

Received 29 August 2022 Accepted 4 November 2022

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: crystal structure; copper(II); mefenamic acid; diglyme; paddlewheel.

CCDC reference: 2217265

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a copper-mefenamate complex solvated with diglyme and water

Magdalene W. S. Chong,^{a,b}* Sara Ottoboni,^{a,c} Alan R. G. Martin,^a Deborah Bowering,^a Chris J. Price,^{a,c} Alison Nordon,^{a,b} Iain D. H. Oswald^{a,d} and Martin R. Ward^{a,d}*

^aEPSRC Future Continuous Manufacturing and Advanced Crystallisation Research Hub, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, United Kingdom, ^bWestCHEM, Department of Pure and Applied Chemistry and Centre for Process Analytics and Control Technology (CPACT), University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom, ^cDepartment of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, United Kingdom, and ^dStrathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow, United Kingdom. *Correspondence e-mail: magdalene.chong@strath.ac.uk, martin.ward@strath.ac.uk

In the copper–mefenamate complex tetrakis[μ -2-(2,3-dimethylanilino)benzoato- $\kappa^2 O:O'$]bis[aquacopper(II)]–1-methoxy-2-(2-methoxy)ethane (1/2), [Cu₂(C₁₅H₁₄NO₂)₄(H₂O)₂]·2C₆H₁₄O₃, the asymmetric unit comprises a Cu^{II} cation coordinated to two mefenamate ligands solvated with a water molecule and a diglyme molecule. The complex adopts a paddlewheel motif and is compared to structural analogues crystallized with dimethylformamide and dimethyl sulfoxide.

1. Chemical context

Mefenamic acid is a non-steroidal anti-inflammatory drug (NSAID) that is synthesized through reaction of 2-chlorobenzoic acid and 2,3-dimethylaniline in the presence of a copper catalyst (Trinus *et al.*, 1977). Subsequently, pharmacopoeia specifications for mefenamic acid specify a maximum limit of 10 ppm for the quantity of copper present in the final drug product (British Pharmacopoeia, 2017). In exploring strategies to ensure removal of copper from the crude reaction mixture, a new copper–mefenamate complex was isolated. The crystal structure of a copper–mefenamate complex solvated with water and diglyme is reported.

The complex $[Cu_2(mefenamate)_4(H_2O)_2].2(diglyme)$ crystallizes in the space group $P2_1/n$, with a $\{Cu_2(RCO_2)_4(H_2O)_2\}$

research communications

Figure 1

1210

Views of $[Cu_2(mefenamate)_4(H_2O)_2]\cdot 2(diglyme)$ as an *ORTEP* representation with ellipsoids set to 50% probability: (*a*) asymmetric unit with hydrogen bonds highlighted (dashed blue lines), (*b*) a single paddlewheel unit of the complex, and (*c*) neighbouring units with edge-to-face interactions highlighted (dashed red lines).

Chong et al. • $[Cu_2(C_{15}H_{14}NO_2)_4(H_2O)_2] \cdot 2C_6H_{14}O_3$

Table 1Hydrogen-bond geometry (Å, °).

	,			
$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N10A - H10D \cdots O2A$ $N10B - H10C \cdots O2B$	0.86 (3) 0.89 (2)	1.86 (3) 1.87 (2)	2.604 (2) 2.6065 (18)	143 (2) 139 (2)

paddlewheel motif that is typical for coordination of four carboxylate groups to two Cu^{II} cations (Chong et al., 2022). Within the asymmetric unit (Fig. 1a), the planes of the 2,3dimethylphenyls from the two mefenamate molecules are 42.61 (1)° apart. A water molecule occupies each of the apical positions of the paddlewheel motif, which is hydrogen bonded to a diglyme molecule (Fig. 1a). The diglyme molecule is oriented such that it fits between the 2,3-dimethyphenyl units of the two mefenamate molecules in the asymmetric unit and is hydrogen bonded to the coordinated water via the diglyme outer oxygen positions (Fig. 1a). A distorted square-pyramidal geometry is adopted by each Cu^{II} cation in the paddlewheel motif (Fig. 1b), with equatorial Cu-O distances of 1.968 (1), 1.961 (1), 1.954 (1), and 1.969 (1) Å between Cu^{II} and the carboxylate moieties. The axial Cu–O distance, between the copper(II) cation and water molecule, is 2.108 (1) Å. The distance between the two Cu^{II} cations is 2.6126 (4) Å. There is an intramolecular bond between the amine and carboxylate groups of the mefenamate, with $O \cdots H$ distances of 1.86 (3) and 1.87 (2) Å for metenamate units A and B, respectively (Table 1).

3. Supramolecular features

There are no obvious interactions, such as $\pi-\pi$ stacking, between neighbouring paddlewheel units within the packed structure. The paddlewheel units interact through edge-toface interactions of the phenyl groups of the mefanamate ligands (Fig. 1c). In the global packing of the structure, the paddlewheel units are arranged as 2D sheets along the crystallographic *ab* plane, with symmetry-equivalent sheets repeating throughout the crystallographic *c* axis at a distance corresponding to *c*. A second 2D arrangement is intercalated halfway between the symmetry-equivalent sheets.

4. Database survey

There are three other similar copper–mefenamate paddlewheel structures in the CSD (version 5.43, November 2021; Groom *et al.*, 2016), with different solvents occupying the apical positions. Two entries, MPANCU10 (Yatsimirskii *et al.*, 1979) and MPANCU20 (Mys'kiv *et al.*, 1982), are with *N*,*N*dimethylformamide (DMF) and one entry, SUTPIG (Facchin *et al.*, 1998), has dimethyl sulfoxide (DMSO) occupying the apical position. The DMF analogue also crystallizes in a monoclinic space group (Table 2). The cell volume of $[Cu_2(mefenamate)_4(H_2O)_2]\cdot 2(diglyme)$ [3538.64 (12) Å³] is larger than the DMF analogue (3026.535 Å³), to accommodate the larger diglyme molecule. The axial Cu–O distance in $[Cu_2(mefenamate)_4(H_2O)_2]\cdot 2(diglyme)$ is shorter than those

Table 2 Comparison of selected geometries (Å, °).

Coordinates are unavailable for entry MPANCU10. There are two values per structure, corresponding to the two mefenamate units in the asymmetric unit as denoted A and B in our atom-numbering scheme.

	This work		MPANCU20		SUTPIG	
Space group	P21/n		P21/c		$P\overline{1}$	
01-C3-C4-C9	171.1 (2)	179.7 (1)	170.98	179.70	153 (1)	180(1)
C4-C9-N10-C11	174.3 (2)	171.2 (2)	-166.40	171.56	171 (1)	172 (1)
C9-N10-C11-C16	144.7 (2)	-124.9(2)	-155.25	-109.34	-107(2)	135 (2)
Cu-O _{mefenamate}	1.961 (1)	1.954 (1)	1.9737	1.9605	1.972 (7)	1.949 (7)
Cu-O _{solvent}	2.108 (1)		2.1561		2.17 (1)	
Cu···Cu	2.6126 (4)		2.6120		2.627 (3)	

in structures MPANCU20 and SUTPIG (Table 2). This may be attributed to the higher polarity of water (1.000) compared to DMF and DMSO (0.386 and 0.444, respectively; Reichardt & Welton, 2011). In the DMSO analogue, the 2,3-dimethylphenyls from the two mefenamate molecules within the asymmetric unit are almost coplanar, the planes are 9.06° apart, and the methyl groups of the DMSO point away from the 2,3-dimethylphenyls. For the DMF analogue, the two 2,3-dimethylphenyls are oriented such that they can accommodate one of the methyl groups from the DMF, therefore the planes are 70.22° apart.

