.072842	0.221209	0.055*
C3	-0.05581 (9)	0.2442 (3)	0.3210 (5)	0.0554 (6)
Н3	-0.080837	0.217775	0.230469	0.066*
C4	-0.06407 (10)	0.3685 (3)	0.4555 (5)	0.0581 (8)
H4	-0.094144	0.427343	0.457231	0.070*
C5	-0.02681 (11)	0.4041 (4)	0.5880 (5)	0.0605 (8)
Н5	-0.031873	0.488166	0.681492	0.073*
C6	0.01794 (9)	0.3187 (3)	0.5862 (4)	0.0493 (6)
H6	0.042619	0.346194	0.677785	0.059*
C7	0.11662 (9)	0.1763 (4)	0.5335 (4)	0.0516 (7)
H7A	0.140074	0.089729	0.573846	0.062*
H7B	0.108145	0.242129	0.649545	0.062*
C8	0.14116 (9)	0.2881 (3)	0.3825 (4)	0.0453 (6)
H8A	0.118887	0.380029	0.348976	0.054*
H8B	0.171722	0.335098	0.436782	0.054*
С9	0.10846 (8)	0.0982 (3)	0.1241 (3)	0.0406 (5)
H9A	0.118462	0.025512	0.015935	0.049*
H9B	0.084244	0.178364	0.073747	0.049*
C10	0.08503 (8)	-0.0048 (3)	0.2859 (4)	0.0458 (6)

H10A	0.055321	-0.060037	0.234969	0.055*	
H10B	0.108400	-0.091175	0.327448	0.055*	
O1	0.28279 (5)	0.92767 (16)	-0.2019 (3)	0.0457 (4)	
O2	0.20615 (5)	1.03469 (16)	-0.1699 (3)	0.0403 (4)	
H2O	0.2217 (8)	1.136 (3)	-0.190 (4)	0.048*	
O3	0.24248 (5)	0.31442 (15)	-0.2281 (3)	0.0395 (4)	
O4	0.17409 (5)	0.41963 (17)	-0.0874 (3)	0.0411 (4)	
C11	0.23766 (7)	0.9127 (2)	-0.1764 (3)	0.0298 (4)	
C12	0.21444 (7)	0.7446 (2)	-0.1522 (4)	0.0324 (5)	
H12	0.181218	0.738436	-0.111463	0.039*	
C13	0.23863 (7)	0.6049 (2)	-0.1857 (3)	0.0297 (4)	
H13	0.271921	0.611739	-0.225248	0.036*	
C14	0.21578 (7)	0.4351 (2)	-0.1639 (3)	0.0283 (4)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0316 (9)	0.0426 (10)	0.0447 (11)	0.0009 (8)	0.0062 (8)	0.0066 (9)
N2	0.0258 (9)	0.0317 (9)	0.0504 (12)	0.0015 (7)	0.0070 (8)	0.0071 (9)
C1	0.0292 (10)	0.0343 (10)	0.0389 (11)	-0.0044 (8)	0.0063 (9)	0.0047 (10)
C2	0.0385 (11)	0.0495 (12)	0.0502 (14)	-0.0029 (10)	0.0001 (12)	-0.0091 (13)
C3	0.0355 (11)	0.0636 (15)	0.0670 (17)	-0.0042 (11)	-0.0095 (14)	0.0038 (16)
C4	0.0364 (13)	0.0466 (14)	0.091 (2)	0.0085 (11)	0.0081 (15)	0.0066 (16)
C5	0.0538 (16)	0.0474 (15)	0.080(2)	0.0057 (12)	0.0095 (15)	-0.0165 (15)
C6	0.0423 (13)	0.0489 (14)	0.0567 (16)	-0.0027 (11)	-0.0030 (12)	-0.0138 (13)
C7	0.0339 (13)	0.0817 (19)	0.0391 (13)	0.0062 (13)	-0.0057 (10)	0.0027 (14)
C8	0.0279 (10)	0.0477 (13)	0.0604 (16)	-0.0049 (10)	-0.0010 (10)	-0.0136 (12)
С9	0.0338 (12)	0.0459 (13)	0.0419 (13)	-0.0004 (10)	0.0034 (10)	-0.0075 (11)
C10	0.0368 (11)	0.0295 (10)	0.0709 (17)	-0.0033 (9)	0.0130 (12)	-0.0028 (12)
O1	0.0309 (7)	0.0259 (7)	0.0802 (13)	-0.0035 (6)	0.0087 (9)	0.0026 (9)
02	0.0367 (7)	0.0188 (6)	0.0654 (11)	0.0011 (6)	0.0051 (8)	0.0038 (8)
03	0.0374 (8)	0.0208 (6)	0.0604 (11)	0.0016 (6)	0.0103 (7)	-0.0015 (7)
04	0.0305 (8)	0.0258 (7)	0.0671 (11)	0.0008 (6)	0.0107 (7)	0.0088 (7)
C11	0.0332 (10)	0.0224 (9)	0.0338 (11)	-0.0009 (7)	0.0011 (9)	0.0004 (9)
C12	0.0297 (9)	0.0231 (8)	0.0443 (12)	-0.0037 (8)	0.0045 (9)	0.0019 (9)
C13	0.0297 (9)	0.0224 (8)	0.0369 (11)	-0.0028 (7)	0.0024 (9)	0.0029 (9)
C14	0.0283 (9)	0.0201 (8)	0.0365 (10)	0.0003 (7)	-0.0024 (9)	0.0033 (9)

