

Received 13 October 2022 Accepted 31 October 2022

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: metallacrown; dysprosium; manganese; crystal structure.

CCDC reference: 2216645

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure of a heterotrimetallic 12-metallacrown-4 with 2-propylvalerate anion bridges

Ozha A. Aziz,^a Matthias Zeller^b and Curtis M. Zaleski^a*

^aDepartment of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA, and ^bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA. *Correspondence e-mail: cmzaleski@ship.edu

The synthesis and single-crystal X-ray structure for tetraaquatetrakis(μ -2-propylvalerato)tetrakis(μ_4 -salicylhydroximato)dysprosiumtetramanganesesodium dimethylformamide tetrasolvate, $[DyMn_4Na(C_7H4NO_3)_4(C_8H_{15}O_2)_4(H_2O)_4]$. $4C_{3}H_{7}NO$ or DyNa(2-PV)₄[12-MC_{Mn^{III}Nshi}-4](H₂O)₄·4DMF, 1, where MC is metallacrown, shi³⁻ is salicylhydroximate, 2-PV is 2-propylvalerate, and DMF is N,N-dimethylformamide, is reported. The slightly domed metallamacrocycle contains four ring Mn^{III} ions and four shi³⁻ ligands that generate an [Mn^{III}-N-O] repeat unit that recurs four times. The ring Mn^{III} ions are fivecoordinate with a square-pyramidal shape. Furthermore, the metallacrown binds both a Dy^{III} ion and a Na⁺ ion in the central cavity. The central ions are located on opposite faces of the cavity with the Dy^{III} ion located on the convex side of the MC and the Na⁺ ion located on the concave side. Each central ion is eight-coordinate although they possess different geometries. The Dy^{III} ion has a square-antiprismatic shape, while the Na⁺ ion has an extremely distorted biaugmented trigonal-prismatic shape. The four 2-propylvalerate anions help to tether the Dy^{III} to the MC cavity by forming bridges between the Dy^{III} ion and each ring Mn^{III} ion. Moreover, the interstitial DMF molecules are hydrogen bonded to the water molecules that complete the coordination environment of the Na⁺ ion. The metallacrown framework (excluding the Dy^{III} and Na⁺ ions), the bridging 2-propylvalerate, and the interstitial DMF molecule experience whole-molecule disorder due to the rotational orientation of the metallamacrocycle. Additionally, the main moiety alkyl chain of the 2propylvalerate is disordered over two additional orientations, and the main moiety interstitial DMF molecule is disordered over one additional orientation. The main moiety of the metallacrown framework refined to 0.9030 (14), while the minor B-moiety refined to 0.0971 (14). The main moiety alkyl chain of the 2-propylvalerate refined to 0.287(3): 0.309(3): 0.307(3), and the minor B-moiety alkyl chain refined to 0.0971 (14). Lastly, the main moiety interstitial DMF refined to 0.549 (3): 0.354 (3), and the minor B-moiety DMF refined to 0.0971 (14).

1. Chemical context

Materials that combine both 3d and 4f metal ions have potentially interesting magnetic properties as a result of the interaction between the paramagnetic centers. In particular, 3d-4f materials have applications in the areas of single-molecule magnetism (Liu *et al.*, 2015), single-chain magnetism (Wang *et al.*, 2014), and magnetorefrigeration (Lun *et al.*, 2021). The systematic synthesis of these heterometallic compounds is of interest to chemists and material scientists, and metallacrowns (MC) are a class of molecules particularly suited for the investigation of such materials because of their ability to interchange components of the molecule while maintaining the overall structural features (Mezei *et al.*, 2007; Lutter *et al.*, 2018).

Metallacrowns are metallamacrocyclic compounds with a metal-nitrogen-oxygen repeat unit about the inner ring. Several 3d-4f metallacrown systems have proven to be single-molecule magnets (SMM) (Boron, 2022) and magnetorefrigerates (Lutter et al., 2021; Salerno et al., 2021; Saha et al., 2022). Indeed, we have been particularity focused on a lanthanide-manganese 12-metallacrown-4 system, $LnNaY_4$ [12-MC_{Mn^{III}Nshi}-4], where Y is a carboxylate anion and shi³⁻ is salicylhydroximate (Azar et al., 2014). These metallacrowns are based on a 12-membered MC ring with four oxygen atoms comprising the MC cavity. In addition, four Mn^{III} are part of the MC ring and the central cavity captures two cations in the central cavity: an Ln^{III} ion and a Na⁺ ion. The two cations bind to opposite sides of the MC cavity. Furthermore, four carboxylate anions bridge between each ring Mn^{III} ions and the central Ln^{III} ion. We first reported these heterotrimetallic compounds with acetate bridges in 2014 (Azar et al., 2014) and demonstrated that the MCs could bind a range of Ln^{III} ions in the central cavity, Pr to Yb (except Pm). Subsequently, we investigated the singlemolecule magnet behavior of a series of $DyNaY_4$ [12-MC_{Mn^{III}Nshi}-4] compounds, where Y is acetate, trimethylacetate, benzoate, or 2-hydroxybenzoate (i.e. salicylate) (Boron et al., 2016). In this series, only the MCs with bridging 2-hydroxybenzoate anions displayed single-molecule magnet properties. We hypothesized that the Lewis basicity of the bridging ligand may affect the magnetic coupling between the metal centers, thus switching on or off the SMM behavior. The p K_a of the parent carboxylic acid was used as a proxy for the Lewis basicity of the carboxylate, with lower pK_a values indicating greater electron-withdrawing ability for the subsequent carboxylate anion. For the investigated carboxylate anions, 2-hydroxybenzoic acid has the lowest pK_a (2.98) while the other acids are of comparable pK_a values, 4.20 for benzoic acid, 4.76 for acetic acid, and 5.03 for trimethylacetic acid (Haynes, 2010). Therefore, 2-hydroxybenzoate is the most electron-withdrawing in the series, and this may affect the magnetic coupling between the Dy^{III} and Mn^{III} ions. We have also extended the types of $DyNaY_4[12-MC_{Mn^{111}Nshi}-4]$ structures by synthesizing complexes with 3-hydroxy- and 4-hydroxybenzoate (Manickas et al., 2020) and with halogenated benzoate anions (2-fluoro-, 3-fluoro-, 4-fluoro-, 2-chloro-, 3-chloro-, 3-bromo-, and 2-iodobenzoate; (Michael et al., 2021). These carboxylates have a range of pK_a values that spans from 2.86 to 4.57 (Haynes, 2010), although at this time we have not investigated the SMM properties of these compounds.

Seeking to expand the types of $DyNaY_4[12-MC_{Mn^{III}Nshi}-4]$ structures beyond benzoate anions, we decided to determine if 2-propylvalerate, which has two propyl chains off the carboxylate carbon atom, could lead to MC formation. Herein we report the synthesis and crystal structure $DyNa(2-PV)_4[12-MC_{Mn^{III}Nshi}-4](H_2O)_4$ ·4DMF, **1**, where 2-PV is 2-propylvalerate and DMF is *N*,*N*-dimethylformamide. Although the p K_a of the parent 2-propylvaleric acid is 4.6 (Haynes, 2010) and the MC is not expected to possess SMM based on previous results, the 3*d*-4*f* compound will allow further investigation into the molecular characteristics that lead to single-molecule magnetism.

2. Structural commentary

DyNa(2-PV)₄[12-MC_{Mn^{III}Nshi}-4](H₂O)₄·4DMF, 1, is centered about a crystallographic C_4 axis along the Dy^{III} and Na⁺ ions located in the central cavity of the metallamacrocycle. The fourfold rotational axis generates a metallacrown with four ring Mn^{III} ions and four shi³⁻ ligands that yield the Mn^{III}-N-O repeat unit. In addition, four 2-propylvalerate anions form bridges between each ring Mn^{III} ion and the central Dy^{III} ion, and four interstitial DMF molecules are hydrogen bonded to the sodium-coordinated water molecules of the metallacrown. The metallacrown framework (excluding the Dy^{III} and Na⁺ ions), the bridging 2-propylvalerate, and the interstitial DMF molecule experience whole molecule disorder as a result of the rotational orientation of the macrocycle. The main moiety of the molecule has an Mn^{III}-N-O counterclockwise rotation about the C_4 axis, while the minor B-moiety has an Mn^{III}–N–O clockwise rotation about the C_4 axis. Furthermore, the main moiety alkyl chain of the 2-propylvalerate is disordered over two additional orientations, and the main moiety interstitial DMF molecule is disordered over one additional orientation. The main moiety of the metallacrown framework occupancy refined to 0.9030 (14), while the minor B-moiety refined to 0.0971 (14). The main moiety alkyl chain of the 2-propylvalerate occupancies refined to 0.287 (3):0.309 (3):0.307 (3), and the minor B-moiety alkyl chain occupancy refined to 0.0971 (14). Lastly, the main moiety interstitial DMF refined to 0.549 (3):0.354 (3), and the minor B-moiety DMF refined to 0.0971 (14). In the following sections, all numbers refer to the major component, unless stated otherwise. The Refinement section contains complete details of the treatment of the disorder.

The oxidation states of the metal ions were determined based on overall molecular charge considerations, structure

Table 1

Average bond length (\AA) and bond-valence-sum (BVS) values (v.u.) used to support assigned oxidation states of the dysprosium and manganese ions of 1.

	Avg. Bond length	BVS value	Assigned oxidation state
Dy1	2.361	3.14	3+
Mn1	1.953	3.02	3+

features of the manganese ion, and bond-valence sum (BVS) values. The four triply deprotonated shi^{3–} ligands and four 2-propylvalerate anions provide an overall 16- charge, which is counterbalanced by one Dy^{III} ion, one Na⁺ ion, and four Mn^{III} ions (16+ total charge). In addition, the Mn^{III} ion possesses an elongated bond along the *z*-axis [2.126 (5) Å] and compressed bonds in the *xy* lane [1.840 (4) to 1.946 (5) Å], which are typical of high spin $3d^4$ ions. Lastly, the BVS values (Liu & Thorp, 1993; Trzesowska *et al.*, 2004) indicate that the Dy^{III} and Mn^{III} ions have a 3+ charge (Table 1).

Both central ions, Dy^{III} and Na^+ , are eight-coordinate although with different coordination geometries (Fig. 1; Table 2). The metallacrown framework of **1** is slightly domed with the Dy^{III} ion located on the convex side of the metallamacrocycle and the Na^+ ion located on the concave side. The Dy^{III} ion is bound to the four oxime oxygen atoms of the MC cavity, which are provided by four different shi³⁻ ligands, and four carboxylate oxygen atoms of four different 2-propylvalerate anions. The carboxylate groups of the 2-propylvalerate anions form three atom bridges to each ring Mn^{III} ion. An analysis of the geometry with the program *SHAPE 2.1* (Llunell *et al.*, 2013; Pinsky & Avnir, 1998) best describes the shape as a square antiprism (Casanova *et al.*, 2005). The Continuous Shape Measure (CShM) value is 0.747, indicating Table 2

Continuous Shape Measure (CShM) v	values	for	the	geometry	about	the
eight-coordinate central Dy ^{III}	and Na	⁺ ions (of 1				

Shape	Dy^{III}	Na^+
Octagon (D_{8h})	32.056	32.142
Heptagonal pyramid $(C_{7\nu})$	23.666	26.075
Hexagonal bipyramid (D_{6h})	16.870	13.023
Cube (O_h)	9.253	5.054
Square antiprism (D_{4d})	0.747	3.803
Triangular dodecahedron (D_{2d})	2.730	4.048
Johnson gyrobifastigium (J26; D_{2s})	17.553	16.887
Johnson elongated triangular bipyramid (J14; D_{3h})	30.395	28.728
Johnson biaugmented trigonal prism (J50; $C_{2\nu}$)	3.036	5.420
Biaugmented trigonal prism $(C_{2\nu})$	1.991	3.667
Johnson snub diphenoid (J84; D_{2d})	5.971	8.256
Triakis tetrahedron (T_d)	10.118	5.959
Elongated trigonal bipyramid (D_{3h})	25.708	25.581

that the geometry approaches that of an ideal square antiprism. The Na⁺ ion is also bound to the four oxime oxygen atoms of the MC cavity, and the coordination environment is completed by four water molecules. Each water molecule also hydrogen bonds (Fig. 2) to two interstitial DMF molecules. The geometry of the Na⁺ ion cannot be clearly defined based on CShM values as the two lowest values are 3.667 for a biaugmented trigonal prism and 3.803 for a square antiprism. Typically values above 3.0 indicate significant distortions from ideal geometry; thus, for the Na⁺ ion the geometry cannot be unambiguously specified (Cirera *et al.*, 2005).