Three polymorphic forms are known for mefenamic acid, with significant differences between the forms in the C9-N10-C11-C16 torsion angle τ_3 (Fig. 1*a*; SeethaLekshmi & Guru Row, 2012). The larger torsion angle τ_3 observed with the copper complex (Table 2) is more consistent with those of the form I polymorph of -119.99 ° (XYANAC; McConnell & Company, 1976) and -120.1 (1) ° (XYANAC06; Mague & Ouzidan, 2017). The increased torsional angle can be explained by the location of the dimethylphenyl group with respect to the diglyme group. The phenyl group needs to rotate to ensure a more planar packing arrangement with the diglyme molecule. In comparison to other polymorphs, the metastable form II suffers from significant disorder around the dimethylphenyl ring system, however the torsion angle τ_3 is 68 (2)° for XYANAC04 (SeethaLekshmi & Guru Row, 2012), 74.5 (3)° for XYANAC05 (Yang et al., 2012) and -90 (2)° for XYANAC07 (Abbas et al., 2017). The latter of these data collections is at high pressure and the disorder is not modelled, possibly because of the lack of data present due to the diamond anvil cell. The thermal parameters indicate that some disorder may still be present even at these higher pressures. For metastable form III, the reported torsion angle τ_3 is -80.8 (2)° (XYANAC03; SeethaLekshmi & Guru Row, 2012).

5. Synthesis and crystallization

Chemicals were purchased from commercial suppliers and used as received without further purification. Deionized water was obtained from an in-house Milli-Q (Millipore) purification system. A solution was prepared comprising mefenamic acid (25.0 g), diglyme (281.6 g), water (74.7 g) and copper (II) acetate (7.3 g). An aliquot (4 mL) of this solution was removed and mefenamic acid (0.4 g) added to generate a

slurry. The mixture was filtered and the filtrate stored in the dark at room temperature for two weeks, after which large green block-shaped crystals of the complex had formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The diglyme moiety was found to be disordered over two positions. Initial isotropic refinement of the diglyme allowed the residual electron density to be observed. Using the functionality in *OLEX2*, the atoms were moved to ensure that they overlapped the electron density in a

$[Cu_2(C_{15}H_{14}NO_2)_4(H_2O)_2]$
$2C_6H_{14}O_3$
1392.54
Monoclinic, $P2_1/n$
105
15.5420 (3), 14.0010 (3), 16.3217 (3)
94.791 (1)
3539.25 (12)
2
Cu Ka
1.30
$0.2 \times 0.15 \times 0.1$
Bruker Photon100 CMOS
Multi-scan (SADABS; Bruker,
2016)
0.781, 0.881
209288, 6424, 5989
0.039
0.603
0.033, 0.089, 1.06
6424
477
410
H atoms treated by a mixture of independent and constrained refinement
0.28, -0.40

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*) and *OLEX2* (Dolomanov *et al.*, 2009).

zigzag bonding pattern usually observed for alkyl chains. Distance restraints were applied to ensure the molecular integrity. Using the SPLIT function, the alkyl chain was duplicated and rotated to align with the remaining electron density. This model was refined isotropically before applying EADP restraints to the atoms and refining anisotropically. This provided a stable refined structure. The water hydrogen atoms were added from the difference map and refined with ideal DFIX restraints in place. C-bound hydrogen atoms were placed geometrically and a riding model applied [C-H = 0.95-0.99 Å; $U_{iso}(H) = 1.2-1.5U_{eq}(C)$]. All data underpinning this publication are openly available from the University of Strathclyde KnowledgeBase at https://doi.org/10.15129/39f97ad1-8173-4999-b0b6-41c6ae923fe6.

Acknowledgements

The authors acknowledge that the experimental work presented was carried out in the CMAC National Facility, housed within the University of Strathclyde's Technology and Innovation Centre.

Funding information

Funding for this work was provided by: Engineering and Physical Sciences Research Council (EPSRC) Future Continuous Manufacturing and Advanced Crystallization Research Hub (Grant Ref: EP/P006965/1 for MWSC, SO, ARGM, DB, CJP and AN); EPSRC Early Career Fellowship (Grant Ref: EP/N015401/1 for IDHO and MRW); UK Research Partnership Institute Fund (UKRPIF) capital award (Scottish Funding Council ref. H13054, from the Higher Education Funding Council for England). References

- Abbas, N., Oswald, I. D. H. & Pulham, C. R. (2017). *Pharmaceutics*, 9, 16.
- British Pharmacopoeia (2017). Part III. London: Medicines and Healthcare products Regulatory Agency; mefenamic acid (Ph. Eur. Monograph 1240).
- Bruker (2016). *APEX3*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chong, M. W. S., Argent, S. P., Moreau, F., Trenholme, W. J. F., Morris, C. G., Lewis, W., Easun, T. L. & Schröder, M. (2022). *Chem. Eur. J.* 28, e202201188. https://doi.org/10.1002/chem.202201188.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Facchin, G., Torre, M. H., Kremer, E., Piro, O. E. & Baran, E. J. (1998). Z. Naturforsch. B, 53, 871–874.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Mague, J. & Ouzidan, Y. (2017). *CSD Communication* (refcode XYANAC06). CCDC, Cambridge, England.
- McConnell, J. F. & Company, F. Z. (1976). Cryst. Struct. Commun. 5, 861.
- Mys'kiv, M. G., Olijnik, V. V., Kriss, E. E., Konakhovich, N. F. & Grigor'eva, A. S. (1982). *Koord. Khim. (Russ.)*, **8**, 1415.
- Reichardt, C. & Welton, T. (2011). Editors. Solvents and Solvent Effects in Organic Chemistry, 4th ed., p. 550. Weinheim: Wiley-VCH.
- SeethaLekshmi, S. & Guru Row, T. N. (2012). Cryst. Growth Des. 12, 4283–4289.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Trinus, F. P., Mokhort, N. A., Yagupol'skii, L. M., Fadeicheva, A. G., Danilenko, V. S., Ryabukha, T. K., Fialkov, Yu. A., Kirichek, L. M., Endel'man, É. S. & Get'man, G. A. (1977). *Pharm. Chem. J.* 11, 1706–1711.
- Yang, X., Sarma, B. & Myerson, A. S. (2012). Cryst. Growth Des. 12, 5521–5528.
- Yatsimirskii, K. B., Mys'kiv, M. G., Grigor'eva, A. S., Kris, E. E. & Gladyshevskii, E. I. (1979). Dokl. Akad. Nauk, 247, 1204.

Acta Cryst. (2022). E78, 1209-1212 [https://doi.org/10.1107/S2056989022010647]

Crystal structure of a copper-mefenamate complex solvated with diglyme and water

Magdalene W. S. Chong, Sara Ottoboni, Alan R. G. Martin, Deborah Bowering, Chris J. Price, Alison Nordon, Iain D. H. Oswald and Martin R. Ward

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Tetrakis[μ -2-(2,3-dimethylanilino)benzoato- $\kappa^2 O:O'$]bis[aquacopper(II)]–1-methoxy-2-(2-methoxyethoxy)ethane (1/2)

Crystal data

```
[Cu_{2}(C_{15}H_{14}NO_{2})_{4}(H_{2}O)_{2}] \cdot 2C_{6}H_{14}O_{3}

M_{r} = 1392.54

Monoclinic, P2_{1}/n

a = 15.5420 (3) Å

b = 14.0010 (3) Å

c = 16.3217 (3) Å

\beta = 94.791 (1)°

V = 3539.25 (12) Å<sup>3</sup>

Z = 2
```

Data collection

Bruker Photon100 CMOS diffractometer Radiation source: Incoatec microfocus Cu source φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.781, T_{\max} = 0.881$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.089$ S = 1.066424 reflections 477 parameters F(000) = 1468 $D_x = 1.307 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9398 reflections $\theta = 4.9-68.2^{\circ}$ $\mu = 1.30 \text{ mm}^{-1}$ T = 105 KBlock, clear green $0.2 \times 0.15 \times 0.1 \text{ mm}$

209288 measured reflections 6424 independent reflections 5989 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 68.3^\circ, \theta_{min} = 4.9^\circ$ $h = -18 \rightarrow 18$ $k = -16 \rightarrow 16$ $l = -19 \rightarrow 19$

