

Received 30 August 2022 Accepted 25 September 2022

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; nickel(II) complex; square-planar coordination; aroylhydrazone ligand.

CCDC reference: 2174697

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis{4-[(4-methylbenzyl)oxy]-*N*'-(4-methylbenzylidene)benzohydrazidato}nickel(II)

Md. Hasan Al Banna,^a Md. Belayet Hossain Howlader,^a* Ryuta Miyatake,^b Md. Chanmiya Sheikh^c and Ennio Zangrando^d

^aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, ^bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, ^cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and ^dDepartment of Chemical and Pharmaceutical SCiences, University of Trieste, Italy. *Correspondence e-mail: mbhhowlader@yahoo.com

In the title complex, $[Ni(C_{23}H_{21}N_2O_2)_2]$, the central Ni^{II} atom is located on an inversion centre and exhibits a slightly distorted square-planar N₂O₂ coordination environment. A *trans*-configuration of the *N*,*O* chelating ligands results from the imposed site symmetry of the central Ni^{II} atom. In the crystal, individual molecules stack along the *a* axis through weak π - π stacking interactions between the phenyl rings.

1. Chemical context

Variously substituted hydrazone ligands have attracted special attention because of their chelating capabilities and structural properties, such as the degree of rigidity, a conjugated π -system and an N-H unit that readily participates in hydrogen bonding and may be easily deprotonated. The corresponding nickel(II) complexes are of considerable interest since they exhibit a broad spectrum of physiological and pharmacological activities (Yang *et al.*, 2020; Al-Qadsy *et al.*, 2021; Neethu *et al.*, 2021; Krishnamoorthy *et al.*, 2012), most of which are structure-dependent properties.

We report here the synthesis and crystal structure of another Ni^{II} complex with a derivatized hydrazone ligand.

2. Structural commentary

The central metal Ni^{II} atom of the title complex is located on an inversion center. Hence, the asymmetric unit comprises half a molecule (Fig. 1). The enolizable O atom and the

research communications

Table 1	
Hydrogen-bond geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline \\ C8-H8\cdotsO1^{i} \\ C3-H3\cdotsN2 \\ C11-H11\cdotsO1 \end{array}$	0.95	2.38	2.9455 (18)	118
	0.95	2.37	2.945 (2)	118
	0.95	2.43	2.7590 (19)	100

Symmetry code: (i) -x + 2, -y, -z + 2.

azomethine N atom of the ligand coordinate to the Ni^{II} atom to form a five-membered chelate ring. The Ni^{II} atom exhibits a slightly distorted square-planar coordination environment with the deprotonated ligands in a *trans* configuration imposed by the crystal symmetry. The Ni–N1 and Ni–O1 bond lengths are 1.8677 (12) and 1.8363 (10) Å, respectively, with a chelating angle of 83.47 (5)°. These data are in agreement with previously reported crystal structures of related complexes (Yang *et al.*, 2020; Al-Qadsy *et al.*, 2021; Neethu *et al.*, 2021; Krishnamoorthy *et al.*, 2012), irrespective of the substituents present in the ligand.

As expected, the C9–O1 bond length of 1.3009 (18) Å lies between a C–O single bond (1.43 Å; Allen *et al.*, 1987) and a C=O double bond (1.21 Å; Allen *et al.*, 1987). The bond lengths N1–C8 of 1.2977 (19) Å and N2–C9 of 1.3145 (18) Å are close to the value of a typical C=N bond (1.30 Å; Allen *et al.*, 1987). These data reveal that the –CH=N–N=C–O fragment of the ligand remains a conjugated system even after the loss of a H atom from its enolized carbonyl O atom. The complex is stabilized by weak intramolecular C8–H8···O1, C3–H3···N2 and C11–H11···O1 hydrogen bonds involving phenyl and methylene donor groups and the coordinating atoms as acceptor groups (Table 1). The benzylidene ring is tilted by 26.06 (6)° with respect to the N₂O₂ coordination plane, while the phenyl rings of the ether moiety form a dihedral angle of 83.29 (5)°.

Figure 1

Molecular structure of the centrosymmetric nickel(II) complex, drawn with displacement ellipsoids at the 50% probability level. [symmetry code for primed atoms: -x + 2, -y, -z + 2.]