The ring Mn^{III} ion is five-coordinate with a square-pyramidal shape (Table 3). The basal region of the ligand environment consists of two *trans* chelate rings from two different shi³⁻ ligands. One shi³⁻ ligand forms a five-membered chelate ring by binding with the oxime and carbonyl oxygen atoms of

Figure 1

The single-crystal X-ray structure of DyNa($O_2C_8H_{15}$)₄[12-MC_{Mn^{III}N(shi)}-4](H₂O)₄·4DMF, **1**. A side view with only the metal atoms labeled for clarity. The displacement ellipsoids are at the 50% probability level. For clarity, hydrogen atoms, solvent molecules, and disorder have been omitted. Color scheme: aqua – Dy^{III}, green – Mn^{III}, yellow – Na⁺, red – oxygen, blue – nitrogen, and gray – carbon. All figures were generated with the program *Mercury* (Macrae *et al.*, 2020). [Symmetry codes: (i) +*x*, –*y* + $\frac{1}{2}$, *z*; (ii) –*x* + $\frac{1}{2}$, –*y* + $\frac{1}{2}$, *z*; (iii) –*x* + $\frac{1}{2}$, –*y* + $\frac{1}{2}$, *z*; (iii) –*x* + $\frac{1}{2}$, *y*, *z*.]

The single-crystal X-ray structure of DyNa(O₂C₈H₁₅)₄[12-MC_{Mn^{III}N(shi)}-4](H₂O)₄·4DMF, **1**. A top view with the four bridging 2-propylvalerate anions removed for clarity. See Fig. 1 for additional display details. [Symmetry codes: (i) x, $-y + \frac{1}{2}$, z; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, z; (iii) $-x + \frac{1}{2}$, y, z.]

Fable 3
Continuous Shape Measure (CShM) values for the geometry about the five-coordinate ring Mn ^{III} ion of 1 .

Shape	Pentagon (D_{5h})	Vacant octahedron (C_{4v})	Trigonal bipyramid (D_{3h})	Spherical square pyramid (C_{4v})	Johnson trigonal bipyramid (J12; D_{3h})
Mn1	30.515	0.832	5.422	0.739	7.504

Table 4 Hydrogen-bond geometry (Å °).

fiyatogen bond geometry (i, j).							
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$			
$\begin{array}{c} O6-H6A\cdots O7\\ O6-H6E\cdots O7^{i}\\ O6B-H6C\cdots O7B^{i}\\ O6B-H6D\cdots O7B \end{array}$	0.86 (2) 0.83 (2) 0.84 (2) 0.85 (2)	2.02 (2) 1.99 (2) 2.00 (2) 2.01 (2)	2.860 (15) 2.809 (19) 2.80 (3) 2.859 (19)	165 (5) 167 (5) 159 (10) 177 (10)			

Symmetry code: (i) $-y + \frac{1}{2}$, x, z.

the ligand, and the other shi^{3-} ligand forms a six-membered chelate ring by binding with the oxime nitrogen and phenolate oxygen atom of the ligand. The apical position is occupied by the carboxylate oxygen atom of the bridging 2-propylvalerate anion. Lastly, the water molecule that is coordinated to the Na⁺ ion forms a long interaction [2.527 (5) Å] with the Mn^{III} ion.

3. Supramolecular features

For 1, the main metallacrown molecule forms hydrogen bonds to the interstitial DMF molecules *via* the water molecules bound to the central sodium ion. Each water molecule is hydrogen bonded to the carbonyl oxygen atom of two adjacent DMF molecules (Table 4, Fig. 3). This generates a small hydrogen-bonding network on the concave side of the metallacrown between the four sodium-bound water molecules and the four interstitial DMF molecules. A similar hydrogen-bonding connectivity is also observed for the minor B-moiety of the compound. These hydrogen bonds and pure van der Waals forces contribute to the overall packing of the molecules.

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.43, update September 2022, Groom et al., 2016) reveals forty $LnXY_{4}[12-MC_{Mn^{III}N(shi)}-4]$ structures, where X is a countercation with a 1+ charge and Y is a carboxylate anion (Azar et al., 2014; Travis et al., 2015, 2016; Boron et al., 2016; Cao et al., 2016; Qin et al., 2017; Anthanasopoulou et al., 2018; Manickas et al., 2020; Michael et al., 2021). The central Ln^{III} metal ions include the lanthanide ions from Pr to Yb (except Pm) and vttrium. The counter-cation X is usually an Na^+ or K^+ ion that is also bound to the central cavity, but other unbound countercations such as tetrabutylammonium, tetraethylammonium, and triethylammonium have been employed. A range of bridging carboxylate anions (Y) have been used including acetate (OAc), trimethylacetate (TMA), benzoate (ben), 2-hydroxybenzoate (2-OHben), 3-hydroxybenzoate (3-OHben), 4-hydroxylbenzoate (4-OHben), 2-fluorobenzoate (2-Fben), 3-fluorobenzoate (3-Fben), 4-fluorobenzoate (4Fben), 2-chlorobenzoate (2-Clben), 4-chlorobenzoate (4-Clben), 3-bromobenzoate (3-Brben), and 2-iodobenzoate (2-Iben). Of the forty structures, thirteen contain both Dy^{III} and Na⁺ as in 1 (Azar et al., 2014; Boron et al., 2016; Manickas et al., 2020; Michael et al., 2021). The structural comparison of 1 will be limited to the MCs that contain Dy^{III} and Na⁺ ions captured in the central MC cavity (Table 5). Analysis of the parameters that define the MC cavity and framework such as the cavity radius, the cross cavity Mn^{III}-Mn^{III} distance, the distance between adjacent Mn^{III} ions, the cross cavity oxime oxygenoxime oxygen distance, and the distance of the Dy^{III} ion from the oxime oxygen mean plane reveals that the identity of the bridging carboxylate has little impact on the overall metallacrown structure. [These parameters were determined as previously defined (Azar et al., 2014)]. Indeed, this is a hallmark of metallacrown chemistry, the ability to switch components of the molecular systems without significantly affecting the overall structure. This asset allows the systematic investigation of chemical and physical properties such as

Intermolecular hydrogen bonding between the water molecules coordinated to the Na⁺ ion of **1** and the interstitial DMF molecules. Each coordinated water molecule forms hydrogen bonds with two neighboring DMF molecules. For clarity, only the hydrogen atoms (white) of the water molecules and only two of the four DMF molecules are displayed. See Fig. 1 for additional display details. [Symmetry codes: (i) x, $-y + \frac{1}{2}$, z; (iii) $-x + \frac{1}{2}$, y, z.]

Table 5 Structural feature comparison of 1 and other DyNa(carboxylate)₄[12-MC_{Mn^{III}N(shi)}-4] compounds (Å).

Compound	MC cavity	Avg. cross-cavity	Avg. adjacent	Avg. cross-cavity	Dy ^{III} –oxime oxygen	
	radius	Mn ^m -Mn ^m distance	Mn ^m -Mn ^m distance	O _{oxime} -O _{oxime} distance"	mean plane distance	
DyNa(2-PV) ₄ [12-MC-4], 1	0.54	6.51	4.60	3.68	1.6069 (37)	
DyNa(OAc) ₄ [12-MC-4]	0.55	6.52	4.61	3.71	1.5918 (7)	
DyNa(TMA) ₄ [12-MC-4]	0.56	6.51	4.60	3.73	1.5790 (19)	
DyNa(ben) ₄ [12-MC-4]	0.54	6.51	4.60	3.69	1.5811 (18)	
DyNa(2-OHben) ₄ [12-MC-4]	0.54	6.47	4.57	3.68	1.5094 (46)	
DyNa(3-OHben) ₄ [12-MC-4]	0.56	6.53	4.62	3.72	1.5463 (25)	
DyNa(4-OHben) ₄ [12-MC-4]	0.54	6.49	4.59	3.69	1.5925 (66)	
DyNa(2-Fben) ₄ [12-MC-4]	0.55	6.51	4.60	3.71	1.5424 (52)	
$DyNa(3-Fben)_4[12-MC-4]$	0.56	6.51	4.60	3.72	1.5567 (34)	
DyNa(4-Fben) ₄ [12-MC-4]	0.54	6.52	4.61	3.68	1.5589 (45)	
DyNa(2-Clben) ₄ [12-MC-4]	0.53	6.50	4.60	3.67	1.5883 (79)	
DyNa(4-Clben) ₄ [12-MC-4]	0.55	6.54	4.62	3.71	1.5593 (13)	
DyNa(3-Brben) ₄ [12-MC-4]	0.56	6.51	4.60	3.71	1.5685 (13)	
DyNa(2-Iben) ₄ [12-MC-4]	0.54	6.50	4.59	3.68	1.5764 (117)	

Notes: (a) Measured with Mercury (Macrae et al., 2020); (b) measured with SHELXL (Sheldrick, 2015b).

magnetism or luminescence across a range of structures (Boron *et al.*, 2016; Chow *et al.*, 2016).

5. Synthesis and crystallization

Materials

Dysprosium(III) nitrate pentahydrate (99.99%) and manganese(II) nitrate tetrahydrate (98%) were purchased from Alfa Aesar. Salicylhydroxamic acid (H₃shi, >98%) and sodium 2-propylvalerate (>98.0%) were purchased from TCI America. DMF (ACS grade) was purchased from VWR Chemicals BDH. All reagents were used as received and without further purification.

Synthesis

DyNa(2-PV)₄[12-MC_{Mn^{III}N(shi)}-4](H₂O)₄·4DMF, 1. Manganese(II) nitrate tetrahydrate (2 mmol, 0.5020 g) was dissolved in 10 mL of DMF to produce a clear and colorless solution. Dysprosium(III) nitrate pentahydrate (0.125 mmol, 0.0548 g), salicylhydroxamic acid (2 mmol, 0.3063 g), and sodium 2propylvalerate (4 mmol, 0.4648 g) were then dissolved in 10 mL of DMF, resulting in a clear, slightly tan solution. Next the manganese(II) nitrate solution was added to the latter solution resulting in a clear yellow solution. Then the solution slowly darkened, eventually producing a dark-brown/black color. The solution was stirred overnight and then gravity filtered the next day. No precipitate was recovered, and the dark-brown/black filtrate was allowed to slowly evaporate to aid crystal growth. After 11 days, dark-brown/black X-rayquality crystals formed. The crystals were isolated and washed with cold DMF. The percentage yield was 64% (0.1562 g) based on dysprosium(III) nitrate pentahydrate. FT-IR (ATR, cm⁻¹): 1656, 1600, 1571, 1551, 1514, 1465, 1435, 1390, 1319, 1258, 1249, 1155, 1100, 1060, 1030, 932, 866, 820, 769, 754, 679, 665, 649, 606.

6. Refinement

Minor whole molecule disorder was detected for the metallacrown molecule (excluding the dysprosium and sodium ions) and all organic fragments, and the disorder was refined. The metallacrown is disordered by clockwise versus counterclockwise rotation orientation of the metallamacrocycle, as are the 2-propylvalerate anion and the interstitial DMF molecule (major and minor components). In addition, the main moiety alkyl chain of the 2-propylvalerate is disordered over two additional sites, and the main moiety interstitial DMF molecule is disordered over one additional site. The U_{ii} components of ADPs for disordered atoms closer to each other than 2.7 Å were restrained to be similar (SIMU command of SHELXL). Occupancies were constrained to sum to unity for all sites using SUMP commands. The major and minor (Bmoiety) metallacrown units were restrained to have similar geometries. For the B-moiety benzene ring of the salicylhydroximate, the C atoms were restrained to be close to planar (FLAT command of SHELXL). For the 2-propylvalerate anion, the major (including the additional alkyl-chain disorder) and B-moieties were restrained to have similar geometries. The C-atom positions of the 2-propylvalerate were further restrained based on typical carbon-carbon bond distances and angles. The B-moiety carboxylate carbon atom (C8B) was restrained to planarity (CHIV 0 command of SHELXL).

For the interstitial DMF molecule, the N atom was restrained to be equidistant from both carbon atoms of the methyl groups. In addition, the major (including the additional disorder) and B-moieties were restrained to have similar geometries. Hydrogen-atom positions of the water molecule coordinated to the sodium ion were refined and O–H and $H \cdots H$ distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively. The water-O and H-atom positions were further restrained based on hydrogen-bonding considerations to the interstitial DMF molecule, and distances of all water H atoms to the sodium ion were restrained to be similar.

All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C–H distances of 0.95 Å for sp^2 carbon atoms and to 1.00, 0.99 and 0.98 Å for aliphatic C–H, CH₂ and CH₃ moieties, respectively. The $U_{\rm iso}$ values for hydrogen atoms were set to a multiple of the $U_{\rm eq}$ value of the carrying carbon or oxygen

Table 6Experimental details.

. .

Crystal data	
Chemical formula	$[DyMn_4Na(C_7H_4NO_3)_4-$
14	$(C_8H_{15}O_2)_4(H_2O)_4].4C_3H_7NO$
	1942.94 That is D44
Crystal system, space group	Tetragonal, P4/n
Temperature (K)	150
a, c(A)	18.2654 (9), 13.4219 (9)
$V(A^3)$	4477.9 (5)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.45
Crystal size (mm)	$0.45 \times 0.43 \times 0.15$
Data collection	
Diffractometer	Bruker AXS D8 Quest
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.020, 0.060
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	87812, 7801, 5435
Rint	0.070
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.747
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.072, 0.257, 1.07
No. of reflections	7801
No. of parameters	708
No. of restraints	2628
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	1.36, -1.96
/	

Computer programs: APEX4 and SAINT (Bruker, 2022), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2020), and publCIF (Westrip, 2010).

atom (1.2 times for C–H and CH_2 groups and 1.5 for water molecules and methyl groups).