410 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0435P)^2 + 2.0003P]$ where $P = (F_o^2 + 2F_c^2)/3$

$$(\Delta/\sigma)_{\rm max} = 0.001$$

 $\Delta\rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$$

Special details

Experimental. The X-ray intensities were collected on a Bruker D8 Venture diffractometer using a Photon 100 Detector. The data were reduced using APEX3 and absorption correction applied using SADABS (Bruker, 2016). The crystal structure was solved and refined using SHELXT and SHELXL via the Olex2 refinement package (Dolomanov *et al.*, 2009). Non-hydrogen atom positions were refined anisotropically.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. RIGU restarint applied. Diglyme disorder modelled using DFIX and SADI restraints. The ADPs for both diglyme parts were constrained using EADP constraint.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.54253 (2)	0.42405 (2)	0.48032 (2)	0.02442 (8)	
O1B	0.51049 (8)	0.45091 (8)	0.36430 (7)	0.0329 (3)	
O2B	0.43845 (8)	0.58088 (8)	0.39902 (7)	0.0326 (3)	
O1A	0.43605 (8)	0.35049 (8)	0.48736 (7)	0.0351 (3)	
O2A	0.36511 (7)	0.48032 (8)	0.52427 (7)	0.0331 (3)	
O10S	0.62229 (8)	0.30515 (9)	0.46326 (8)	0.0376 (3)	
N10B	0.37240 (10)	0.69540 (10)	0.28457 (9)	0.0362 (3)	
O2S1	0.7835 (9)	0.2813 (9)	0.5321 (12)	0.0540 (12)	0.666 (3)
C3B	0.46922 (10)	0.52671 (11)	0.34617 (9)	0.0265 (3)	
C9B	0.41162 (10)	0.63824 (11)	0.22997 (9)	0.0285 (3)	
C3A	0.37072 (10)	0.39031 (11)	0.51303 (9)	0.0284 (3)	
C4A	0.29745 (11)	0.32888 (12)	0.53288 (10)	0.0308 (3)	
C4B	0.45728 (10)	0.55460 (11)	0.25802 (9)	0.0269 (3)	
O5S1	0.73581 (16)	0.15001 (18)	0.40989 (17)	0.0438 (6)	0.666 (3)
C11B	0.33426 (11)	0.78619 (12)	0.27016 (10)	0.0312 (3)	
C8B	0.40932 (11)	0.65984 (13)	0.14555 (10)	0.0345 (4)	
H8B	0.3794	0.7152	0.1250	0.041*	
C5B	0.49629 (11)	0.49735 (13)	0.20199 (10)	0.0348 (4)	
H5B	0.5262	0.4414	0.2212	0.042*	
C5A	0.30263 (12)	0.23152 (12)	0.51507 (10)	0.0349 (4)	
H5A	0.3501	0.2088	0.4875	0.042*	
N10A	0.21962 (12)	0.45875 (13)	0.59054 (14)	0.0588 (5)	
C16A	0.17474 (12)	0.58519 (13)	0.67658 (11)	0.0367 (4)	
O8S1	0.5611 (3)	0.1715 (4)	0.3438 (5)	0.0604 (14)	0.666 (3)
C16B	0.36286 (11)	0.86224 (12)	0.32109 (10)	0.0322 (3)	
C15A	0.10932 (12)	0.64349 (13)	0.70386 (11)	0.0388 (4)	
C6B	0.49276 (13)	0.51950 (15)	0.11960 (11)	0.0447 (4)	
H6B	0.5192	0.4792	0.0821	0.054*	
C7B	0.44963 (13)	0.60229 (15)	0.09242 (11)	0.0429 (4)	
H7B	0.4481	0.6193	0.0360	0.052*	
C17A	0.26827 (12)	0.60465 (15)	0.70369 (12)	0.0441 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H17A	0.2948	0.6400	0.6605	0.066*	
H17B	0.2987	0.5440	0.7139	0.066*	
H17C	0.2720	0.6426	0.7543	0.066*	
C6A	0.24089 (12)	0.16743 (13)	0.53636 (11)	0.0400 (4)	
H6A	0.2446	0.1018	0.5222	0.048*	
C9A	0.22586 (11)	0.36315 (13)	0.57261 (12)	0.0395 (4)	
C17B	0.43678 (13)	0.85116 (14)	0.38602 (11)	0.0418 (4)	
H17D	0.4145	0.8498	0.4404	0.063*	
H17E	0.4766	0.9051	0.3830	0.063*	
H17F	0.4674	0.7914	0.3770	0.063*	
C11A	0.15206 (12)	0.50948 (14)	0.62317 (13)	0.0453 (4)	
C12B	0.26720(12)	0.79882(15)	0.20959(12)	0.0439(4)	
H12B	0.2476	0.7465	0.1760	0.053*	
C14A	0.02351(12)	0.62150 (15)	0.68039(12)	0.023 0.0447 (4)	
H14A	-0.0210	0.6595	0.7002	0.054*	
C18A	0.13044(14)	0.72995 (17)	0.75676(13)	0.0536(5)	
H18A	0.1576	0.7096	0.8103	0.080*	
H18B	0.0773	0.7651	0.7647	0.080*	
H18C	0.1703	0.7714	0.7297	0.080*	
C15B	0.32210(14)	0.95162(14)	0.30921(12)	0.0453(4)	
C14B	0.32210(11) 0.25653(16)	0.96269 (16)	0.24775(13)	0.0561 (6)	
H14B	0 2299	1 0234	0.2395	0.067*	
C7A	0.17319(12)	0.20059(14)	0.57892(11)	0.007	
H7A	0.1319	0.1567	0 5964	0.051*	
C8A	0.16519(13)	0.29586 (15)	0.59604 (13)	0.021 0.0473 (5)	
H8A	0.1177	0.3170	0.6243	0.057*	
C13B	0.22881(14)	0.88734(18)	0.19800(13)	0.0561 (6)	
H13B	0.1835	0.8962	0.1559	0.067*	
C6S1	0.6846 (5)	0.0737 (6)	0 3762 (5)	0.0517 (16)	0.666 (3)
H6SA	0.6530	0.0435	0.4196	0.062*	0.666(3)
H6SB	0.7220	0.0247	0 3535	0.062*	0.666(3)
C13A	0.00184(13)	0.54565(16)	0.62903 (15)	0.052	
H13A	-0.0572	0.5313	0.6143	0.064*	
C12A	0.06577(13)	0 49027 (16)	0 59881 (16)	0.0569(6)	
H12A	0.0509	0.4395	0.5617	0.068*	
C3S1	0.8407(4)	0.2105 (3)	0.5096 (3)	0.0564 (12)	0.666(3)
H3SA	0.8808	0.1936	0.5577	0.068*	0.666(3)
H3SB	0.8753	0.2356	0.4661	0.068*	0.666(3)
C7S1	0.6224 (2)	0.1110 (2)	0.3099(2)	0.0487 (8)	0.666(3)
H7SA	0.6538	0.1472	0.2697	0.058*	0.666 (3)
H7SB	0.5922	0.0570	0.2808	0.058*	0.666(3)
C18B	0.3508 (2)	1.03494 (17)	0.36428 (18)	0.0787 (8)	
H18D	0.3400	1.0200	0.4212	0.118*	
H18E	0.3182	1.0922	0.3463	0.118*	
H18F	0.4126	1.0464	0.3609	0.118*	
C1S1	0.8212 (6)	0.3611 (4)	0.5730 (4)	0.0698 (15)	0.666 (3)
H1SA	0.8572	0.3952	0.5361	0.105*	0.666 (3)
H1SB	0.8571	0.3400	0.6219	0.105*	0.666 (3)
		-			