The bond-valence sum (BVS) calculated for the Ni^{II} atom present in the complex, using the parameters of Brese & O'Keeffe (1991), indicate a higher value (2.97 valence units) than expected for a formal ionic charge of +2. The calculated high value can be reasonably attributed to a very pronounced covalent bonding associated with the Ni–O and Ni–N bonds. As a matter of fact, a set of new optimized r_0 parameters to be used for the BVS calculation for model compounds involving Ni^{II}–O, Ni^{II}–S, Ni^{II}–N interactions has been proposed (Liu & Thorp, 1993). By using these values, the BVS calculation for this complex gives a value of 2.36 valence units.

3. Supramolecular features

Individual molecular complexes are weakly packed along the a axis through π -ring interactions involving the phenyl rings, with centroid-to-centroid distances of 4.6914 (2) Å and a slippage of ca 3.0-3.3 Å, as shown in Fig. 2. In addition, the five-membered chelate rings of neighbouring complexes have even shorter distances [3.4555 (2) Å with a slippage of 0.96 Å].

4. Database survey

A search in the Cambridge Crystal Structure Database (CSD, version 5.43, update June 2022); Groom *et al.*, 2016) retrieved more than twenty bis-chelated square-planar nickel(II) complexes with hydrazone-based ligands also bearing bulky ferrocenyl groups (Krishnamoorthy *et al.*, 2012), 2,2'-bithiophenyl (Yang *et al.*, 2020) or 9-anthrylmethylene fragments (Mondal *et al.*, 2014). However, no species comprising a long benzyl-phenyl ether chain has been reported so far. It is worth noting that all characterized Ni^{II} complexes exhibit a *trans*-configuration of ligands, where the -CH=N-N=C-O fragment is chelating, and the coordination Ni-O and Ni-N bond lengths do not appear to be significantly affected by the electronic or steric properties of groups present on the ligands.

5. Synthesis and crystallization

To a solution of 4-(4-methylbenzyloxy)benzoylhydrazine (0.26 g, 1 mmol in 25 ml of ethanol), 4-methyl benzaldehyde

Figure 2 Crystal packing of individual complexes showing the π -ring interactions as dotted lines.

(0.12 g, 1 mmol) was added and the mixture was refluxed for half an hour. A solution of nickel(II) acetate tetrahydrate (0.13 g, 0.5 mmol in 5 ml of ethanol) was then added and refluxing was continued for 2 h. The obtained orange precipitate was filtered off and washed three times with hot ethanol. The product was recrystallized from a mixture of chloroform and acetonitrile (5:1, ν/ν) and orange crystals, suitable for X-ray diffraction, were filtered off, washed with hot ethanol, and left to dry in a desiccator over silica gel. Yield: 0.45 g, 58%. Melting point: >523 K. FT–IR: 1603, 1585 ν (C=N–N=C), 486 ν (*M*–N), 503 ν (*M*–O). LC–MS (ESI) *mlz*: [*M* + H]⁺. Calculated for C₄₆H₄₂N₄O₄Ni 773.2632; found 773.2636. μ_{eff} : 0.832 B·M. Molar conductance (ohm⁻¹ cm² mol⁻¹): 1.0. NMR spectra were not obtained due to the low solubility of the complex even in DMSO.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were included in idealized positions as riding contributions with fixed isotropic displacement parameters $[C-H = 0.95-0.99 \text{ Å}; U_{iso}(H) = 1.2 \text{ or } 1.5 U_{eq}(C)].$

Acknowledgements

The authors are grateful to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS thanks the Department of Applied Chemistry, Faculty of Engineering, University of Toyama, for the use of analytical facilities.

Funding information

Funding for this research was provided by: Faculty of Science, University of Rajshahi .

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Robin Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1– S19.
- Al-Qadsy, I., Al-Odayni, A.-B., Saeed, W. S., Alrabie, A., Al-Adhreai, A., Al-Faqeeh, L. A. S., Lama, P., Alghamdi, A. A. & Farooqui, M. (2021). *Crystals*, **11**, 110.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$[Ni(C_{23}H_{21}N_2O_2)_2]$
M _r	773.54
Crystal system, space group	Triclinic, P1
Temperature (K)	173
a, b, c (Å)	4.6914 (2), 13.0677 (7), 16.9923 (8)
α, β, γ (°)	68.441 (5), 83.739 (6), 88.032 (6)
$V(Å^3)$	963.05 (9)
Ζ	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.55
Crystal size (mm)	$0.32 \times 0.08 \times 0.03$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Rigaku, 1995)
T_{\min}, T_{\max}	0.761, 0.984
No. of measured, independent and	9456, 4375, 3883
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.024
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.096, 1.06
No. of reflections	4375
No. of parameters	252
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.42, -0.19

