

Received 31 August 2022 Accepted 4 October 2022

Edited by C. Schulzke, Universität Greifswald, Germany

Keywords: crystal structure; spin-crossover; spin transition: energy frameworks

CCDC reference: 2211089

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis{3-(3,4-dimethylphenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate

Kateryna Znovjyak,^a Igor O. Fritsky,^a Tatiana Y. Sliva,^a Vladimir M. Amirkhanov,^a Sergey O. Malinkin,^a Sergiu Shova^b and Maksym Seredyuk^a*

^aDepartment of Chemistry, Taras Shevchenko National University of Kviv, Volodymyrska Street 64, Kviv, 01601, Ukraine, and ^bDepartment of Inorganic Polymers, "Petru Poni", Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania. *Correspondence e-mail: mlseredyuk@gmail.com

As a result of the high symmetry of the Aea2 structure, the asymmetric unit of the title compound, $[Fe^{II}(C_{18}H_{15}N_6)_2]\cdot 2MeOH$, consists of half of a chargeneutral complex molecule and a discrete methanol molecule. The planar anionic ligand 2-[5-(3,4-dimethylphenyl)-4H-1,2,4-triazol-3-ato]-6-(1Htridentate pyrazol-1-yl)pyridine coordinates the Fe^{II} ion meridionally through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudooctahedral coordination sphere of the central ion. The average Fe-N bond distance is 1.955 Å, indicating a low-spin state of the Fe^{II} ion. Neighbouring cone-shaped molecules, nested into each other, are linked through double weak $C-H(pz)\cdots\pi(ph')$ interactions into mono-periodic columns, which are further linked through weak $C-H \cdots N'/C'$ interactions into di-periodic layers. No interactions shorter than the sum of the van der Waals radii of the neighbouring layers are observed. Energy framework analysis at the B3LYP/6-31 G(d,p) theory level, performed to quantify the intermolecular interaction energies, reproduces the weak interlayer interactions in contrast to the strong interaction within the layers. Intermolecular contacts were quantified using Hirshfeld surface analysis and two-dimensional fingerprint plots, showing the relative contributions of the contacts to the crystal packing to be H···H 48.5%, H···C/ $C \cdots H$ 28.9%, $H \cdots N/N \cdots H$ 16.2% and $C \cdots C$ 2.4%.

1. Chemical context

Bisazolepyridines are a broad class of meridional tridentate ligands used to synthesize charged Fe^{II} compounds capable of switching between a spin state with the $t_{2g}^4 e_g^2$ configuration (high-spin, total spin S = 2) and a spin state with the $t_{2g}^6 e_g^0$ configuration (low-spin, total spin S = 0) due to temperature variation, light irradiation or external pressure (Halcrow, 2014; Halcrow et al., 2019). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on the nitrogen heteroatom, it was shown that deprotonation can produce neutral complex species that can be high-spin (Schäfer et al., 2013), low-spin (Shiga et al., 2019) or exhibit temperature-induced transitions between the spin states of the central atom (Seredyuk et al., 2014), depending on the ligand field strength. The substituents of ligands can also play an important role in behaviour of the solid samples, determining the way molecules interact with each other and, therefore, influencing the spin state adopted by the central atom. As we have recently shown, the dynamic rearrangement of the substituent groups can lead to an abnormally large hysteresis of the thermal high-spin transition due to the supramolecular

mechanism of blocking the deformation of the complex molecule by the methoxy group (Seredyuk *et al.*, 2022).

In a continuation of our interest in 3*d*-metal complexes formed by polydentate ligands (Bartual-Murgui *et al.*, 2017; Bonhommeau *et al.*, 2012; Valverde-Muñoz *et al.*, 2020), we report here the structural characterization of a new electroneutral complex $[Fe^{II}L_2]^0$ based on an asymmetric monodeprotonated ligand with two methyl substituents on the phenyl group, L = 2-[5-(3,4-dimethylphenyl)-4*H*-1,2,4-triazol-3-ato]-6-(1*H*-pyrazol-1-yl)pyridine.

2. Structural commentary

The asymmetric unit comprises half of the molecule and a discrete MeOH molecule forming a hydrogen bond O26— $H26 \cdots N12$ with the triazole (trz) ring (Fig. 1). The Fe^{II} ion has a pseudo-octahedral coordination environment composed of the nitrogen donor atoms of the pyrazole (pz), pyridine (py) and trz heterocycles with an average Fe—N distance of 1.957 Å (V[FeN₆] = 9.654 Å³) being typical for low-spin complexes with an N₆ coordination environment (Gütlich & Goodwin, 2004). The pz, py, trz and phenyl rings, together with the two methyl substituents of one ligand, all lie essentially in the same plane.

