

Crystal structure of 2-(2,2,6,6-tetramethylpiperidin-4-yl)-6-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]-1*H*-benz[*d*e]isoquinoline-1.3(2*H*)-dione

Alicia A. Pollock,^a Holly A. Huther,^a Cole M. Birch,^a Eric W. Reinheimer,^b David E. Lewis^a and Deidra L. Gerlach^a*

^aDepartment of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Ave, Eau Claire, WI, 54702, USA, and ^bRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX, 77381, USA. *Correspondence e-mail: gerlacdl@uwec.edu

The structure of the title compound, $C_{30}H_{42}N_4O_2$, has orthorhombic (*Pbca*) symmetry. This compound comprises a 4-amino-1,8-naphthalimide core with a 2,2,6,6-tetramethyl-4-piperidinyl substituent bonded to each nitrogen atom. The structure displays $N-H\cdots O$ hydrogen bonding. The structure exhibits disorder of the main molecule.

1. Chemical context

The 4-amino-1,8-naphthalimide [6-amino-1H-benz[de]-isoquinoline-1,3-(2H)-dione, 1] fluorophore has long been recognized as a robust scaffold on which to build fluorescent labels for a wide range of applications. The fluorophore has many desirable properties: (i) unless substituted by a halogen at the 3- position, it is essentially non-toxic to cells, and when substituted by bromine at the 3- position it is highly effective for photochemical inactivation of enveloped viruses such as HIV-1 (Lewis et al., 1993; Chang et al., 1993; Chanh et al., 1993, 1994); (ii) it has a high quantum vield; (iii) it has a large (typically >100 nm) Stokes shift, which permits its use in fluorescence microscopy with minimal interference from scattering of the excitation radiation (Qian et al., 2010; Srikun et al., 2008); (iv) it is resistant to quenching, including by paramagnetic metal ions such as Cu²⁺ (Mitchell et al., 1998; Veale et al., 2009; Lupo et al., 2010; Wang et al., 2011); (v) it is highly resistant to photochemical bleaching (Sakayori et al., 2005; Bojinov et al., 2009); (vi) its optimal excitation is in the visible, rather than the ultraviolet region; (vii) it is easy to manipulate synthetically, thus allowing a very wide range of reporter ligands to be incorporated into the fluorescent probe (Chang et al., 1999; Zhu et al., 2010; Zheng et al., 2012).

Typically, the groups attached to the aminonaphthalimide fluorophore have been small, allowing relatively easy access of the surroundings to the fluorophore. We have been interested in the synthesis and properties of this fluorophore substituted by sterically hindered groups. One such molecule, 2-(2,2,6,6-tetramethyl-4-piperidinyl)-6-[(2,2,6,6-tetramethyl-4-piperidinyl)-6-[(2,2,6,6-tetramethyl-4-piperidinyl)-amino]-1*H*-benz[*de*]isoquinoline-1,3(2*H*)-dione (designated herein as bis-TMP naphthalimide), was designed, and synthesized by the two-stage reaction between 4-nitro-1,8-naphthalic anhydride and 4-amino-2,2,6,6-tetramethyl-piperidine in ethanol then DMF; it was previously reported as a photostable detector for transition-metal cation pollution in

Received 7 October 2022 Accepted 26 October 2022

Edited by J. T. Mague, Tulane University, USA

Keywords: crystal structure; fluorescent dye; sensors; naphthalimide.

CCDC reference: 2215550

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

the environment through electron transfer between fluorophore and receptor moieties (Grabchev *et al.*, 2004; Bojinov *et al.*, 2009). In our synthesis, the same compound was obtained by the solvent-free condensation of 4-chloro-1,8-naphthalic anhydride and 4-amino-2,2,6,6-tetramethylpiperidine by fusion of the reaction mixture. The crystal structure of bis-TMP naphthalimide is reported here (Fig. 1).

2. Structural commentary

Evidence of two major resonance contributors to the structure of this *bis*-TMP naphthalimide is provided by the N2-C5 and C1-C2 bond lengths. Direct comparison of the C-N bond lengths of the amine/imide clearly highlight the shortened N2-C5 bond at 1.357 (2) Å compared to the longer N2-C1A bond at 1.460 (2) Å, consistent with greater double-bond character of the former. Likewise, direct comparison of the length of the C1–C2 bond at 1.455 (2) Å with the length of the corresponding C12-C10 bond at 1.473 (2) Å is also consistent with greater double-bond character due to resonance of the network along the O1 side of the napthalimide (see Fig. 2). The sole comparison of the bond length of C1-O1 and C12-O2 at 1.233 (2) and 1.224 (2) Å, respectively, indicates a subtle variation in length that reinforces the evidence of resonance in the naphthalimide core increasing the single-bond character of C1-O1 and lengthening it. However, as seen in the discussion of supramolecular features, O1 is also involved in intermolecular hydrogen bonding, which may be a greater contributing factor to reducing the C1-O1 bond order.

3. Supramolecular features

Hydrogen bonding between adjacent molecules repeats in the direction of the *b*-axis with a typical donor-to-acceptor distance of 3.013 (2) Å for N2-H2···O1 and a D-H···A angle of 165° (Fig. 3, Table 1). Adjacent hydrogen-bonded molecules are rotated by 69.76° with respect to the plane defined by the three fused rings making up the 1*H*-benz[*de*]isoquinoline-1,3(2*H*)-dione (or naphthalimide) core

Figure 1

The asymmetric unit of *bis*-TMP naphthalamide represented with displacement ellipsoids at the 50% probability level and disordered TMP omitted for clarity.

in each molecule. While O1 forms a standard hydrogen bond with N2–H2, O2 has close contact with C9–H9 across an inversion center along the path of the *c*-axis such that two close contacts are in parallel with a C9–H9···O2 distance of 3.203 (2) Å and C9–H9···O2 angle of 128°. This relatively close distance and obtuse angle implies that the C9 edge of the fused-ring system carries a significant partial positive charge while O2 carries a significant partial negative charge, resulting in a van der Waals interaction mimicking a hydrogen bond (Arunan *et al.*, 2011).

Important resonance contributors to the structure of the *bis*-TMP naphthalimide molecule.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N2 {-} H2 {\cdot} {\cdot} {\cdot} O1^{i} \\ C9 {-} H9 {\cdot} {\cdot} {\cdot} O2^{ii} \end{array}$	0.86	2.17	3.0134 (18)	165
	0.93	2.54	3.203 (2)	128

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (ii) -x + 1, -y + 1, -z + 1.

