

ISSN 2056-9890

Received 31 August 2022 Accepted 7 September 2022

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: alkali–earth-metal borate; alkalineearth-metal borate; solvothermal synthesis; three-dimensional framework; crystal structure.

CCDC reference: 2205808

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of $MgK_{0.5}[B_6O_{10}](OH)_{0.5} \cdot 0.5H_2O$, poly[dimagnesium potassium bis(hexaborate) hydroxide monohydrate]

Qi-Ming Qiu^{a*} and Jian-Biao Song^b

^aSchool of Science, China University of Geosciences, Beijing 100083, People's Republic of China, and ^bBeijing Chaoyang Foreign Language School, Beijing 100101, People's Republic of China. *Correspondence e-mail: qiuqiming890521@163.com

The solvothermal reaction of H_3BO_3 , KCF_3SO_3 , $Mg(CF_3SO_3)_2$ and pyridine led to a new alkali- and alkaline-earth-metal borate, $MgK_{0.5}[B_6O_{10}](OH)_{0.5}$ ·0.5 H_2O . Its structure features an intricate three-dimensional framework built from $[B_6O_{13}]^{8-}$ clusters, thus resulting in a six-connected achiral net with high symmetry. Each $[B_6O_{13}]^{8-}$ building block is composed of three trigonal BO₃ and three tetrahedral BO₄ units, with these BO₄ units being further connected to neighboring BO₃ units, giving rise to an oxoboron cluster of the general formula $[B_6O_{10}]^{2-}$.

1. Chemical context

As inorganic materials, borates are an important class of nonlinear optical crystals, mainly because they can easily crystallize in non-centrosymmetric space groups and such structures often show a large second-harmonic generation response (Qiu et al., 2021a; Qui & Yang, 2021a). The combination of BO3trigonal and BO₄-tetrahedral units makes it possible to form a variety of isolated anionic clusters. Extended chains, layers and three-dimensional frameworks can be formed between clusters through the dehydration and condensation of the terminal hydroxyl groups of oxoboron clusters (Wang et al., 2017). In addition, negatively charged oxoboron clusters can also combine with a variety of counter-cations, making the structure of borates more complex and diverse. Here, single crystals of MgK_{0.5}[B₆O₁₀](OH)_{0.5}·0.5H₂O with alkali- and alkaline-earth metals have been obtained under solvothermal conditions.

Published under a CC BY 4.0 licence

2. Structural commentary

The asymmetric unit of the title compound consists of 2 B, 10/3O, 1/3 Mg, 1/6 K, 1/6 OH, and 1/6 H₂O. The Mg, K, O4, O5 and O6 atoms are located on special positions with occupancy of 1/3 or 1/6, while the remaining B and O atoms are located at general positions with an occupancy of 1. Bond-valence-sum calculations show that Mg, K and B are consistent with the expected oxidation states (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). Three BO₄ units are joined together through corner-sharing of the O4 atom and three BO4 units are connected with three neighboring BO3 units to form a $[B_6O_{13}]^{8-}$ oxoboron cluster (Fig. 1). To the best of our knowledge, this is the first example of a mixed alkali- and alkaline-earth-metal borate crystal with the $[B_6O_{13}]^{8-}$ cluster anion. In this cluster, the B-O4 bonds are unique because their bond distances [1.529 (2) Å] are longer than other B-Obonds [1.359 (2)-1.453 (2) Å] in the BO₃ and BO₄ units. Each $[B_6O_{13}]^{8-}$ unit is further connected to six other clusters by corner-sharing O atoms, resulting in a three-dimensional framework (Fig. 2).