Subject to these conditions, the occupancy ratios refined as follows: main moiety metallacrown unit, 0.9030 (14); B-moiety metallacrown unit: 0.0971 (14); main alkyl chain of 2-propyl-valerate, 0.287 (3):0.309 (3):0.307 (3); B-moiety alkyl chain, 0.0971 (14); main moiety interstitial DMF, 0.549 (3):0.354 (3); and B-moiety DMF, 0.0971 (14). Additional crystal data, data collection, and structure refinement details are summarized in Table 6.

Acknowledgements

CMZ thanks the Department of Chemistry and Biochemistry at Shippensburg University for continued support.

Funding information

Funding for this research was provided by: National Science Foundation, Major Research Instrumentation Program (award No. CHE 1625543 to M. Zeller); Shippensburg University Student Faculty Research Engagement (SFRE) Program (grant to O. A. Aziz, C. M. Zaleski).

References

Anthanasopoulou, A. A., Carrella, L. M. & Rentschler, E. (2018). Inorganics 6, 66.

research communications

Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro,
V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742.
Boron, T. T. III (2022). Advances in Metallacrown Chemistry, edited
by C. M. Zaleski, pp. 157–219. Cham: Springer Nature.
Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H.,
Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. &
Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.
Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison,
Wisconsin, USA.
Cao, F., Wei, RM., Li, J., Yang, L., Han, Y., Song, Y. & Dou, JM.
(2016). Inorg. Chem. 55, 5914–5923.
Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem.
<i>Eur. J.</i> 11 , 1479–1494.
Chow, C. Y., Eliseeva, S. V., Trivedi, E. R., Nguyen, T. N., Kampf, J. W.,
Petoud, S. & Pecoraro, V. L. (2016). J. Am. Chem. Soc. 138, 5100-
5109.
Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-
1562.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta
<i>Cryst.</i> B 72 , 171–179.
Haynes, W. M. (2010). CRC Handbook of Chemistry and Physics, 91st
ed., pp. 8-42–8-51. Boca Raton, FL: CRC Press.
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst.
44 , 1281–1284.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J.
<i>Appl. Cryst.</i> 48 , 3–10.
Liu, K., Shi, W. & Cheng, P. (2015). Coord. Chem. Rev. 289–290, 74–
Lui W & Thorn H H (1993) Inorg Chem 37 4102-4105

- Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.
- Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). *SHAPE*. Shape Software, Barcelona, Spain.
- Lun, H. J., Xu, L., Kong, X. J., Long, L. S. & Zheng, L. S. (2021). *Inorg. Chem.* 60, 10079–10083.
- Lutter, J. C., Boron, T. T. III, Chadwick, K. E., Davis, A. H., Kleinhaus, S., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2021). *Polyhedron*, **202**, 115190.
- Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177– 246. Amsterdam: Elsevier.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Manickas, E. C., Zeller, M. & Zaleski, C. M. (2020). Acta Cryst. E76, 1213–1221.
- Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). *Chem. Rev.* **107**, 4933–5003.
- Michael, C. H., Zeller, M. & Zaleski, C. M. (2021). J. Chem. Crystallogr. 51, 562–574.
- Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.
- Qin, Y., Gao, Q., Chen, Y., Liu, W., Lin, F., Zhang, X., Dong, Y. & Li, Y. (2017). J. Clust Sci. 28, 891–903.
- Saha, S., Das, K. S., Sharma, T., Bala, S., Adhikary, A., Huang, G. Z., Tong, M. L., Ghosh, A., Das, B., Rajaraman, G. & Mondal, R. (2022). *Inorg. Chem.* 61, 2141–2153.
- Salerno, E. V., Kampf, J. W., Pecoraro, V. L. & Mallah, T. (2021). *Inorg. Chem. Front.* 8, 2611–2623.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Travis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300–1306.
- Travis, J. R., Zeller, M. & Zaleski, C. M. (2016). *Polyhedron*, **114**, 29–36.
- Trzesowska, A., Kruszynski, R. & Bartczak, T. J. (2004). *Acta Cryst.* B60, 174–178.
- Wang, Z. X., Zhang, X., Zhang, Y. Z., Li, M. X., Zhao, H., Andruh, M. & Dunbar, K. R. (2014). *Angew. Chem. Int. Ed.* 53, 11567–11570.
 Westrip, S. P. (2010). *J. Appl. Cryst.* 43, 920–925.

Acta Cryst. (2022). E78, 1178-1183 [https://doi.org/10.1107/S2056989022010489]

Crystal structure of a heterotrimetallic 12-metallacrown-4 with 2-propylvalerate anion bridges

Ozha A. Aziz, Matthias Zeller and Curtis M. Zaleski

Computing details

Data collection: *APEX4* (Bruker, 2022); cell refinement: *SAINT* (Bruker, 2022); data reduction: *SAINT* (Bruker, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b), *ShelXle* (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Tetraaquatetrakis(μ -2-propylvalerato)tetrakis(μ ₄-salicylhydroximato)dysprosiumtetramanganesesodium dimethylformamide tetrasolvate,

Crystal data

$[DyMn_4Na(C_7H_4NO_3)_4(C_8H_{15}O_2)_4(H_2O)_4]\cdot 4C_3H_7NO$ $M_r = 1942.94$ Tetragonal, $P4/n$ a = 18.2654 (9) Å c = 13.4219 (9) Å V = 4477.9 (5) Å ³ Z = 2 F(000) = 2002.2	$D_x = 1.441 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9870 reflections $\theta = 2.5-32.0^{\circ}$ $\mu = 1.45 \text{ mm}^{-1}$ T = 150 K Plate, brown $0.45 \times 0.43 \times 0.15 \text{ mm}$
Data collection	
Bruker AXS D8 Quest diffractometer	$T_{\min} = 0.020, T_{\max} = 0.060$ 87812 measured reflections
Radiation source: fine focus sealed tube X-ray source	7801 independent reflections 5435 reflections with $I > 2\sigma(I)$
Triumph curved graphite crystal monochromator	$R_{\text{int}} = 0.070$ $\theta_{\text{max}} = 32.1^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Detector resolution: 7.4074 pixels mm ⁻¹ ω and phi scans	$h = -27 \rightarrow 24$ $k = -27 \rightarrow 27$
Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015)	$l = -19 \rightarrow 19$
Refinement	
$\mathbf{P}_{\mathbf{r}}$	Driver at a site le satisme desl
Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.072$	map
$wR(F^2) = 0.257$	Hydrogen site location: mixed
S = 1.07	H atoms treated by a mixture of independent
7801 reflections	and constrained refinement
708 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1326P)^2 + 7.8338P]$
2628 restraints	where $P = (F_0^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} = 0.013$ $\Delta\rho_{\rm max} = 1.36 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -1.96 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Minor whole molecule disorder was detected for the metallacrown molecule and all organic fragments (excluding the dysprosium and sodium ions), and the disorder was refined. The metallacrown is disordered by clockwise vs counterclockwise rotation orientation of the metallacycle, as are the 2-propylvalerate anion and the interstitial DMF molecule (main moiety and B-moiety). In addition, the alkyl chain of the 2-propylvalerate of the main moiety is disordered over two additional sites, and the interstitial DMF molecule of the main moiety is disordered over one additional site. The Uij components of ADPs for disordered atoms closer to each other than 2.7 Angstrom were restrained to be similar (SIMU command of Shelxl). Occupancies were constrained to sum up to unity for all sites using SUMP commands.

The major and minor (B-moiety) metallacrown units were restrained to have similar geometries. For the B-moiety benzene ring of the salicylhydroximate, the C atoms were restrained to be close to planar (FLAT command of Shelxl). For the 2-propylvalerate anion, the major (including the additional alkyl chain disorder) and B moieties were restrained to have similar geometries. The C atoms positions 2-propylvalerate were further restrained based on typical carbon-carbon bond distances and angles. The B-moiety carboxylate carbon atom (C8B) was restrained to planarity (CHIV command of Shelxl).

For the interstitial DMF molecule, the N atom was restrained to be equidistant from both carbon atoms of the methyl groups. In addition, the major (including the additional disorder) and B moieties were restrained to have similar geometries.

H atom positions of the water molecule coordinated to the sodium ion were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. The water O and H atom positions were further restrained based on hydrogen bonding considerations to the interstitial DMF molecule and distances of all water H atoms to the sodium ion were restrained to be similar.

All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C-H distances of 0.95 Angstrom for sp2 carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the Ueq value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms, 1.5 for water molecules and methyl groups).

Subject to these conditions the occupancy ratios were refined as follows:

main metallacrown unit: 0.9030 (14) B-moiety metallacrown unit: 0.0971 (14)

main alkyl chain of 2-propylvalerate: 0.287 (3): 0.309 (3): 0.307 (3) B-moiety alkyl chain: 0.0971 (14)

main interstitial DMF: 0.549 (3): 0.354 (3) B-moiety DMF: 0.0971 (14)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Dy1	0.250000	0.250000	0.78820 (3)	0.05635 (17)	
Na1	0.250000	0.250000	0.5233 (3)	0.0524 (8)	
Mn1	0.14036 (4)	0.39036 (4)	0.64460 (7)	0.0514 (2)	0.9030 (14)
01	0.23534 (18)	0.34977 (18)	0.6685 (3)	0.0490 (7)	0.9030 (14)
O2	0.19756 (19)	0.4788 (2)	0.6261 (3)	0.0563 (8)	0.9030 (14)
O3	0.4255 (2)	0.4468 (2)	0.5953 (4)	0.0683 (11)	0.9030 (14)
N1	0.2918 (3)	0.4000 (2)	0.6508 (9)	0.0499 (9)	0.9030 (14)
C1	0.2672 (3)	0.4663 (3)	0.6306 (4)	0.0504 (9)	0.9030 (14)
C2	0.3191 (3)	0.5252 (3)	0.6105 (5)	0.0563 (11)	0.9030 (14)
C3	0.2920 (3)	0.5972 (3)	0.6059 (6)	0.0631 (12)	0.9030 (14)
H3	0.241645	0.605935	0.618711	0.076*	0.9030 (14)
C4	0.3373 (4)	0.6556 (3)	0.5831 (7)	0.0696 (15)	0.9030 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H4	0.318007	0.703811	0.579281	0.084*	0.9030 (14)
C5	0.4104 (4)	0.6431 (3)	0.5662 (7)	0.0706 (16)	0.9030 (14)
H5	0.441614	0.683117	0.550566	0.085*	0.9030 (14)
C6	0.4391 (3)	0.5732 (3)	0.5714 (5)	0.0664 (14)	0.9030 (14)
H6	0.489816	0.565843	0.559009	0.080*	0.9030 (14)
C7	0.3947 (3)	0.5131 (3)	0.5948 (5)	0.0581 (11)	0.9030 (14)
04	0.1581 (3)	0.3123 (3)	0.8654 (4)	0.0740 (12)	0.9030 (14)
05	0.1146 (3)	0.4144(3)	0.7956 (4)	0.0773(12)	0.9030 (14)
C8	0.1192(5)	0.3701 (5)	0.8633 (6)	0.0876 (18)	0.9030 (14)
C9	0.0809(12)	0.3783(19)	0.9652(13)	0 104 (3)	0.287 (3)
H9	0.083089	0.327758	0.993659	0.125*	0.287(3)
C10	0.0002(12)	0.327750 0.3888 (18)	0.943(2)	0.107 (4)	0.287(3)
H10A	-0.026153	0 392395	1 007540	0.128*	0.287(3)
H10R	-0.005916	0.436207	0.908509	0.128*	0.287(3)
C11	-0.0354(14)	0.3317(19)	0.883 (3)	0.112 (4)	0.287(3)
H11A	-0.024496	0.283824	0.003 (3)	0.135*	0.287(3)
H11R	-0.012164	0.331805	0.816/30	0.135*	0.287(3)
C12	-0.1184(14)	0.331803	0.810430	0.133° 0.124 (8)	0.287(3)
U12	-0.1164(14) -0.124726	0.330 (2)	0.808 (3)	0.134 (0)	0.287(3)
П12А 1112D	-0.134730	0.293300	0.020733	0.201*	0.287(3)
HI2B	-0.142903	0.334483	0.932844	0.201*	0.287(3)
HI2C	-0.130515	0.382083	0.834/13	0.201*	0.287(3)
013	0.1196 (14)	0.4221 (16)	1.0385 (17)	0.110 (3)	0.287(3)
HI3A	0.102073	0.4/3193	1.032217	0.132*	0.287(3)
HI3B	0.172113	0.422004	1.020370	0.132*	0.287 (3)
C14	0.1138 (17)	0.401 (2)	1.1475 (15)	0.118 (4)	0.287 (3)
H14A	0.065666	0.377546	1.159867	0.142*	0.287 (3)
H14B	0.117293	0.445042	1.189532	0.142*	0.287 (3)
C15	0.177 (2)	0.345 (2)	1.177 (2)	0.126 (7)	0.287 (3)
H15A	0.155796	0.298178	1.197504	0.188*	0.287 (3)
H15B	0.205757	0.365358	1.232659	0.188*	0.287 (3)
H15C	0.209632	0.337212	1.119868	0.188*	0.287 (3)
06	0.1794 (2)	0.3562 (3)	0.4701 (3)	0.0613 (9)	0.9030 (14)
H6A	0.207 (2)	0.383 (3)	0.433 (5)	0.092*	0.9030 (14)
H6E	0.144 (3)	0.343 (3)	0.435 (5)	0.092*	0.9030 (14)
C9C	0.0715 (15)	0.3936 (16)	0.9511 (19)	0.101 (3)	0.309 (3)
H9C	0.106691	0.370299	0.998520	0.122*	0.309 (3)
C10C	0.0167 (16)	0.3347 (15)	0.9718 (19)	0.109 (4)	0.309 (3)
H10C	0.039180	0.302612	1.022895	0.131*	0.309 (3)
H10D	-0.025323	0.359039	1.004438	0.131*	0.309 (3)
C11C	-0.0138 (15)	0.2868 (18)	0.898 (2)	0.111 (4)	0.309 (3)
H11C	0.009971	0.238535	0.907550	0.133*	0.309 (3)
H11D	0.002898	0.305348	0.832615	0.133*	0.309 (3)
C12C	-0.0956 (15)	0.272 (2)	0.888 (3)	0.122 (7)	0.309 (3)
H12D	-0.103422	0.228717	0.846672	0.183*	0.309 (3)
H12E	-0.119444	0.314501	0.857290	0.183*	0.309 (3)
H12F	-0.116690	0.263779	0.954439	0.183*	0.309 (3)
C13C	0.0880 (15)	0.4648 (13)	0.992(2)	0.109 (3)	0.309 (3)
H13C	0.047967	0.481026	1.036652	0.131*	0.309 (3)
	/ / / /			-	