H1SC	0.7758	0.4037	0.5896	0.105*	0.666 (3)
C4S1	0.7934 (3)	0.1233 (3)	0.4788 (3)	0.0558 (10)	0.666 (3)
H4SA	0.8347	0.0746	0.4623	0.067*	0.666 (3)
H4SB	0.7605	0.0959	0.5226	0.067*	0.666 (3)
H10C	0.3857 (14)	0.6801 (16)	0.3367 (15)	0.049 (6)*	
H10D	0.2643 (16)	0.4898 (18)	0.5786 (15)	0.057 (7)*	
H10A	0.6808 (5)	0.2953 (16)	0.4844 (13)	0.064 (7)*	
H10B	0.6103 (14)	0.2545 (13)	0.4247 (13)	0.085 (9)*	
C9S2	0.4948 (9)	0.2144 (16)	0.3063 (12)	0.0550 (15)	0.31 (3)
H9SD	0.4759	0.1747	0.2586	0.082*	0.31 (3)
H9SE	0.4922	0.2819	0.2903	0.082*	0.31 (3)
H9SF	0.4568	0.2033	0.3503	0.082*	0.31 (3)
O2S2	0.795 (2)	0.274 (2)	0.536 (2)	0.0540 (12)	0.334 (3)
C3S2	0.8316 (8)	0.1859 (8)	0.5313 (7)	0.0564 (12)	0.334 (3)
H3SC	0.8115	0.1445	0.5750	0.068*	0.334 (3)
H3SD	0.8951	0.1922	0.5410	0.068*	0.334 (3)
C1S2	0.8244 (13)	0.3376 (10)	0.5961 (9)	0.0698 (15)	0.334 (3)
H1SD	0.7960	0.3995	0.5862	0.105*	0.334 (3)
H1SE	0.8870	0.3454	0.5949	0.105*	0.334 (3)
H1SF	0.8116	0.3132	0.6500	0.105*	0.334 (3)
C4S2	0.8103 (7)	0.1404 (7)	0.4509 (6)	0.0558 (10)	0.334 (3)
H4SC	0.8281	0.1827	0.4068	0.067*	0.334 (3)
H4SD	0.8426	0.0796	0.4483	0.067*	0.334 (3)
O5S2	0.7218 (4)	0.1224 (4)	0.4386 (3)	0.0438 (6)	0.334 (3)
C6S2	0.6944 (11)	0.0843 (14)	0.3610 (11)	0.0517 (16)	0.334 (3)
H6SC	0.7120	0.0165	0.3589	0.062*	0.334 (3)
H6SD	0.7230	0.1193	0.3180	0.062*	0.334 (3)
C7S2	0.6002 (5)	0.0912 (5)	0.3437 (5)	0.0487 (8)	0.334 (3)
H7SC	0.5813	0.0560	0.2927	0.058*	0.334 (3)
H7SD	0.5705	0.0637	0.3896	0.058*	0.334 (3)
O8S2	0.5806 (7)	0.1903 (9)	0.3344 (11)	0.0604 (14)	0.334 (3)
C9S1	0.5085 (5)	0.2183 (6)	0.2840 (7)	0.0550 (15)	0.69 (3)
H9SA	0.5442	0.2550	0.2486	0.082*	0.69 (3)
H9SB	0.4697	0.2617	0.3103	0.082*	0.69 (3)
H9SC	0.4743	0.1713	0.2508	0.082*	0.69 (3)
					. /

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03002 (14)	0.02114 (13)	0.02236 (13)	0.00405 (8)	0.00367 (9)	-0.00087 (8)
O1B	0.0443 (6)	0.0296 (6)	0.0245 (5)	0.0110 (5)	0.0006 (5)	-0.0010 (4)
O2B	0.0447 (7)	0.0288 (6)	0.0245 (5)	0.0108 (5)	0.0040 (5)	0.0000 (4)
O1A	0.0371 (6)	0.0271 (6)	0.0420 (6)	0.0001 (5)	0.0089 (5)	-0.0062 (5)
O2A	0.0346 (6)	0.0259 (6)	0.0394 (6)	-0.0001(5)	0.0078 (5)	-0.0027 (5)
O10S	0.0403 (7)	0.0311 (6)	0.0403 (7)	0.0141 (5)	-0.0020(5)	-0.0086 (5)
N10B	0.0532 (9)	0.0289 (7)	0.0262 (7)	0.0110 (6)	0.0012 (6)	0.0013 (6)
O2S1	0.045 (4)	0.046 (2)	0.066 (2)	0.0094 (16)	-0.020(2)	-0.0047 (19)
C3B	0.0281 (7)	0.0246 (7)	0.0268 (7)	-0.0014 (6)	0.0016 (6)	-0.0018 (6)

C9B	0.0307 (8)	0.0270 (8)	0.0273 (7)	-0.0023 (6)	-0.0005 (6)	-0.0005 (6)
C3A	0.0351 (8)	0.0281 (8)	0.0213 (7)	0.0004 (6)	-0.0015 (6)	-0.0016 (6)
C4A	0.0350 (8)	0.0298 (8)	0.0272 (8)	-0.0032 (6)	0.0004 (6)	-0.0011 (6)
C4B	0.0295 (7)	0.0265 (7)	0.0243 (7)	-0.0008 (6)	0.0000 (6)	-0.0008 (6)
O5S1	0.0477 (11)	0.0355 (14)	0.0483 (16)	0.0125 (10)	0.0050 (10)	-0.0008 (10)
C11B	0.0338 (8)	0.0309 (8)	0.0296 (8)	0.0056 (6)	0.0063 (6)	0.0038 (6)
C8B	0.0415 (9)	0.0342 (9)	0.0269 (8)	0.0021 (7)	-0.0024 (7)	0.0022 (7)
C5B	0.0409 (9)	0.0349 (9)	0.0281 (8)	0.0064 (7)	0.0003 (7)	-0.0022 (7)
C5A	0.0436 (9)	0.0321 (8)	0.0284 (8)	-0.0026 (7)	0.0001 (7)	-0.0021 (7)
N10A	0.0418 (9)	0.0365 (9)	0.1029 (16)	-0.0080 (7)	0.0353 (10)	-0.0175 (9)
C16A	0.0372 (9)	0.0356 (9)	0.0390 (9)	0.0052 (7)	0.0128 (7)	0.0097 (7)
O8S1	0.057 (2)	0.045 (2)	0.075 (2)	0.0121 (18)	-0.018 (2)	-0.0332 (19)
C16B	0.0368 (8)	0.0312 (8)	0.0297 (8)	0.0053 (7)	0.0099 (7)	0.0026 (6)
C15A	0.0424 (9)	0.0416 (10)	0.0337 (9)	0.0107 (8)	0.0103 (7)	0.0103 (7)
C6B	0.0567 (11)	0.0521 (11)	0.0254 (8)	0.0160 (9)	0.0036 (8)	-0.0046 (8)
C7B	0.0528 (11)	0.0512 (11)	0.0243 (8)	0.0080 (9)	0.0001 (7)	0.0024 (7)
C17A	0.0387 (9)	0.0484 (11)	0.0462 (11)	0.0061 (8)	0.0093 (8)	-0.0007 (9)
C6A	0.0521 (10)	0.0306 (9)	0.0364 (9)	-0.0079 (8)	-0.0010 (8)	-0.0018 (7)
C9A	0.0370 (9)	0.0341 (9)	0.0478 (10)	-0.0039 (7)	0.0062 (8)	-0.0050 (8)
C17B	0.0481 (10)	0.0396 (10)	0.0371 (9)	0.0009 (8)	-0.0005 (8)	-0.0044 (8)
C11A	0.0384 (9)	0.0359 (9)	0.0645 (12)	-0.0005 (8)	0.0205 (9)	-0.0007 (9)
C12B	0.0419 (10)	0.0491 (11)	0.0396 (10)	0.0082 (8)	-0.0038 (8)	-0.0009 (8)
C14A	0.0396 (10)	0.0490 (11)	0.0474 (10)	0.0120 (8)	0.0141 (8)	0.0103 (9)
C18A	0.0523 (12)	0.0632 (13)	0.0456 (11)	0.0199 (10)	0.0059 (9)	-0.0103 (10)
C15B	0.0596 (12)	0.0338 (9)	0.0444 (10)	0.0148 (8)	0.0160 (9)	0.0014 (8)
C14B	0.0713 (14)	0.0515 (12)	0.0467 (11)	0.0362 (11)	0.0115 (10)	0.0074 (9)
C7A	0.0441 (10)	0.0414 (10)	0.0403 (10)	-0.0143 (8)	-0.0004 (8)	0.0007 (8)
C8A	0.0400 (10)	0.0432 (10)	0.0604 (12)	-0.0096 (8)	0.0142 (9)	-0.0069 (9)
C13B	0.0518 (12)	0.0723 (14)	0.0433 (11)	0.0313 (11)	-0.0020 (9)	0.0054 (10)
C6S1	0.071 (2)	0.033 (2)	0.051 (3)	0.0145 (16)	0.006 (2)	-0.009(2)
C13A	0.0347 (10)	0.0564 (13)	0.0707 (14)	-0.0004 (9)	0.0128 (9)	0.0044 (11)
C12A	0.0415 (10)	0.0480 (12)	0.0837 (16)	-0.0075 (9)	0.0195 (10)	-0.0120 (11)
C3S1	0.0391 (17)	0.053 (3)	0.075 (3)	0.0136 (18)	-0.0069 (19)	0.0068 (19)
C7S1	0.067 (2)	0.0370 (16)	0.042 (2)	0.0056 (13)	0.0058 (14)	-0.0119 (14)
C18B	0.123 (2)	0.0385 (12)	0.0743 (17)	0.0224 (14)	0.0046 (16)	-0.0143 (11)
C1S1	0.0702 (18)	0.057 (3)	0.076 (4)	0.001 (3)	-0.032 (3)	-0.005 (2)
C4S1	0.058 (2)	0.041 (2)	0.067 (3)	0.0176 (15)	-0.0042 (19)	0.0105 (18)
C9S2	0.057 (2)	0.0484 (16)	0.059 (4)	0.0007 (19)	-0.001 (2)	-0.009(3)
0282	0.045 (4)	0.046 (2)	0.066 (2)	0.0094 (16)	-0.020 (2)	-0.0047 (19)
C3S2	0.0391 (17)	0.053 (3)	0.075 (3)	0.0136 (18)	-0.0069 (19)	0.0068 (19)
C1S2	0.0702 (18)	0.057 (3)	0.076 (4)	0.001(3)	-0.032(3)	-0.005(2)
0482	0.058 (2)	0.041 (2)	0.067(3)	0.0176(15)	-0.0042 (19)	0.0105 (18)
0582	0.04//(11)	0.0355 (14)	0.0483 (16)	0.0125 (10)	0.0050 (10)	-0.0008 (10)
0052	0.0/1(2)	0.033(2)	0.051(3)	0.0145(16)	0.000(2)	-0.009(2)
0/82	0.067(2)	0.0370(16)	0.042(2)	0.0050(13)	0.0058(14)	-0.0119(14)
0852	0.057(2)	0.045(2)	0.075(2)	0.0121(18)	-0.018(2)	-0.0332(19)
C951	0.057(2)	0.0484 (16)	0.059 (4)	0.0007 (19)	-0.001 (2)	-0.009 (3)