Computer programs: CrystalStructure (Rigaku, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Krishnamoorthy, P., Sathyadevi, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P. & Dharmaraj, N. (2012). *Dalton Trans.* **41**, 4423–4436.
- Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.
- Mondal, S., Das, C., Ghosh, B., Pakhira, B., Blake, A. J., Drew, M. G. B. & Chattopadhyay, S. K. (2014). *Polyhedron*, **80**, 272–281.
- Neethu, K. S., Sivaselvam, S., Theetharappan, M., Ranjitha, J., Bhuvanesh, N. S. P., Ponpandian, N., Neelakantan, M. A. & Kaveri, M. V. (2021). *Inorg. Chim. Acta*, **524**, 120419.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). *J. Inorg. Biochem.* **213**, 111248.

Acta Cryst. (2022). E78, 1081-1083 [https://doi.org/10.1107/S2056989022009392]

Crystal structure of bis{4-[(4-methylbenzyl)oxy]-N'-(4-methylbenzylidene)benzohydrazidato}nickel(II)

Md. Hasan Al Banna, Md. Belayet Hossain Howlader, Ryuta Miyatake, Md. Chanmiya Sheikh and Ennio Zangrando

Computing details

Data collection: *CrystalStructure* (Rigaku, 2018); cell refinement: *CrystalStructure* (Rigaku, 2018); data reduction: *CrystalStructure* (Rigaku, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

 $Bis \{4-[(4-methylbenzyl) oxy] - \mathcal{N}' - (4-methylbenzylidene) benzohydrazidato\} nickel (II)$

Crystal data [Ni(C₂₃H₂₁N₂O₂)₂] $M_r = 773.54$ Triclinic, $P\overline{1}$ a = 4.6914 (2) Å b = 13.0677 (7) Å c = 16.9923 (8) Å a = 68.441 (5)° $\beta = 83.739$ (6)° $\gamma = 88.032$ (6)° V = 963.05 (9) Å³

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) $T_{min} = 0.761, T_{max} = 0.984$ 9456 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.096$ S = 1.064375 reflections 252 parameters 0 restraints Z = 1 F(000) = 406 $D_x = 1.334 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 8457 reflections $\theta = 1.7-27.5^{\circ}$ $\mu = 0.55 \text{ mm}^{-1}$ T = 173 KPlatelet, orange $0.32 \times 0.08 \times 0.03 \text{ mm}$