H13D	0.093563	0.501176	0.937993	0.131*	0.309 (3)
C14C	0.1596 (16)	0.4577 (15)	1.051 (2)	0.115 (4)	0.309 (3)
H14C	0.157564	0.485240	1.114240	0.138*	0.309 (3)
H14D	0.202082	0.474735	1.011202	0.138*	0.309 (3)
C15C	0.162 (2)	0.3702 (17)	1.070(3)	0.120 (6)	0.309 (3)
H15D	0.212086	0.352187	1.056624	0.180*	0.309 (3)
H15E	0.127934	0.345735	1.024615	0.180*	0.309 (3)
H15F	0.149029	0.359666	1.138777	0.180*	0.309 (3)
C9D	0.0619 (11)	0.375 (2)	0.9491 (15)	0.103 (3)	0.307 (3)
H9D	0.064660	0.428430	0.964243	0.124*	0.307 (3)
C10D	-0.0186 (13)	0.3685 (16)	0.922 (2)	0.105 (4)	0.307 (3)
H10E	-0.046788	0.388208	0.979130	0.126*	0.307 (3)
H10F	-0.027281	0.401942	0.865313	0.126*	0.307 (3)
C11D	-0.0511 (17)	0.2995 (18)	0.896 (3)	0.118 (5)	0.307 (3)
H11E	-0.034898	0.263808	0.947376	0.142*	0.307 (3)
H11F	-0.028719	0.284003	0.832606	0.142*	0.307 (3)
C12D	-0.1338(17)	0.290(2)	0.885 (4)	0.132 (8)	0.307 (3)
H12G	-0.153174	0.264001	0.943212	0.198*	0.307 (3)
H12H	-0.144137	0.261731	0.824655	0.198*	0.307 (3)
H12I	-0.157015	0.338228	0.880081	0.198*	0.307 (3)
C13D	0.0917 (15)	0.3450 (15)	1.0424 (18)	0.108 (3)	0.307 (3)
H13E	0.114151	0.296643	1.029356	0.130*	0.307(3)
H13F	0.051448	0.338078	1.090934	0.130*	0.307(3)
C14D	0.1487 (15)	0.3961 (19)	1.086 (2)	0.113 (4)	0.307(3)
H14E	0 174549	0.423623	1 033458	0.136*	0.307(3)
H14F	0.184933	0.368783	1.126639	0.136*	0.307(3)
C15D	0.100 (2)	0.4496(19)	1.155 (3)	0.130 (7)	0.307(3)
H15G	0.095446	0.497242	1.121771	0.194*	0.307(3)
H15H	0.124177	0.455943	1.219388	0.194*	0.307(3)
H15I	0.051571	0.428170	1.164385	0.194*	0.307(3)
Mn1B	0.4210(3)	0.3002(3)	0.6438 (6)	0.0469 (15)	0.0971(14)
O1B	0.3183(10)	0.3217(11)	0.655(3)	0.050(4)	0.0971 (14)
02B	0.4248(12)	0.3217(11) 0.4055(10)	0.618(3)	0.050(1) 0.052(3)	0.0971(14)
03B	0.1210(12) 0.2210(14)	0.5183(15)	0.620(3)	0.052(3)	0.0971(14)
N1B	0.304(2)	0.3966 (16)	0.620(3)	0.050(1) 0.054(4)	0.0971(11) 0.0971(14)
C1B	0.367(2)	0.3300(10) 0.4357(11)	0.627 (4)	0.054(3)	0.0971(11) 0.0971(14)
C2B	0.3539(14)	0.4337(11) 0.5138(11)	0.627(4)	0.054(3)	0.0971(14)
C3B	0.3335(17) 0.4195(17)	0.5499 (18)	0.500(2) 0.584(4)	0.050(3)	0.0971(11) 0.0971(14)
H3B	0.463964	0.522861	0.582859	0.073*	0.0971(14)
C4B	0.403904 0.421(2)	0.6238 (19)	0.563 (5)	0.073	0.0971(14)
U-D H/B	0.421 (2)	0.648201	0.505 (5)	0.002 (4)	0.0971(14)
C5B	0.405052 0.355(2)	0.048291	0.540111	0.074	0.0971(14)
С5Б Н5В	0.355061	0.000 (2)	0.557398	0.003 (4)	0.0971(14)
C6B	0.333001 0.200(2)	0.711149 0.6277(15)	0.552598 0.591 (A)	0.070	0.0971(14)
Цбр	0.230 (2)	0.0277(13) 0.656542	0.391 (4)	0.000 (+)	0.071(14)
C7B	0.240003	0.050545	0.555040	0.072°	0.09/1(14)
0/B	0.2003(14) 0.240(2)	0.3510(13) 0.352(2)	0.009(4)	0.038(3)	0.09/1(14)
04D	0.249 (3)	0.552(2)	0.001(3)	0.090(3)	0.09/1(14)
U)D	0.190(3)	0.43/(3)	0.793(3)	0.073(0)	0.09/1(14)

C8B	0.215 (2)	0.414 (2)	0.872 (2)	0.091 (5)	0.0971 (14)
C9B	0.212 (3)	0.450 (3)	0.976 (3)	0.105 (4)	0.0971 (14)
H9B	0.244392	0.493722	0.971060	0.126*	0.0971 (14)
C10B	0.135 (3)	0.480 (4)	0.988 (4)	0.106 (4)	0.0971 (14)
H10G	0.102155	0.436896	0.990354	0.127*	0.0971 (14)
H10H	0.133232	0.502994	1.054169	0.127*	0.0971 (14)
C11B	0.102 (3)	0.531 (4)	0.920 (6)	0.107 (5)	0.0971 (14)
H11G	0.126655	0.524595	0.854898	0.128*	0.0971 (14)
H11H	0.114377	0.580442	0.944008	0.128*	0.0971 (14)
C12B	0.020(3)	0.531 (5)	0.899 (6)	0.109(11)	0.0971 (14)
H12J	0.007978	0.569567	0.850948	0.163*	0.0971 (14)
H12K	0.005171	0.483275	0.871238	0.163*	0.0971 (14)
H12L	-0.007204	0.539560	0.961048	0.163*	0.0971 (14)
C13B	0.245 (3)	0.404 (4)	1.054 (4)	0.107 (5)	0.0971 (14)
H13G	0.275633	0.434715	1.097827	0.128*	0.0971 (14)
H13H	0.277073	0.366752	1.022537	0.128*	0.0971 (14)
C14B	0.187(4)	0.365(5)	1.116 (7)	0.112 (5)	0.0971 (14)
H14G	0.146656	0.347873	1.073754	0.135*	0.0971 (14)
H14H	0.167172	0 398959	1.167225	0.135*	0.0971 (14)
C15B	0.227(6)	0.297(4)	1 169 (6)	0.115(10)	0.0971(14)
H15I	0.191748	0.270452	1 210549	0.173*	0.0971 (14)
H15K	0.246830	0.264050	1 118237	0.173*	0.0971(14)
H15L	0.267251	0.314898	1 211273	0.173*	0.0971(14)
O6B	0.207201	0.383(3)	0.472(3)	0.065 (6)	0.0971(14)
H6C	0.2072(17) 0.178(4)	0.368(3)	0.172(3) 0.428(7)	0.003 (0)	0.0971(14)
H6D	0.170(1) 0.247(3)	0.393(4)	0.120(7) 0.443(7)	0.097*	0.0971(14)
07	0.2905(12)	0.399(1) 0.4390(12)	0.113(7) 0.371(2)	0.071(4)	0.549(3)
C16	0.3400 (8)	0.4850(8)	0.371(2)	0.071(1) 0.086(3)	0.549(3)
H16	0.381901	0.482146	0.398582	0.104*	0.549(3)
N2	0.3391 (8)	0.102110 0.5377(9)	0.398502 0.2882(13)	0.082(3)	0.549(3)
C17	0.3351(0) 0.4050(11)	0.5878(11)	0.2002(15) 0.2738(15)	0.002(5)	0.549(3)
H17A	0.46742	0.551047	0.258363	0.120(5)	0.549(3)
H17R	0.415204	0.610433	0.334803	0.179*	0.549(3)
H17C	0.396990	0.616954	0.218513	0.179*	0.549(3)
C18	0.370770 0.2743 (11)	0.5436(12)	0.210515 0.2230(15)	0.172(5)	0.549(3)
H18A	0.27351	0.592718	0.193768	0.122 (5)	0.549(3)
H18R	0.229911	0.534844	0.262163	0.183*	0.549(3)
HISC	0.2277733	0.507079	0.169677	0.183*	0.549(3)
07B	0.277755 0.338(2)	0.30707) 0.417(2)	0.105077	0.185	0.971(14)
C16B	0.338(2) 0.293(3)	0.417(2) 0.467(3)	0.352(7)	0.088(7)	0.0971(14)
H16B	0.273 (3)	0.459512	0.370384	0.105*	0.0971(14)
N2B	0.242009	0.439312 0.532 (2)	0.370364	0.105	0.0971(14)
C17B	0.315(3)	0.532(2)	0.311(3) 0.313(7)	0.007(3)	0.0971(14)
H17D	0.233 (4)	0.588 (5)	0.283004	0.097 (8)	0.0971(14)
	0.273333	0.033174	0.263004	0.145*	0.071(14)
H17E	0.212/3/	0.570271	0.270391	0.145*	0.071(14)
	0.271400	0.597405	0.302709	0.145	0.071(14)
	0.332 (3)	0.540 (4)	0.323(7)	0.075 (7)	0.09/1(14)
1110D	0.404240	0.373374	0.291920	0.142	0.09/1(14)

H18E	0.404357	0.547736	0.393683	0.142*	0.0971 (14)	
H18F	0.420059	0.507229	0.290140	0.142*	0.0971 (14)	
O7C	0.296 (2)	0.441 (2)	0.386 (4)	0.077 (6)	0.354 (3)	
C16C	0.2949 (12)	0.4984 (12)	0.3350 (17)	0.087 (4)	0.354 (3)	
H16C	0.250026	0.522809	0.321376	0.104*	0.354 (3)	
N2C	0.3591 (11)	0.5251 (12)	0.299 (2)	0.080 (4)	0.354 (3)	
C17C	0.3557 (17)	0.5992 (13)	0.257 (2)	0.112 (6)	0.354 (3)	
H17G	0.404347	0.613588	0.233349	0.168*	0.354 (3)	
H17H	0.321143	0.599778	0.201064	0.168*	0.354 (3)	
H17I	0.339192	0.633706	0.308216	0.168*	0.354 (3)	
C18C	0.4231 (14)	0.4784 (15)	0.303 (2)	0.118 (6)	0.354 (3)	
H18G	0.465149	0.504563	0.274964	0.176*	0.354 (3)	
H18H	0.433399	0.465172	0.372309	0.176*	0.354 (3)	
H18I	0.413916	0.433936	0.264112	0.176*	0.354 (3)	

Atomic displacement parameters (\mathring{A}^2)