These hydrogen bonds and close dipole attractions organize the naphthalimide cores into sheets parallel to the *bc* plane. The packing along the *a*-axis direction is defined by spatial accommodation of the two bulky TMP moieties of each molecule. It is the steric bulk of these groups that prevents any appreciable π -stacking of the naphthalimide cores. Some Tshaped π -stacking is observed by the C2, C3, C4, C5, C6, C11 edge of the *A*-ring of the naphthalimide ring system to the C7 and C8 edge of the *B*-ring of an adjacent naphthalimide ring system. The distances measured from the centroid of the *A*ring of the first naphthalimide ring system and atoms C7 and C8 of the *B*-ring of the second naphthalimide system are 4.968 and 5.081 Å, respectively.

4. Database survey

The Cambridge Structural Database (CSD, version 5.42, update of 11/20; Groom *et al.*, 2016) contains many unique 1,8-derivatives of 1*H*-benz[de]isoquinoline-1,3(2*H*)-dione but no examples that contain TMP moieties. A search for $C_{30}H_{42}N_4O_2$ in the database provided seven hits, none of which were the same molecule reported here.

5. Synthesis and crystallization

The title compound was synthesized according to the previously published procedure (Bojinov *et al.*, 2009) and clear, orange rod-like crystals were grown from slow evaporation of an acetone solution.

Figure 3

Intermolecular N2-H2 \cdots O1 hydrogen bonds linking adjacent molecules are shown as magenta dashed lines (hydrogen atoms and disordered TMP moiety are omitted for clarity).

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{30}H_{42}N_4O_2$
M _r	490.67
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	293
a, b, c (Å)	12.0297 (7), 14.6357 (7), 32.763 (2)
$V(Å^3)$	5768.4 (6)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.07
Crystal size (mm)	$0.56 \times 0.27 \times 0.18$
Data collection	
Diffractometer	XtaLAB Mini II
Absorption correction	Analytical [<i>CrysAlis PRO</i> ; Rigaku OD, 2022; analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
T_{\min}, T_{\max}	0.962, 0.990
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	80396, 5164, 3812
R _{int}	0.031
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.598
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.142, 1.02
No. of reflections	5164
No. of parameters	428
No. of restraints	156
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.25, -0.15

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Disorder of the tetramethylpiperidine (TMP) moiety defined by N3 was refined in two conformations with sufficient restraints and constraints to maintain the typical geometry of the TMP moiety. The disordered components had their ratios set to 0.61 and 0.39. No standard uncertainties are reported as the occupancy ratios were fixed. The reported ratios are the fixed percentages that yielded the best structural model as judged by *RI*, *wR*2, and resolution of any residual electron density. H atoms attached to carbon and nitrogen were positioned geometrically (N-H = 0.86 Å, C-H = 0.93-0.97 Å) and constrained to ride on their parent atoms. $U_{iso}(H)$ values were set to a multiple of $U_{eq}(C)$ [1.2 for CH (*sp*), CH₂ (*sp*²), and NH (*sp*²) and 1.5 for CH₃ (*sp*³)].

Acknowledgements

The authors acknowledge the University of Wisconsin – Eau Claire for the space provided to perform the research.

Funding information

Funding for this research was provided by: University of Wisconsin-Eau Claire Office of Research and Sponsored

Programs; National Science Foundation, Major Research Instrumentation (grant No. 2018561).

References

- Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637–1641.
- Bojinov, V. B., Georgiev, N. I. & Bosch, P. (2009). J. Fluoresc. 19, 127– 139.
- Chang, S.-C., Archer, B. J., Utecht, R. E., Lewis, D. E., Judy, M. M. & Matthews, J. L. (1993). *Bioorg. Med. Chem. Lett.* **3**, 555–556.
- Chang, S.-C., Utecht, R. E. & Lewis, D. E. (1999). Dyes Pigments, 43, 83–94.
- Chanh, T. C., Lewis, D. E., Allan, J. S., Sogandares-Bernal, F., Judy, M. M., Utecht, R. E. & Matthews, J. L. (1993). AIDS Res. Hum. Retroviruses, 9, 891–896.
- Chanh, T. C., Lewis, D. E., Judy, M. M., Sogandares-Bernal, F., Michalek, G. R., Utecht, R. E., Skiles, H., Chang, S.-C. & Matthews, J. L. (1994). Antivir. Res. 25, 133–146.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Grabchev, I., Soumillion, J. P., Muls, B. & Ivanova, G. (2004). *Photochem. Photobiol. Sci.* **3**, 1032–1037.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lewis, D. E., Utecht, R. E., Judy, M. M., Matthews, J. L. & Chanh, T. C. (1993). Spectrum, 6, 8–14.
- Lupo, F., Gentile, S., Ballistreri, F. P., Tomaselli, G. A., Fragalà, M. E. & Gulino, A. (2010). *Analyst*, **135**, 2273–2279.
- Mitchell, K. A., Brown, R. G., Yuan, D., Chang, S.-C., Utecht, R. E. & Lewis, D. E. (1998). J. Photochem. Photobiol. Chem. 115, 157–161.
- Qian, X., Yi, X., Xu, Y., Guo, X., Qian, J. & Zhu, W. (2010). Chem. Commun. 46, 35, 6418–6436.
- Rigaku OD (2022). CrysAlis PRO . Rigaku Oxford Diffraction, Yarnton, England.
- Sakayori, K., Shibasaki, Y. & Ueda, M. (2005). J. Polym. Sci. A Polym. Chem. 43, 5571–5580.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Srikun, D., Miller, E. W., Domaille, D. W. & Chang, C. J. (2008). J. Am. Chem. Soc. 130, 4596–4597.
- Veale, E. B., Tocci, G. M., Pfeffer, F. M., Kruger, P. E. & Gunnlaugsson, T. (2009). Org. Biomol. Chem. 7, 3447–3454.
- Wang, H., Wu, H., Xue, L., Shi, Y. & Li, X. (2011). Org. Biomol. Chem. 9, 5436–5444.
- Zheng, S., Lynch, P. L. M., Rice, T. E., Moody, T. S., Gunaratne, H. Q. N. & de Silva, A. P. (2012). *Photochem. Photobiol. Sci.* 11, 1675– 1681.
- Zhu, B. C., Zhang, X. L., Li, Y., Wang, P. F., Zhang, H. Y. & Zhuang, X. Q. (2010). Chem. Commun. 46, 5710–5712.