3. Supramolecular features

In the title compound, the Mg and K atoms are six-coordinated, with Mg–O and distances in the range 2.332 (1)– 2.374 (1) Å and K–O = 2.845 (1) Å. The three-dimensional structure is stabilized by a water cluster formed by O5– $H5\cdotsO5$, $O5-H5\cdotsO6$ and $O6-H6A\cdotsO2$ hydrogen bonds involving the water molecule, hydroxyl group and oxoboron cluster (Table 1). The channels of the compound are filled with ions/molecules (Mg²⁺, K⁺, OH⁻ and H₂O). The title structure is similar to previously reported analogues NH₄NaB₆O₁₀ (Wang *et al.*, 2014), K_{0.5}[B₆O₁₀]·H₂O·1.5H₃O (Qiu & Yang, 2021*b*), and NaRb_{0.5}[B₆O₁₀]·O.5H₃O (Qiu *et al.*, 2021*b*), so the simultaneous use of NH₄ and Na or K or Na and Rb or Mg and

Figure 1

The asymmetric unit of the $[B_6O_{13}]^{8-}$ oxoboron cluster. Displacement ellipsoids are drawn at the 50% probability level.

, , ,		/		
$D - \mathbf{H} \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$05-H5\cdots O5^{i}$ $06-H6A\cdots O2^{i}$ $05-H5\cdots O6^{i}$ $05-H5\cdots O5^{ii}$	0.85 0.85 0.85 0.85	1.67 2.58 1.78 2.30	2.42 (3) 3.276 (15) 2.484 (19) 3.06 (3)	145 140 139 150

Symmetry codes: (i) $y + \frac{1}{2}, -z + \frac{1}{2}, -x + 1$; (ii) -x + 1, -y, -z + 1.

K cations as templates has no effect on the crystallization of the oxoboron three-dimensional framework. However, after the introduction of Cl (Wu *et al.*, 2011) or Br (Al-Ama *et al.*, 2006), the new compounds crystallize in the trigonal space group R3m with a large second-harmonic generation response. The introduction of different anions can therefore play a key role in changing the crystalline structure to a non-centro-symmetric system.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom *et al.*, 2016) for the $[B_6O_{13}]^{8-}$ oxoboron cluster gave 23 hits. The terminal oxygen atoms of this type of $[B_6O_x]$ unit can be completely deprotonated $[B_6O_{13}]^{8-}$, partially protonated $[B_6O_{11}(OH)_2]^{6-}$ or completely protonated $[B_6O_7(OH)_6]^{2-}$. Among the above 23 compounds, most of them are inorganic–organic hybrid solids, which contain transition-metal complexes and the $[B_6O_7(OH)_6]^{2-}$ cluster (refcodes: CAFYIV, CAFYOB, Altahan *et al.*, 2021; CECWEM, Heller & Schellhaas, 1983; EMEHIP, Li *et al.*, 2016; HIXNAF, Jamai *et al.*, 2014; JOCCUC, JOCDAJ, Altahan *et al.*, 2019*a*; JUZLIC, Altahan *et al.*, 2020; MEBQUI, MEBRET, Altahan *et al.*, 2017; POJVIW, POJVOC, Altahan

Figure 2

View of the three-dimensional supramolecular framework along the [100] direction. Color code: BO_3 trigonal, yellow, orange and brown; BO_4 tetrahedral, blue.

et al., 2019*b*; TAFROI, Natarajan *et al.*, 2003; VUVLOP, Jemai *et al.*, 2015; BATCUY, Jamai *et al.*, 2022; SAZVEY, Xin *et al.*, 2022). It is worth noting that this oxoboron cluster contains too many active hydroxyl groups and therefore tends to form isolated structures. In the crystal of [Cd(1,2-dap)]- $[B_6O_{11}(OH)_2]$ ·H₂O (1,2-dap = 1,2-diaminopropane, refcode: LOZZUY, Deng *et al.*, 2020) and Cd₃[B₆O₉(OH)₂]₂·2NO₃·-4H₂O (refcode: ZUXLIQ, He *et al.*, 2020), partially protonated $[B_6O_{11}(OH)_2]^{6-}$ was successfully extended to layered structures *via* B-O-B bonds. In the crystal of NaRb_{0.5}- $[B_6O_{10}]$ ·0.5H₃O (refcode: UCEXOT, Qiu *et al.*, 2021*b*), each completely deprotonated $[B_6O_{13}]^{8-}$ unit was linked to six nearest neighbors by bridging O atoms, leading to a 3D framework, similar to that of the title compound.

