CRYSTALOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 14 July 2022
Accepted 16 September 2022

Edited by J. F. Gallagher, Dublin City University, Ireland

Keywords: crystal structure; carbonate; dioxolene ligand.

CCDC reference: 2207848
Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure of 4,5-dimethyl-1,3-dioxol-2-one

Chandru P. Chandrasekaran ${ }^{\text {a }}$ and James \mathbf{P}. Donahue ${ }^{\text {b } *}$

${ }^{\mathbf{a}}$ Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA. *Correspondence e-mail: donahue@tulane.edu

The planar title compound 4,5-dimethyl-1,3-dioxol-2-one, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}, \mathbf{1}$, crystallizes with its molecular C_{2} axis coincident with a crystallographic mirror plane in space group $P 2_{1} / m$. In the plane defined by the b axis and an $a c$ face diagonal, antiparallel linear strands of $\mathbf{1}$, formed by simple translation, associate to form sheets with close $\mathrm{H} \cdots \mathrm{H}$ and $\mathrm{O} \cdots \mathrm{O}$ intermolecular contacts. Between the sheets, parallel strands of $\mathbf{1}$ place the carbonyl O atom near the five-membered ring centroid of a neighboring molecule with close $\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{C}$ contacts.

1. Chemical context

4,5-Dimethyl-1,3-dioxol-2-one, 1 (Fig. 1 and scheme), is a simple derivative of vinylene carbonate, 2a, that has attracted recent attention as a key component of non-aqueous electrolyte blends for advanced Li ion batteries (Park et al., 2021; Liu et al., 2017; Kotani \& Kadota, 2016; Xu et al., 2010). Its 4-chloromethyl and 4-bromomethyl derivatives, 3, have significance in the pharmaceutical industry as building elements in the preparation of antibiotics such as prulifloxacin (Cao et al., 2013), cefuroxime variants (Webber, 1987), and ampicillin (Sakamoto et al., 1984; Xiao, 2004). In principle, by analogy to the usefulness that the related 4,5-dimethyl-1,3-dithiol-2-one, 4a, enjoys as a masked form of the dimethyldithiolene ligand (Chandrasekaran et al., 2009), 1 could function as a protected form of the dimethyldioxolene(2-) ligand, $\mathbf{5}$, that is liberated by straightforward base hydrolysis.

2a $\mathrm{E}=\mathrm{O}, \mathrm{VINYLC}, \quad \mathrm{P} 2_{1} / a$
2b $\mathrm{E}=\mathrm{S}$, LAGMUC, Cm
2c $\mathrm{E}=\mathrm{Se}, \mathrm{SELOLS}$, Pnma

5

Although a few coordination complexes with the dimethyldioxolene ligand are known, they have been prepared by oxidative addition of the corresponding α-diketone to a low-valent metal precursor (Chisholm et al., 1983) or by an obscure route involving the reductive coupling of $\mathrm{CO}(g)$ with methyl ligands (Hofmann et al., 1985). This context of demonstrated usefulness and unrealized, but plausible, possibility for $\mathbf{1}$ persuaded us to undertake a study of its utility as a dioxolene ligand precursor. In an early research stage, serendipitously obtained diffraction-quality crystals of $\mathbf{1}$ provided an opportunity for characterization by X-ray diffraction, details of which are reported herein.

2. Structural commentary

Compound 1 crystallizes in the monoclinic space group $P 2{ }_{1} / m$ upon a crystallographic mirror plane that coincides with the carbonyl bond (Fig. 1).

3. Supramolecular features

Molecules of $\mathbf{1}$ are aligned as one-dimensional strands by simple translation along one of the diagonals of the ac face of the unit cell (Fig. 2). The $\mathrm{C}=\mathrm{O}$ oxygen atom of $\mathbf{1}$ forms close contacts of $2.53 \AA$ with the hydrogen atoms from each of the methyl groups of the molecule aligned before or behind (Table 1), at a distance that approaches the sum of the van der Waals radii of the elements (Batsanov, 2001). These strands are further organized into two-dimensional sheets through side-by-side placement but with an alternating orientation of the polarized, carbonyl end of the molecules (Fig. 2). The b axis defines the 2 nd dimension of these sheets. Between strands within these sheets, interatomic $\mathrm{H} \cdots \mathrm{H}$ separations are 2.89 and $3.05 \AA$, while nearest $\mathrm{O} \cdots \mathrm{O}$ distances between rings are 3.3962 (13) \AA. Fig. 3 presents a perspective of these sheets that is approximately along the b axis of the cell such that the close stacking between them is visible.