Geometric parameters (Å, °)

Cul—Cul ⁱ	2.6126 (4)	C11A—C12A	1.393 (3)	
Cu1—O1B	1.9539 (11)	C12B—H12B	0.9500	
Cu1—O2B ⁱ	1.9682 (11)	C12B—C13B	1.382 (3)	
Cu1—O1A	1.9608 (12)	C14A—H14A	0.9500	
Cu1—O2A ⁱ	1.9689 (11)	C14A—C13A	1.377 (3)	
Cu1—O10S	2.1078 (11)	C18A—H18A	0.9800	
O1B—C3B	1.2624 (19)	C18A—H18B	0.9800	
O2B—Cu1 ⁱ	1.9682 (11)	C18A—H18C	0.9800	
O2B—C3B	1.2715 (19)	C15B—C14B	1.378 (3)	
O1A—C3A	1.260 (2)	C15B—C18B	1.517 (3)	
O2A—Cu1 ⁱ	1.9690 (11)	C14B—H14B	0.9500	
O2A—C3A	1.278 (2)	C14B—C13B	1.378 (3)	
O10S—H10A	0.956 (3)	C7A—H7A	0.9500	
O10S—H10B	0.956 (3)	C7A—C8A	1.371 (3)	
N10B—C9B	1.377 (2)	C8A—H8A	0.9500	
N10B—C11B	1.414 (2)	C13B—H13B	0.9500	
N10B—H10C	0.88 (2)	C6S1—H6SA	0.9900	
O2S1—C3S1	1.401 (10)	C6S1—H6SB	0.9900	
O2S1—C1S1	1.404 (10)	C6S1—C7S1	1.484 (8)	
C3B—C4B	1.487 (2)	C13A—H13A	0.9500	
C9B—C4B	1.425 (2)	C13A—C12A	1.383 (3)	
C9B—C8B	1.408 (2)	C12A—H12A	0.9500	
C3A—C4A	1.484 (2)	C3S1—H3SA	0.9900	
C4A—C5A	1.397 (2)	C3S1—H3SB	0.9900	
C4A—C9A	1.418 (2)	C3S1—C4S1	1.490 (7)	
C4B—C5B	1.392 (2)	C7S1—H7SA	0.9900	
O5S1—C6S1	1.416 (8)	C7S1—H7SB	0.9900	
O5S1—C4S1	1.428 (5)	C18B—H18D	0.9800	
C11B—C16B	1.400 (2)	C18B—H18E	0.9800	
C11B—C12B	1.387 (2)	C18B—H18F	0.9800	
C8B—H8B	0.9500	C1S1—H1SA	0.9800	
C8B—C7B	1.373 (3)	C1S1—H1SB	0.9800	
C5B—H5B	0.9500	C1S1—H1SC	0.9800	
C5B—C6B	1.377 (2)	C4S1—H4SA	0.9900	
C5A—H5A	0.9500	C4S1—H4SB	0.9900	
C5A—C6A	1.379 (3)	C9S2—H9SD	0.9800	
N10A—C9A	1.375 (2)	C9S2—H9SE	0.9800	
N10A—C11A	1.409 (2)	C9S2—H9SF	0.9800	
N10A—H10D	0.86 (2)	C9S2—O8S2	1.414 (14)	
C16A—C15A	1.405 (2)	O2S2—C3S2	1.369 (19)	
C16A—C17A	1.509 (3)	O2S2—C1S2	1.37 (2)	
C16A—C11A	1.399 (3)	C3S2—H3SC	0.9900	
O8S1—C7S1	1.421 (7)	C3S2—H3SD	0.9900	
O8S1—C9S1	1.383 (8)	C3S2—C4S2	1.471 (15)	
C16B—C17B	1.505 (2)	C1S2—H1SD	0.9800	
C16B—C15B	1.409 (2)	C1S2—H1SE	0.9800	