5. Synthesis and crystallization

A mixture of H_3BO_3 (0.618 g, 10 mmol), KCF₃SO₃ (0.188 g, 1 mmol) and Mg(CF₃SO₃)₂ (0.322 g, 1 mmol) was added to pyridine (3.0 mL). After stirring for 20 min, the resulting mixture was sealed in a 25 mL Teflon-lined stainless steel autoclave, heated at 488 K for 9 d, and then slowly cooled to room temperature and colorless block-shaped crystals MgK_{0.5}[B₆O₁₀](OH)_{0.5}·0.5H₂O were obtained (yield 56% based on H₃BO₃). Infrared (KBr pallet, cm⁻¹): 3190vs, 1631s, 1360s, 1268m, 1188m, 1134m, 1099m, 964s, 845m, 781m, 741m, 718m, 630w, 564w, 540w, 480w, 455w.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were positioned geometrically (O-H = 0.85 Å) and refined as riding with U_{iso} (H) 1.2 U_{eq} (O).

Funding information

We gratefully acknowledge support by the Fundamental Research Funds for the Central Universities (grant No. 2–9-2021–008).

References

- Al-Ama, A. G., Belokoneva, E. L., Stefanovich, S. Y., Dimitrova, O. V. & Mochenova, N. N. (2006). *Crystallogr. Rep.* **51**, 225–230.
- Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2017). Polyhedron, 135, 247–257.
- Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2019a). J. Clust Sci. 30, 599–605.
- Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2019b). Inorganics 7, 44.
- Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2020). Phosphorus Sulfur Silicon, 195, 952–956.
- Altahan, M. A., Beckett, M. A., Coles, S. J. & Horton, P. N. (2021). Inorganics 9, 68.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Bruker (2006). SMART and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, J.-X., Zhou, K. & Pan, C.-Y. (2020). J. Solid State Chem. 281, 121042.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$Mg_2K[B_6O_{10}]_2(OH) \cdot H_2O$
Mr	572.46
Crystal system, space group	Cubic, $Pa\overline{3}$
Temperature (K)	296
a (Å)	12.2966 (2)
$V(Å^3)$	1859.32 (9)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.47
Crystal size (mm)	$0.10\times0.08\times0.08$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Krause et al., 2015)
T_{\min}, T_{\max}	0.762, 0.936
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23808, 952, 828
R _{int}	0.056
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.116, 1.16
No. of reflections	952
No. of parameters	72
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.66, -0.64

Computer programs: APEX2 and SAINT (Bruker, 2006), SHELXT2018/3 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), and SHELXTL (Sheldrick, 2008).

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- He, Y., Liu, Y., Xin, S.-S. & Pan, C.-Y. (2020). Dalton Trans. 49, 14640–14646.
- Heller, G. & Schellhaas, J. (1983). Z. Kristallogr. 164, 237-246.
- Jamai, N., Othmani, A., Wang, K., Qian, S. & Akriche, S. T. (2022). J. Solid State Chem. 310, 123065.
- Jamai, N., Rzaigui, M. & Toumi, S. A. (2014). Acta Cryst. E70, m167– m168.
- Jemai, N., Rzaigui, M. & Akriche, S. (2015). J. Clust Sci. 26, 2051– 2064.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Li, P., Fan, C. H. & Ge, J.-F. (2016). Z. Kristallogr. New Cryst. Struct. 231, 533–535.
- Natarajan, S., Klein, W., Panthöfer, M., van Wüllen, L. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 959–962.
- Qiu, Q.-M., Li, X.-Y., Chen, C.-A., Sun, K.-N. & Yang, G. Y. (2021a). J. Solid State Chem. 299, 122193.
- Qiu, Q.-M., Sun, K. & Yang, G. (2021b). CrystEngComm, 23, 7081– 7089.
- Qiu, Q.-M. & Yang, G. Y. (2021a). J. Solid State Chem. 301, 122303.
- Qiu, Q.-M. & Yang, G. Y. (2021b). CrystEngComm, 23, 5200-5207.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, J.-H., Cheng, J.-W., Wei, Q., He, H., Yang, B.-F. & Yang, G.-Y. (2014). Eur. J. Inorg. Chem. pp. 4079–4083.
- Wang, J.-J., Wei, Q. & Yang, G.-Y. (2017). ChemistrySelect 2, 5311– 5315.
- Wu, H., Pan, S., Poeppelmeier, K. R., Li, H., Jia, D., Chen, Z., Fan, X., Yang, Y., Rondinelli, J. M. & Luo, H. (2011). J. Am. Chem. Soc. 133, 7786–7790.
- Xin, S.-S., Deng, Y.-L. & Pan, C.-Y. (2022). Dalton Trans. 51, 6007–6013.