4375 independent reflections 3883 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -6 \rightarrow 5$ $k = -16 \rightarrow 16$ $l = -22 \rightarrow 22$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0564P)^2 + 0.1727P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.006$ $\Delta\rho_{max} = 0.42$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Nil	1.000000	0.000000	1.000000	0.02390 (10)
01	0.8708 (2)	0.13421 (8)	0.93185 (7)	0.0267 (2)
02	0.2680 (3)	0.52033 (9)	0.65888 (7)	0.0339 (3)
N1	0.7701 (3)	-0.05385 (10)	0.94061 (8)	0.0250 (3)
N2	0.6329 (3)	0.02767 (10)	0.87729 (8)	0.0272 (3)
C1	0.1840 (3)	-0.32649 (13)	0.85447 (11)	0.0313 (3)
C2	0.2533 (4)	-0.21651 (14)	0.80907 (11)	0.0389 (4)
H2	0.183365	-0.181019	0.755246	0.047*
C3	0.4201 (4)	-0.15681 (13)	0.83933 (11)	0.0354 (4)
H3	0.457644	-0.081018	0.807386	0.042*
C4	0.5340 (3)	-0.20830 (12)	0.91727 (10)	0.0267 (3)
C5	0.4694 (4)	-0.31917 (12)	0.96220 (10)	0.0302 (3)
Н5	0.546693	-0.355980	1.014716	0.036*
C6	0.2951 (4)	-0.37703 (13)	0.93214 (11)	0.0325 (3)
H6	0.250866	-0.452077	0.964938	0.039*
C7	-0.0032 (4)	-0.38838 (15)	0.82047 (13)	0.0408 (4)
H7A	-0.191485	-0.353241	0.813325	0.049*
H7B	-0.026408	-0.464591	0.860552	0.049*
H7C	0.086306	-0.387620	0.765383	0.049*
C8	0.7190 (3)	-0.15674 (12)	0.95597 (10)	0.0269 (3)
H8	0.818971	-0.207025	0.999831	0.032*
C9	0.7016 (3)	0.12306 (12)	0.87971 (9)	0.0248 (3)
C10	0.5783 (3)	0.22452 (12)	0.82102 (9)	0.0246 (3)
C11	0.6537 (4)	0.32665 (12)	0.82264 (10)	0.0285 (3)
H11	0.782209	0.329648	0.861251	0.034*
C12	0.5427 (4)	0.42268 (12)	0.76866 (10)	0.0311 (3)
H12	0.592488	0.491322	0.770952	0.037*
C13	0.3584 (3)	0.41942 (12)	0.71090 (9)	0.0272 (3)
C14	0.2802 (4)	0.31891 (13)	0.70838 (10)	0.0300 (3)
H14	0.154229	0.316308	0.669017	0.036*
C15	0.3889 (4)	0.22253 (12)	0.76416 (10)	0.0289 (3)
H15	0.332585	0.153781	0.763416	0.035*
C16	0.1042 (4)	0.52370 (13)	0.59118 (10)	0.0338 (4)
H16A	-0.077691	0.482264	0.614859	0.041*
H16B	0.214098	0.489949	0.553892	0.041*
C17	0.0433 (4)	0.64249 (13)	0.54117 (10)	0.0342 (4)
C18	0.1936 (5)	0.69725 (15)	0.46333 (12)	0.0467 (5)
H18	0.341540	0.660436	0.441520	0.056*
C19	0.1304 (6)	0.80648 (16)	0.41616 (13)	0.0533 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H19	0.235121	0.842724	0.362308	0.064*	
C20	-0.0782 (5)	0.86203 (16)	0.44579 (14)	0.0549 (6)	
C21	-0.2279 (6)	0.80699 (18)	0.52500 (17)	0.0641 (6)	