The average trigonal distortion parameters, $\Sigma = \Sigma_1^{12}(|90 - \varphi_i|)$, with φ_i being the N-Fe-N' angle (Drew *et al.*,

Figure 1

The molecular structure of half the title compound as refined in the asymmetric unit with displacement ellipsoids drawn at the 50% probability level. The $O-H\cdots N$ hydrogen bond is indicated by the dashed line. This and the next figure were generated with the program *Mercury* (Macrae *et al.*, 2020).

Table 1		
Hydrogen	bonding (Å) of th	ne title compound.

Hydrogen bond	Length	Symmetry operation of the contact atom
$C7 \cdots H - C21(pz)$	2.827	1 - x, 1 - y, 1 + z
$C6 \cdot \cdot \cdot H - C21(pz)$	2.777	1-x, 1-y, 1+z
$C5 \cdot \cdot \cdot H - C21(pz)$	2.756	1 - x, 1 - y, 1 + z
$C4 \cdot \cdot \cdot H - C21(pz)$	2.802	1 - x, 1 - y, 1 + z
$C3 \cdot \cdot \cdot H - C21(pz)$	2.893	1 - x, 1 - y, 1 + z
$N9 \cdot \cdot \cdot H - C15(py)$	2.475	$\frac{1}{2} + x$, $1 - y$, $\frac{1}{2} + z$
$N9 \cdot \cdot \cdot H - C20(pz)$	2.522	$\frac{1}{2} + x, 1 - y, \frac{1}{2} + z$
$H7 \cdots C20(pz)$	2.641	$\frac{1}{2} + x, 1 - y, \frac{1}{2} + z$
$N12 \cdot \cdot H - O26$	2.017	<i>x</i> , <i>y</i> , <i>z</i>
H17···O26	2.329	x, y, z
$O26 \cdot \cdot \cdot H - C22(pz)$	2.257	$-\frac{1}{2} + x, 1 - y, \frac{1}{2} + z$

1995), and $\Theta = \Sigma_1^{24}(|60 - \theta_i|)$, with θ_i being the angle generated by superposition of two opposite faces of the octahedron (Chang *et al.*, 1990), are 92.8 and 295.0°, respectively. The values reveal a deviation of the coordination environment from an ideal octahedron which is, however, in the expected range for complexes with similar bisazolepyridine ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal O_h symmetry is 2.18 (Kershaw Cook *et al.*, 2015).

3. Supramolecular features

As a result of the tapered shape, neighbouring complex molecules are embedded in each other and interact through two weak intermolecular $C-H(pz)\cdots\pi(ph')$ contacts between the pyrazole (pz) and phenyl (ph) groups, respectively [distance $C2)(pz)\cdots C_g(ph')$ is 3.392 Å, angle between planes of the rings is 73.77°]. The formed mono-periodic supramolecular columns protrude along the *c*-axis with a stacking periodicity equal to 10.6511 (7) Å (= cell parameter *c*) (Fig. 2*a*). Weak intermolecular hydrogen-bonding interactions C-H(pz, $py)\cdots N/C(pz, trz)/O(MeOH)$ in the range 2.257–2.893 Å

(a) A fragment of the mono-periodic supramolecular columns formed by stacking of molecules along the c axis. (b) Di-periodic supramolecular layers formed by stacking of the supramolecular columns. For a better representation, each column has a different colour. Red dashed lines represent weak hydrogen bonds. (c) Stacking of the di-periodic layers along the c axis. Blue shaded areas correspond to the interlayer space without intermolecular interactions shorter than the sum of the van der Waals radii. The methanol molecules are not shown for clarity.

(Table 1), link neighbouring columns into corrugated diperiodic layers in the bc plane (Fig. 2b,c). The layers stack along the *b*-axis direction without any strong or weak interlayer interactions shorter than the sum of the van der Waals radii (Fig. 2c). The voids between the layers are occupied by methanol molecules, which participate in the strong hydrogen bonding mentioned above, and weak hydrogen bonding with the aromatic substituents within the layers (a complete list of intermolecular interactions is given in Table 1).