An alternative description of the third dimension of the packing is that the one-dimensional strands noted above translate as a whole along the a axis of the cell with an offset

Figure 1
Displacement ellipsoid plot (50\% probability) of 4,5-dimethyl-1,3-dioxol-2-one (1) with non-H atom labeling.

Figure 2
Packing diagram for 4,5-dimethyl-1,3-dioxol-2-one (1) illustrating the sheetlike arrangement in the plane defined by the b axis and an $a c$ face diagonal. Displacement ellipsoids are at the 50% level, and closest intermolecular contacts are indicated.
that places the carbonyl oxygen atom of one molecule of one strand near the five-membered ring centroid of a neighboring molecule (Fig. 4). In contrast to the intrasheet strands depicted in Fig. 2, which are antiparallel, the neighboring intersheet strands are all oriented in the same direction. The closest

Figure 3
Cell packing diagram of $\mathbf{1}$ with a view along the b axis of the cell. Displacement ellipsoids are drawn at the 50% level, and all H atoms are omitted for clarity.

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.53	$3.4976(13)$	171

Symmetry code: (i) $x-1, y, z+1$.
intermolecular $\mathrm{C} \cdots \mathrm{C}$ and $\mathrm{C} \cdots \mathrm{O}$ contacts between these parallel strands are the $\mathrm{C}_{\mathrm{c}} \cdots \mathrm{C}_{\mathrm{o}}$ separation of 3.3413 (16) \AA, the $\mathrm{O}_{\mathrm{c}} \cdots \mathrm{C}_{\mathrm{c}}$ spacing of $3.3452(18) \AA$, and the $\mathrm{O}_{\mathrm{r}} \cdots \mathrm{C}_{\mathrm{o}}$ distance of 3.3742 (13) \AA ($c=$ carbonyl, $o=$ olefin, $r=$ ring $)$. It is likely that the electrostatic interactions of polarized bonds, e.g., placement of the negative end of the ${ }^{\delta(-)} \mathrm{O}=\mathrm{C}^{\delta(+)}$ carbonyl dipole above the positive end of the same bond in the sheet below, exert a decisive role in guiding the organization and spacing of one molecular plane over another. An end-on view of these sheets in space-filling presentation mode emphasizes the packing efficiency imposed by these cumulative intermolecular interactions (Fig. 5).

4. Database survey

Of the relatively few vinylene carbonates that have been structurally characterized, only $\mathbf{1}$ and the parent compound $\mathbf{2 a}$ (Cser, 1974) are simple, symmetrically substituted variants. All other structurally identified compounds bearing this moiety are more complex organic molecules that have been prepared and studied as angiotensin II receptor blockers (Yanagisawa et al., 1996; Dams et al., 2015; Zhang et al., 2017). Despite its ostensible similarity to $\mathbf{1}$, compound 2a crystallizes in a rather different fashion. Although arranged into extended sheets, which also contain the b axis, molecules of 2a are not organized into discernible linear strands but instead are twisted relative to their neighbors so as to accommodate multiple $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (Fig. 6). A glide plane, rather than simple translation, relates one molecule of $\mathbf{2 a}$ to another in the horizontal direction (Fig. 6). As their different space groups would necessitate, the packing arrangements for vinylene trithiocarbonate ($\mathbf{2 b}, \mathrm{CSD}$ refcode LAGMUC; Mereiter \& Rosenau, 2005) and vinylene triselenolate (2c, SELOLS; Lyubovskaya et al., 1976) contrast greatly with $\mathbf{2 a}$.

Figure 4
View of the cell packing arrangement in $\mathbf{1}$ depicting the closest intermolecular contacts between linear strands extending in the direction of a diagonal to the ac face. Displacement ellipsoids are at the 50% level.

Figure 5
Space-filling plot of the unit-cell packing in $\mathbf{1}$ as viewed along the length of the linear strands, which are orthogonal to the paper plane.

The former reveals linear strands of molecules arranged in sheets with a parallel orientation of all strands. Intermolecular $\pi-\pi$ stacking interactions appear to be the decisive packing force between sheets. The latter, when viewed along the b axis of the cell, reveals a herringbone-like pattern in the arrangement of molecules.