Geometric parameters (Å, °)

N1—C1	1.411 (3)	C7—H7A	0.9700	
N1-C10	1.455 (3)	С7—Н7В	0.9700	
N1C7	1.459 (3)	C8—H8A	0.9700	
N2-C9	1.485 (3)	C8—H8B	0.9700	
N2—C8	1.487 (3)	C9—C10	1.504 (3)	
N2—H21	0.87 (2)	С9—Н9А	0.9700	
N2—H22	0.89 (2)	C9—H9B	0.9700	
C1—C2	1.388 (3)	C10—H10A	0.9700	

C1—C6	1.388 (3)	C10—H10B	0.9700
C2—C3	1.382 (3)	01—C11	1.223 (2)
С2—Н2	0.9300	O2—C11	1.286 (2)
C3—C4	1.361 (4)	O2—H2O	0.921 (19)
C3—H3	0.9300	03—C14	1273(2)
C4-C5	1 368 (4)	04-C14	1.276(2)
C4—H4	0.9300	C_{11}	1.234(2) 1 485(2)
C5 C6	1,375(4)	C12 $C12$ $C13$	1.405(2)
C5C0	0.0300	$C_{12} = C_{13}$	1.300(3)
	0.9300	C12—H12	0.9300
	0.9300		1.490 (2)
C/C8	1.505 (4)	С13—Н13	0.9300
C1—N1—C10	119.1 (2)	H7A—C7—H7B	107.9
C1—N1—C7	118.8 (2)	N2—C8—C7	109.53 (19)
C10—N1—C7	108.50 (18)	N2—C8—H8A	109.8
C9—N2—C8	112.35 (16)	С7—С8—Н8А	109.8
C9—N2—H21	109.1 (17)	N2—C8—H8B	109.8
C8—N2—H21	108.3 (17)	C7—C8—H8B	109.8
C9—N2—H22	107.1 (16)	H8A—C8—H8B	108.2
C8—N2—H22	109.1(17)	N_{2} C9 C10	109.9(2)
$H_{21} = N_{2} = H_{22}$	111(2)	N2-C9-H9A	109.9 (2)
C_{2}	117(2) 1173(2)	C10 C9 H9A	109.7
$C_2 = C_1 = C_0$	117.5(2) 121.0(2)	$N_2 C_0 H_0 B$	109.7
C_{2} C_{1} N_{1}	121.9(2) 120.7(2)	12 - 0 - 119D	109.7
$C_0 = C_1 = N_1$	120.7(2)		109.7
$C_3 = C_2 = C_1$	120.6 (2)	H9A—C9—H9B	108.2
$C_3 - C_2 - H_2$	119.7	NI-C10-C9	111.91 (17)
C1—C2—H2	119.7	NI-CIO-HIOA	109.2
C4—C3—C2	121.7 (3)	C9—C10—H10A	109.2
С4—С3—Н3	119.2	N1—C10—H10B	109.2
С2—С3—Н3	119.2	C9—C10—H10B	109.2
C3—C4—C5	118.0 (2)	H10A—C10—H10B	107.9
C3—C4—H4	121.0	C11—O2—H2O	111.3 (14)