Acta Cryst. (2022). E78, 1161-1164 [https://doi.org/10.1107/S2056989022010374]

Crystal structure of 2-(2,2,6,6-tetramethylpiperidin-4-yl)-6-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]-1*H*-benz[*de*]isoquinoline-1,3(2*H*)-dione

Alicia A. Pollock, Holly A. Huther, Cole M. Birch, Eric W. Reinheimer, David E. Lewis and Deidra L. Gerlach

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2022); cell refinement: *CrysAlis PRO* (Rigaku OD, 2022); data reduction: *CrysAlis PRO* (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

2-(2,2,6,6-Tetramethylpiperidin-4-yl)-6-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]-1*H*-benz[*de*]isoquinoline-1,3(2*H*)-dione

Crystal data $C_{30}H_{42}N_4O_2$ $M_r = 490.67$ Orthorhombic, Pbca a = 12.0297 (7) Åb = 14.6357(7) Å c = 32.763 (2) ÅV = 5768.4 (6) Å³ Z = 8F(000) = 2128Data collection XtaLAB Mini II diffractometer Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: analytical

[CrysAlisPro; Rigaku OD, 2022; analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.142$ S = 1.025164 reflections $D_x = 1.130 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6091 reflections $\theta = 2.1-23.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KNeedle, orange $0.56 \times 0.27 \times 0.18 \text{ mm}$

 $T_{\min} = 0.962, T_{\max} = 0.990$ 80396 measured reflections 5164 independent reflections 3812 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$ $\theta_{\text{max}} = 25.2^{\circ}, \theta_{\text{min}} = 2.1^{\circ}$ $h = -14 \rightarrow 14$ $k = -17 \rightarrow 16$ $l = -39 \rightarrow 39$

428 parameters156 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0686P)^{2} + 1.5942P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Extinction correction: SHELXL-2016/6 (Sheldrick 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0014 (3)

Experimental. A clear, orange rod-like crystal of $C_{30}H_{42}N_4O_2$ was grown from slow evaporation of acetone. The crystal of dimensions 0.178 x 0.265 x 0.563 mm was mounted on MiTeGen loop with Parabar oil and diffraction data was collected. Diffraction data was collected with a Rigaku XtaLAB Mini II benchtop X-ray diffractometer with a fine-focus sealed Mo-target X-ray tube ($\lambda = 0.71073$ Å) operated at 600 W power (50 kV, 12 mA) and a HyPix-Bantam Hybrid Photon Counting (HPC) Detector. The X-ray intensities were measured at 293 (2) K; the detector was placed at a distance 4.50 cm from the crystal. The collected frames were integrated with the CrysAlisPro 1.171.41.89a (Rigaku Oxford Diffraction, 2022) software package using a narrow-frame algorithm. Data were corrected for absorption effects using a multifaceted crystal analytical numeric absorption correction (Clark & Reid, 1995) and spherical harmonic empirical absorption correction implemented in the SCALE3 ABSPACK scaling algorithm. With the use of a Mo fine focus beam, both standard multi-scan and combined multi-scan/analytical absorption corrections yielding similar results, and the linear absorption coefficient of 0.071 it was surmised that shape anisotropy had negligible influence on absorption and the crystal analyzed showed the highest quality. The space group was assigned using the GRAL algorithm within the CrysAlisPro 1.171.41.89a software package, solved with ShelXT (Sheldrick, 2015a) and refined with ShelXL (Sheldrick, 2015b) and the graphical interface Olex2 v1.3 (Dolomanov *et al.*, 2009). The asymmetric unit includes one unit of the $C_{30}H_{42}N_4O_2$ molecule. All non-hydrogen atoms were refined anisotropically.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	v	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.54190 (10)	0.79035 (8)	0.63165 (4)	0.0600 (4)	
N1	0.48104 (11)	0.68697 (9)	0.58470 (4)	0.0497 (4)	
O2	0.42262 (12)	0.58100 (10)	0.53855 (4)	0.0785 (5)	
N2	0.90392 (13)	0.47902 (10)	0.66263 (5)	0.0620 (4)	
H2	0.908310	0.426096	0.651341	0.074*	
C11	0.65878 (13)	0.56849 (10)	0.60677 (4)	0.0385 (4)	
C2	0.64762 (13)	0.65558 (10)	0.62532 (5)	0.0419 (4)	
C6	0.74695 (14)	0.50901 (11)	0.61780 (5)	0.0429 (4)	
N1′	1.18903 (15)	0.50136 (12)	0.73813 (6)	0.0739 (5)	
C1	0.55558 (14)	0.71571 (11)	0.61494 (5)	0.0450 (4)	
C10	0.58162 (13)	0.54143 (11)	0.57671 (5)	0.0427 (4)	
C5	0.82443 (14)	0.53746 (11)	0.64913 (5)	0.0484 (4)	
C12	0.48992 (14)	0.60266 (12)	0.56483 (5)	0.0501 (4)	
C3	0.72623 (15)	0.68194 (11)	0.65358 (5)	0.0512 (4)	
Н3	0.720899	0.739710	0.665246	0.061*	
C4	0.81258 (15)	0.62551 (12)	0.66515 (6)	0.0562 (5)	
H4	0.864195	0.646555	0.684079	0.067*	
C7	0.75413 (16)	0.42440 (12)	0.59757 (6)	0.0559 (5)	
H7	0.810881	0.384085	0.604437	0.067*	
С9	0.59299 (16)	0.45839 (12)	0.55745 (5)	0.0555 (5)	
Н9	0.542658	0.441241	0.537315	0.067*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C1A	0.98242 (15)	0.50075 (12)	0.69519 (6)	0.0561 (5)	
H1A	0.943213	0.536848	0.715863	0.067*	
C1B′	0.386 (3)	0.7491 (18)	0.5753 (6)	0.0582 (9)	0.39
C8	0.67939 (17)	0.40020 (13)	0.56801 (6)	0.0638 (5)	
H8	0.686560	0.344196	0.554862	0.077*	
C5A	1.02551 (18)	0.41457 (13)	0.71540 (7)	0.0674 (6)	
H5AA	1.065081	0.378156	0.695379	0.081*	
H5AB	0.963128	0.378804	0.725231	0.081*	
C2A	1.08065 (17)	0.55632 (14)	0.68009 (7)	0.0682 (6)	
H2AA	1.053570	0.610657	0.666361	0.082*	
H2AB	1.122249	0.520536	0.660405	0.082*	
C4A	1.10345 (18)	0.43604 (13)	0.75119 (7)	0.0688 (6)	
C3A	1.15818 (17)	0.58465 (14)	0.71509 (7)	0.0708 (6)	
C6A	1.1047 (2)	0.65994 (15)	0.74091 (8)	0.0918 (8)	
НбАА	1.032065	0.640762	0.749458	0.138*	
H6AB	1.098644	0.714763	0.724982	0.138*	
H6AC	1.150006	0.671495	0.764482	0.138*	
C8A	1,1671 (2)	0.34944 (16)	0.76296 (10)	0.1126 (11)	
Н8АА	1.209770	0.328589	0.740009	0.169*	
H8AB	1.115442	0.302784	0.770945	0.169*	
H8AC	1.216185	0.362631	0.785316	0.169*	
C16B	0.3244 (8)	0.8717 (5)	0.5282 (2)	0.0769 (8)	0.39
C9A	1.0374 (2)	0.4680 (2)	0.78833 (8)	0.1004 (8)	
Н9АА	1.087714	0.484540	0.809835	0.151*	
Н9АВ	0.989720	0.419561	0.797492	0.151*	
H9AC	0.993090	0.520090	0.781022	0.151*	
C7A	1.2668 (2)	0.6219 (2)	0.69801 (10)	0.1129 (10)	
H7AA	1.316345	0.636092	0.720086	0.169*	
H7AB	1.252150	0.676229	0.682504	0.169*	
H7AC	1.300436	0.576826	0.680659	0.169*	
C15B	0.1852 (5)	0.7834 (5)	0.5713 (3)	0.0908 (19)	0.39
C13B	0.4103 (6)	0.7963 (5)	0.5371 (2)	0.0734 (15)	0.39
H13A	0.410160	0.752463	0.514920	0.088*	0.39
H13B	0.483811	0.823225	0.538643	0.088*	0.39
C14B	0.2731 (4)	0.7072 (4)	0.5771 (2)	0.0772 (14)	0.39
H14A	0.262301	0.677489	0.603306	0.093*	0.39
H14B	0.265368	0.661575	0.555842	0.093*	0.39
C17B	0.1659 (9)	0.8375 (7)	0.6110 (3)	0.120 (3)	0.39
H17A	0.137450	0.797248	0.631645	0.180*	0.39
H17B	0.113354	0.885591	0.606075	0.180*	0.39
H17C	0.235004	0.863374	0.620072	0.180*	0.39
C18B	0.0732 (6)	0.7362 (7)	0.5625 (4)	0.127 (3)	0.39
H18A	0.081066	0.696025	0.539565	0.191*	0.39
H18B	0.017887	0.781617	0.556578	0.191*	0.39
H18C	0.050719	0.701631	0.586031	0.191*	0.39
C1A'	0.3888 (17)	0.7484 (11)	0.5710 (4)	0.0582 (8)	0.61
H1A'	0.352130	0.716321	0.548459	0.070*	0.61
C14A	0.3019 (3)	0.7590 (3)	0.60353 (11)	0.0649 (8)	0.61