H21	-0.372618	0.844499	0.547317	0.077*	
C22	-0.1685 (5)	0.69813 (16)	0.57170 (14)	0.0490 (5)	
H22	-0.274742	0.661553	0.625238	0.059*	
C23	-0.1500(7)	0.98005 (19)	0.3935 (2)	0.0871 (10)	
H23A	-0.100061	1.028406	0.422521	0.104*	
H23B	-0.355632	0.985730	0.387091	0.104*	
H23C	-0.040649	1.002234	0.337299	0.104*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02565 (16)	0.01922 (14)	0.02805 (16)	0.00079 (10)	-0.01098 (11)	-0.00788 (11)
01	0.0289 (6)	0.0218 (5)	0.0305 (5)	0.0003 (4)	-0.0119 (4)	-0.0083 (4)
O2	0.0470 (7)	0.0234 (5)	0.0318 (6)	0.0040 (5)	-0.0195 (5)	-0.0069 (5)
N1	0.0265 (6)	0.0217 (6)	0.0269 (6)	0.0018 (5)	-0.0089 (5)	-0.0073 (5)
N2	0.0305 (7)	0.0212 (6)	0.0303 (6)	0.0023 (5)	-0.0131 (5)	-0.0074 (5)
C1	0.0277 (8)	0.0324 (8)	0.0412 (9)	0.0015 (6)	-0.0071 (7)	-0.0214 (7)
C2	0.0479 (11)	0.0329 (8)	0.0393 (9)	0.0032 (8)	-0.0218 (8)	-0.0128 (7)
C3	0.0457 (10)	0.0248 (7)	0.0360 (9)	-0.0020 (7)	-0.0170 (7)	-0.0077 (7)
C4	0.0287 (8)	0.0234 (7)	0.0306 (8)	0.0018 (6)	-0.0084 (6)	-0.0117 (6)
C5	0.0353 (9)	0.0253 (7)	0.0313 (8)	0.0008 (6)	-0.0093 (7)	-0.0106 (6)
C6	0.0363 (9)	0.0252 (7)	0.0376 (8)	-0.0041 (6)	-0.0050 (7)	-0.0126 (7)
C7	0.0373 (10)	0.0442 (10)	0.0525 (11)	-0.0026 (8)	-0.0119 (8)	-0.0291 (9)
C8	0.0282 (8)	0.0235 (7)	0.0297 (7)	0.0019 (6)	-0.0097 (6)	-0.0088 (6)
C9	0.0236 (7)	0.0245 (7)	0.0264 (7)	0.0004 (6)	-0.0054 (6)	-0.0086 (6)
C10	0.0251 (7)	0.0229 (7)	0.0252 (7)	0.0010 (6)	-0.0052 (6)	-0.0075 (6)
C11	0.0324 (8)	0.0256 (7)	0.0294 (8)	0.0010 (6)	-0.0114 (6)	-0.0100 (6)
C12	0.0396 (9)	0.0226 (7)	0.0328 (8)	-0.0003 (6)	-0.0126 (7)	-0.0098 (6)
C13	0.0308 (8)	0.0235 (7)	0.0251 (7)	0.0025 (6)	-0.0069 (6)	-0.0055 (6)
C14	0.0333 (8)	0.0275 (7)	0.0316 (8)	0.0016 (6)	-0.0142 (7)	-0.0107 (6)
C15	0.0318 (8)	0.0236 (7)	0.0329 (8)	-0.0010 (6)	-0.0095 (6)	-0.0103 (6)
C16	0.0415 (10)	0.0290 (8)	0.0323 (8)	0.0039 (7)	-0.0175 (7)	-0.0095 (7)
C17	0.0419 (10)	0.0281 (8)	0.0329 (8)	0.0019 (7)	-0.0176 (7)	-0.0079 (7)
C18	0.0639 (13)	0.0373 (10)	0.0352 (9)	0.0030 (9)	-0.0061 (9)	-0.0090 (8)
C19	0.0788 (16)	0.0381 (10)	0.0358 (10)	-0.0077 (10)	-0.0143 (10)	-0.0021 (8)
C20	0.0710 (15)	0.0297 (9)	0.0589 (13)	0.0028 (9)	-0.0322 (11)	-0.0033 (9)
C21	0.0626 (15)	0.0408 (11)	0.0793 (16)	0.0178 (10)	-0.0088 (13)	-0.0120 (11)
C22	0.0490 (12)	0.0379 (10)	0.0505 (11)	0.0070 (9)	-0.0047 (9)	-0.0055 (9)
C23	0.111 (2)	0.0359 (12)	0.097 (2)	0.0088 (13)	-0.0446 (19)	0.0047 (13)