C5—C4—H4	121.0	01—C11—O2	125.17 (17)
C4—C5—C6	121.6 (3)	O1-C11-C12	120.99 (17)
С4—С5—Н5	119.2	O2—C11—C12	113.83 (16)
С6—С5—Н5	119.2	C13—C12—C11	122.85 (17)
C5—C6—C1	120.8 (2)	C13—C12—H12	118.6
С5—С6—Н6	119.6	C11—C12—H12	118.6
С1—С6—Н6	119.6	C12—C13—C14	123.57 (17)
N1—C7—C8	111.8 (2)	C12—C13—H13	118.2
N1—C7—H7A	109.3	C14—C13—H13	118.2
С8—С7—Н7А	109.3	04-014-03	124.92 (16)
N1—C7—H7B	109.3	O4—C14—C13	120.10 (17)
C8—C7—H7B	109 3	03—C14—C13	114 97 (16)
C10—N1—C1—C2	18.6 (3)	C10—N1—C7—C8	60.7 (3)
C7—N1—C1—C2	154.6 (2)	C9—N2—C8—C7	53.1 (3)
C10—N1—C1—C6	-165.3 (2)	N1	-57.3 (3)

C7—N1—C1—C6	-29.3 (3)	C8—N2—C9—C10	-52.9 (2)
C6—C1—C2—C3	-0.4 (4)	C1—N1—C10—C9	79.8 (2)
N1—C1—C2—C3	175.8 (2)	C7—N1—C10—C9	-60.2 (3)
C1—C2—C3—C4	0.5 (4)	N2-C9-C10-N1	56.7 (2)
C2—C3—C4—C5	-0.5 (4)	O1-C11-C12-C13	-10.5 (4)
C3—C4—C5—C6	0.4 (5)	O2-C11-C12-C13	168.7 (2)
C4—C5—C6—C1	-0.3 (5)	C11—C12—C13—C14	-179.4 (2)
C2-C1-C6-C5	0.3 (4)	C12-C13-C14-O4	-9.5 (3)
N1—C1—C6—C5	-176.0 (3)	C12-C13-C14-O3	170.9 (2)
C1—N1—C7—C8	-79.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N2—H21…O4	0.87 (2)	1.88 (2)	2.741 (2)	168 (2)
N2—H22···O1 ⁱ	0.89 (2)	1.89 (2)	2.775 (2)	172 (2)
C7—H7A····O2 ⁱⁱ	0.97	2.51	3.317 (3)	141
C8—H8 <i>B</i> ···O3 ⁱⁱⁱ	0.97	2.55	3.203 (3)	124
C9—H9 A ···O2 ^{iv}	0.97	2.66	3.318 (3)	126
O2—H2 <i>O</i> ···O3 ^v	0.92 (2)	1.54 (2)	2.4610 (18)	174 (2)

Symmetry codes: (i) -*x*+1/2, *y*-1, *z*+1/2; (ii) *x*, *y*-1, *z*+1; (iii) -*x*+1/2, *y*, *z*+1/2; (iv) *x*, *y*-1, *z*; (v) *x*, *y*+1, *z*.