H14C	0.334600	0.790061	0.626759	0.078*	0.61
H14D	0.278571	0.698843	0.612531	0.078*	0.61
C15A	0.1991 (3)	0.8127 (3)	0.58943 (13)	0.0769 (8)	0.61
C18A	0.1236 (5)	0.7516 (4)	0.5629 (2)	0.116 (2)	0.61
H18D	0.166708	0.724795	0.541377	0.174*	0.61
H18E	0.065057	0.787957	0.551396	0.174*	0.61
H18F	0.092089	0.704175	0.579508	0.174*	0.61
C17A	0.1309 (6)	0.8422 (5)	0.62700 (18)	0.1162 (19)	0.61
H17D	0.107125	0.788960	0.641754	0.174*	0.61
H17E	0.066979	0.876227	0.618248	0.174*	0.61
H17F	0.176017	0.879688	0.644407	0.174*	0.61
N3A	0.2379 (3)	0.8959 (2)	0.56933 (10)	0.0702 (7)	0.61
C19A	0.3559 (5)	0.9944 (3)	0.5302 (2)	0.151 (3)	0.61
H19A	0.293617	1.027895	0.519594	0.227*	0.61
H19B	0.415350	0.995374	0.510615	0.227*	0.61
H19C	0.380507	1.022024	0.555158	0.227*	0.61
C13A	0.4234 (3)	0.8408 (3)	0.55399 (13)	0.0711 (10)	0.61
H13C	0.475435	0.831970	0.531738	0.085*	0.61
H13D	0.460498	0.875789	0.575132	0.085*	0.61
C20A	0.2847 (6)	0.8554 (5)	0.49672 (15)	0.153 (4)	0.61
H20A	0.342869	0.864610	0.477088	0.229*	0.61
H20B	0.218459	0.885891	0.487692	0.229*	0.61
H20C	0.270180	0.791181	0.499477	0.229*	0.61
N3B	0.2136 (4)	0.8350 (4)	0.53552 (19)	0.0963 (15)	0.39
H3B	0.163899	0.875434	0.530133	0.116*	0.39
C19B	0.3506 (7)	0.9570 (5)	0.5541 (3)	0.126 (3)	0.39
H19D	0.375302	0.938363	0.580689	0.189*	0.39
H19E	0.284770	0.993621	0.556705	0.189*	0.39
H19F	0.407880	0.991982	0.541031	0.189*	0.39
C20B	0.3297 (13)	0.8977 (11)	0.4826 (3)	0.176 (7)	0.39
H20D	0.303123	0.847607	0.466422	0.264*	0.39
H20E	0.405137	0.911249	0.475269	0.264*	0.39
H20F	0.284057	0.950434	0.477849	0.264*	0.39
H1′	1.230 (3)	0.513 (2)	0.7596 (10)	0.156 (13)*	
H1B′	0.388 (4)	0.792 (2)	0.5982 (8)	0.049 (12)*	0.39
C16A	0.3210 (5)	0.8948 (3)	0.53838 (14)	0.0769 (8)	0.61
H3A	0.189 (3)	0.932 (3)	0.5619 (12)	0.088 (13)*	0.61

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0614 (8)	0.0420 (7)	0.0765 (9)	0.0064 (6)	-0.0148 (7)	-0.0154 (6)
N1	0.0488 (8)	0.0465 (8)	0.0539 (8)	0.0030 (6)	-0.0119 (7)	-0.0058 (6)
O2	0.0732 (9)	0.0864 (10)	0.0759 (9)	0.0147 (8)	-0.0352 (8)	-0.0298 (8)
N2	0.0676 (10)	0.0485 (9)	0.0699 (10)	0.0146 (8)	-0.0251 (8)	-0.0177 (7)
C11	0.0439 (8)	0.0363 (8)	0.0354 (8)	-0.0046 (7)	0.0012 (7)	-0.0020 (6)
C2	0.0484 (9)	0.0368 (8)	0.0404 (8)	-0.0024 (7)	-0.0042 (7)	-0.0036 (7)
C6	0.0479 (9)	0.0378 (8)	0.0429 (8)	-0.0026 (7)	-0.0020 (7)	-0.0046 (7)