supporting information

Acta Cryst. (2022). E78, 1003-1005 [https://doi.org/10.1107/S2056989022008982]

Crystal structure of MgK_{0.5}[B₆O₁₀](OH)_{0.5}·0.5H₂O, poly[dimagnesium potassium bis(hexaborate) hydroxide monohydrate]

Qi-Ming Qiu and Jian-Biao Song

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXT2018/3* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015*b*); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Poly[dimagnesium potassium bis(hexaborate) hydroxide monohydrate]

Crystal data	
$MgK_{0.5}[B_{6}O_{10}](OH)_{0.5} \cdot 0.5H_{2}O$ $M_{r} = 572.46$ Cubic, $Pa\overline{3}$ $a = 12.2966 (2) Å$ $V = 1859.32 (9) Å^{3}$ $Z = 4$ $F(000) = 1128$ $D_{x} = 2.045 Mg m^{-3}$	Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 5324 reflections $\theta = 2.9-30.3^{\circ}$ $\mu = 0.47 \text{ mm}^{-1}$ T = 296 K Block, colorless $0.10 \times 0.08 \times 0.08 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube, Bruker (Mo) X-ray Source φ and ω scans Absorption correction: multi-scan (SADABS; Krause et al., 2015) $T_{\min} = 0.762, T_{\max} = 0.936$	23808 measured reflections 952 independent reflections 828 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 30.5^\circ$, $\theta_{min} = 3.3^\circ$ $h = -16 \rightarrow 17$ $k = -16 \rightarrow 16$ $l = -16 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.116$ S = 1.16 952 reflections 72 parameters 0 restraints	Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0658P)^2 + 0.9552P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.66$ e Å ⁻³ $\Delta\rho_{min} = -0.64$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved by direct methods and refined by the full-matrix least-squares method on F^2 using the SHELXL programs (Bruker, 2006; Sheldrick, 2015*a*). All non-hydrogen atoms in the complex were refined anisotropically.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mg	0.33884 (5)	0.33884 (5)	0.33884 (5)	0.0205 (3)	
K	0.500000	0.500000	0.500000	0.0257 (3)	
01	0.52065 (8)	0.28854 (8)	0.29782 (8)	0.0110 (3)	
O2	0.22982 (9)	0.18931 (8)	0.38027 (8)	0.0118 (3)	
O3	0.36386 (8)	0.68000 (8)	0.55091 (8)	0.0113 (3)	
O4	0.18887 (7)	0.18887 (7)	0.18887 (7)	0.0057 (3)	
05	0.4745 (13)	0.1216 (14)	0.5078 (12)	0.066 (4)	0.1667
Н5	0.504419	0.061354	0.523614	0.099*	0.1667
06	0.544 (2)	0.0524 (17)	0.5575 (10)	0.080 (6)	0.1667
H6A	0.548070	0.065436	0.625259	0.121*	0.1667
H6B	0.587560	0.097246	0.528419	0.121*	0.1667
B1	0.21526 (12)	0.22026 (12)	0.48534 (12)	0.0084 (3)	
B2	0.16682 (11)	0.13303 (11)	0.29771 (11)	0.0067 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg	0.0205 (3)	0.0205 (3)	0.0205 (3)	0.0007 (2)	0.0007 (2)	0.0007 (2)
Κ	0.0257 (3)	0.0257 (3)	0.0257 (3)	0.0071 (2)	0.0071 (2)	0.0071 (2)
O1	0.0060 (4)	0.0113 (5)	0.0156 (5)	0.0015 (3)	-0.0031 (3)	-0.0047 (4)
02	0.0141 (5)	0.0157 (5)	0.0055 (4)	-0.0039 (4)	0.0005 (3)	-0.0023 (3)
O3	0.0138 (5)	0.0134 (5)	0.0066 (4)	0.0060 (4)	-0.0017 (4)	-0.0027 (3)
O4	0.0057 (3)	0.0057 (3)	0.0057 (3)	0.0007 (3)	0.0007 (3)	0.0007 (3)
05	0.058 (8)	0.074 (11)	0.067 (9)	0.005 (7)	0.011 (7)	-0.018 (8)
06	0.123 (19)	0.101 (16)	0.017 (5)	0.029 (12)	-0.018 (7)	-0.002 (6)
B1	0.0094 (6)	0.0091 (6)	0.0065 (6)	0.0007 (5)	-0.0008 (5)	-0.0009 (5)
B2	0.0067 (6)	0.0067 (6)	0.0067 (6)	0.0003 (4)	0.0006 (4)	0.0005 (5)