Geometric parameters (Å, °)

Ni1—O1 ⁱ	1.8363 (10)	C10—C15	1.389 (2)
Ni1—O1	1.8363 (10)	C10-C11	1.403 (2)
Ni1—N1	1.8677 (12)	C11—C12	1.378 (2)

Ni1—N1 ⁱ	1.8678 (12)	C11—H11	0.9500
O1—C9	1.3009 (18)	C12—C13	1.390 (2)
O2—C13	1.3736 (17)	C12—H12	0.9500
O2—C16	1.4383 (18)	C13—C14	1.392 (2)
N1—C8	1.2977 (19)	C14—C15	1.389 (2)
N1—N2	1.4030 (16)	C14—H14	0.9500
N2—C9	1.3145 (18)	С15—Н15	0.9500
C1—C2	1.389 (2)	C16—C17	1.506 (2)
C1—C6	1.391 (2)	C16—H16A	0.9900
C1—C7	1.504 (2)	C16—H16B	0.9900
C2—C3	1.382 (2)	C17—C18	1.376 (3)
C2—H2	0.9500	C17—C22	1.378 (3)
C3—C4	1 402 (2)	C18 - C19	1 396 (3)
C3—H3	0.9500	C18—H18	0.9500
C4-C5	1 393 (2)	C19-C20	1 360 (3)
C4-C8	1 460 (2)	C19—H19	0.9500
C5-C6	1 385 (2)	C_{20}	1 393 (3)
C5H5	0.9500	C_{20} C_{21}	1.595(3) 1 518(3)
C6 H6	0.9500	$C_{20} = C_{23}$	1.316(3)
C7 $H7$	0.9500	C21 H21	0.9500
C7 H7B	0.9800	$C_{21} = H_{21}$	0.9500
C7_H7C	0.9800	C22—1122	0.9500
$C_{2} = H_{2}$	0.9800	C23 H23R	0.9800
$C_0 = C_{10}$	0.9500	C23—H23C	0.9800
09-010	1.479 (2)	C23—H23C	0.9800
O1 ⁱ —Ni1—O1	180.0	C12—C11—C10	120.54 (14)
O1 ⁱ —Ni1—N1	96.53 (5)	C12—C11—H11	119.7
01—Ni1—N1	83.47 (5)	C10—C11—H11	119.7
$O1^{i}$ Ni1 N1 ⁱ	83.47 (5)	C11—C12—C13	120.22 (14)
01—Ni1—N1 ⁱ	96.53 (5)	C11—C12—H12	119.9
N1—Ni1—N1 ⁱ	180.00 (5)	C13—C12—H12	119.9
C9—O1—Ni1	111.02 (9)	02-C13-C12	114.99 (13)
$C_{13} = 0^{2} = C_{16}$	117.02(9)	02-C13-C14	124 86 (14)
C8-N1-N2	119 42 (12)	C12 - C13 - C14	120.15(14)
C8-N1-Ni1	125.97 (11)	C15 - C14 - C13	120.15(11) 119.15(14)
N2—N1—Ni1	114 52 (9)	C_{15} C_{14} H_{14}	120.4
C9-N2-N1	107 12 (12)	C13 - C14 - H14	120.1
C_{2} C_{1} C_{6}	117 53 (15)	C_{14} C_{15} C_{10}	120.1
$C_2 - C_1 - C_7$	121.02 (16)	C14-C15-H15	1193
$C_{1}^{-}C$	121.02(10) 121.45(15)	C10-C15-H15	119.3
C_{0}	121.43(15) 122.41(16)	0^{2} C16 C17	107 78 (13)
$C_3 = C_2 = C_1$	118.8	$O_2 = C_{10} = C_{17}$	110.2
C_{1} C_{2} H_{2}	118.8	C_{17} C_{16} H_{16A}	110.2
$C_1 = C_2 = 112$ $C_2 = C_3 = C_4$	110.88 (15)	02H16P	110.2
$C_2 = C_3 = C_1$	120.1	C_17 C_16 H_16P	110.2
$C_2 = C_3 = H_3$	120.1	$H_{16} - C_{16} + H_{16}$	10.2
$C_{7} = C_{3} = 113$	120.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118 55 (17)
$C_{5} = C_{4} = C_{5}$	11/.01(14) 116.21(12)	$C_{10} - C_{17} - C_{22}$	110.33(17)
UJ-U4-U8	110.21 (13)	$U_{10} - U_{1} - U_{10}$	120.02 (17)