N1′	0.0624 (11)	0.0655 (11)	0.0938 (14)	0.0067 (9)	-0.0289 (10)	0.0072 (10)
C1	0.0480 (9)	0.0388 (9)	0.0482 (9)	-0.0044 (7)	-0.0034 (7)	-0.0014 (7)
C10	0.0447 (9)	0.0440 (9)	0.0394 (8)	-0.0058 (7)	-0.0012 (7)	-0.0042 (7)
C5	0.0519 (10)	0.0437 (9)	0.0495 (9)	0.0029 (8)	-0.0095 (8)	-0.0054 (7)
C12	0.0496 (10)	0.0556 (11)	0.0450 (9)	-0.0036 (8)	-0.0068 (8)	-0.0067 (8)
C3	0.0619 (11)	0.0366 (9)	0.0550 (10)	0.0025 (8)	-0.0139 (9)	-0.0114 (7)
C4	0.0609 (11)	0.0471 (10)	0.0604 (11)	0.0038 (9)	-0.0230 (9)	-0.0145 (8)
C7	0.0611 (11)	0.0445 (10)	0.0622 (11)	0.0063 (8)	-0.0090 (9)	-0.0120 (8)
C9	0.0588 (11)	0.0535 (10)	0.0543 (10)	-0.0052 (9)	-0.0117 (9)	-0.0155 (8)
C1A	0.0568 (11)	0.0509 (10)	0.0607 (11)	0.0090 (9)	-0.0184 (9)	-0.0078 (8)
C1B'	0.0549 (12)	0.0563 (13)	0.064 (2)	0.0103 (11)	-0.0130 (18)	-0.0010 (15)
C8	0.0727 (13)	0.0472 (10)	0.0716 (12)	0.0049 (9)	-0.0137 (10)	-0.0236 (9)
C5A	0.0678 (12)	0.0518 (11)	0.0825 (14)	0.0083 (10)	-0.0217 (11)	-0.0027 (10)
C2A	0.0664 (13)	0.0653 (13)	0.0730 (13)	0.0063 (10)	-0.0119 (11)	0.0037 (10)
C4A	0.0690 (13)	0.0555 (11)	0.0817 (14)	0.0073 (10)	-0.0262 (11)	0.0087 (10)
C3A	0.0605 (12)	0.0657 (13)	0.0863 (15)	-0.0003 (10)	-0.0237 (11)	0.0095 (11)
C6A	0.1029 (18)	0.0602 (13)	0.1121 (19)	0.0030 (13)	-0.0456 (16)	-0.0121 (13)
C8A	0.110 (2)	0.0690 (15)	0.159 (3)	0.0135 (14)	-0.060 (2)	0.0283 (16)
C16B	0.0726 (11)	0.0780 (18)	0.0800 (19)	0.0214 (12)	-0.0034 (12)	0.0157 (13)
C9A	0.106 (2)	0.121 (2)	0.0738 (16)	-0.0005 (17)	-0.0189 (15)	0.0094 (15)
C7A	0.0765 (17)	0.112 (2)	0.150 (3)	-0.0180 (16)	-0.0271 (17)	0.030 (2)
C15B	0.053 (2)	0.098 (5)	0.122 (5)	0.019 (2)	-0.007 (3)	0.023 (3)
C13B	0.065 (3)	0.073 (3)	0.082 (4)	0.008 (3)	-0.014 (3)	0.020 (3)
C14B	0.057 (2)	0.076 (3)	0.099 (4)	0.0080 (19)	-0.009 (3)	0.015 (3)
C17B	0.100 (8)	0.127 (6)	0.133 (5)	0.051 (5)	-0.005 (5)	0.008 (5)
C18B	0.055 (3)	0.124 (6)	0.202 (9)	0.009 (3)	-0.014 (5)	0.023 (5)
C1A'	0.0548 (11)	0.0563 (12)	0.063 (2)	0.0096 (10)	-0.0128 (17)	-0.0008 (15)
C14A	0.0532 (16)	0.064 (2)	0.077 (2)	0.0032 (14)	-0.0037 (14)	0.0146 (16)
C15A	0.0726 (11)	0.0780 (18)	0.0800 (19)	0.0214 (12)	-0.0034 (12)	0.0157 (13)
C18A	0.055 (3)	0.096 (3)	0.197 (5)	0.013 (2)	-0.036 (3)	-0.006 (3)
C17A	0.085 (4)	0.145 (5)	0.119 (3)	0.039 (3)	0.034 (3)	0.028 (3)
N3A	0.0652 (16)	0.0639 (16)	0.0816 (19)	0.0207 (13)	-0.0055 (13)	0.0049 (13)
C19A	0.121 (4)	0.102 (3)	0.232 (8)	0.032 (3)	0.033 (4)	0.100 (4)
C13A	0.069 (2)	0.068 (2)	0.076 (3)	0.0194 (18)	0.0102 (19)	0.0203 (18)
C20A	0.185 (8)	0.215 (8)	0.058 (3)	0.123 (7)	-0.019 (4)	0.017 (4)
N3B	0.0698 (19)	0.099 (4)	0.120 (4)	0.013 (2)	-0.030(2)	0.030 (3)
C19B	0.101 (5)	0.087 (4)	0.191 (8)	0.023 (4)	-0.042 (6)	-0.015 (4)
C20B	0.192 (13)	0.214 (14)	0.121 (9)	0.030 (10)	-0.032 (9)	0.098 (9)
C16A	0.0726 (11)	0.0780 (18)	0.0800 (19)	0.0214 (12)	-0.0034 (12)	0.0157 (13)

Geometric parameters (Å, °)

01—C1	1.2328 (19)	С9А—Н9АА	0.9600	
N1—C1	1.401 (2)	С9А—Н9АВ	0.9600	
N1—C12	1.399 (2)	С9А—Н9АС	0.9600	
N1—C1B′	1.49 (3)	С7А—Н7АА	0.9600	
N1—C1A′	1.497 (19)	C7A—H7AB	0.9600	
O2—C12	1.224 (2)	С7А—Н7АС	0.9600	