	U 711	1/22	<i>I</i> /33	<i>L</i> /12	<i>L /</i> ¹³	<i>L</i> /23
Dv1	0.0591 (2)	0.0591 (2)	0.0508 (3)	0.000	0.000	0.000
Na1	0.0391(2)	0.0391(2) 0.0498(10)	0.058(2)	0.000	0.000	0.000
Mn1	0.0453(4)	0.0490(10) 0.0447(4)	0.050(2) 0.0641(5)	0.000	0.000	0.000
01	0.0435(4)	0.0447(4) 0.0446(15)	0.0041(3)	0.0013(2)	0.0072(3)	0.0003(3)
$\frac{01}{02}$	0.0443(15) 0.0482(16)	0.0440(13) 0.0458(17)	0.0300(1))	0.0001(12)	0.0003(15)	0.0010(15) 0.0038(16)
02	0.0482(10) 0.0549(19)	0.0438(17) 0.0484(18)	0.073(2) 0.102(3)	-0.0038(15)	0.0103(10)	-0.0030(10)
05 N1	0.0349(19)	0.0434(18)	0.102(3)	-0.0038(15)	0.022(2)	-0.0030(19)
C1	0.049(2)	0.0442(18)	0.037(2)	-0.0023(13) -0.0031(16)	0.009(3)	-0.0048(17) -0.0014(17)
	0.031(2)	0.0420(19)	0.038(2)	-0.0031(10)	0.0111(18)	-0.0014(17)
C2 C2	0.055(2)	0.046(2)	0.008(3)	-0.0066(18)	0.005(2)	-0.006(2)
03	0.057(2)	0.048 (2)	0.085 (3)	-0.003(2)	0.007(2)	0.001 (2)
C4	0.062 (3)	0.045 (2)	0.101 (4)	-0.004 (2)	0.011 (3)	0.001 (3)
C5	0.066 (3)	0.051 (3)	0.095 (4)	-0.011(2)	0.010 (3)	0.000 (3)
C6	0.059 (3)	0.050 (2)	0.090 (4)	-0.011 (2)	0.018 (3)	-0.004(3)
C7	0.056 (2)	0.044 (2)	0.074 (3)	-0.0055 (18)	0.016 (2)	-0.005(2)
O4	0.086 (3)	0.076 (3)	0.060(2)	0.006 (2)	0.019 (2)	-0.006 (2)
05	0.087 (3)	0.076 (3)	0.069 (3)	0.003 (2)	0.021 (2)	-0.002 (2)
C8	0.100 (4)	0.095 (4)	0.067 (3)	0.010 (4)	0.026 (3)	-0.015 (3)
C9	0.117 (6)	0.113 (6)	0.083 (5)	0.015 (6)	0.024 (5)	-0.012 (5)
C10	0.115 (7)	0.121 (7)	0.084 (6)	0.015 (6)	0.029 (6)	-0.011 (6)
C11	0.121 (8)	0.123 (8)	0.093 (7)	0.006 (8)	0.026 (7)	-0.010 (8)
C12	0.140 (15)	0.155 (16)	0.107 (14)	0.016 (15)	0.038 (13)	-0.003 (14)
C13	0.121 (6)	0.121 (6)	0.087 (6)	0.011 (6)	0.019 (6)	-0.013 (6)
C14	0.132 (8)	0.128 (8)	0.095 (7)	0.008 (8)	0.023 (7)	-0.015 (7)
C15	0.143 (13)	0.146 (13)	0.088 (11)	-0.007(12)	0.018 (12)	-0.011 (12)
O6	0.057 (2)	0.064 (2)	0.063 (2)	-0.0103 (17)	-0.0029(18)	0.0144 (19)
C9C	0.114 (6)	0.110 (6)	0.080 (5)	0.017 (5)	0.025 (5)	-0.013(5)
C10C	0.119(7)	0.122 (7)	0.086 (6)	0.013(7)	0.026 (6)	-0.011(6)
CIIC	0 109 (8)	0.125(8)	0.098(7)	0.019(7)	0.027(7)	-0.013(7)
C12C	0.110 (0)	0.145(15)	0.110(13)	-0.013(14)	0.027(7)	-0.011(13)
C13C	0.123(7)	0.118(7)	0.086 (6)	0.013 (6)	0.024 (6)	-0.021 (6)
0150	0.125 (7)	0.110(7)	0.000 (0)	0.013 (0)	0.02+(0)	0.021 (0)

C14C	0.127 (7)	0.121 (7)	0.096 (7)	0.007 (7)	0.022 (6)	-0.014 (6)
C15C	0.137 (11)	0.126 (11)	0.098 (10)	0.021 (10)	0.023 (10)	-0.014 (10)
C9D	0.114 (6)	0.113 (6)	0.082 (5)	0.019 (6)	0.025 (5)	-0.009 (5)
C10D	0.115 (7)	0.118 (7)	0.083 (7)	0.012 (7)	0.031 (6)	-0.013 (7)
C11D	0.127 (9)	0.131 (9)	0.096 (8)	0.010 (9)	0.025 (9)	-0.004 (8)
C12D	0.136 (16)	0.130 (16)	0.130 (15)	0.016 (15)	0.020 (15)	-0.022 (15)
C13D	0.120 (6)	0.123 (7)	0.082 (6)	0.011 (6)	0.025 (6)	-0.011 (6)
C14D	0.127 (7)	0.121 (7)	0.091 (7)	0.014 (7)	0.022 (6)	-0.012 (6)
C15D	0.140 (13)	0.131 (13)	0.118 (12)	0.018 (12)	0.035 (11)	-0.004 (12)
Mn1B	0.036 (3)	0.038 (3)	0.066 (4)	0.001 (2)	-0.001 (2)	-0.002 (2)
O1B	0.042 (7)	0.032 (7)	0.075 (8)	0.003 (6)	0.009(7)	0.007 (7)
O2B	0.048 (6)	0.035 (6)	0.073 (7)	-0.002 (6)	0.006 (6)	0.001 (6)
O3B	0.054 (7)	0.047 (7)	0.074 (7)	-0.004 (7)	0.009(7)	-0.005 (7)
N1B	0.052 (7)	0.040 (7)	0.070 (7)	-0.006 (6)	0.010(7)	0.000(7)
C1B	0.055 (6)	0.037 (6)	0.072 (6)	-0.004 (6)	0.012 (6)	0.000 (6)
C2B	0.052 (5)	0.040 (5)	0.076 (5)	-0.006 (5)	0.012 (5)	-0.001 (5)
C3B	0.056 (6)	0.043 (6)	0.083 (6)	-0.004 (6)	0.012 (6)	-0.002 (6)
C4B	0.057 (7)	0.045 (7)	0.084 (7)	-0.007 (7)	0.011 (7)	-0.002 (7)
C5B	0.058 (7)	0.046 (7)	0.085 (7)	-0.012 (7)	0.015 (7)	0.002 (7)
C6B	0.055 (7)	0.043 (7)	0.081 (7)	-0.007 (7)	0.013 (7)	-0.001 (7)
C7B	0.055 (6)	0.042 (6)	0.078 (6)	-0.007 (6)	0.010 (6)	-0.003 (6)
O4B	0.104 (10)	0.094 (9)	0.071 (9)	0.012 (9)	0.012 (9)	-0.019 (9)
O5B	0.076 (12)	0.081 (12)	0.068 (12)	0.001 (11)	-0.006 (11)	-0.009 (11)
C8B	0.103 (8)	0.097 (8)	0.072 (8)	0.011 (8)	0.019 (8)	-0.015 (8)
C9B	0.118 (7)	0.112 (7)	0.083 (7)	0.012 (7)	0.020(7)	-0.016 (7)
C10B	0.118 (7)	0.115 (7)	0.084 (6)	0.014 (6)	0.023 (6)	-0.015 (6)
C11B	0.120 (9)	0.115 (10)	0.086 (9)	0.013 (9)	0.023 (9)	-0.015 (9)
C12B	0.12 (2)	0.12 (2)	0.084 (19)	0.02 (2)	0.038 (19)	-0.017 (19)
C13B	0.120 (8)	0.116 (8)	0.085 (8)	0.011 (8)	0.019 (8)	-0.014 (8)
C14B	0.126 (9)	0.122 (9)	0.088 (8)	0.011 (8)	0.023 (8)	-0.015 (8)
C15B	0.132 (19)	0.131 (19)	0.082 (18)	-0.005 (19)	0.019 (18)	-0.010 (18)
O6B	0.058 (11)	0.070 (12)	0.066 (12)	-0.008 (11)	0.004 (11)	0.012 (11)
O7	0.071 (6)	0.071 (6)	0.070 (9)	-0.005 (5)	-0.001 (5)	0.021 (6)
C16	0.098 (7)	0.089 (6)	0.072 (5)	-0.030 (6)	-0.022 (5)	0.010 (5)
N2	0.114 (7)	0.071 (5)	0.062 (6)	-0.032 (5)	-0.007 (6)	0.012 (4)
C17	0.133 (11)	0.110 (9)	0.116 (10)	-0.054 (9)	-0.015 (9)	0.025 (8)
C18	0.139 (11)	0.117 (10)	0.111 (10)	0.006 (9)	0.001 (9)	0.014 (8)
O7B	0.100 (13)	0.080 (12)	0.077 (12)	-0.026 (12)	0.005 (12)	0.019 (12)
C16B	0.106 (9)	0.083 (9)	0.074 (9)	-0.026 (9)	-0.002 (9)	0.013 (9)
N2B	0.108 (9)	0.083 (8)	0.076 (9)	-0.026 (8)	-0.003 (8)	0.012 (8)
C17B	0.118 (15)	0.094 (14)	0.078 (14)	-0.025 (14)	-0.003 (14)	0.007 (13)
C18B	0.113 (13)	0.089 (12)	0.082 (12)	-0.027 (12)	0.008 (12)	0.018 (12)
O7C	0.082 (10)	0.075 (9)	0.075 (12)	-0.007 (8)	0.001 (9)	0.018 (8)
C16C	0.110 (8)	0.075 (7)	0.076 (7)	-0.016 (7)	0.012 (7)	0.017 (6)
N2C	0.102 (8)	0.076 (7)	0.062 (7)	-0.033 (7)	-0.004 (7)	0.004 (6)
C17C	0.136 (12)	0.095 (11)	0.105 (11)	-0.018 (11)	0.012 (11)	0.014 (10)
C18C	0.126 (11)	0.116 (11)	0.110 (11)	-0.026 (10)	-0.001 (10)	0.017 (10)

Geometric parameters (Å, °)

Dy1—O4B	2.24 (4)	C10D—C11D	1.43 (2)
Dy1—O4 ⁱ	2.277 (5)	C10D—H10E	0.9900
Dy1—O4 ⁱⁱ	2.277 (5)	C10D—H10F	0.9900
Dy1—O4 ⁱⁱⁱ	2.277 (5)	C11D—C12D	1.53 (2)
Dv1—04	2.277 (5)	C11D—H11E	0.9900
Dy1—O1	2.444 (3)	C11D—H11F	0.9900
Dv1—O1 ⁱⁱ	2.444 (3)	C12D—H12G	0.9800
Dv1—O1 ⁱⁱⁱ	2.444 (3)	C12D—H12H	0.9800
$Dv1 - O1^{i}$	2.444 (3)	C12D—H12I	0.9800
Dv1—O1B ⁱⁱⁱ	2.54 (3)	C13D—C14D	1.52 (2)
Dv1—O1B ⁱⁱ	2.54 (3)	C13D—H13E	0.9900
$Dv1 - O1B^{i}$	2.54 (3)	C13D—H13F	0.9900
Nal—O6	2.436(5)	C14D—C15D	1.61 (2)
Na1—O6 ⁱⁱ	2.436 (5)	C14D—H14E	0.9900
Na1—O6 ⁱ	2.436 (5)	C14D—H14F	0.9900
Na1—O6 ⁱⁱⁱ	2.436(5)	C15D - H15G	0.9800
Na1—O1B ⁱ	2.53(3)	C15D—H15H	0.9800
Na1—O1B ⁱⁱ	2.53(3)	C15D—H15I	0.9800
Na1—O1B ⁱⁱⁱ	2.53(3)	$Mn1B-O3B^{i}$	1.85(3)
Nal—OIB	2.53(3)	Mn1B - O1B	1.03(3)
Na1—O6B ⁱⁱ	2.63(5) 2.64(5)	$Mn1B - N1B^{i}$	1.95 (4)
Na1 $-06B^{i}$	2.64(5)	Mn1B-O2B	1.955 (17)
Na1—O6B ⁱⁱⁱ	2.64(5)	$Mn1B - O6B^{i}$	2 41 (4)
Na1—O6B	2.64(5)	O1B $N1B$	1 397 (18)
Mn1—O3 ⁱⁱ	1.840(4)	O2B— $C1B$	1.275 (18)
Mn1—O1	1.914 (3)	O3B-C7B	1.349 (19)
Mn1—O2	1.939 (4)	N1B—C1B	1.317 (19)
$Mn1 - N1^{ii}$	1.946 (5)	C1B-C2B	1 459 (17)
Mn1—O5	2,126 (5)	$C^{2}B$ — $C^{3}B$	1.404(19)
Mn1	2.527(5)	C2B—C7B	1 414 (19)
01—N1	1.401(5)	C3B—C4B	1.38 (2)
02-C1	1.294 (6)	C3B—H3B	0.9500
03—C7	1.335 (7)	C4B—C5B	1.37 (2)
N1-C1	1.319(7)	C4B—H4B	0.9500
C1-C2	1.459 (7)	C5B-C6B	1 37 (2)
$C^2 - C^3$	1 406 (8)	C5B—H5B	0.9500
C2—C7	1.415 (8)	C6B-C7B	1412(19)
C3—C4	1 384 (8)	C6B—H6B	0.9500
С3—Н3	0.9500	O4B - C8B	1 29 (2)
C4-C5	1 373 (9)	0.1B - 0.0B 0.5B - C.8B	1.23(2) 1.23(2)
C4—H4	0.9500	C8B—C9B	1.25(2) 1 54(2)
C5—C6	1,383 (9)	C9B-C13B	1.47 (2)
С5—Н5	0.9500	C9B-C10B	1.52 (2)
C6—C7	1.402(7)	C9B—H9B	1,0000
С6—Н6	0.9500	C10B—C11B	1.44 (2)
04	1.274 (10)	C10B—H10G	0.9900