0154 0144	1 201 (2)	C102 1110E	0.0000
CISA—CIAA	1.391 (3)		0.9800
CISA—CI8A	1.507 (3)	C4S2—H4SC	0.9900
С6В—Н6В	0.9500	C4S2—H4SD	0.9900
С6В—С7В	1.393 (3)	C4S2—O5S2	1.397 (12)
С7В—Н7В	0.9500	O5S2—C6S2	1.407 (17)
C17A—H17A	0.9800	C6S2—H6SC	0.9900
C17A—H17B	0.9800	C6S2—H6SD	0.9900
C17A—H17C	0.9800	C6S2—C7S2	1.471 (17)
С6А—Н6А	0.9500	C7S2—H7SC	0.9900
C6A—C7A	1.388 (3)	C7S2—H7SD	0.9900
C9A—C8A	1.408 (3)	C7S2—O8S2	1.426 (14)
C17B—H17D	0.9800	C9S1—H9SA	0.9800
C17B—H17E	0.9800	C9S1—H9SB	0.9800
C17B—H17F	0.9800	C9S1—H9SC	0.9800
O1B—Cu1—Cu1 ⁱ	89.34 (3)	H18A—C18A—H18C	109.5
O1B—Cu1—O2B ⁱ	168.92 (5)	H18B—C18A—H18C	109.5
O1B—Cu1—O1A	90.57 (5)	C16B—C15B—C18B	119.69 (19)
O1B—Cu1—O2A ⁱ	87.70 (5)	C14B—C15B—C16B	119.80 (19)
O1B—Cu1—O10S	97.42 (5)	C14B—C15B—C18B	120.51 (19)
O2B ⁱ —Cu1—Cu1 ⁱ	79.58 (3)	C15B—C14B—H14B	119.4
O2B ⁱ —Cu1—O2A ⁱ	90.74 (5)	C15B—C14B—C13B	121.24 (18)
$O2B^{i}$ —Cu1—O10S	93.65 (5)	C13B—C14B—H14B	119.4
$01A$ — $Cu1$ — $Cu1^i$	88 07 (3)	C6A—C7A—H7A	119.6
$01A$ — $Cu1$ — $02B^i$	88 85 (5)	C8A - C7A - C6A	120.85 (17)
$01A$ — $Cu1$ — $02A^{i}$	$168\ 82\ (5)$	C8A - C7A - H7A	119.6
01A - Cu1 - 010S	95 82 (5)	C9A - C8A - H8A	119.3
O^2A^i Cu1 Cu1 ⁱ	80 87 (3)	C7A - C8A - C9A	121 44 (18)
$O2A^{i}$ Cul O108	95.36 (5)	C7A $C8A$ $H8A$	110.3
0108 Cu1 - 0103	95.50(5)	C_{12} C_{13} C	119.5
C_{103} C_{11} C_{11}	172.13(4)	C12D - C13D - III3D	120.1 110.72(10)
$C_{3D} = O_{1D} = C_{01}$	110.10(10) 128.64(10)	C14D $C13D$ $C12D$ $C12D$	119.72 (19)
$C_{3B} = O_{2B} = C_{41}$	120.04(10) 110.62(10)		120.1
C3A—O1A—Cu1	119.03(10)	O5S1 = C0S1 = HOSA	109.8
$C_{3A} = O_{2A} = C_{11}$	127.34 (10)	0581—C681—H68B	109.8
Cul—Olos—HloA	128.2(12)		109.2 (6)
Cul—Olos—HloB	126.1 (13)	H6SA—C6S1—H6SB	108.3
HI0A—OI0S—HI0B	104.9 (7)	C/SI—C6SI—H6SA	109.8
C9B—N10B—C11B	128.08 (14)	C/S1—C6S1—H6SB	109.8
C9B—N10B—H10C	113.6 (14)	С14А—С13А—Н13А	119.9
C11B—N10B—H10C	116.1 (15)	C14A—C13A—C12A	120.19 (19)
C3S1—O2S1—C1S1	116.0 (10)	C12A—C13A—H13A	119.9
O1B—C3B—O2B	123.71 (14)	C11A—C12A—H12A	120.2
O1B—C3B—C4B	117.85 (13)	C13A—C12A—C11A	119.6 (2)
O2B—C3B—C4B	118.43 (13)	C13A—C12A—H12A	120.2
N10B—C9B—C4B	120.34 (14)	O2S1—C3S1—H3SA	109.4
N10B—C9B—C8B	122.13 (15)	O2S1—C3S1—H3SB	109.4
C8B—C9B—C4B	117.53 (15)	O2S1—C3S1—C4S1	111.3 (7)
O1A—C3A—O2A	123.41 (15)	H3SA—C3S1—H3SB	108.0

O1A—C3A—C4A	118.05 (14)	C4S1—C3S1—H3SA	109.4
O2A—C3A—C4A	118.53 (14)	C4S1—C3S1—H3SB	109.4
C5A—C4A—C3A	117.47 (15)	O8S1—C7S1—C6S1	110.1 (5)
C5A—C4A—C9A	119.10 (16)	08S1—C7S1—H7SA	109.6
C9A—C4A—C3A	123.33 (15)	O8S1—C7S1—H7SB	109.6
C9B—C4B—C3B	123.03 (14)	C6S1—C7S1—H7SA	109.6
C5B—C4B—C3B	117.28 (14)	C6S1—C7S1—H7SB	109.6
C5B—C4B—C9B	119.64 (14)	H7SA—C7S1—H7SB	108.1
C6S1—O5S1—C4S1	113.8 (4)	C15B—C18B—H18D	109.5
C16B—C11B—N10B	118.49 (15)	C15B—C18B—H18E	109.5
C12B—C11B—N10B	120.86 (16)	C15B—C18B—H18F	109.5
C12B—C11B—C16B	120.58 (16)	H18D—C18B—H18E	109.5
C9B—C8B—H8B	119.5	H18D—C18B—H18F	109.5
C7B—C8B—C9B	121.08 (16)	H18E—C18B—H18F	109.5
C7B—C8B—H8B	119.5	O2S1—C1S1—H1SA	109.5
C4B—C5B—H5B	119.1	O2S1—C1S1—H1SB	109.5
C6B—C5B—C4B	121.86 (16)	O2S1—C1S1—H1SC	109.5
C6B—C5B—H5B	119.1	H1SA—C1S1—H1SB	109.5
С4А—С5А—Н5А	119.0	H1SA—C1S1—H1SC	109.5
C6A—C5A—C4A	121.92 (17)	H1SB—C1S1—H1SC	109.5
С6А—С5А—Н5А	119.0	O5S1—C4S1—C3S1	108.0 (4)
C9A—N10A—C11A	129.73 (17)	O5S1—C4S1—H4SA	110.1
C9A—N10A—H10D	111.9 (16)	O5S1—C4S1—H4SB	110.1
C11A—N10A—H10D	118.3 (16)	C3S1—C4S1—H4SA	110.1
C15A—C16A—C17A	120.49 (17)	C3S1—C4S1—H4SB	110.1
C11A—C16A—C15A	119.10 (17)	H4SA—C4S1—H4SB	108.4
C11A—C16A—C17A	120.41 (16)	H9SD—C9S2—H9SE	109.5
C9S1—O8S1—C7S1	112.6 (8)	H9SD—C9S2—H9SF	109.5
C11B—C16B—C17B	121.71 (15)	H9SE—C9S2—H9SF	109.5
C11B—C16B—C15B	118.49 (16)	O8S2—C9S2—H9SD	109.5
C15B—C16B—C17B	119.78 (17)	O8S2—C9S2—H9SE	109.5
C16A—C15A—C18A	121.28 (17)	O8S2—C9S2—H9SF	109.5
C14A—C15A—C16A	119.14 (18)	C3S2—O2S2—C1S2	121 (2)
C14A—C15A—C18A	119.57 (17)	O2S2—C3S2—H3SC	109.1
C5B—C6B—H6B	120.7	O2S2—C3S2—H3SD	109.1
C5B—C6B—C7B	118.52 (17)	O2S2—C3S2—C4S2	112.4 (15)
C7B—C6B—H6B	120.7	H3SC—C3S2—H3SD	107.9
C8B—C7B—C6B	121.35 (16)	C4S2—C3S2—H3SC	109.1
C8B—C7B—H7B	119.3	C4S2—C3S2—H3SD	109.1
C6B—C7B—H7B	119.3	O2S2—C1S2—H1SD	109.5
C16A—C17A—H17A	109.5	O2S2—C1S2—H1SE	109.5
C16A—C17A—H17B	109.5	O2S2—C1S2—H1SF	109.5
C16A—C17A—H17C	109.5	H1SD—C1S2—H1SE	109.5
H17A—C17A—H17B	109.5	H1SD—C1S2—H1SF	109.5
H17A—C17A—H17C	109.5	H1SE—C1S2—H1SF	109.5
H17B—C17A—H17C	109.5	C3S2—C4S2—H4SC	109.5
С5А—С6А—Н6А	120.6	C3S2—C4S2—H4SD	109.5
C5A—C6A—C7A	118.74 (17)	H4SC—C4S2—H4SD	108.1