Geometric parameters (Å, °)

Mg-O2 ⁱ	2.3319 (12)	O2—B1	1.3587 (16)
Mg-O2 ⁱⁱ	2.3319 (12)	O2—B2	1.4525 (16)
Mg—O2	2.3319 (12)	O3—B1 ^{vii}	1.3570 (18)
Mg-O1 ⁱ	2.3738 (10)	O3—B2 ^{viii}	1.4519 (16)
Mg-O1 ⁱⁱ	2.3738 (10)	$O4$ — $B2^{i}$	1.5285 (15)
Mg—O1	2.3738 (10)	O4—B2 ⁱⁱ	1.5285 (15)
Mg—B1	2.7714 (15)	O4—B2	1.5285 (15)

supporting information

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mg—B1 ⁱ	2 7715 (15)	$05-06^{ix}$	0.96(2)
	Mg = B1 $Mg = B1^{ii}$	2.7715 (15)	05-06 ^x	1.27(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgK	3 4324 (11)	05-06	1.27(3)
	K	2 8450 (10)	05-H5	0.8500
	K-03 ⁱⁱⁱ	2.8450 (10)	05—H6B	1 4451
	K-03	2.8450(10)	$O_5 H6A^{ix}$	1.4431
	K = 0.5	2.8450(10) 2.8450(10)	O_{5} O_{6} O_{6} ix	1.20(3)
	K = 03	2.8450(10) 2.8450(10)	$O_{6} O_{6}^{xi}$	1.20(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2.8450(10) 2.8450(10)	06 H5	1.20 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{K} = 03$	2.6430(10) 1 2821(18)	06 H6A	0.0470
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.3021(10) 1.4521(16)		0.8500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—B2	1.4331 (10)	Оо—нов	0.8300
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ω^{2i} Mg Ω^{2ii}	81.06 (5)	B1 ⁱⁱ —O1—B2 ^{vi}	123 77 (11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ω^{2i} Mg Ω^{2i}	81.06 (5)	$B1^{ii}$ $O1$ Mg	91 19 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ω^{2ii} Mg Ω^{2i}	81.06 (5)	$B^{2^{vi}}$ Ω^1 M^{σ}	144 28 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ω^{2i} Mg Ω^{2i}	112 48 (4)	B1 = O2 = B2	13670(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ω^{2ii} Mg Ω^{1i}	132.64(4)	B1 = O2 = Mg	93 59 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Omega^2 - Mg = \Omega^{1i}$	58 46 (3)	$B^2 = \Omega^2 = Mg$	121.98 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ω^{2i} Mg Ω^{1ii}	58.46 (3)	$B1^{vii}$ $O3$ $B2^{viii}$	121.98(0) 122.23(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O2^{ii}$ Mg $O1^{ii}$	112.48(A)	$B1^{vii}$ O3 K	122.23 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_2 - M_3 - O_1^{ii}$	112.40(4) 132.64(4)	$B1 \longrightarrow C3 \longrightarrow K$	123.09(0) 110.32(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O_2^{i} Mg O_1^{ii}	112.07(3)	$\mathbf{B}^{i} = \mathbf{O}^{i} = \mathbf{R}^{i}$	117.97(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O^{2i} Mg O^{1}	112.97(3) 132.64(4)	$B^{2} = O^{4} = B^{2}$	117.97(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 - Mg - O1	58 46 (3)	$\mathbf{B}_{2} = \mathbf{O}_{4} = \mathbf{B}_{2}$	117.97(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_2 - M_2 = O_1$	38.40(3)	$D_2 = 04 = D_2$	117.97(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_2 - Mg - O_1$	112.46 (4)	$06^{}05^{}06$	39 (2) 80 1 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 - Mg - O1	112.96 (3)	$00^{-1} - 05 - 06$	89.1 (19)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Oli Ma Dl	112.90(3)	06	47.9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2 ⁱ Mg—B1	93.22 (5)	06^{-05} H5	67.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2-Mg-Bl	109.26 (5)	06-05-H5	22.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O2—Mg—Bl	29.29 (4)	$O6^{11}$ $O5$ $H6B$	94.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ol-Mg-Bl	29.91 (4)	$O6^{x}$ — $O5$ — $H6B$	104.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ol ⁿ —Mg—Bl	123.25 (4)	06—05—H6B	35.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ol—Mg—Bl	121.16 (4)	H5—O5—H6B	50.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O2^{i}$ Mg $B1^{i}$	29.30 (4)	$O5^{x_1}$ $O6$ $O6^{x_1}$	71 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O2^n$ —Mg—B1 ¹	93.22 (5)	$O5^{x_1}$ — $O6$ — $O6^{x_1}$	77 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O2-Mg-B1^{1}$	109.26 (5)	$O6^{1x}-O6-O6^{x1}$	101 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O1^{1}$ Mg $B1^{1}$	121.16 (4)	05^{x_1} 06 05 x_1	114 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ⁱⁱ —Mg—B1 ⁱ	29.90 (4)	$O6^{ix}$ — $O6$ — $O5^{xii}$	136.9 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Mg—B1 ⁱ	123.25 (4)	$O6^{xi}$ $O6$ $O5^{xii}$	45.7 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1—Mg—B1 ⁱ	114.20 (3)	O5 ^{xi} O6O5	107 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 ⁱ —Mg—B1 ⁱⁱ	109.26 (5)	O6 ^{ix} —O6—O5	43.9 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 ⁱⁱ —Mg—B1 ⁱⁱ	29.30 (4)	O6 ^{xi} —O6—O5	133.5 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—Mg—B1 ⁱⁱ	93.22 (5)	O5 ^{xii} —O6—O5	134.5 (17)
$O1^{ii}$ —Mg—B1 ⁱⁱ 121.16 (4) $O6^{ix}$ —O6—H533.1 $O1$ —Mg—B1 ⁱⁱ 29.91 (4) $O6^{xi}$ —O6—H5103.9 $B1$ —Mg—B1 ⁱⁱ 114.20 (3) $O5^{xii}$ —O6—H5117.5 $B1^{i}$ —Mg—B1 ⁱⁱ 114.20 (3) $O5$ —O6—H529.6	O1 ⁱ —Mg—B1 ⁱⁱ	123.25 (4)	O5 ^{xi} —O6—H5	104.1
O1Mg-B1 ⁱⁱ 29.91 (4) O6 ^{xi} O6H5 103.9 B1Mg-B1 ⁱⁱ 114.20 (3) O5 ^{xii} O6H5 117.5 B1 ⁱ Mg-B1 ⁱⁱ 114.20 (3) O5O6H5 29.6	O1 ⁱⁱ —Mg—B1 ⁱⁱ	121.16 (4)	O6 ^{ix} —O6—H5	33.1
B1Mg-B1 ⁱⁱ 114.20 (3) O5 ^{xii} O6H5 117.5 B1 ⁱ Mg-B1 ⁱⁱ 114.20 (3) O5O6H5 29.6	O1—Mg—B1 ⁱⁱ	29.91 (4)	O6 ^{xi} —O6—H5	103.9
B1 ⁱ —Mg—B1 ⁱⁱ 114.20 (3) O5—O6—H5 29.6	B1—Mg—B1 ⁱⁱ	114.20 (3)	O5 ^{xii} —O6—H5	117.5
	$B1^{i}$ — Mg — $B1^{ii}$	114.20 (3)	O5—O6—H5	29.6