O5—C8	1.220 (10)	C10B—H10H	0.9900
C8—C9C	1.526 (16)	C11B—C12B	1.53 (2)
C8—C9	1.543 (16)	C11B—H11G	0.9900
C8—C9D	1.558 (16)	C11B—H11H	0.9900
C9—C13	1.452 (16)	C12B—H12J	0.9800
C9—C10	1.515 (15)	C12B—H12K	0.9800
С9—Н9	1.0000	C12B—H12L	0.9800
C10—C11	1.470 (16)	C13B—C14B	1.52 (2)
C10—H10A	0.9900	C13B—H13G	0.9900
C10—H10B	0.9900	C13B—H13H	0.9900
C11—C12	1.530 (16)	C14B—C15B	1.61 (2)
C11—H11A	0.9900	C14B—H14G	0.9900
C11—H11B	0.9900	C14B—H14H	0.9900
C12—H12A	0.9800	C15B—H15J	0.9800
C12—H12B	0.9800	C15B—H15K	0.9800
C12—H12C	0.9800	C15B—H15L	0.9800
C13—C14	1.517 (17)	O6B—H6C	0.84 (2)
C13—H13A	0.9900	O6B—H6D	0.850 (18)
C13—H13B	0.9900	O7—C16	1.248 (18)
C14—C15	1.594 (17)	C16—N2	1.333 (15)
C14—H14A	0.9900	C16—H16	0.9500
C14—H14B	0.9900	N2—C17	1.472 (14)
C15—H15A	0.9800	N2—C18	1.475 (16)
C15—H15B	0.9800	C17—H17A	0.9800
C15—H15C	0.9800	C17—H17B	0.9800
O6—H6A	0.857 (17)	C17—H17C	0.9800
O6—H6E	0.832 (18)	C18—H18A	0.9800
C9C—C13C	1.44 (2)	C18—H18B	0.9800
C9C—C10C	1.50 (2)	C18—H18C	0.9800
С9С—Н9С	1.0000	O7B—C16B	1.25 (2)
C10C—C11C	1.43 (2)	C16B—N2B	1.36 (2)
C10C—H10C	0.9900	C16B—H16B	0.9500
C10C—H10D	0.9900	N2B—C18B	1.47 (2)
C11C—C12C	1.53 (2)	N2B—C17B	1.47 (2)
C11C—H11C	0.9900	C17B—H17D	0.9800
C11C—H11D	0.9900	C17B—H17E	0.9800
C12C—H12D	0.9800	C17B—H17F	0.9800
C12C—H12E	0.9800	C18B—H18D	0.9800
C12C—H12F	0.9800	C18B—H18E	0.9800
C13C—C14C	1.53 (2)	C18B—H18F	0.9800
C13C—H13C	0.9900	O7C—C16C	1.25 (2)
C13C—H13D	0.9900	C16C - N2C	1.358 (18)
C14C—C15C	1.62 (2)	C16C—H16C	0.9500
C14C—H14C	0.9900	N2C-C18C	1.448 (18)
C14C—H14D	0.9900	N2C—C17C	1.469 (17)
C15C—H15D	0.9800	C17C—H17G	0.9800
C15C—H15E	0.9800	C17C—H17H	0.9800
C15C—H15F	0.9800	C17C—H17I	0.9800
	0.2000		0.2000

C9D—C13D	1.47 (2)	C18C—H18G	0.9800
C9D—C10D	1.52 (2)	C18C—H18H	0.9800
C9D—H9D	1.0000	C18C—H18I	0.9800
O4B—Dy1—O4 ⁱⁱ	111.0 (14)	C10C—C9C—C8	108.9 (16)
$O4^{i}$ — $Dy1$ — $O4^{ii}$	125.9 (3)	С13С—С9С—Н9С	90.3
O4B—Dy1—O4 ⁱⁱⁱ	99.8 (12)	С10С—С9С—Н9С	90.3
O4 ⁱ —Dy1—O4 ⁱⁱⁱ	78.06 (11)	C8—C9C—H9C	90.3
O4 ⁱⁱ —Dy1—O4 ⁱⁱⁱ	78.06 (11)	C11C—C10C—C9C	125 (2)
O4 ⁱ —Dy1—O4	78.06 (11)	C11C—C10C—H10C	106.1
O4 ⁱⁱ —Dy1—O4	78.06 (11)	C9C—C10C—H10C	106.1
O4 ⁱⁱⁱ —Dy1—O4	125.9 (3)	C11C—C10C—H10D	106.1
O4 ⁱ —Dy1—O1	78.69 (16)	C9C—C10C—H10D	106.1
O4 ⁱⁱ —Dy1—O1	142.57 (15)	H10C-C10C-H10D	106.3
O4 ⁱⁱⁱ —Dy1—O1	138.77 (16)	C10C—C11C—C12C	123 (2)
O4—Dy1—O1	81.14 (15)	C10C—C11C—H11C	106.5
O4B—Dy1—O1 ⁱⁱ	116.6 (12)	C12C—C11C—H11C	106.5
O4 ⁱ —Dv1—O1 ⁱⁱ	138.77 (16)	C10C—C11C—H11D	106.5
$O4^{ii}$ — $Dy1$ — $O1^{ii}$	81.14 (15)	C12C—C11C—H11D	106.5
O4 ⁱⁱⁱ —Dy1—O1 ⁱⁱ	142.57 (15)	H11C—C11C—H11D	106.5
O4—Dy1—O1 ⁱⁱ	78.69 (16)	C11C—C12C—H12D	109.5
01—Dy1—O1 ⁱⁱ	64.39 (9)	C11C—C12C—H12E	109.5
O4B—Dy1—O1 ⁱⁱⁱ	170.3 (14)	H12D-C12C-H12E	109.5
O4 ⁱ —Dy1—O1 ⁱⁱⁱ	142.57 (15)	C11C—C12C—H12F	109.5
O4 ⁱⁱ —Dy1—O1 ⁱⁱⁱ	78.69 (16)	H12D-C12C-H12F	109.5
O4 ⁱⁱⁱ —Dy1—O1 ⁱⁱⁱ	81.14 (15)	H12E—C12C—H12F	109.5
O4—Dy1—O1 ⁱⁱⁱ	138.77 (16)	C9C—C13C—C14C	107.4 (19)
O1—Dy1—O1 ⁱⁱⁱ	97.80 (17)	C9C—C13C—H13C	110.2
O1 ⁱⁱ —Dy1—O1 ⁱⁱⁱ	64.40 (9)	C14C—C13C—H13C	110.2
O4B—Dy1—O1 ⁱ	106.2 (15)	C9C—C13C—H13D	110.2
$O4^{i}$ — $Dy1$ — $O1^{i}$	81.14 (15)	C14C—C13C—H13D	110.2
O4 ⁱⁱ —Dy1—O1 ⁱ	138.77 (16)	H13C—C13C—H13D	108.5
$O4^{iii}$ — $Dy1$ — $O1^{i}$	78.69 (16)	C13C—C14C—C15C	101.0 (19)
O4—Dy1—O1 ⁱ	142.57 (15)	C13C—C14C—H14C	111.6
O1—Dy1—O1 ⁱ	64.40 (9)	C15C—C14C—H14C	111.6
O1 ⁱⁱ —Dy1—O1 ⁱ	97.80 (17)	C13C—C14C—H14D	111.6
O1 ⁱⁱⁱ —Dy1—O1 ⁱ	64.40 (9)	C15C—C14C—H14D	111.6
O4B—Dy1—O1B ⁱⁱⁱ	144.4 (13)	H14C—C14C—H14D	109.4
O4 ⁱ —Dy1—O1B ⁱⁱⁱ	160.8 (7)	C14C—C15C—H15D	109.5
O4 ⁱⁱ —Dy1—O1B ⁱⁱⁱ	72.2 (7)	C14C—C15C—H15E	109.5
O4 ⁱⁱⁱ —Dy1—O1B ⁱⁱⁱ	115.1 (5)	H15D—C15C—H15E	109.5
O4—Dy1—O1B ⁱⁱⁱ	102.4 (5)	C14C—C15C—H15F	109.5
O1—Dy1—O1B ⁱⁱⁱ	82.4 (7)	H15D—C15C—H15F	109.5
O1 ⁱⁱ —Dy1—O1B ⁱⁱⁱ	27.9 (4)	H15E—C15C—H15F	109.5
O1 ⁱⁱⁱ —Dy1—O1B ⁱⁱⁱ	37.6 (4)	C13D—C9D—C10D	122 (2)
O1 ⁱ —Dy1—O1B ⁱⁱⁱ	87.7 (7)	C13D—C9D—C8	111.2 (19)
O4B—Dy1—O1B ⁱⁱ	88.6 (13)	C10D—C9D—C8	118.0 (18)
O4 ⁱ —Dy1—O1B ⁱⁱ	102.4 (5)	C13D—C9D—H9D	99.9

O4 ⁱⁱ —Dy1—O1B ⁱⁱ	115.1 (5)	C10D—C9D—H9D	99.9
O4 ⁱⁱⁱ —Dy1—O1B ⁱⁱ	160.8 (7)	C8—C9D—H9D	99.9
O4—Dy1—O1B ⁱⁱ	72.2 (7)	C11D—C10D—C9D	122 (2)
01—Dy1—O1B ⁱⁱ	27.9 (4)	C11D—C10D—H10E	106.9
$O1^{ii}$ $Dy1$ $O1B^{ii}$	37.6 (4)	C9D—C10D—H10E	106.9
$O1^{iii}$ — $Dy1$ — $O1B^{ii}$	87.7 (7)	C11D—C10D—H10F	106.9
O1 ⁱ —Dy1—O1B ⁱⁱ	82.4 (7)	C9D—C10D—H10F	106.9
O1B ⁱⁱⁱ —Dy1—O1B ⁱⁱ	60.4 (9)	H10E—C10D—H10F	106.7
$O4B - Dv1 - O1B^i$	143.3 (15)	C10D—C11D—C12D	122 (2)
$O4^{i}$ — $Dy1$ — $O1B^{i}$	115.1 (5)	C10D—C11D—H11E	106.8
$O4^{ii}$ — $Dv1$ — $O1B^{i}$	102.4 (5)	C12D—C11D—H11E	106.8
$O4^{iii}$ — $Dy1$ — $O1B^{i}$	72.2 (7)	C10D—C11D—H11F	106.8
$O4$ — $Dy1$ — $O1B^i$	160.8 (7)	C12D—C11D—H11F	106.8
$O1 - Dy1 - O1B^i$	87.7 (7)	H11E—C11D—H11F	106.6
$O1^{ii}$ — $Dy1$ — $O1B^{i}$	82.4 (7)	C11D—C12D—H12G	109.5
$O1^{iii}$ — $Dy1$ — $O1B^{i}$	27.9 (4)	C11D—C12D—H12H	109.5
$O1^{i}$ — $Dy1$ — $O1B^{i}$	37.6 (4)	H12G—C12D—H12H	109.5
$O1B^{iii}$ $-Dy1$ $-O1B^{i}$	60.4 (9)	C11D—C12D—H12I	109.5
$O1B^{ii}$ $Dy1$ $O1B^{i}$	90.7 (15)	H12G—C12D—H12I	109.5
O6—Na1—O6 ⁱⁱ	85.06 (8)	H12H—C12D—H12I	109.5
O6—Na1—O6 ⁱ	85.06 (8)	C9D-C13D-C14D	111 (2)
O6 ⁱⁱ —Na1—O6 ⁱ	145.9 (3)	C9D—C13D—H13E	109.5
O6—Na1—O6 ⁱⁱⁱ	145.9 (3)	C14D—C13D—H13E	109.5
O6 ⁱⁱ —Na1—O6 ⁱⁱⁱ	85.06 (8)	C9D—C13D—H13F	109.5
O6 ⁱ —Na1—O6 ⁱⁱⁱⁱ	85.06 (8)	C14D—C13D—H13F	109.5
O6—Na1—O1B ⁱ	150.7 (6)	H13E—C13D—H13F	108.1
O6 ⁱⁱ —Na1—O1B ⁱ	110.9 (4)	C13D-C14D-C15D	103 (2)
O6 ⁱ —Na1—O1B ⁱ	93.1 (5)	C13D-C14D-H14E	111.2
O6 ⁱⁱⁱ —Na1—O1B ⁱ	62.5 (6)	C15D—C14D—H14E	111.2
O6—Na1—O1B ⁱⁱ	62.5 (6)	C13D-C14D-H14F	111.2
O6 ⁱⁱ —Na1—O1B ⁱⁱ	93.1 (5)	C15D—C14D—H14F	111.2
O6 ⁱ —Na1—O1B ⁱⁱ	110.9 (4)	H14E—C14D—H14F	109.2
O6 ⁱⁱⁱ —Na1—O1B ⁱⁱ	150.7 (6)	C14D-C15D-H15G	109.5
O1B ⁱ —Na1—O1B ⁱⁱ	91.4 (12)	C14D—C15D—H15H	109.5
O6—Na1—O1B ⁱⁱⁱ	110.9 (4)	H15G—C15D—H15H	109.5
O6 ⁱⁱ —Na1—O1B ⁱⁱⁱ	62.5 (6)	C14D—C15D—H15I	109.5
O6 ⁱ —Na1—O1B ⁱⁱⁱ	150.7 (6)	H15G—C15D—H15I	109.5
O6 ⁱⁱⁱ —Na1—O1B ⁱⁱⁱ	93.1 (5)	H15H—C15D—H15I	109.5
O1B ⁱ —Na1—O1B ⁱⁱⁱ	60.8 (7)	O3B ⁱ —Mn1B—O1B	174.4 (18)
O1B ⁱⁱ —Na1—O1B ⁱⁱⁱ	60.8 (7)	O3B ⁱ —Mn1B—O2B	98.1 (10)
O1B ⁱ —Na1—O1B	60.8 (7)	O1B—Mn1B—O2B	81.2 (8)
O1B ⁱⁱ —Na1—O1B	60.8 (7)	N1B ⁱ —Mn1B—O2B	166 (3)
O1B ⁱⁱⁱ —Na1—O1B	91.4 (12)	O3B ⁱ —Mn1B—O6B ⁱ	95.9 (17)
O6—Na1—O6B ⁱⁱ	71.0 (7)	O1B—Mn1B—O6B ⁱ	78.5 (16)
O6 ⁱⁱ —Na1—O6B ⁱⁱ	15.2 (7)	N1B ⁱ —Mn1B—O6B ⁱ	85 (4)
O6 ⁱ —Na1—O6B ⁱⁱ	144.3 (8)	O2B—Mn1B—O6B ⁱ	84.1 (14)
O6 ⁱⁱⁱ —Na1—O6B ⁱⁱ	100.0 (8)	O3B ⁱ —Mn1B—Na1	134.2 (11)
O1B ⁱ —Na1—O6B ⁱⁱ	120.7 (9)	O1B—Mn1B—Na1	41.2 (10)