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Spackman et al., 2021), with a standard resolution of the three-dimensional d_{norm} surfaces plotted over a fixed colour scale of -0.6122 (red) to 1.3609 (blue) a.u. (Fig. 3). The pale-red spots symbolize short contacts and negative d_{norm} values on the surface correspond to the interactions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4. The Hirshfeld surfaces mapped over d_{norm} are shown for the H···H, H···C/C···H, $H \cdots N/N \cdots H$ and $C \cdots C$ contacts, and the two-dimensional fingerprint plots, associated with their relative contributions to the Hirshfeld surface. At 48.5%, the largest contribution to the overall crystal packing is from H...H interactions, which are located mostly in the central region of the fingerprint plot. $H \cdots C/C \cdots H$ contacts contribute 28.9%, resulting in a pair of characteristic wings. The $H \cdot \cdot \cdot N/N \cdot \cdot \cdot H$ contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 16.2%

Figure 3

A projection of d_{norm} mapped on the Hirshfeld surface, showing the intermolecular interactions within the molecule. Red areas represent regions where contacts are shorter than the sum of the van der Waals radii, blue areas represent regions where contacts are longer than the sum of van der Waals radii, and white areas are regions where contacts are close to the sum of van der Waals radii. This and the next two figures were generated with the program *Crystal Explorer* (Spackman *et al.*, 2021).

research communications

(a) The overall two-dimensional fingerprint plot and those decomposed into specified interactions. (b) Hirshfeld surface representations with the function d_{norm} plotted onto the surface for the different interactions.

research communications

Figure 5

The calculated energy frameworks, showing (a) the electrostatic potential forces ($E_{\rm ele}$), (b) the dispersion forces ($E_{\rm dis}$) and (c) the total energy diagrams ($E_{\rm tot}$). Tube size is set at 100 scale.

Table 2

Computed distortion	indices	(Å, °)) for	the	title	compound	and	similar
literature complexes.								

CSD code	Spin state	<fe-n></fe-n>	Σ	Θ	$\operatorname{CShM}(O_h)$
Title compound	Low-spin	1 957	92.8	295.0	2.18
XODCEB ^a	Low-spin	1.950	87.4	276.6	1.92
QIDJET01 ^b	Low-spin	1.970	90.3	341.3	2.47
QIDJET ^b	High-spin	2.184	145.5	553.3	5.88
$DOMQIH^{c}$	Low-spin	1.962	83.8	280.7	2.02
DOMQUT ^c	Low-spin	1.991	88.5	320.0	2.48
DOMQUT02 ^c	High-spin	2.183	139.6	486.9	5.31
$EJQOA^{d}$	Low-spin	1.946	87.5	308.9	2.16
$BEJQUG^d$	Low-spin	1.952	97.9	309.9	2.37
BEJQUG01 ^d	High-spin	2.138	118.0	375.9	3.34
$BEJRAN^d$	Low-spin	1.946	107.7	384.5	3.20
BEJRER ^d	High-spin	2.139	147.8	507.2	4.92

Notes: (a) Shiga et al. (2019); (b) Zhang et al. (2007); (c) Seredyuk et al. (2014); (d) Seredyuk et al. (2022).

contribution to the Hirshfeld surface. Finally, $C \cdots C$ contacts, which account for a contribution of 2.4%, are mostly distributed in the middle part of the plot.

5. Energy frameworks

The energy frameworks, calculated using the wave function at the B3LYP/6-31G(d,p) theory level, including the electrostatic potential forces (E_{ele}) , the dispersion forces (E_{dis}) and the total energy diagrams (E_{tot}) , are shown in Fig. 5 (Spackman et al., 2021). The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution to the intermolecular interactions comes from dispersion forces (E_{dis}) , reflecting the dominant interactions in the network of the electroneutral molecules. The topology of the energy framework resembles the topology of the intermolecular interactions within and between the supramolecular layers described above. Because of the high lattice symmetry, there are only two different attractive interactions between the molecules within the layers, equal to -58.5 and -90.6 kJ mol⁻¹. As for the interlayer interactions, the absence of supramolecular bonding leads to very weak interactions in the range -7.4 to +2.5 kJ mol⁻¹, *i.e.* from weakly attracting to weakly repulsive. The colour-coded interaction mappings within a radius of 3.8 Å of a central reference molecule for the title compound together with full details of the various contributions to the total energy (E_{tot}) are given in the supporting information

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom *et al.*, 2016) reveals several similar neutral Fe^{II} complexes with a deprotonated azole group, for example, those based on pyrazole-pyridine-benzimidazole, XODCEB (Shiga *et al.*, 2019), phenathroline-tetrazole, QIDJET (Zhang *et al.*, 2007), and phenanthroline-benzimidazole, DOMQUT (Seredyuk *et al.*, 2014). We also included in the comparison data for three

Table 3
Experimental details.