С7А—С6А—Н6А	120.6	O5S2—C4S2—C3S2	110.6 (9)
N10A—C9A—C4A	119.92 (16)	O5S2—C4S2—H4SC	109.5
N10A—C9A—C8A	122.18 (17)	O5S2—C4S2—H4SD	109.5
C8A—C9A—C4A	117.82 (17)	C4S2—O5S2—C6S2	114.8 (10)
C16B—C17B—H17D	109.5	O5S2—C6S2—H6SC	109.3
C16B—C17B—H17E	109.5	O5S2—C6S2—H6SD	109.3
C16B—C17B—H17F	109.5	O5S2—C6S2—C7S2	111.7 (14)
H17D—C17B—H17E	109.5	H6SC—C6S2—H6SD	107.9
H17D—C17B—H17F	109.5	C7S2—C6S2—H6SC	109.3
H17E—C17B—H17F	109.5	C7S2—C6S2—H6SD	109.3
C16A - C11A - N10A	117.43 (17)	C6S2—C7S2—H7SC	110.4
C12A—C11A—N10A	121.68 (19)	C6S2—C7S2—H7SD	110.4
C12A - C11A - C16A	120.71 (18)	H7SC-C7S2-H7SD	108.6
C11B $C12B$ $H12B$	119.9	0882 - C782 - C682	106.5(10)
C13B— $C12B$ — $C11B$	120 15 (19)	0.0002 = 0.0002 = 0.0002 0.0002 = 0.0002 = 0.0002	110.4
C13B $C12B$ $C11B$ $H12B$	119.9	0.0002 - 0.0002 - 0.0000 0.0000000 - 0.00000 - 0.00000 - 0.0000 - 0.0000 - 0.00	110.1
C15A - C14A - H14A	119.4	C9S2 = 08S2 = 07S2	117.0(13)
$C_{13A} = C_{14A} = C_{15A}$	121 22 (18)	0851_C951_H95A	109.5
C13A - C14A - H14A	110 4	0851—C951—H95R	109.5
C15A $C18A$ $H18A$	100.5	0851 0951 H950	109.5
C15A = C18A = H18R	109.5	HOSA COS1 HOSB	109.5
C15A = C18A = H18C	109.5	$H_{0SA} = C_{0S1} = H_{0SC}$	109.5
H18A C18A H18P	109.5	$H_{2}SA = C_{2}S1 = H_{2}SC$	109.5
птоА—СтоА—птов	109.3	H93B—C931—H93C	109.5
$C_{11} = 0.01B = C_{31}B = 0.02B$	-86(2)	C5B-C6B-C7B-C8B	-1.7(3)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B	-8.6(2) 17041(10)	C5B—C6B—C7B—C8B	-1.7(3) -17992(18)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B	-8.6 (2) 170.41 (10) 9.2 (2)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A	-1.7 (3) -179.92 (18) 3 2 (3)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B Cu1 ⁱ —O2B—C3B—C4B	-8.6 (2) 170.41 (10) 9.2 (2) -169.80 (10)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B Cu1 ⁱ —O2B—C3B—C4B Cu1—O1A—C3A—O2A	-8.6 (2) 170.41 (10) 9.2 (2) -169.80 (10) 10 2 (2)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178 9 (2)
Cu1 $-01B$ -C3B $-02B$ Cu1 $-01B$ -C3B $-C4B$ Cu1 ⁱ $-02B$ -C3B $-01B$ Cu1 ⁱ $-02B$ -C3B $-C4B$ Cu1 $-01A$ -C3A $-02A$ Cu1 $-01A$ -C3A $-02A$	-8.6 (2) 170.41 (10) 9.2 (2) -169.80 (10) 10.2 (2) -168.37 (10)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B Cu1 ⁱ —O2B—C3B—C4B Cu1—O1A—C3A—O2A Cu1—O1A—C3A—O1A	-8.6 (2) 170.41 (10) 9.2 (2) -169.80 (10) 10.2 (2) -168.37 (10) -8.7 (2)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2 0 (3)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B Cu1 ⁱ —O2B—C3B—C4B Cu1—O1A—C3A—O2A Cu1—O1A—C3A—C4A Cu1 ⁱ —O2A—C3A—O1A Cu1 ⁱ —O2A—C3A—O1A	-8.6 (2) 170.41 (10) 9.2 (2) -169.80 (10) 10.2 (2) -168.37 (10) -8.7 (2) 169.93 (10)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1 2 (3)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B Cu1 ⁱ —O2B—C3B—C4B Cu1—O1A—C3A—O2A Cu1—O1A—C3A—O2A Cu1—O1A—C3A—C4A Cu1 ⁱ —O2A—C3A—O1A Cu1 ⁱ —O2A—C3A—C4A	-8.6 (2) 170.41 (10) 9.2 (2) -169.80 (10) 10.2 (2) -168.37 (10) -8.7 (2) 169.93 (10) 179.72 (14)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C11A—C12A—C13A C16A—C11A—C12A—C13A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 11 (3)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B Cu1 ⁱ —O2B—C3B—C4B Cu1—O1A—C3A—O2A Cu1—O1A—C3A—C4A Cu1 ⁱ —O2A—C3A—C4A Cu1 ⁱ —O2A—C3A—O1A Cu1 ⁱ —O2A—C3A—C4A O1B—C3B—C4B—C9B	-8.6 (2) 170.41 (10) 9.2 (2) -169.80 (10) 10.2 (2) -168.37 (10) -8.7 (2) 169.93 (10) 179.72 (14) -3.1 (2)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C11A—C12A—C13A C16B—C11B—C12B—C13B C16B—C11B—C12B—C13B	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (2)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B Cu1 ⁱ —O2B—C3B—C4B Cu1—O1A—C3A—O2A Cu1—O1A—C3A—C4A Cu1 ⁱ —O2A—C3A—O1A Cu1 ⁱ —O2A—C3A—O1A Cu1 ⁱ —O2A—C3A—C4A O1B—C3B—C4B—C9B O1B—C3B—C4B—C5B O2B—C3B—C4B—C9B	-8.6 (2) 170.41 (10) 9.2 (2) -169.80 (10) 10.2 (2) -168.37 (10) -8.7 (2) 169.93 (10) 179.72 (14) -3.1 (2) -1.2 (2)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C11A—C12A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C15A—C15A—C14A—N10A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C11A—C12A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (2)
Cu1 $-01B-C3B-02B$ Cu1 $-01B-C3B-C4B$ Cu1 $i-02B-C3B-01B$ Cu1 $i-02B-C3B-C4B$ Cu1 $-01A-C3A-02A$ Cu1 $-01A-C3A-02A$ Cu1 $-01A-C3A-01A$ Cu1 $i-02A-C3A-01A$ Cu1 $i-02A-C3A-01A$ Cu1 $i-02A-C3A-01A$ Cu1 $i-02A-C3A-01A$ Cu1 $i-02A-C3A-01A$ Cu1 $i-02A-C3A-01A$ Cu1 $i-02A-C3A-01A$ Cu1 $i-02A-C3A-01A$ Cu1 $i-02A-03A-04B-05B$ O2B-C3B-C4B-C5B O2B-C3B-C4B-C5B	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C11B—C12B—C13B C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C11A—C12A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (2)
Cu1—O1B—C3B—O2B Cu1—O1B—C3B—C4B Cu1 ⁱ —O2B—C3B—O1B Cu1 ⁱ —O2B—C3B—C4B Cu1—O1A—C3A—O2A Cu1—O1A—C3A—C4A Cu1 ⁱ —O2A—C3A—C4A O1B—C3B—C4B—C9B O1B—C3B—C4B—C5B O2B—C3B—C4B—C5B O1A—C3A—C4A—C5A O1A—C3A—C4A—C5A	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C11A—C12A—C13A C16A—C11A—C12A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C11A—C12A C15A—C16A—C15A—C14A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) 177.50 (17)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16) 175.02(14)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C15A—C14A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C11A—C12A C15A—C16A—C11A—C12A C17A—C16A—C15A—C14A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16) 175.93(14) 7.6(2)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C15A—C14A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C11A—C12A C17A—C16A—C15A—C14A C17A—C16A—C15A—C14A C17A—C16A—C15A—C18A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) 5 (4)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16) 175.93(14) -7.6(2) 2.1(2)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C15A—C14A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C15A—C14A C17A—C16A—C15A—C14A C17A—C16A—C15A—C18A C17A—C16A—C11A—N10A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) -5.6 (3)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—C4A O1B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A N10B—C9B—C4B—C3B	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16) 175.93(14) -7.6(2) -3.1(2) 170.74(15)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C15A—C14A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C15A—C12A C17A—C16A—C15A—C14A C17A—C16A—C15A—C18A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) -5.6 (3) 179.1 (2) 1.2 (2)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5B N10B—C9B—C4B—C3B N10B—C9B—C4B—C5B	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16) 175.93(14) -7.6(2) -3.1(2) 179.74(15)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C15A—C14A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C15A—C14A C17A—C16A—C15A—C14A C17A—C16A—C15A—C14A C17A—C16A—C15A—C14A C17A—C16A—C15A—C18A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—C12A C6A—C7A—C8A—C9A	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) -5.6 (3) 179.1 (2) -1.2 (3) 12 (3)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16) 175.93(14) -7.6(2) -3.1(2) 179.74(15) 179.34(17) 4.4(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) -5.6 (3) 179.1 (2) -1.2 (3) -1.2 (3)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C9B 02B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A N10B—C9B—C4B—C3B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C11B—C16B—C17B	$\begin{array}{c} -8.6 (2) \\ 170.41 (10) \\ 9.2 (2) \\ -169.80 (10) \\ 10.2 (2) \\ -168.37 (10) \\ -8.7 (2) \\ 169.93 (10) \\ 179.72 (14) \\ -3.1 (2) \\ -1.2 (2) \\ 176.01 (15) \\ -5.4 (2) \\ 171.06 (16) \\ 175.93 (14) \\ -7.6 (2) \\ -3.1 (2) \\ 179.74 (15) \\ 179.34 (17) \\ 4.4 (2) \\ 177.02 (16) \\ 175.02 (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) -5.6 (3) 179.1 (2) -1.2 (3) 144.7 (2) 40.0 (4)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—04A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A N10B—C9B—C4B—C3B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C11B—C16B—C17B N10B—C11B—C16B—C15B	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16) 175.93(14) -7.6(2) -3.1(2) 179.74(15) 179.34(17) 4.4(2) -177.08(16)	C5B—C6B—C7B—C8B C5A—C4A—C9A—N10A C5A—C4A—C9A—C8A C5A—C6A—C7A—C8A N10A—C9A—C8A—C7A N10A—C11A—C12A—C13A C16A—C15A—C14A—C13A C16A—C15A—C14A—C13A C16B—C11B—C12B—C13B C16B—C15B—C14B—C13B C15A—C16A—C11A—N10A C15A—C16A—C11A—N10A C15A—C16A—C11A—C12A C17A—C16A—C15A—C14A C17A—C16A—C15A—C14A C17A—C16A—C15A—C14A C17A—C16A—C15A—C14A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—N10A C17A—C16A—C11A—C12A C6A—C7A—C8A—C9A C9A—N10A—C11A—C12A	-1.7 (3) -179.92 (18) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) -5.6 (3) 179.1 (2) -1.2 (3) 144.7 (2) -40.0 (4) 177.61 (10)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A N10B—C9B—C4B—C3B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C11B—C16B—C17B N10B—C11B—C16B—C13B 0201	$\begin{array}{c} -8.6 (2) \\ 170.41 (10) \\ 9.2 (2) \\ -169.80 (10) \\ 10.2 (2) \\ -168.37 (10) \\ -8.7 (2) \\ 169.93 (10) \\ 179.72 (14) \\ -3.1 (2) \\ -1.2 (2) \\ 176.01 (15) \\ -5.4 (2) \\ 171.06 (16) \\ 175.93 (14) \\ -7.6 (2) \\ -3.1 (2) \\ 179.74 (15) \\ 179.74 (15) \\ 179.34 (17) \\ 4.4 (2) \\ -177.08 (16) \\ 177.97 (18) \\ 52.5 (11) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.7 (3) -179.92 (18) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) -5.6 (3) 179.1 (2) -1.2 (3) 144.7 (2) -40.0 (4) 177.61 (19) -24 (2)
Cu1—01B—C3B—02B Cu1—01B—C3B—C4B Cu1 ⁱ —02B—C3B—01B Cu1 ⁱ —02B—C3B—C4B Cu1—01A—C3A—02A Cu1—01A—C3A—C4A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—01A Cu1 ⁱ —02A—C3A—C4A 01B—C3B—C4B—C9B 01B—C3B—C4B—C9B 02B—C3B—C4B—C5B 02B—C3B—C4B—C5B 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 01A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A 02A—C3A—C4A—C5A N10B—C9B—C4B—C3B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C9B—C4B—C5B N10B—C11B—C16B—C17B N10B—C11B—C16B—C17B N10B—C11B—C12B—C13B 02S1—C3S1—C4S1—05S1	-8.6(2) 170.41(10) 9.2(2) -169.80(10) 10.2(2) -168.37(10) -8.7(2) 169.93(10) 179.72(14) -3.1(2) -1.2(2) 176.01(15) -5.4(2) 171.06(16) 175.93(14) -7.6(2) -3.1(2) 179.74(15) 179.34(17) 4.4(2) -177.08(16) 177.97(18) 58.7(11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.7 (3) -179.92 (18) 3.2 (3) 3.2 (3) -178.9 (2) -176.3 (2) -2.0 (3) -1.2 (3) 1.1 (3) 1.0 (3) 173.66 (18) -1.6 (3) -0.8 (3) -177.50 (17) 3.5 (3) -5.6 (3) 179.1 (2) -1.2 (3) 144.7 (2) -40.0 (4) 177.61 (19) -2.4 (3)