O1B ⁱⁱ —Na1—O6B ⁱⁱ	81.5 (10)	N1B ⁱ —Mn1B—Na1	65 (3)
O1B ⁱⁱⁱ —Na1—O6B ⁱⁱ	64.8 (10)	O2B—Mn1B—Na1	101.6 (9)
O1B—Na1—O6B ⁱⁱ	142.0 (10)	O6B ⁱ —Mn1B—Na1	46.4 (12)
O6—Na1—O6B ⁱ	100.0 (8)	N1B—O1B—Mn1B	112.6 (15)
O6 ⁱⁱ —Na1—O6B ⁱ	144.3 (8)	N1B—O1B—Na1	112 (6)
O6 ⁱ —Na1—O6B ⁱ	15.2 (7)	Mn1B—O1B—Na1	108.7 (13)
O6 ⁱⁱⁱ —Na1—O6B ⁱ	71.0 (7)	N1B—O1B—Dv1	117 (4)
$O1B^{i}$ —Na1— $O6B^{i}$	81.5 (10)	Mn1B—O1B—Dv1	115.3 (12)
$O1B^{ii}$ Na1 $O6B^{i}$	120.7 (9)	Na1—O1B—Dv1	89.0 (6)
$01B^{iii}$ Na1 $-06B^{i}$	142.0(10)	C1B-O2B-Mn1B	112.2(14)
$01B$ Na1 $-06B^{i}$	64 8 (10)	$C7B-O3B-Mn1B^{ii}$	130(2)
$O6B^{ii}$ Na1 $O6B^{i}$	149 9 (18)	C1B $N1B$ $O1B$	113(2)
06 —Na1— $06B^{iii}$	1443(8)	$C1B$ $N1B$ $Mn1B^{ii}$	113(2) 131(3)
$O6^{ii}$ Na1 $O6B^{iii}$	710(7)	$O1B$ $N1B$ $Mn1B^{ii}$	114(2)
$O6^{i}$ Na1 $O6B^{iii}$	1000(8)	O2B - C1B - N1B	114(2) 1210(18)
$O6^{iii}$ Na1 $O6B^{iii}$	152(7)	O2B - C1B - C2B	121.0(18) 1199(18)
O1 ^{Ri} Na1 $O6$ ^{Riii}	13.2(7)	NIB CIB C2B	119.9(10) 118.0(10)
O1D $-Na1 - O0D$	1420(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.9(19)
$O1B^{ii}$ No1 $O6B^{iii}$	142.0(10)	$C_{3}B = C_{2}B = C_{1}B$	121.2(19)
$O1B$ $N_{2}1$ $O(B^{iii})$	81.3(10)	$C_{3}B = C_{2}B = C_{1}B$	114.5(19)
	120.7(9)	C/B = C2B = C1B	124.5 (19)
$O(B^{i} - Na) = O(B^{ii})$	86.1 (4)	C4B = C3B = C2B	121 (2)
$O_{0}B_{1} - Na_{1} - O_{0}B_{1}$	86.1 (4)	C4B - C3B - H3B	119.3
OIB ⁱ —NaI—O6B	142.0 (10)	C2B—C3B—H3B	119.3
OIB ⁿ —Nal—O6B	64.8 (10)	C5B—C4B—C3B	117 (3)
O1B ^{III} —Na1—O6B	120.7 (9)	C5B—C4B—H4B	121.6
O1B—Na1—O6B	81.5 (10)	C3B—C4B—H4B	121.6
O6B ⁱⁱ —Na1—O6B	86.1 (4)	C4B—C5B—C6B	124 (3)
O6B ⁱ —Na1—O6B	86.1 (4)	C4B—C5B—H5B	118.0
O6B ⁱⁱⁱ —Na1—O6B	149.9 (18)	C6B—C5B—H5B	118.0
O3 ⁱⁱ —Mn1—O1	168.5 (2)	C5B—C6B—C7B	120 (2)
O3 ⁱⁱ —Mn1—O2	97.45 (17)	C5B—C6B—H6B	119.8
O1—Mn1—O2	81.70 (15)	C7B—C6B—H6B	119.8
O3 ⁱⁱ —Mn1—N1 ⁱⁱ	90.57 (19)	O3B—C7B—C6B	120 (2)
O1—Mn1—N1 ⁱⁱ	88.75 (16)	O3B—C7B—C2B	124 (2)
O2—Mn1—N1 ⁱⁱ	168.3 (3)	C6B—C7B—C2B	116.1 (19)
O3 ⁱⁱ —Mn1—O5	94.6 (2)	C8B—O4B—Dy1	133 (3)
O1—Mn1—O5	96.9 (2)	O5B—C8B—O4B	124 (3)
O2—Mn1—O5	94.0 (2)	O5B—C8B—C9B	128 (3)
N1 ⁱⁱ —Mn1—O5	93.8 (4)	O4B—C8B—C9B	108 (2)
O3 ⁱⁱ —Mn1—O6	89.8 (2)	C13B—C9B—C10B	121 (3)
O1—Mn1—O6	78.68 (15)	C13B—C9B—C8B	113 (3)
O2—Mn1—O6	86.28 (16)	C10B—C9B—C8B	106 (3)
N1 ⁱⁱ —Mn1—O6	85.3 (4)	C13B—C9B—H9B	105.3
O5—Mn1—O6	175.52 (19)	C10B—C9B—H9B	105.3
O3 ⁱⁱ —Mn1—Na1	124.15 (18)	C8B—C9B—H9B	105.3
O1—Mn1—Na1	45.80 (12)	C11B—C10B—C9B	124 (3)
O2—Mn1—Na1	103.48 (11)	C11B—C10B—H10G	106.3
N1 ⁱⁱ —Mn1—Na1	64.9 (3)	C9B—C10B—H10G	106.3
	()		

O5-Mn1-Na1	133.91 (17)	C11B—C10B—H10H	106.2
O6—Mn1—Na1	41.91 (11)	C9B—C10B—H10H	106.2
N1—O1—Mn1	112.7 (3)	H10G-C10B-H10H	106.4
N1	121.3 (4)	C10B—C11B—C12B	122 (3)
Mn1—O1—Dy1	119.88 (15)	C10B—C11B—H11G	106.8
N1—O1—Nal	104.4 (4)	C12B—C11B—H11G	106.8
Mn1—O1—Na1	103.43 (15)	C10B—C11B—H11H	106.8
Dv1-O1-Na1	87.70 (12)	C12B—C11B—H11H	106.8
C1-O2-Mn1	112.1 (3)	H11G—C11B—H11H	106.6
C7-03-Mn1 ⁱ	129.8(3)	C11B—C12B—H12I	109.5
C1 - N1 - O1	1126(5)	C11B-C12B-H12K	109.5
$C1 - N1 - Mn1^{i}$	130.9(4)	H12I— $C12B$ — $H12K$	109.5
01 N1 Mn1 ⁱ	1161(3)	C11B - C12B - H12I	109.5
0^2 $C1$ $N1$	120.4(4)	H12I - C12B - H12I	109.5
02 - C1 - C2	120.4(4) 120.0(4)	H12K_C12B_H12I	109.5
$N_1 - C_1 - C_2$	120.0 (4)	C9B-C13B-C14B	109.5
$C_1 = C_1 = C_2$	119.0(5) 118.8(5)	$C^{0}B$ $C^{1}3B$ $H^{1}3G$	100 2
$C_{3} = C_{2} = C_{1}$	118.0(5)	C_{14} P C_{13} P H_{13} P H_{13	109.2
C_{7} C_{2} C_{1}	110.0(5) 123.1(5)	COB C13B H13H	109.2
C/-C2-C1	123.1(5) 121.4(6)	C_{14} C_{12} C_{13} C_{14} C_{12} C_{13} C_{14} C_{12} C_{13} C_{14} C_{14} C_{13} C_{14} C_{14} C_{13} C_{14} C	109.2
C4 = C3 = C2	121.4 (0)	H12G C12P H12H	109.2
$C_1 = C_2 = H_3$	119.5	C_{13} C_{14} C_{15} C	107.9
$C_2 = C_3 = \Pi_3$	119.3	C13B = C14B = C13B	107 (3)
$C_5 = C_4 = C_5$	119.3 (0)	C15P $C14P$ $H14G$	110.4
$C_3 = C_4 = H_4$	120.3	C13D - C14D - H14U	110.4
$C_3 - C_4 - \Pi_4$	120.5	C13D - C14D - D14H	110.4
C4 = C5 = U5	120.9 (0)		10.4
С4—С5—П5	119.5	$\Gamma I40 - C I4B - \Pi I4\Pi$	108.0
C_{0}	119.5	C14D = C15D = H15J	109.5
$C_{5} C_{6} H_{6}$	121.0 (0)	U14D - U15D - H15K	109.5
C_{3}	119.5	$\begin{array}{c} \mathbf{H}\mathbf{I}\mathbf{J}\mathbf{H}\mathbf{G}\mathbf{I}\mathbf{J}\mathbf{H}\mathbf{G}\mathbf{H}\mathbf{I}\mathbf{J}\mathbf{H}\mathbf{G}\mathbf{H}\mathbf{I}\mathbf{J}\mathbf{H}\mathbf{G}\mathbf{H}\mathbf{I}\mathbf{J}\mathbf{H}\mathbf{G}\mathbf{H}\mathbf{I}\mathbf{J}\mathbf{H}\mathbf{G}\mathbf{H}\mathbf{I}\mathbf{J}\mathbf{H}\mathbf{H}\mathbf{G}\mathbf{H}\mathbf{I}\mathbf{J}\mathbf{H}\mathbf{H}\mathbf{G}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}H$	109.5
C = C = C = C	119.5	UI5L CI5D UI5L	109.5
03-07-02	117.9(3) 122.5(5)	HISI CISD HISI	109.5
03-07-02	125.5(5)		109.3
$C_{0} - C_{1} - C_{2}$	118.3(3) 144.7(5)	Milli D ⁱⁱ OGD HGC	92.1(13)
$C_0 = 04 = Dy1$	144.7(3) 124.0(5)	Nal Of Hec	137(7)
$C_{0} = 0_{0} = 0_{0}$	124.0(3)		95 (0) 115 (7)
05-08-04	127.1(7)		113(7)
03-08-090	110.3(10) 122.2(16)		95 (0) 107 (2)
04 - 06 - 090	122.3(10) 124.4(14)	07 - 016 - 000	107(3) 125 5 (16)
03-08-09	124.4 (14)	0/-010	123.3 (10)
04 - 08 - 09	108.5 (14)	0/-C16-H16	117.2
05-08-09D	117.9 (15)	N2-C16-H16	117.2
04 - 08 - 09D	113.9 (16)	C16 N2 $C17$	119.0 (13)
C13 - C9 - C10	122.4 (16)	C10— $N2$ — $C18$	118.2 (12)
C13 - C9 - C8	115.7(17)	C1/-N2-C18	122.5 (13)
C10 - C9 - C8	100.3 (18)	N2 - C17 - H17A	109.5
C13—C9—H9	103.3	N2—CI/—HI/B	109.5
C10-C9-H9	103.3	HT/A - CT/ - H17B	109.5