Crystal data	
Chemical formula	$[Fe(C_{18}H_{15}N_6)_2] \cdot 2CH_4O$
$M_{ m r}$	750.65
Crystal system, space group	Orthorhombic, Aea2
Temperature (K)	180
a, b, c (Å)	12.6854 (10), 26.315 (2), 10.6511 (7)
$V(Å^3)$	3555.5 (5)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.48
Crystal size (mm)	$0.3 \times 0.24 \times 0.04$
Data collection	
Diffractometer	Xcalibur, Eos
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.824, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6911, 3047, 2211
R _{int}	0.071
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.061, 0.100, 1.00
No. of reflections	3047
No. of parameters	247
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho = \Delta \rho + (e $	0.84 - 0.50
Absolute structure	Flack x determined using 703
Absolute structure	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013).
Absolute structure parameter	-0.02 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

polymorphs, in different spin states, of a complex structurally similar to the title compound, but carrying a methoxy group on the phenyl substituent (EJQOA, BEJQUG, BEJQUG01, BEJRAN, BEJRER; Seredyuk *et al.*, 2022) (see schematic structures of all complexes in the supporting information. The Fe—N distances of these complexes in the low-spin state are 1.946–1.991 Å, while in the high-spin state they are in the range 2.138–2.184 Å. The values of the trigonal distortion and CShM(O_h) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. The respective structural parameters of the title compound and related complexes are given in Table 2.

7. Synthesis and crystallization

The ligand L was synthesized by the Suzuki cross-coupling reaction from the commercially available precursors (Enamine Ltd.) according to the method described in the literature (Seredyuk *et al.*, 2022). The synthesis of the title compound was performed with a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of $[Fe(L_2)](BF_4)_2$ prepared by dissolving L = 2-[(3,4-dimethylphenyl)-4H-1,2,4-triazol-3yl)]-6-(1H-pyrazol-1-yl)pyridine (100 mg, 0.316 mmol) and Fe(BF₄)₂·6H₂O (53 mg, 0.158 mmol) in boiling acetone, to which chloroform (5 ml) was then added. The middle layer was a methanol–chloroform mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 μ l of NEt₃ was added dropwise. The tube was sealed, and black plate-like single crystals appeared within 3-4 weeks (yield *ca* 75%). Elemental analysis calculated for C₃₈H₃₈FeN₁₂O₂: C, 60.80; H, 5.10; N, 22.39. Found: C, 60.50; H, 5.31; N, 22.71.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions using idealized geometries, with C-H = 0.98 Å for methyl groups and 0.95 Å for aromatic H atoms, and refined using a riding model with $U_{\rm iso}(H) = 1.2-1.5U_{\rm eq}(C)$; the hydrogen atom H26 was refined freely. Two OMIT commands were used to exclude beamstop-affected data.

Acknowledgements

Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, VMA; funding acquisition, KZ, MS.

Funding information

Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for perspective development of a scientific direction 'Mathematical sciences' and natural sciences' at Taras Shevchenko National University of Kyiv.

References

- Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). *Inorg. Chem.* 56, 13535– 13546.
- Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). *J. Phys. Chem. C*, **116**, 11251–11255.
- Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.
- Halcrow, M. A. (2014). New J. Chem. 38, 1868-1882.
- Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). *Inorg. Chem.* 58, 9811–9821.
- Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). *Coord. Chem. Rev.* **289–290**, 2–12.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.

research communications

- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). *Chem. Commun.* 49, 10986–10988.
- Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309.
- Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). *Dalton Trans.* 43, 16387–16394.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Valverde-Muñoz, F.-J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632– 18638.
- Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555.

Acta Cryst. (2022). E78, 1107-1112 [https://doi.org/10.1107/S2056989022009744]

Crystal structure of bis{3-(3,4-dimethylphenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate

Kateryna Znovjyak, Igor O. Fritsky, Tatiana Y. Sliva, Vladimir M. Amirkhanov, Sergey O. Malinkin, Sergiu Shova and Maksym Seredyuk

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{3-(3,4-dimethylphenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate

Crystal data $[Fe(C_{18}H_{15}N_6)_2] \cdot 2CH_4O$ $D_{\rm x} = 1.402 {\rm Mg} {\rm m}^{-3}$ $M_r = 750.65$ Orthorhombic, Aea2 $\theta = 2.6 - 22.8^{\circ}$ a = 12.6854 (10) Åb = 26.315(2) Å $\mu = 0.48 \text{ mm}^{-1}$ T = 180 Kc = 10.6511 (7) Å V = 3555.5 (5) Å³ Z = 4F(000) = 1568Data collection Xcalibur, Eos diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite monochromator $R_{\rm int} = 0.071$ Detector resolution: 16.1593 pixels mm⁻¹ $h = -12 \rightarrow 15$ ω scans Absorption correction: multi-scan $k = -25 \rightarrow 31$ (CrysAlisPro; Rigaku OD, 2022) $l = -12 \rightarrow 12$ Refinement Refinement on F^2 247 parameters 1 restraint Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.100$ S = 1.003047 reflections

Acta Cryst. (2022). E78, 1107-1112

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1363 reflections Plate, clear dark red $0.3 \times 0.24 \times 0.04 \text{ mm}$