O2 ⁱ —Mg—K	131.38 (3)	O5 ^{xi} —O6—H6A	44.8
O2 ⁱⁱ —Mg—K	131.38 (3)	O6 ^{ix} —O6—H6A	101.0
O2—Mg—K	131.38 (3)	O6 ^{xi} —O6—H6A	103.2
O1 ⁱ —Mg—K	74.30 (3)	O5 ^{xii} —O6—H6A	111.4
O1 ⁱⁱ —Mg—K	74.30 (3)	O5—O6—H6A	111.4
O1—Mg—K	74.30 (3)	H5—O6—H6A	130.2
B1—Mg—K	104.19 (4)	O5 ^{xi} —O6—H6B	149.2
B1 ⁱ —Mg—K	104.19 (4)	O6 ^{ix} —O6—H6B	122.2
B1 ⁱⁱ —Mg—K	104.19 (4)	O6 ^{xi} —O6—H6B	122.0
O3—K—O3 ⁱⁱⁱ	65.411 (16)	O5 ^{xii} —O6—H6B	76.7
O3—K—O3 ⁱ	114.589 (16)	O5—O6—H6B	78.5
O3 ⁱⁱⁱ —K—O3 ⁱ	180.0	H5—O6—H6B	95.3
O3—K—O3 ^{iv}	65.410 (16)	H6A—O6—H6B	104.5
O3 ⁱⁱⁱ —K—O3 ^{iv}	114.590 (15)	$O5^{xi}$ — $O6$ — $H5^{xi}$	58.1 (15)
O3 ⁱ —K—O3 ^{iv}	65.410 (15)	$O6^{ix}$ — $O6$ — $H5^{xi}$	74 (3)
O3—K—O3 ⁱⁱ	114.590 (16)	$O6^{xi}$ — $O6$ — $H5^{xi}$	28.4 (18)
O3 ⁱⁱⁱ —K—O3 ⁱⁱ	65.410 (15)	$O5^{xii}$ — $O6$ — $H5^{xi}$	74 (3)
O3 ⁱ —K—O3 ⁱⁱ	114.590 (15)	O5—O6—H5 ^{xi}	114 (3)
O3 ^{iv} —K—O3 ⁱⁱ	180.0	H5—O6—H5 ^{xi}	87.3
O3 ^v —K—O3 ⁱⁱ	65.410 (16)	H6A—O6—H5 ^{xi}	97.8
O3—K—Mg ^v	76.32 (2)	H6B—O6—H5 ^{xi}	148.0
O3 ⁱⁱⁱ —K—Mg ^v	103.68 (2)	$O3^{xiii}$ —B1—O2	123.87 (12)
O3 ⁱ —K—Mg ^v	76.32 (2)	$O3^{xiii}$ B1 $O1^{i}$	122.17 (12)
O3 ^{iv} —K—Mg ^v	103.68 (2)	O2—B1—O1 ⁱ	113.96 (12)
O3 ^v —K—Mg ^v	103.68 (2)	O3 ^{xiii} —B1—Mg	166.22 (10)
O3 ⁱⁱ —K—Mg ^v	76.32 (2)	O2—B1—Mg	57.12 (7)
O3—K—Mg	103.68 (2)	O1 ⁱ —B1—Mg	58.91 (7)
O3 ⁱⁱⁱ —K—Mg	76.32 (2)	$O3^{xiv}$ —B2—O2	112.28 (11)
O3 ⁱ —K—Mg	103.68 (2)	$O3^{xiv}$ —B2— $O1^{xv}$	109.48 (11)
O3 ^{iv} —K—Mg	76.32 (2)	O2—B2—O1 ^{xv}	110.35 (11)
O3 ^v —K—Mg	76.32 (2)	O3 ^{xiv} —B2—O4	109.12 (10)
O3 ⁱⁱ —K—Mg	103.68 (2)	O2—B2—O4	107.66 (11)
Mg ^v —K—Mg	180.000 (17)	O1 ^{xv} —B2—O4	107.83 (10)
O6 ^{ix} —O5—O6—O5 ^{xi}	-36 (3)	B1—O2—B2—O3 ^{xiv}	21.1 (2)
O6 ^x O5O5O5 ^{xi}	-94.9 (17)	Mg-02-B2-03 ^{xiv}	-119.29 (10)
O6 ^x O5O6O6 ^{ix}	-59 (2)	B1—O2—B2—O1 ^{xv}	-101.35 (17)
O6 ^{ix} O5O6O6 ^{xi}	52 (3)	Mg-02-B2-01 ^{xv}	118.27 (10)
O6 ^x O5O6O6 ^{xi}	-7 (5)	B1—O2—B2—O4	141.21 (14)
O6 ^{ix} O5O5O5 ^{xii}	117 (3)	Mg	0.84 (12)
O6 ^x O5O5O5 ^{xii}	58 (4)	$B2^{i}$ —O4—B2—O3 ^{xiv}	45.6 (2)
B2	16.3 (2)	$B2^{ii}$ —O4—B2—O3 ^{xiv}	-162.41 (10)
Mg—O2—B1—O3 ^{xiii}	163.52 (12)	B2 ⁱ —O4—B2—O2	-76.54 (15)
$B2-O2-B1-O1^{i}$	-163.39 (13)	B2 ⁱⁱ —O4—B2—O2	75.49 (15)