C3—C4—C8	125.97 (14)	C22—C17—C16	120.61 (16)
C6—C5—C4	121.58 (15)	C17—C18—C19	120.5 (2)
С6—С5—Н5	119.2	C17—C18—H18	119.7
С4—С5—Н5	119.2	C19—C18—H18	119.7
C5—C6—C1	120.75 (15)	C20—C19—C18	121.3 (2)
С5—С6—Н6	119.6	С20—С19—Н19	119.3
C1—C6—H6	119.6	C18—C19—H19	119.3
C1—C7—H7A	109 5	C19 - C20 - C21	118 14 (18)
C1-C7-H7B	109.5	C19 - C20 - C23	1211(2)
H7A - C7 - H7B	109.5	$C_{21} - C_{20} - C_{23}$	121.1(2) 120.7(2)
C1 - C7 - H7C	109.5	$C_{22} = C_{21} = C_{20}$	120.7(2) 120.8(2)
H_{1}^{-}	109.5	$C_{22} = C_{21} = C_{20}$	110.6
	109.5	$C_{22} = C_{21} = H_{21}$	119.0
H/B - C/ - H/C	109.3 120.02 (14)	$C_{20} = C_{21} = H_{21}$	119.0
$N1 = C_0 = U_1$	130.95 (14)	C17 - C22 - C21	120.0 (2)
$NI - C\delta - H\delta$	114.5	C1/-C22-H22	119.7
C4 - C8 - H8	114.5	C21—C22—H22	119.7
01—C9—N2	123.84 (13)	C20—C23—H23A	109.5
01-09-010	117.23 (12)	С20—С23—Н23В	109.5
N2-C9-C10	118.93 (13)	H23A—C23—H23B	109.5
C15—C10—C11	118.51 (14)	С20—С23—Н23С	109.5
C15—C10—C9	122.35 (13)	H23A—C23—H23C	109.5
C11—C10—C9	119.15 (13)	H23B—C23—H23C	109.5
N1—Ni1—O1—C9	-1.22 (10)	O1—C9—C10—C11	1.6 (2)
N1 ⁱ —Ni1—O1—C9	178.78 (10)	N2—C9—C10—C11	-179.24 (15)
O1 ⁱ —Ni1—N1—C8	5.45 (14)	C15—C10—C11—C12	-0.3 (2)
O1—Ni1—N1—C8	-174.55 (14)	C9—C10—C11—C12	179.90 (14)
O1 ⁱ —Ni1—N1—N2	-178.16 (10)	C10-C11-C12-C13	-1.1 (3)
01—Ni1—N1—N2	1.84 (10)	C16—O2—C13—C12	172.90 (15)
C8—N1—N2—C9	174.67 (14)	C16—O2—C13—C14	-6.6 (2)
Ni1—N1—N2—C9	-1.98 (15)	C11—C12—C13—O2	-178.27 (15)
C6—C1—C2—C3	-1.5 (3)	C11—C12—C13—C14	1.3 (3)
C7—C1—C2—C3	178.71 (17)	O2—C13—C14—C15	179.45 (15)
C1—C2—C3—C4	2.2 (3)	C12—C13—C14—C15	0.0 (3)
C2-C3-C4-C5	-0.9(3)	C13—C14—C15—C10	-1.4(3)
C2-C3-C4-C8	178.31 (16)	C11—C10—C15—C14	1.5 (2)
$C_{3}-C_{4}-C_{5}-C_{6}$	-1.0(3)	C9-C10-C15-C14	-178.65(15)
C8-C4-C5-C6	179 76 (15)	$C_{13} = 0^{2} = C_{16} = C_{17}$	-17734(14)
C4-C5-C6-C1	16(3)	02 - C16 - C17 - C18	103 66 (19)
C_{2} C_{1} C_{6} C_{5}	-0.4(3)	02 - C16 - C17 - C22	-77.6(2)
$C_2 C_1 C_6 C_5$	$170 \ 40 \ (16)$	$C_{22}^{22} C_{17}^{17} C_{18}^{18} C_{19}^{19}$	-0.6(3)
$N_{2}^{2} = N_{1}^{2} = C_{2}^{2} = C_{3}^{2}$	1/9.40(10)	$C_{22} = C_{17} = C_{18} = C_{19}$	178 15 (17)
$N_2 - N_1 - C_0 - C_4$	0.5(5)	$C_{10} = C_{17} = C_{10} = C_{19}$	1/6.13(17)
$C_{1} = C_{1} = C_{2} = C_{4}$	-164.02(13)	C17 - C10 - C19 - C20 C18 - C10 - C20 - C21	0.0(3)
$C_{2} = C_{4} = C_{2} = N_{1}$	104.03(17)	$C_{10} = C_{19} = C_{20} = C_{21}$	0.1(3)
C_{3} C_{4} C_{0} N_{2}	10.8(3)	$C_{10} = C_{19} = C_{20} = C_{23}$	-1/8.8(2)
N11 - O1 - O9 - O12	0.40(19)	C19 - C20 - C21 - C22	-0.9 (4)
N11	1/9.52 (10)	C_{23} C_{20} C_{21} C_{22}	1/8.1 (2)
NI-N2-C9-01	1.0 (2)	C18 - C17 - C22 - C21	-0.2 (3)

N1—N2—C9—C10	-178.07 (12)	C16—C17—C22—C21	-178.91 (19)
O1—C9—C10—C15	-178.23 (14)	C20-C21-C22-C17	0.9 (4)
N2—C9—C10—C15	0.9 (2)		

Symmetry code: (i) -x+2, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C8—H8···O1 ⁱ	0.95	2.38	2.9455 (18)	118
C3—H3…N2	0.95	2.37	2.945 (2)	118
C11—H11…O1	0.95	2.43	2.7590 (19)	100

Symmetry code: (i) -x+2, -y, -z+2.