 $T_{\rm min} = 0.824, T_{\rm max} = 1.000$ 6911 measured reflections 3047 independent reflections 2211 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement

Absolute structure: Flack x determined using

Absolute structure parameter: -0.02 (3)

703 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et*

 $w = 1/[\sigma^2(F_o^2) + (0.0192P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.84 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.50 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

al., 2013).

	x	v	Z	U_{iso}^*/U_{eq}	
Fe1	0 500000	0 500000	0 32399 (13)	0.0198 (3)	
N13	0.3533(4)	0.48261 (19)	0.3181 (6)	0.0170(12)	
N23	0.35555 (1) 0.4520 (4)	0.5467(2)	0.1903(5)	0.0202(15)	
N19	0.3481(4)	0.5393(2)	0.1587(4)	0.0202(15) 0.0219(15)	
N10	0.4953(5)	0.3355(2) 0.4455(3)	0.1507(1) 0.4514(5)	0.0211(15)	
026	0.1935(5) 0.1937(5)	0 3536 (3)	0.1311(3) 0.6135(7)	0.0211(10) 0.074(3)	
020 Н26	0.255(9)	0.359(4)	0.6122(7)	$0.10(4)^{*}$	
N12	0.295(9) 0.3978(4)	0.3357(1) 0.3867(2)	0.002(0) 0.5544(4)	0.0214(15)	
N9	0.5624 (4)	0.3007(2) 0.4206(2)	0.5293 (5)	0.0205(15)	
C14	0.3021(1) 0.2907(5)	0.1200(2) 0.5053(3)	0.3299(5) 0.2340(6)	0.0209(13) 0.0189(17)	
C16	0.1439(5)	0.5055(3) 0.4588(3)	0.3039(6)	0.0266(18)	
H16	0.070880	0.450760	0.300859	0.032*	
C11	0 3991 (6)	0.4244(3)	0.4689(6)	0.0187(17)	
C18	0.3142(5)	0.1211(3) 0.4458(3)	0 3926 (6)	0.0208(17)	
C17	0.2084(5)	0.4332 (3)	0.3877(6)	0.0232(18)	
H17	0 180469	0 407444	0 440732	0.028*	
C2	0.5444 (6)	0.3525 (3)	0.6874 (6)	0.0221 (17)	
C15	0.1835 (5)	0.4957(3)	0.2245 (5)	0.0231 (17)	
H15	0.139860	0.513428	0.166841	0.028*	
C20	0.3249 (6)	0.5650(3)	0.0514 (6)	0.028 (2)	
H20	0.258538	0.565681	0.010235	0.034*	
C7	0.6517 (6)	0.3493 (3)	0.7117 (6)	0.031 (2)	
Н7	0.698294	0.368889	0.661329	0.037*	
C21	0.4130 (6)	0.5893 (3)	0.0140 (7)	0.031 (2)	
H21	0.420863	0.610314	-0.057996	0.038*	
C6	0.6947 (6)	0.3191 (3)	0.8056 (7)	0.0300 (19)	
C5	0.6260 (7)	0.2904 (3)	0.8814 (7)	0.036 (2)	
C4	0.5194 (7)	0.2928 (3)	0.8593 (6)	0.040 (2)	
H4	0.473076	0.273418	0.910428	0.048*	
C22	0.4901 (6)	0.5776 (3)	0.1021 (7)	0.0274 (19)	
H22	0.560432	0.589870	0.099718	0.033*	
C24	0.8132 (5)	0.3196 (3)	0.8284 (8)	0.048 (2)	
H24A	0.846198	0.345213	0.774413	0.072*	
H24B	0.842489	0.286043	0.808838	0.072*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H24C	0.827202	0.327787	0.916573	0.072*