N2—H2	0.8600	C15B—C14B	1.549 (9)
N2—C5	1.357 (2)	C15B—C17B	1.542 (3)
N2—C1A	1.460 (2)	C15B—C18B	1.542 (3)
C11—C2	1.418 (2)	C15B—N3B	1.434 (9)
C11—C6	1.419 (2)	C13B—H13A	0.9700
C11—C10	1.410 (2)	C13B—H13B	0.9700
C2—C1	1.455 (2)	C14B—H14A	0.9700
C2—C3	1.379 (2)	C14B—H14B	0.9700
C6—C5	1.448 (2)	C17B—H17A	0.9600
C6—C7	1.407 (2)	C17B—H17B	0.9600
N1′—C4A	1.469 (3)	C17B—H17C	0.9600
N1′—C3A	1.481 (3)	C18B—H18A	0.9600
N1′—H1′	0.87 (3)	C18B—H18B	0.9600
C10—C12	1.473 (2)	C18B—H18C	0.9600
С10—С9	1.376 (2)	C1A'—H1A'	0.9800
C5—C4	1.399 (2)	C1A'—C14A	1.500 (14)
С3—Н3	0.9300	C1A'—C13A	1.522 (17)
C3—C4	1.380 (2)	C14A—H14C	0.9700
C4—H4	0.9300	C14A—H14D	0.9700
С7—Н7	0.9300	C14A—C15A	1.536 (5)
С7—С8	1.368 (3)	C15A—C18A	1.542 (3)
С9—Н9	0.9300	C15A—C17A	1.541 (3)
С9—С8	1.387 (3)	C15A—N3A	1.462 (5)
C1A—H1A	0.9800	C18A—H18D	0.9600
C1A—C5A	1.516 (3)	C18A—H18E	0.9600
C1A—C2A	1.517 (3)	C18A—H18F	0.9600
C1B'—C13B	1.46 (2)	C17A—H17D	0.9600
C1B'—C14B	1.49 (3)	С17А—Н17Е	0.9600
C1B'—H1B'	0.9800 (11)	C17A—H17F	0.9600
С8—Н8	0.9300	N3A—C16A	1.424 (6)
С5А—Н5АА	0.9700	N3A—H3A	0.83 (4)
С5А—Н5АВ	0.9700	С19А—Н19А	0.9600
C5A—C4A	1.534 (3)	C19A—H19B	0.9600
C2A—H2AA	0.9700	С19А—Н19С	0.9600
C2A—H2AB	0.9700	C19A—C16A	1.541 (3)
C2A—C3A	1.535 (3)	C13A—H13C	0.9700
C4A—C8A	1.530 (3)	C13A—H13D	0.9700
С4А—С9А	1.527 (3)	C13A—C16A	1.549 (7)
C3A—C6A	1.531 (3)	C20A—H20A	0.9600
C3A—C7A	1.522 (3)	C20A—H20B	0.9600
С6А—Н6АА	0.9600	C20A—H20C	0.9600
С6А—Н6АВ	0.9600	C20A—C16A	1.545 (3)
С6А—Н6АС	0.9600	N3B—H3B	0.8602
С8А—Н8АА	0.9600	C19B—H19D	0.9600
C8A—H8AB	0.9600	C19B—H19E	0.9600
C8A—H8AC	0.9600	C19B—H19F	0.9600
C16B—C13B	1.539 (10)	C20B—H20D	0.9600
C16B—N3B	1.457 (10)	C20B—H20E	0.9600

C16B—C19B C16B—C20B	1.542 (3) 1.542 (3)	C20B—H20F	0.9600
C1—N1—C1B'	116 9 (10)	СЗА—С7А—Н7АВ	109 5
C1-N1-C1A'	120.4 (7)	C3A - C7A - H7AC	109.5
C12— $N1$ — $C1$	123.02(14)	H7AA—C7A—H7AB	109.5
C12 $N1$ $C1B'$	120.02(11)	H7AA - C7A - H7AC	109.5
C12 $N1$ $C12$	116.5 (6)	H7AB - C7A - H7AC	109.5
C5—N2—H2	118.1	C17B-C15B-C14B	109.5 111.6 (7)
C_{5} N2- C_{1A}	123 83 (14)	C17B-C15B-C18B	104.8(8)
C1A = N2 = H2	118.1	C18B-C15B-C14B	107.3(6)
C_{2} C_{11} C_{6}	120.85 (14)	N3B-C15B-C14B	107.5(0) 108.5(5)
C_{10} C_{11} C_{2}	119 30 (14)	N3B— $C15B$ — $C17B$	100.5(3)
C10-C11-C6	119.85 (14)	N3B— $C15B$ — $C18B$	107.0(7)
$C_{11} = C_{2} = C_{1}$	121.03(14)	C1B' - C13B - C16B	107.0(7) 111.7(12)
C_{3} C_{2} C_{11}	121.03(14) 118 32 (15)	C1B' - C13B - C10B	109.3
C_{3} C_{2} C_{1}	120.65(14)	C1B'-C13B-H13B	109.3
$C_{3} - C_{2} - C_{1}$	120.03(14) 110.04(14)	C16P $C13P$ $H13A$	109.5
C7 C6 C11	117.04(14) 117.76(14)	C16B C13B H13B	109.3
$C_{7} = C_{6} = C_{5}$	117.70(14) 123.20(15)	$U_{12} A C_{12} B U_{12} B$	109.5
$C/-C_{0}$	123.20(13) 120.58(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9 108.7(11)
C4A = N1 = C3A	120.38(10) 107(2)	C1D - C14D - C15D C1P' - C14D - H14A	108.7 (11)
$C_{A} = N_{I} = H_{I}$	107(2) 112(2)	C1D - C14D - D14A $C1P' - C14D - D14P$	109.9
C_{3A} $-N_{1}$ $-H_{1}$	113(2)	C15D - C14D - D14D	109.9
OI = CI = OI	119.04(13) 122.27(15)	C15D - C14D - H14A	109.9
OI = CI = C2	122.27 (15)	C15B - C14B - H14B	109.9
NI - CI - C2	118.09 (14)	H14A - C14B - H14B	108.3
C11 - C10 - C12	120.43 (14)	CISB—CI/B—HI/A	109.5
	120.18 (16)		109.5
C9—C10—C12	119.37 (15)		109.5
N2-C5-C6	120.23 (15)	HI/A—CI/B—HI/B	109.5
N2—C5—C4	122.02 (15)	HI/A—CI/B—HI/C	109.5
C4—C5—C6	117.74 (15)	HI/B—CI/B—HI/C	109.5
NI-C12-C10	118.07 (14)	C15B—C18B—H18A	109.5
02—C12—N1	120.35 (16)	C15B—C18B—H18B	109.5
02-C12-C10	121.58 (16)	C15B—C18B—H18C	109.5
С2—С3—Н3	118.9	H18A—C18B—H18B	109.5
C2—C3—C4	122.22 (15)	H18A—C18B—H18C	109.5
С4—С3—Н3	118.9	H18B—C18B—H18C	109.5
С5—С4—Н4	119.2	N1—C1A'—H1A'	105.8
C3—C4—C5	121.67 (15)	N1—C1A′—C14A	111.5 (9)
С3—С4—Н4	119.2	N1—C1A′—C13A	116.1 (13)
С6—С7—Н7	119.3	C14A—C1A'—H1A'	105.8
C8—C7—C6	121.40 (17)	C14A—C1A'—C13A	111.0 (10)
С8—С7—Н7	119.3	C13A—C1A'—H1A'	105.8
С10—С9—Н9	119.9	C1A'—C14A—H14C	108.8
C10—C9—C8	120.15 (16)	C1A'—C14A—H14D	108.8
С8—С9—Н9	119.9	C1A'—C14A—C15A	113.6 (7)
N2—C1A—H1A	108.1	H14C—C14A—H14D	107.7