Compounds similar to $\mathbf{1}$ with methyl substituents at the 4 and 5 positions of the ring include $\mathbf{4 a}$, already noted, and the all-sulfur form, 4b (DMTHTN; Smith \& Luss, 1980). Compound $\mathbf{4 b}$ occurs in the same space group (No. 62, Pnma) as $\mathbf{2 c}$ with a qualitatively similar packing arrangement that differs in having the herringbone pattern visible when viewed along the cell's a axis. Compound 4a crystallizes in $P 2_{1} / c$ on a general position with similar generalities of description pertinent to its packing pattern as found for 2a. However, adjacent strands of $\mathbf{4 b}$ that are generated by the glide plane operation are slightly out of plane relative to one another. The selenium analogue (6) of $\mathbf{1}$ and $\mathbf{4 a}$ has not been characterized crystallographically but is a target of current study in our laboratory.

Figure 6
Ball and stick representation of the sheetlike arrangement in 2a, where molecules (left-to-right) are related by a glide-plane operation rather than simple translation. Closest intermolecular contacts are illustrated.

Table 2
Experimental details.

Chemical for M_{r}

Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}{ }^{\circ}{ }^{3}\right)$
V
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{\AA^{-3}}\right)$

```
C55}\mp@subsup{\textrm{H}}{6}{}\mp@subsup{\textrm{O}}{3}{
114.10
Monoclinic, P2 / /m
100
3.8283 (10), 10.972 (2), 6.1096 (10)
93.523 (2)
256.15 (10)
2
Mo K\alpha
0.12
0.27\times0.21\times0.16
Bruker SMART APEX
Multi-scan (SADABS; Krause et
    al., 2015)
0.967, 0.980
2310, 636, 617
0.027
0.667
0.030, 0.077, 1.10
6 3 6
4 2
H-atom parameters constrained
0.30,-0.21
```

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2004), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), and SHELXTL (Sheldrick, 2008).

5. Synthesis and crystallization

The sample of 4,5 -dimethyl-1,3-dioxol-2-one used in this study was purchased from AK Scientific, Inc. and recrystallized by evaporation of a MeOH solution from a test tube at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms are added in calculated positions and refined with isotropic displacement parameters that are approximately 1.5 times those of the carbon atom to which they are attached. The $\mathrm{C}-\mathrm{H}$ distances are fixed at $0.98 \AA$.

Acknowledgements

The Louisiana Board of Regents is thanked for enhancement grant LEQSF-(2002-03)-ENH-TR-67 with which Tulane University's Bruker SMART APEX CCD X-ray diffractometer was purchased. Tulane University is acknowledged for its
ongoing support with operational costs for the diffraction facility.

Funding information

Funding for this research was provided by: Louisiana Board of Regents (award No. LEQSF-(2002-03)-ENH-TR-67).

References

Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Cao, L., Dong, Z., Niu, B. \& Shao, J. (2013). China Patent CN 103113392 A 20130522.
Chandrasekaran, P., Arumugam, K., Jayarathne, U., Pérez, L., Mague, J. T. \& Donahue, J. P. (2009). Inorg. Chem. 48, 2103-2113.

Chisholm, M. C., Huffman, J. C. \& Ratermann, A. L. (1983). Inorg. Chem. 22, 4100-4105.
Cser, F. (1974). Acta Chim. Hung. 80, 49-63.
Dams, I., Ostaszewska, A., Puchalska, M., Chmiel, J., Cmoch, P., Bujak, I., Białońska, A. \& Szczepek, W. J. (2015). Molecules, 20, 21346-21363.
Hofmann, P., Frede, M., Stauffert, P., Lasser, W. \& Thewalt, U. (1985). Angew. Chem. Int. Ed. Engl. 24, 712-713.
Kotani, K. \& Kadota, A. (2016). Jpn Kokai Tokkyo Koho JP 2016085836 A 20160519.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Liu, Y., Xie, K., Pan, Y., Li, Y., Wang, H., Jin, Z. \& Zheng, C. (2017). J. Electrochem. Soc. 164, A3949-A3959.
Lyubovskaya, R. N., Lipshan, Ya. D., Krasochka, O. N. \& Atovmyan, L. O. (1976). Latv. PSR Zinat. Akad. Vestis, Khim. Ser. 1, pp. 179181.

Mereiter, K. \& Rosenau, T. (2005). CSD Communication (CCDC 244330). CCDC, Cambridge, England. https://doi.org/10.5517/ cc867m9.
Park, S., Jeong, S. Y., Lee, T. K., Park, M. W., Lim, H. Y., Sung, J., Cho, J., Kwak, S. K., Hong, S. Y. \& Choi, N.-S. (2021). Nat. Commun. 12, 838.