C8	0.5027 (5)	0.3860 (3)	0.5907 (6)	0.0205 (17)
C3	0.4769 (6)	0.3232 (3)	0.7632 (6)	0.035 (2)
H3	0.402940	0.323876	0.749434	0.042*
C27	0.1677 (7)	0.3185 (4)	0.7045 (8)	0.060 (3)
H27A	0.208643	0.287319	0.691455	0.089*
H27B	0.092312	0.310638	0.699199	0.089*
H27C	0.183692	0.332462	0.787647	0.089*
C25	0.6686 (7)	0.2584 (3)	0.9889 (7)	0.057 (3)
H25A	0.722244	0.234986	0.956909	0.085*
H25B	0.610868	0.238992	1.026777	0.085*
H25C	0.700073	0.280733	1.052319	0.085*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0140 (7)	0.0239 (8)	0.0216 (6)	-0.0013 (8)	0.000	0.000
N13	0.010 (3)	0.020 (3)	0.022 (3)	0.000 (3)	-0.003 (3)	0.002 (3)
N23	0.014 (3)	0.028 (4)	0.019 (3)	-0.003 (3)	0.000 (3)	-0.002 (3)
N19	0.016 (3)	0.024 (4)	0.025 (3)	-0.002 (3)	-0.002 (3)	0.002 (3)
N10	0.019 (3)	0.026 (4)	0.018 (3)	0.001 (3)	-0.003 (3)	0.002 (3)
O26	0.024 (4)	0.082 (6)	0.115 (6)	0.009 (4)	0.018 (4)	0.066 (5)
N12	0.013 (3)	0.025 (4)	0.026 (3)	0.000 (3)	-0.004(3)	0.001 (3)
N9	0.020 (4)	0.024 (4)	0.018 (3)	0.000 (3)	-0.003 (3)	0.004 (3)
C14	0.012 (4)	0.024 (5)	0.021 (4)	-0.007 (4)	0.003 (3)	-0.003 (3)
C16	0.013 (4)	0.034 (5)	0.032 (5)	-0.005 (4)	0.003 (3)	0.000 (4)
C11	0.022 (4)	0.019 (5)	0.015 (4)	-0.001 (4)	-0.004 (3)	-0.002 (3)
C18	0.014 (4)	0.028 (5)	0.020 (3)	-0.002 (4)	0.002 (3)	-0.004 (3)
C17	0.012 (4)	0.032 (5)	0.025 (4)	-0.009 (4)	-0.002(3)	0.000 (4)
C2	0.025 (4)	0.024 (5)	0.017 (4)	-0.002 (4)	-0.005 (3)	-0.001 (3)
C15	0.015 (4)	0.027 (5)	0.028 (4)	0.001 (4)	-0.007 (3)	0.004 (4)
C20	0.027 (5)	0.036 (5)	0.022 (4)	0.014 (4)	0.001 (3)	0.004 (4)
C7	0.032 (5)	0.032 (5)	0.027 (5)	0.010 (4)	0.003 (4)	0.001 (4)
C21	0.024 (5)	0.035 (6)	0.035 (5)	0.006 (5)	0.004 (4)	0.017 (4)
C6	0.038 (5)	0.024 (4)	0.028 (4)	0.013 (4)	-0.013 (4)	-0.007 (4)
C5	0.051 (6)	0.028 (5)	0.030 (4)	0.006 (5)	-0.019 (4)	0.001 (4)
C4	0.056 (6)	0.033 (5)	0.031 (6)	-0.017 (5)	-0.006 (4)	0.013 (4)
C22	0.025 (5)	0.029 (5)	0.029 (4)	-0.010 (4)	0.006 (4)	0.006 (4)
C24	0.040 (5)	0.060 (6)	0.045 (4)	0.020 (5)	-0.008(5)	0.012 (6)
C8	0.017 (4)	0.024 (5)	0.021 (4)	0.002 (4)	0.002 (3)	-0.005 (3)
C3	0.029 (5)	0.044 (6)	0.031 (4)	-0.009 (4)	-0.011 (4)	0.001 (4)
C27	0.043 (6)	0.056 (7)	0.080 (6)	0.008 (6)	0.020 (5)	0.025 (6)
C25	0.080 (8)	0.044 (7)	0.047 (5)	0.002 (6)	-0.024 (5)	0.012 (4)

