

Received 2 November 2022 Accepted 17 November 2022

Edited by S. Parkin, University of Kentucky, USA

Keywords: barium yttrium silicon oxide; crystal structure; orthosilicate; dielectric properties; thermal expansion.

CCDC reference: 2220459

Supporting information: this article has supporting information at journals.iucr.org/e

BaY₁₆Si₄O₃₃ containing Ba(SiO₄)₄ orthosilicates

Shuto Motozawa,^{a,b} Hiromitsu Kimura,^c Junichi Takahashi,^a Rayko Simura^a and Hisanori Yamane^a*

^aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1 Aoba-ku, Sendai 980-8577, Japan, ^bDepartment of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-4 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan, and ^cScience & Innovation Center, Inorganic Materials Laboratory, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan. *Correspondence e-mail: hisanori.yamane.a1@tohoku.ac.jp

Single crystals of a new quaternary oxide, barium hexadecayttrium tetrasilicon tritriacontaoxide, BaY₁₆Si₄O₃₃, were obtained from a melt-solidified sample prepared by heating a mixture of BaCO₃, Y₂O₃, and SiO₂ at 2073 K. X-ray crystal structure analysis revealed that Ba(SiO₄)₄ orthosilicate clusters in which a Ba atom is surrounded by four SiO₄ tetrahedra were isolated in a framework composed of Y and O in the structure of BaY₁₆Si₄O₃₃. The dielectric constant measured for polycrystalline ceramics of BaY₁₆Si₄O₃₃ sintered at 1953 K was 13 (298 K, 1 MHz), and the thermal expansion coefficient was 8.70 × 10⁻⁶ K⁻¹ (298–873 K), which are close to the values previously reported for Y₂O₃.

1. Chemical context

Numerous silicates in minerals and ceramic materials have been studied (Liebau, 1985). Silicates have also attracted attention as host materials for phosphors because of their structural diversity and stability (Gupta et al., 2021, Singh et al., 2017). In the Ba-Y-Si-O system, BaY₂Si₃O₁₀, Ba₉Y₂Si₆O₂₄, BaY₄Si₅O₁₇, Ba_{5,2}Y₁₃Si₈O₄₁, and Ba₂Y₂Si₄O₁₃ have been reported. Among these oxides, phosphors based on Pr^{3+} , Sm^{3+} , Er^{3+} , Ce^{3+} , Tb^{3+} , and Eu^{3+} doping of $BaY_2Si_3O_{10}$ (Wierzbicka-Wieczorek et al., 2015; Xia et al., 2014; Zhou & Xia, 2015; Liu et al., 2009), Pr³⁺, Sm³⁺, Er³⁺, and Ho³⁺ doping of BaY₄Si₅O₁₇ (Wierzbicka-Wieczorek *et al.*, 2015), Ce³⁺ doping of Ba₉Y₂Si₆O₂₄ (Liu et al., 2015; Brgoch et al., 2013), and Bi^{3+} and Eu^{3+} doping of $Ba_2Y_2Si_4O_{13}$ (Song *et al.*, 2019) as activator ions have been studied. Recently, BaY2Si3O10 has been investigated for its potential application as a microwave dielectric material for 5G communication devices (Lin et al., 2020). In the present study, we found a new quaternary oxide, BaY₁₆Si₄O₃₃, with a Y₂O₃ content greater than that of previously reported compounds in the Ba-Y-Si-O system.

The dielectric constants measured at 100 Hz and 1 MHz for BaY₁₆Si₄O₃₃ ceramics at 298 K were 14 and 13, respectively, and the dielectric loss was less than 0.01 (Figs. S1 and S2). These dielectric constants are close to the value reported for Y₂O₃ ceramics (12; Tsukuda, 1980) and the values measured for Y₂O₃ fabricated by oxidation of Y metal on Si substrates (17–20; Manchanda & Gurvitch, 1988). The temperature coefficient of the dielectric constant at 298–413 K was 3.5×10^{-3} K⁻¹. The thermal expansion coefficient measured for the polycrystalline BaY₁₆Si₄O₃₃ in the temperature range 298–873 K was 8.7×10^{-6} K⁻¹ (Fig. S3). This value is in good agreement with the thermal expansion coefficient of Y₂O₃ of

 $8.5 \times 10^{-6} \text{ K}^{-1}$ in the temperature range 298–1272 K (Kirchner, 1964). In BaY₁₆Si₄O₃₃, the portion of Y–O frameworks in the crystal structure is large, which might be related to the fact that the dielectric constant and thermal expansion coefficient of BaY₁₆Si₄O₃₃ and Y₂O₃ are similar to each other.