N2—C1A—C5A	111.05 (15)	C15A—C14A—H14C	108.8
N2—C1A—C2A	112.48 (16)	C15A—C14A—H14D	108.8
C5A—C1A—H1A	108.1	C14A—C15A—C18A	110.3 (4)
C5A—C1A—C2A	108.79 (16)	C14A—C15A—C17A	109.4 (4)
C2A—C1A—H1A	108.1	C17A—C15A—C18A	107.4 (5)
N1—C1B′—C14B	116.0 (17)	N3A—C15A—C14A	107.7 (3)
N1—C1B′—H1B′	102 (3)	N3A—C15A—C18A	114.7 (4)
C13B—C1B'—N1	108.3 (16)	N3A—C15A—C17A	107.2 (4)
C13B—C1B'—C14B	114.2 (19)	C15A—C18A—H18D	109.5
C13B—C1B'—H1B'	110 (3)	C15A—C18A—H18E	109.5
C14B—C1B'—H1B'	105 (3)	C15A—C18A—H18F	109.5
C7—C8—C9	120.65 (16)	H18D—C18A—H18E	109.5
C7—C8—H8	119.7	H18D— $C18A$ — $H18F$	109.5
C9—C8—H8	119.7	H18E— $C18A$ — $H18F$	109.5
C1A—C5A—H5AA	109.2	C15A - C17A - H17D	109.5
C1A—C5A—H5AB	109.2	C15A - C17A - H17E	109.5
C1A - C5A - C4A	111 87 (15)	C15A - C17A - H17E	109.5
$H_{5A} = C_{5A} = H_{5A} B$	107.9	H17D-C17A-H17F	109.5
C4A - C5A - H5AA	109.2	H17D $C17A$ $H17E$	109.5
C4A - C5A - H5AB	109.2	H17E $C17A$ $H17F$	109.5
C1A - C2A - H2AA	109.2	C154 - N34 - H34	107.5 115(3)
C1A - C2A - H2AB	109.2	C16A = N3A = C15A	113(3) 1223(3)
C1A - C2A - C3A	112.00 (17)	C164 - N34 - H34	122.3(3)
$H_{2AA} = C_{2A} = H_{2AB}$	107.0	$H_{10A} = H_{0A} = H_{10B}$	100 (5)
$C_{2A} = C_{2A} = H_{2A}$	107.9	$H_{10A} = C_{10A} = H_{10C}$	109.5
$C_{3A} = C_{2A} = H_{2AB}$	109.2	H10R C10A H10C	109.5
$C_{3A} = C_{2A} = \Pi_{2AB}$	109.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
N1 - C4A - C5A	109.01(10) 105.17(18)	$C_{10A} = C_{10A} = H_{10B}$	109.5
N1 - C4A - C0A	103.17(10) 112.4(2)	C16A = C19A = H19B	109.5
NI = C4A = C9A	113.4(2) 100.21(18)	C10A - C12A - H12C	109.5
$C_{A} = C_{A} = C_{A}$	109.21(18)	CIA - CI3A - HI3C	109.5
C9A = C4A = C9A	110.71(19)	CIA CI2A CICA	109.5
C9A - C4A - C8A	108.3(2)		110.9 (8)
N1 - C3A - C2A	108.10(17)	H13C - C13A - H13D	108.1
NT - C3A - C6A	114.6 (2)	C16A - C13A - H13C	109.5
NT - C3A - C/A	105.48 (18)	C16A - C13A - H13D	109.5
C6A - C3A - C2A	110.61 (17)	H20A—C20A—H20B	109.5
C/A - C3A - C2A	110.1 (2)	H20A—C20A—H20C	109.5
C/A—C3A—C6A	107.8 (2)	H20B—C20A—H20C	109.5
СЗА—С6А—Н6АА	109.5	С16А—С20А—Н20А	109.5
СЗА—С6А—Н6АВ	109.5	C16A—C20A—H20B	109.5
СЗА—С6А—Н6АС	109.5	C16A—C20A—H20C	109.5
Н6АА—С6А—Н6АВ	109.5	C16B—N3B—H3B	110.4
Н6АА—С6А—Н6АС	109.5	C15B—N3B—C16B	123.1 (6)
Н6АВ—С6А—Н6АС	109.5	C15B—N3B—H3B	111.4
C4A—C8A—H8AA	109.5	C16B—C19B—H19D	109.5
C4A—C8A—H8AB	109.5	C16B—C19B—H19E	109.5
C4A—C8A—H8AC	109.5	C16B—C19B—H19F	109.5
Н8АА—С8А—Н8АВ	109.5	H19D—C19B—H19E	109.5