Geometric parameters (Å, °)

Fe1—N13	1.917 (5)	C2—C8	1.455 (9)
Fe1—N13 ⁱ	1.917 (5)	C2—C3	1.407 (9)

Fe1—N23 ⁱ	1.977 (6)	C15—H15	0.9500
Fe1—N23	1.977 (6)	C20—H20	0.9500
Fe1—N10 ⁱ	1.974 (6)	C20—C21	1.349 (9)
Fe1—N10	1.974 (6)	С7—Н7	0.9500
N13—C14	1.338 (8)	C7—C6	1.389 (9)
N13—C18	1.348 (8)	C21—H21	0.9500
N23—N19	1.375 (7)	C21—C22	1.389 (9)
N23—C22	1.333 (9)	C6—C5	1.409 (10)
N19—C14	1.403 (8)	C6—C24	1.522 (9)
N19—C20	1.360 (8)	C5—C4	1.373 (10)
N10—N9	1.358 (8)	C5—C25	1.520 (10)
N10—C11	1.355 (9)	C4—H4	0.9500
O26—H26	0.79 (11)	C4—C3	1,406 (9)
O26—C27	1.380 (9)	C22—H22	0.9500
N12—C11	1.345 (8)	C24—H24A	0.9800
N12—C8	1.386 (8)	C24—H24B	0.9800
N9-C8	1 352 (8)	C_24 —H24C	0.9800
C14-C15	1 387 (8)	C3—H3	0.9500
C16—H16	0.9500	C27—H27A	0.9800
C_{16} C_{17}	1 386 (9)	C27 - H27B	0.9800
C_{16} $-C_{15}$	1 383 (9)	C27 - H27C	0.9800
C11-C18	1 463 (9)	C_{25} H25A	0.9800
C18-C17	1 384 (8)	C25—H25B	0.9800
C17—H17	0.9500	C_{25} H25D	0.9800
$C_2 = C_7$	1 388 (9)	025 11250	0.9000
02 07	1.500 (5)		
N13—Fe1—N13 ⁱ	176 2 (4)	C14—C15—H15	121.9
N13—Fe1—N23	80.0(3)	C16-C15-C14	116.2 (6)
$N13$ —Fe1— $N23^{i}$	97 3 (2)	C16—C15—H15	121.9
$N13^{i}$ Fe1 N23	97.3 (2)	N19—C20—H20	126.1
$N13^{i}$ Fe1 $N23^{i}$	80 0 (3)	C_{21} C_{20} N_{120}	120.1 107.8(7)
N13—Fe1— $N10$	79.6 (3)	$C_{21} = C_{20} = H_{20}$	107.0 (7)
$N13$ —Fe1— $N10^{i}$	103.0(2)	C2C7H7	118.2
$N13^{i}$ Fe1 $N10^{i}$	79.6 (3)	$C_{2} = C_{1} = \Pi_{1}$	110.2 123.7(7)
N13 - Fe1 - N10	103.0(2)	C6-C7-H7	123.7 (7)
$N23^i$ Fe1 N23	87.9(3)	C_{20} C_{21} H21	127.0
$N10^{i}$ Fe1 N23	97.9(3)	$C_{20} = C_{21} = H_{21}$	127.0 106 1 (7)
$N10 = Fc1 = N23^{i}$	93.0(2)	$C_{20} = C_{21} = C_{22}$	100.1 (7)
$N10i$ E_{21} $N23i$	95.0(2)	$C_{22} = C_{21} = H_{21}$	127.0 118 $4(7)$
$\frac{1}{10} - \frac{1}{10} = \frac{1}{10} $	159.5(2)	C7 - C6 - C3	110.4(7)
N10— $Fe1$ — $N25$	139.3(2)	C = C = C = C = C = C = C = C = C = C =	119.9 (7)
$\frac{1}{10} - \frac{1}{10} = \frac{1}{10}$	95.2 (4) 110 4 (5)	$C_{5} = C_{0} = C_{24}$	121.0(7)
C14 $N13$ $C19$	119.4 (3)	$C_{1} = C_{2}$	120.0(7)
C19 = N13 - C18	119.8 (0)	C4 - C5 - C25	119.1 (/)
$ \begin{array}{c} 10 \\ 110 \\ 122 \\ 121 \\$	120.0(3)	$C_4 - C_2 - C_2 $	120.3 (8)
N19 - N23 - Fel	112.5 (4)	C_{3} C_{4} H_{4}	119.1
C22 = N23 = FeI	140.8 (3)	$\bigcirc 3 - \bigcirc 4 - \bigcirc 3$	121.9(/)
U22—N25—N19	105.2 (6)	$C_3 - C_4 - H_4$	119.1
N25—N19—C14	116.6 (5)	N23—C22—C21	110.9 (7)