C9B—N10B—C11B—C16B C9B—N10B—C11B—C12B C9B—C4B—C5B—C6B C9B—C8B—C7B—C6B C3A—C4A—C5A—C6A C3A—C4A—C9A—N10A C3A—C4A—C9A—C8A C4A—C5A—C6A—C7A C4A—C9A—C8A—C7A C4B—C9B—C8B—C7B C4B—C5B—C6B—C7B O5S1—C6S1—C7S1—O8S1 C11B—N10B—C9B—C4B C11B—N10B—C9B—C4B C11B—N10B—C9B—C4B C11B—C16B—C15B—C14B C11B—C16B—C15B—C14B C11B—C12B—C13B—C14B C18B—C12B—C13B—C14B	-124.92 (18) 58.1 (3) 0.5 (3) 1.3 (3) 175.39 (15) 3.7 (3) -173.24 (17) -2.0 (3) -2.0 (3) 0.0 (3) 0.8 (3) -67.3 (7) 171.23 (16) -8.1 (3) -0.9 (3) 179.1 (2) -1.0 (3) 176.22 (15)	C11A—N10A—C9A—C8A C11A—C16A—C15A—C14A C11A—C16A—C15A—C14A C12B—C11B—C16B—C17B C12B—C11B—C16B—C17B C12B—C11B—C16B—C15B C14A—C13A—C12A—C11A C18A—C15A—C14A—C13A C15B—C14B—C13B—C12B C6S1—O5S1—C4S1—C3S1 C18B—C15B—C14B—C13B C1S1—O2S1—C3S1—C4S1 C4S1—O5S1—C6S1—C7S1 O2S2—C3S2—C4S2—O5S2 C3S2—C4S2—O5S2—C6S2 C1S2—O2S2—C3S2—C4S2 C4S2—O5S2—C6S2—C7S2 O5S2—C6S2—C7S2—O8S2 C6S2—C7S2—O8S2—C9S2	-8.9 (4) 3.2 (3) -175.80 (18) -178.61 (17) -0.1 (3) 2.4 (4) 177.00 (19) 0.0 (4) -178.1 (5) -179.0 (2) 171.1 (12) 175.2 (4) -64 (2) 176.1 (11) -163 (3) -164.7 (10) 68.1 (17) 171.6 (16)
C11B—C12B—C13B—C14B	-1.0 (3)	O5S2—C6S2—C7S2—O8S2	68.1 (17)
C8B—C9B—C4B—C3B	176.22 (15)	C6S2—C7S2—O8S2—C9S2	171.6 (16)
C8B—C9B—C4B—C5B	-0.9 (2)	C9S1—O8S1—C7S1—C6S1	172.0 (6)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
N10A—H10D…O2A	0.86 (3)	1.86 (3)	2.604 (2)	143 (2)	
N10 <i>B</i> —H10 <i>C</i> ···O2 <i>B</i>	0.89 (2)	1.87 (2)	2.6065 (18)	139 (2)	