supporting information

Mg-02-B1-01 ⁱ	-16.21 (12)	$B2^{i}$ —O4—B2—O1 ^{xv}	164.40 (10)
B2—O2—B1—Mg	-147.18 (17)	$B2^{ii}$ —O4—B2—O1 ^{xv}	-43.6 (2)

Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) -y+1, -z+1, -x+1; (iv) -z+1, -x+1, -y+1; (v) -x+1, -y+1, -z+1; (vi) y+1/2, z, -x+1/2; (vii) -x+1/2, y+1/2, z; (viii) -y+1/2, -z+1, x+1/2; (ix) -y+1/2, z-1/2, x; (x) -z+1, x-1/2, -y+1/2; (xi) z, -x+1/2, y+1/2; (xii) y+1/2, -z+1/2, -x+1; (xiii) -x+1/2, y-1/2, z; (xiv) z-1/2, -x+1/2, -y+1/2, -y+1/2, -x+1/2, -y+1/2, -x+1/2, -x+1/2,

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
O5—H5…O5 ^{xii}	0.85	1.67	2.42 (3)	145
O6—H6A···O2 ^{xii}	0.85	2.58	3.276 (15)	140
O6—H5···O6 ^{ix}	0.65	0.74	1.20 (3)	119
O6—H5…O6 ^x	0.65	1.23	1.84 (2)	158
O6—H5···O6 ^{xvi}	0.65	1.82	2.19 (3)	118
O6—H5···O5 ^{ix}	0.65	1.79	2.34 (3)	143
O6—H5…O5 ^x	0.65	2.09	2.484 (19)	121
O6—H5…O5	0.65	0.85	1.35 (3)	128
O5—H5···O6 ^{xii}	0.85	1.78	2.484 (19)	139
O5—H5…O6 ^{xi}	0.85	1.49	2.34 (3)	179
O5—H5…O6 ^{xvi}	0.85	1.82	2.30 (2)	114
O5—H5···O5 ^{xii}	0.85	1.67	2.42 (3)	145
O5—H5…O5 ^{xi}	0.85	1.28	1.88 (3)	122
O5—H5…O5 ^{xvi}	0.85	2.30	3.06 (3)	150

Symmetry codes: (ix) -y+1/2, z-1/2, x; (x) -z+1, x-1/2, -y+1/2; (xi) z, -x+1/2, y+1/2; (xii) y+1/2, -z+1/2, -x+1; (xvi) -x+1, -y, -z+1.