	110.0 (6)		1015
C20—N19—N23	110.0 (6)	N23—C22—H22	124.5
C20—N19—C14	133.2 (6)	C21—C22—H22	124.5
N9—N10—Fe1	138.8 (5)	C6—C24—H24A	109.5
C11—N10—Fe1	114.9 (5)	C6—C24—H24B	109.5
C11—N10—N9	106.3 (6)	C6—C24—H24C	109.5
С27—О26—Н26	117 (7)	H24A—C24—H24B	109 5
$C_{11} = N_{12} = C_8$	100.8 (6)	$H^{2}A - C^{2}A - H^{2}AC$	109.5
C8 N9 N10	100.0(0) 105.7(5)	$\frac{112}{112} \frac{112}{112} 11$	109.5
N12 C14 N10	105.7(5)	N12 C C C2 C2	107.5
N13-C14-N15	111.0(0)	N12 - C6 - C2	123.7(0)
N13—C14—C15	123.3 (6)	N9-C8-N12	113.2 (6)
C15—C14—N19	125.7 (6)	N9—C8—C2	123.1 (6)
C17—C16—H16	119.3	C2—C3—C4	119.8 (7)
C15—C16—H16	119.3	С2—С3—Н3	120.1
C15—C16—C17	121.4 (7)	C4—C3—H3	120.1
N10-C11-C18	115.4 (6)	O26—C27—H27A	109.5
N12-C11-N10	114.0 (6)	O26—C27—H27B	109.5
N12—C11—C18	130.6 (7)	O26—C27—H27C	109.5
N13—C18—C11	109.5 (6)	H27A—C27—H27B	109.5
N13—C18—C17	120.5 (6)	H27A—C27—H27C	109.5
C17 - C18 - C11	130.0(7)	H27B—C27—H27C	109.5
C16-C17-H17	120.6	C_{5} C_{25} H_{25A}	109.5
C_{18} C_{17} C_{16}	120.0 118.7(7)	$C_5 C_{25} H_{25R}$	109.5
$C_{18} = C_{17} = C_{10}$	110.7 (7)	$C_{5} = C_{25} = H_{25}C_{5}$	109.5
	120.0		109.5
$C_{1} = C_{2} = C_{8}$	121.7 (6)	H25A—C25—H25B	109.5
C/_C2_C3	117.2 (7)	H25A—C25—H25C	109.5
C3—C2—C8	121.1 (6)	H25B—C25—H25C	109.5
Fe1—N13—C14—N19	1.3 (8)	C11—N12—C8—C2	177.6 (6)
Fe1—N13—C14—C15	-178.9(5)	C11—C18—C17—C16	-178.4(6)
Fe1—N13—C18—C11	-0.5 (8)	C18—N13—C14—N19	-174.9(6)
Fe1—N13—C18—C17	-179.7(5)	C18—N13—C14—C15	4.9 (10)
$Fe1_N23_N19_C14$	75(7)	C17 - C16 - C15 - C14	0.0(10)
F_{e1} N23 N19 C20	-1683(4)	C_{2} C_{7} C_{6} C_{5}	-0.6(11)
Fe1 N23 C22 C21	163.0 (6)	$C_2 = C_7 = C_6 = C_2 A$	-177.8(7)
$F_{c1} = N_{c2} = C_{c2} = C_{c2}$	103.0(0)	$C_2 - C_7 - C_0 - C_2 + C_1 $	1/7.8(7)
FeI = N10 = O11 = N12	-1/8.8(3)	C13 - C10 - C17 - C18	1.1(11)
FeI—NI0—CII—NI2	1/8.9(5)	C_{20} N19 C_{14} N13	108.7 (7)
Fel—NI0—CII—CI8	-1.0(8)	C20—N19—C14—C15	-11.1 (12)
N13—C14—C15—C16	-3.1 (10)	C20—C21—C22—N23	0.6 (9)
N13—C18—C17—C16	0.7 (11)	C7—C2—C8—N12	173.2 (6)
N23—N19—C14—N13	-5.8 (8)	C7—C2—C8—N9	-8.5 (11)
N23—N19—C14—C15	174.4 (6)	C7—C2—C3—C4	0.6 (11)
N23—N19—C20—C21	-0.4 (8)	C7—C6—C5—C4	0.5 (11)
N19—N23—C22—C21	-0.8 (8)	C7—C6—C5—C25	-177.4 (7)
N19—C14—C15—C16	176.7 (6)	C6—C5—C4—C3	0.0 (12)
N19—C20—C21—C22	-0.1 (9)	C5—C4—C3—C2	-0.6 (11)
N10—N9—C8—N12	0.9 (8)	C22—N23—N19—C14	176.5 (6)
N10—N9—C8—C2	-177.5 (6)	C22—N23—N19—C20	0.8 (8)
N10-C11-C18-N13	10(8)	$C^{24}-C^{6}-C^{5}-C^{4}$	177.7(7)
	··· (~)		÷ · · · · (·)

N10-C11-C18-C17	-179.9 (7)	C24—C6—C5—C25	-0.3 (12)
N12-C11-C18-N13	-178.9 (7)	C8—N12—C11—N10	0.4 (7)
N12-C11-C18-C17	0.2 (13)	C8—N12—C11—C18	-179.8 (7)
N9—N10—C11—N12	0.2 (8)	C8—C2—C7—C6	177.9 (6)
N9—N10—C11—C18	-179.7 (6)	C8—C2—C3—C4	-177.3 (6)
C14—N13—C18—C11	175.7 (6)	C3—C2—C7—C6	0.0 (11)
C14—N13—C18—C17	-3.6 (10)	C3—C2—C8—N12	-8.9 (11)
C14—N19—C20—C21	-175.2 (7)	C3—C2—C8—N9	169.3 (7)
C11—N10—N9—C8	-0.6 (7)	C25—C5—C4—C3	178.0 (7)
C11—N12—C8—N9	-0.8 (7)		

Symmetry code: (i) -x+1, -y+1, z.