Sakamoto, F., Ikeda, S. \& Tsukamoto, G. (1984). Chem. Pharm. Bull. 32, 2241-2248.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Smith, D. L. \& Luss, H. R. (1980). Acta Cryst. B36, 465-467.
Webber, J. A. (1987). European Patent EP 225127 A2 19870610.
Xiao, X. (2004). Jingxi Huagong Zhongjianti, 34, 35-36.
Xu, M., Zhou, L., Xing, L., Li, W. \& Lucht, B. L. (2010). Electrochim. Acta, 55, 6743-6748.
Yanagisawa, H., Amemiya, Y., Kanazaki, T., Shimoji, Y., Fujimoto, K., Kitahara, Y., Sada, T., Mizuno, M., Ikeda, M., Miyamoto, S., Furukawa, Y. \& Koike, H. (1996). J. Med. Chem. 39, 323-338.
Zhang, X.-R., He, S.-F., Zhang, S., Li, J., Li, S., Liu, J.-S. \& Zhang, L. (2017). J. Mol. Struct. 1130, 103-113.

supporting information

Crystal structure of 4,5-dimethyl-1,3-dioxol-2-one

Chandru P. Chandrasekaran and James P. Donahue

Computing details

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4,5-Dimethyl-1,3-dioxol-2-one

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}$
$M_{r}=114.10$
Monoclinic, $P 2_{1} / m$
$a=3.8283$ (10) \AA
$b=10.972(2) \AA$
$c=6.1096(10) \AA$
$\beta=93.523(2)^{\circ}$
$V=256.15(10) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
π and o scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.967, T_{\text {max }}=0.980$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.077$
$S=1.10$
636 reflections
42 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$F(000)=120$
$D_{\mathrm{x}}=1.479 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2113 reflections
$\theta=3.2-28.3^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, white
$0.27 \times 0.21 \times 0.16 \mathrm{~mm}$

2310 measured reflections
636 independent reflections
617 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-4 \rightarrow 4$
$k=-14 \rightarrow 14$
$l=-8 \rightarrow 8$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0345 P)^{2}+0.0767 P\right]$ where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.22 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R -factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.
Hydrogen atoms were added in calculated positions and refined with isotropic displacement parameters that are approximately 1.5 times those of the carbon atom to which they are attached. The C-H distances assumed were $0.98 \AA$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.1654(3)$	0.250000	$0.67266(16)$	$0.0247(3)$
O2	$-0.08340(16)$	$0.35049(6)$	$0.94742(10)$	$0.0174(2)$
C1	$0.0147(3)$	0.250000	$0.8382(2)$	$0.0177(3)$
C2	$-0.2444(2)$	$0.31041(8)$	$1.13620(13)$	$0.0156(2)$
C3	$-0.3662(2)$	$0.40519(8)$	$1.28542(15)$	$0.0190(2)$
H3A	-0.479500	0.366409	1.407001	0.028^{*}
H3B	-0.534168	0.458611	1.204840	0.028^{*}
H3C	-0.165882	0.453408	1.343402	0.028^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0293(6)$	$0.0271(5)$	$0.0186(5)$	0.000	$0.0091(4)$	0.000
O2	$0.0204(4)$	$0.0160(4)$	$0.0162(4)$	$-0.0002(2)$	$0.0045(2)$	$0.0011(2)$
C1	$0.0185(6)$	$0.0176(6)$	$0.0169(6)$	0.000	$0.0008(4)$	0.000
C2	$0.0145(4)$	$0.0180(5)$	$0.0145(4)$	$-0.0006(3)$	$0.0020(3)$	$0.0009(3)$
C3	$0.0206(5)$	$0.0168(4)$	$0.0199(4)$	$0.0004(3)$	$0.0044(3)$	$-0.0027(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 1$	$1.1949(16)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.4773(12)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.3537(10)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
$\mathrm{O} 2-\mathrm{C} 2$	$1.4110(10)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9800
$\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$	$1.3257(18)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2$	$107.30(7)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2^{\mathrm{i}}$	$125.46(5)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$125.46(5)$	$\mathrm{H} 3 \mathrm{C}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 2$	$109.07(10)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{O} 2$	$108.16(4)$	$\mathrm{H} 3 \mathrm{C}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 3$	$134.74(5)$	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$117.09(7)$		

supporting information

$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$-178.43(12)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$	$-0.72(8)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O}^{\mathrm{i}}$	$1.19(12)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$178.50(8)$

Symmetry code: (i) $x,-y+1 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.98	2.53	$3.4976(13)$	171

Symmetry code: (ii) $x-1, y, z+1$.