С8—С9—Н9	103.3	N2—C17—H17C	109.5
C11—C10—C9	116.6 (15)	H17A—C17—H17C	109.5
C11—C10—H10A	108.1	H17B—C17—H17C	109.5
C9—C10—H10A	108.1	N2-C18-H18A	109.5
C11—C10—H10B	108.1	N2-C18-H18B	109.5
C9—C10—H10B	108.1	H18A—C18—H18B	109.5
H10A—C10—H10B	107.3	N2—C18—H18C	109.5
C10-C11-C12	118.1 (17)	H18A—C18—H18C	109.5
C10-C11-H11A	107.8	H18B—C18—H18C	109.5
C12—C11—H11A	107.8	O7B—C16B—N2B	120 (3)
C10—C11—H11B	107.8	O7B—C16B—H16B	119.8
C12—C11—H11B	107.8	N2B—C16B—H16B	119.8
H11A—C11—H11B	107.1	C16B—N2B—C18B	113 (3)
C11—C12—H12A	109.5	C16B - N2B - C17B	113 (3)
C11—C12—H12B	109.5	C18B— $N2B$ — $C17B$	125 (3)
H12A—C12—H12B	109.5	N2B—C17B—H17D	109.5
C11—C12—H12C	109.5	N2B—C17B—H17E	109.5
H12A - C12 - H12C	109.5	H17D-C17B-H17E	109.5
H12B-C12-H12C	109.5	N2B—C17B—H17F	109.5
C9-C13-C14	118.5 (17)	H17D—C17B—H17F	109.5
C9-C13-H13A	107.7	H17E— $C17B$ — $H17F$	109.5
C14—C13—H13A	107.7	N2B-C18B-H18D	109.5
C9—C13—H13B	107.7	N2B—C18B—H18E	109.5
C14—C13—H13B	107.7	H18D $C18B$ $H18E$	109.5
H_{13A} $-C_{13}$ $-H_{13B}$	107.1	N2B-C18B-H18F	109.5
C_{13} C_{14} C_{15}	107.1 110.9(15)	H18D $C18B$ $H18F$	109.5
C13— $C14$ — $H14A$	109 5	H18F— $C18B$ —H18F	109.5
C15 $C14$ $H14A$	109.5	07C-C16C-N2C	119(2)
C13— $C14$ — $H14B$	109.5	07C - C16C - H16C	120.5
C15-C14-H14B	109.5	$N_{2}C - C_{16}C - H_{16}C$	120.5
H14A - C14 - H14B	109.5	$C_{16} - N_{2} - C_{18} C_{16}$	118 3 (16)
C14 $C15$ $H154$	100.1	C16C - N2C - C17C	115.5 (18)
C14-C15-H15B	109.5	$C_{10} = N_{2} C_{-} C_{17} C_{-}$	115.5(18) 126.2(19)
H_{154} C_{15} H_{15B}	109.5	N2C-C17C-H17G	109.5
C14-C15-H15C	109.5	N2C-C17C-H17H	109.5
H15A C15 H15C	109.5	H17G C17C H17H	109.5
H15B_C15_H15C	109.5	N2C-C17C-H17I	109.5
Nal O6 Mpl	94.24(17)	H17G C17C H17I	109.5
Na1 $O6$ H6A	94.24(17)	H17H C17C H17I	109.5
Mn1 O6 H6A	109 (4)	N2C C18C H18G	109.5
Nal Of HEE	124(0)	$N_{2}C = C_{18}C = H_{18}H$	109.5
Mn1 O6 H6E	110(4) 112(5)		109.3
	112(3) 107(3)	N2C C C C L C L 191	109.5
10A - 00 - 10E	107(3) 125.8(18)		109.5
$C_{13}C_{-}C_{9}C_{-}C_{10}C_{-}C_{-}C_{10$	133.0(10) 115.4(19)	ная саяс шая	109.5
0130-070-00	113.4 (10)	птоп—стос—птог	107.5
Mn1 - O1 - N1 - C1	6.0(10)	Q5—C8—C9D—C13D	-153 5 (19)
Dv1-O1-N1-C1	-146.3(6)	04-C8-C9D-C13D	37 (3)
2,1 01 111 01	110.5 (0)	01 00 000 0100	5, (5)

Na1—O1—N1—C1	117.5 (7)	O5-C8-C9D-C10D	58 (3)
Mn1—O1—N1—Mn1 ⁱ	-167.2 (5)	O4-C8-C9D-C10D	-111 (2)
Dy1-O1-N1-Mn1 ⁱ	40.4 (9)	C13D—C9D—C10D—C11D	-70 (4)
Na1—O1—N1—Mn1 ⁱ	-55.7 (8)	C8—C9D—C10D—C11D	75 (4)
Mn1—O2—C1—N1	-3.1 (9)	C9D-C10D-C11D-C12D	170 (3)
Mn1—O2—C1—C2	175.1 (4)	C10D—C9D—C13D—C14D	-141(3)
01—N1—C1—O2	-1.9(12)	C8—C9D—C13D—C14D	72 (3)
$Mn1^{i}$ N1 - C1 - O2	170.1 (7)	C9D—C13D—C14D—C15D	89 (3)
01 - N1 - C1 - C2	179.9 (6)	Mn1B-O1B-N1B-C1B	5(12)
$Mn1^i N1 C1 C2$	-82(14)	Na1 - O1B - N1B - C1B	-117(9)
$0^{2}-C^{1}-C^{2}-C^{3}$	122(9)	Dv1-O1B-N1B-C1B	143(7)
$N_1 - C_1 - C_2 - C_3$	-1695(8)	$Mn1B-O1B-N1B-Mn1B^{ii}$	173(7)
$0^{2}-0^{1}-0^{2}-0^{7}$	-167.2(6)	Na1 $(1B)$ (1B) N1B $(1B)$	51 (9)
$N_1 - C_1 - C_2 - C_7$	107.2(0)	$Dv1-O1B-N1B-Mn1B^{ii}$	-50(10)
$C_{7}^{-}C_{2}^{-}C_{3}^{-}C_{4}^{-}$	22(11)	$M_{n1B} = O_{2B} = C_{1B} = N_{1B}$	-2(9)
$C_1 - C_2 - C_3 - C_4$	-1773(7)	Mn1B-O2B-C1B-C2B	-178(2)
$C_1 = C_2 = C_3 = C_4$	-10(12)	OIB NIB CIB O2B	-2(14)
$C_2 - C_3 - C_4 - C_5$	1.0(12)	$M_{n} 1 R^{ii} N 1 R C 1 R O 2 R$	-167(8)
$C_{3} - C_{4} - C_{5} - C_{6}$	-0.4(12)	$\begin{array}{c} \text{MIIID} \longrightarrow \text{CID} \longrightarrow \text{CID} \longrightarrow \text{CID} \\ \text{OIP} & \text{NIP} & \text{CIP} & \text{C2P} \\ \end{array}$	173 (6)
$M_{p1i} = 02 = 07 = 06$	0.4(12)	$M_{n}1D^{ii}$ N1D C1D C2D	$\frac{1}{5}(0)$
$Mn1^{i} = 03 = 07 = 02$	-17.1(10)	$\begin{array}{c} \text{MIIID} \longrightarrow \text{CID} \longrightarrow \text{CID} \longrightarrow \text{CID} \\ \text{O2P} & \text{CIP} & \text{C2P} & \text{C3P} \\ \end{array}$	-3(4)
-03-07-02	17.1(10) 177.8(7)	$N_{1D} = C_{1D} = C_{2D} = C_{3D}$	-170(8)
$C_{5} = C_{6} = C_{7} = C_{3}$	1/7.0(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179(0) 175(5)
$C_{3} = C_{2} = C_{7} = C_{2}$	1.3(11) 178 4 (6)	$\begin{array}{c} 02B \\ \hline \\ 01D \\ \hline \\ 02D \\ 02D \\ \hline \\ 02D \\ \hline \\ 02D \\ 02D \\ \hline 02D \\ \hline \\ 02D \\ 02D \\ \hline 02D \\ 02D \\ \hline 02D \\ 02D$	1/3(3)
$C_{3} = C_{2} = C_{7} = O_{3}$	-1/8.4(0)	NIB - CIB - C2B - C7B	0(8)
$C_1 = C_2 = C_1 = C_3$	1.0(10)	$C/B = C_2B = C_3B = C_4B$	1(3)
$C_3 = C_2 = C_7 = C_6$	-2.4(10)	C1B - C2B - C3B - C4B	180(3)
$C_1 = C_2 = C_1 = C_6$	1/7.0(6)	$C_{2B} = C_{3B} = C_{4B} = C_{5B}$	1(5)
Min1-05-08-04	22.3 (14)		0(7)
Mn1-05-08-090	-158.7 (11)	C4B—C5B—C6B—C/B	-3(7)
Mn1-05-08-09	-161.6 (12)	$MnIB^{n} - O3B - C/B - C6B$	-180(3)
Mn1-05-C8-C9D	-145.4 (13)	$Mn1B^{\mu} - O3B - C/B - C2B$	4(7)
Dy1-04-C8-05	12.0 (18)	C5B—C6B—C7B—O3B	-1/2(5)
Dy1-04-C8-C9C	-166.8 (12)	C5B—C6B—C/B—C2B	5 (6)
Dy1-04-C8-C9	-164.6 (11)	C3B—C2B—C7B—O3B	172 (5)
Dy1-04-C8-C9D	-179.9 (12)	C1B—C2B—C7B—O3B	-6 (5)
O5—C8—C9—C13	-84 (2)	C3B—C2B—C7B—C6B	-4 (4)
O4—C8—C9—C13	92 (2)	C1B—C2B—C7B—C6B	178 (3)
O5—C8—C9—C10	55 (2)	Dy1	-22 (5)
O4—C8—C9—C10	-128.2 (18)	Dy1—O4B—C8B—C9B	158 (4)
C13—C9—C10—C11	-168 (3)	O5B—C8B—C9B—C13B	178 (4)
C8—C9—C10—C11	56 (4)	O4B—C8B—C9B—C13B	-3 (4)
C9—C10—C11—C12	174 (3)	O5B—C8B—C9B—C10B	43 (5)
C10—C9—C13—C14	82 (3)	O4B—C8B—C9B—C10B	-137 (4)
C8—C9—C13—C14	-146 (2)	C13B—C9B—C10B—C11B	174 (7)
C9—C13—C14—C15	90 (3)	C8B—C9B—C10B—C11B	-57 (8)
O5—C8—C9C—C13C	-58 (3)	C9B—C10B—C11B—C12B	148 (7)
O4—C8—C9C—C13C	121 (2)	C10B—C9B—C13B—C14B	25 (8)
O5—C8—C9C—C10C	121 (2)	C8B—C9B—C13B—C14B	-102 (6)

O4—C8—C9C—C10C	-60 (3)	C9B—C13B—C14B—C15B	160 (6)
C13C—C9C—C10C—C11C	148 (4)	O7—C16—N2—C17	-173 (3)
C8—C9C—C10C—C11C	-31 (4)	O7—C16—N2—C18	0 (4)
C9C—C10C—C11C—C12C	-131 (4)	O7B—C16B—N2B—C18B	-22 (11)
C10C—C9C—C13C—C14C	108 (4)	O7B—C16B—N2B—C17B	-172 (9)
C8—C9C—C13C—C14C	-74 (3)	O7C—C16C—N2C—C18C	13 (5)
C9C—C13C—C14C—C15C	-20 (3)	O7C—C16C—N2C—C17C	-169 (4)

Symmetry codes: (i) y, -x+1/2, z; (ii) -y+1/2, x, z; (iii) -x+1/2, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
06—H6A…O7	0.86 (2)	2.02 (2)	2.860 (15)	165 (5)
O6—H6 <i>E</i> ···O7 ⁱⁱ	0.83 (2)	1.99 (2)	2.809 (19)	167 (5)
О6 <i>В</i> —Н6 <i>С</i> ···О7 <i>В</i> ^{іі}	0.84 (2)	2.00 (2)	2.80 (3)	159 (10)
O6 <i>B</i> —H6 <i>D</i> ···O7 <i>B</i>	0.85 (2)	2.01 (2)	2.859 (19)	177 (10)

Symmetry code: (ii) -y+1/2, x, z.