H8AA—C8A—H8AC	109.5	H19D—C19B—H19F	109.5
H8AB—C8A—H8AC	109.5	H19E—C19B—H19F	109.5
C13B—C16B—C19B	109.8 (6)	C16B—C20B—H20D	109.5
C13B—C16B—C20B	109.5 (7)	C16B—C20B—H20E	109.5
N3B—C16B—C13B	108.5 (6)	C16B—C20B—H20F	109.5
N3B-C16B-C19B	113 2 (7)	H_{20D} C_{20B} H_{20E}	109.5
N3B-C16B-C20B	106.8 (8)	H_{20D} C_{20B} H_{20E}	109.5
$C_{20B} - C_{16B} - C_{19B}$	108.9 (9)	H_{20E} C_{20B} H_{20E}	109.5
C4A - C9A - H9AA	109.5	N3A—C16A—C19A	107.7 (4)
C4A - C9A - H9AB	109.5	N3A - C16A - C13A	107.7(1)
C_{4A} C_{9A} H_{9AC}	109.5	N3A - C16A - C20A	105.2(1)
H9AA = C9A = H9AB	109.5	C19A - C16A - C13A	108.8(3)
$H_{0,\Lambda}$ $C_{0,\Lambda}$ $H_{0,\Lambda}$ $C_{0,\Lambda}$	109.5	C_{19}^{19} C_{16}^{16} C_{20}^{20}	106.0 (4)
$H_{0AB} = C_{0A} = H_{0AC}$	109.5	C_{10}^{20} C_{10}^{10} C_{20}^{10} C_{10}^{10}	100.0(0) 100.1(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	C20A-C10A-C15A	109.1 (4)
CJA—C/A—H/AA	109.5		
N1 C1P' C13P C16P	-172.0(11)	C_{0} C_{10} C_{12} O_{2}	0.0(3)
N1 C1B' C14B C15B	172.0(11) 173.0(11)	$C_{14} = N_{2} = C_{5} = C_{6}$	-177.46(16)
N1 - C1A' - C14A - C15A	-173.6(8)	C1A = N2 = C5 = C0	177.40(10)
NI = CIA = CI4A = CI5A $NI = CIA/ = CI6A$	175.0 (8)	C1A C5A C4A N1'	-50.5(2)
NI - CIA - CI3A - CI0A $N2 - C5 - C4 - C2$	170.2(0) -174.82(18)	C1A C5A C4A C8A	-30.3(2)
N2 - C1 = C4 - C3	-1/4.02(18) 177.00(17)	C1A = C5A = C4A = C0A	-105.5(2)
$N_2 = C_1 A = C_2 A = C_4 A$	-1/7.00(17)	C1A = C2A = C2A = N1/	73.3(2)
$N_2 = CIA = CZA = CSA$	1/3.8/(10)	CIA = C2A = C3A = NI	33.1(2)
CII = C2 = CI = OI	1//.45 (16)	CIA - C2A - C3A - C6A	-73.0(2)
CII = C2 = CI = NI	-2.9(2)	CIA - C2A - C3A - C/A	167.90 (19)
C11 - C2 - C3 - C4	-2.0(3)	CIB'—NI—CI—OI	-1.6 (10)
C11—C6—C5—N2	174.59 (16)	C1B'—N1—C1—C2	178.7 (10)
C11—C6—C5—C4	-4.2 (2)	C1B'—N1—C12—O2	2.9 (11)
C11—C6—C7—C8	0.5 (3)	C1B'—N1—C12—C10	-176.7 (10)
C11—C10—C12—N1	-1.1 (2)	C5A—C1A—C2A—C3A	-60.7(2)
C11—C10—C12—O2	179.29 (17)	C2A—C1A—C5A—C4A	58.7 (2)
C11—C10—C9—C8	1.1 (3)	C4A—N1′—C3A—C2A	-48.5 (3)
C2—C11—C6—C5	1.5 (2)	C4A—N1′—C3A—C6A	75.3 (3)
C2—C11—C6—C7	-178.78 (15)	C4A—N1′—C3A—C7A	-166.3 (2)
C2-C11-C10-C12	-0.4 (2)	C3A—N1′—C4A—C5A	47.5 (3)
C2-C11-C10-C9	178.00 (16)	C3A—N1′—C4A—C8A	164.9 (2)
C2—C3—C4—C5	-0.8 (3)	C3A—N1′—C4A—C9A	-76.9 (3)
C6-C11-C2-C1	-178.24 (14)	C13B—C1B'—C14B—C15B	-59.1 (17)
C6—C11—C2—C3	1.6 (2)	C13B—C16B—N3B—C15B	46.5 (9)
C6-C11-C10-C12	-179.75 (15)	C14B—C1B'—C13B—C16B	57.1 (18)
C6-C11-C10-C9	-1.4 (2)	C14B—C15B—N3B—C16B	-49.9 (9)
C6—C5—C4—C3	3.9 (3)	C17B—C15B—C14B—C1B'	-79.7 (11)
C6—C7—C8—C9	-0.8 (3)	C17B—C15B—N3B—C16B	77.5 (9)
C1—N1—C12—O2	-179.84 (17)	C18B—C15B—C14B—C1B'	166.1 (11)
C1—N1—C12—C10	0.5 (2)	C18B—C15B—N3B—C16B	-165.3 (7)
C1—N1—C1B'—C13B	103.3 (14)	C1A'-N1-C1-O1	3.3 (7)
C1—N1—C1B′—C14B	-126.8 (12)	C1A'—N1—C1—C2	-176.4 (7)
C1—N1—C1A'—C14A	-70.1 (13)	C1A'—N1—C12—O2	-2.0 (7)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.4 (9) 177.84 (17) 2.4 (2) -177.74 (15) -179.15 (15) 0.6 (2) 0.0 (3) 155.91 (18) -81.9 (2) -179.77 (18) -178.93 (16) 1.4 (2) -79.3 (19) 50.7 (15) 112.0 (9) -119.5 (9) 179.47 (17) -2.4 (3) 177.21 (16) -5.1 (3) 176 09 (17)	C1A'-N1-C12-C10 C1A'-C14A-C15A-C18A C1A'-C14A-C15A-C17A C1A'-C14A-C15A-N3A C1A'-C13A-C16A-N3A C1A'-C13A-C16A-C19A C1A'-C13A-C16A-C20A C14A-C1A'-C13A-C16A C14A-C1A'-C13A-C16A C15A-N3A-C16A-C19A C15A-N3A-C16A-C19A C15A-N3A-C16A-C13A C15A-N3A-C16A-C13A C15A-N3A-C16A-C13A C15A-N3A-C16A-C13A C15A-N3A-C16A-C13A C15A-N3A-C16A-C13A C15A-N3A-C16A-C13A C15A-N3A-C16A-C13A C17A-C15A-N3A-C16A C17A-C15A-N3A-C16A C13A-C1A'-C14A-C15A N3B-C16B-C13B-C1B' C19B-C16B-C13B-C1B' C19B-C16B-N3B-C15B C20B-C16B-N3B-C15B	178.4 (6) $77.3 (9)$ $-164.8 (9)$ $-48.6 (9)$ $50.7 (7)$ $168.0 (7)$ $-76.8 (7)$ $-55.0 (12)$ $49.8 (5)$ $-169.7 (4)$ $-51.6 (5)$ $71.9 (6)$ $-73.5 (5)$ $167.4 (5)$ $55.2 (13)$ $-45.7 (15)$ $50.8 (11)$ $78.6 (15)$ $-75.7 (10)$ $-161.9 (15)$ $164.5 (8)$
C7—C6—C5—N2 C7—C6—C5—C4 C9—C10—C12—N1	-5.1 (3) 176.09 (17) -179.46 (16)	C20B—C16B—C13B—C1B' C20B—C16B—N3B—C15B	-161.9 (15) 164.5 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2···O1 ⁱ	0.86	2.17	3.0134 (18)	165
С9—Н9…О2 ^{іі}	0.93	2.54	3.203 (2)	128

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) -*x*+1, -*y*+1, -*z*+1.