2. Structural commentary

The literature contains no reports of silicates or other oxides with the same structure as $BaY_{16}Si_4O_{33}$. In the crystal structure of $BaY_{16}Si_4O_{33}$, clusters composed of a Ba atom surrounded by four isolated SiO_4 tetrahedra are isolated in a three-dimensional framework formed by 16 Y sites with six- or sevenfold coordination to oxygen atoms within an interatomic distance of 2.65 Å (Figs. 1 and 2). $BaY_{16}Si_4O_{33}$ has a large portion of Y in the cation sites, and more than one-half of the oxygen atoms are not bonded to Si. Thus, $BaY_{16}Si_4O_{33}$ can be expressed as an oxide silicate with the formula $Y_{16}O_{17}Ba(SiO_4)_4$.

The Si-O bond lengths for the SiO₄ tetrahedra range from 1.6198 (17) to 1.6596 (18) Å (Table 1). Bond-valence sums (BVSs) of 3.85 to 4.01, which are similar to the Si formal valence of IV, were calculated using the bond-valence parameter of Gagné & Hawthorne (2015). Ba1 is coordinated by twelve oxygen atoms of four SiO₄ tetrahedra with Ba1-O distances ranging from 2.7478 (18) to 3.274 (2) Å. The BVS for Ba1 is 2.10, which is close to the formal Ba valence of II.

The respective average distances between the sixfoldcoordinated Y1–6, Y8–10, and Y12 sites and oxygen are between 2.275 and 2.308 Å, which are approximately equal to the Y1–O1 distance [2.2847 (11) Å] and Y2–O1 average distance (2.282 Å) for sixfold Y coordination reported for Y₂O₃ (Coduri *et al.*, 2013). The respective average distances between oxygen atoms and sevenfold-coordinated Y7, Y11, Y13, and Y14–16 are 2.342–2.366 Å, which are close to the Y2–O average distance of 2.360 Å reported for sevenfold-

Figure 1

The atomic arrangement of BaY₁₆Si₄O₃₃ depicted with displacement ellipsoids at the 80% probability level. [Symmetry codes: (i) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x - 1, y, z; (iii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iv) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (v) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (vi) -x, -y + 1, -z + 1; (vii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (viii) -x + 1, -y + 1, -z; (ix) -x + 1, -y, -z; (x) x, y - 1, z.]

Figure 2

A polyhedral representation of $BaY_{16}Si_4O_{33}$ showing the Y-centered oxygen polyhedra (yellow) and the Ba-centered oxygen polyhedra (green) surrounded by isolated Si-centered oxygen tetrahedra (blue).

coordinated Y in the structure of Y_2SiO_5 (Denault *et al.*, 2015). The BVSs ranged from 2.77 to 2.97, close to the Y valence of III.

The Madelung part of the lattice energy (MAPLE; Hoppe, 1970) for BaY₁₆Si₄O₃₃, as calculated using the *VESTA* software (Momma & Izumi, 2011), is $-186,000 \text{ kJ mol}^{-1}$. The difference between the MAPLE for BaY₁₆Si₄O₃₃ and the sum of the MAPLEs ($-186,999 \text{ kJ} \cdot \text{mol}^{-1}$) for binary oxides with the formula BaY₁₆Si₄O₃₃ (= BaO + 8 Y₂O₃ + 4SiO₂) {BaO [$-3,511 \text{ kJ mol}^{-1}$ (Zollweg, 1955)], Y₂O₃ [$-15,287 \text{ kJ mol}^{-1}$ (Coduri *et al.*, 2013)], SiO₂ [$-15,298 \text{ kJ mol}^{-1}$ (Smith & Alexander, 1963)]} is 0.5%.

3. Database survey

The ICSD database (ICSD, 2022) contains crystal-structure data for BaY₂Si₃O₁₀ (space group $P12_1/m1$) (Kolitsch *et al.*, 2006; Shi *et al.*, 2018), Ba₉Y₂Si₆O₂₄ (space group $R\overline{3}$) (Brgoch *et al.*, 2013) and BaY₄Si₅O₁₇ (space group $P12_1/m1$) (Wierzbicka-Wieczorek *et al.*, 2015). Lattice constants and space group $I\overline{4}2m$ were reported for Ba_{5.2}Y₁₃Si₈O₄₁ (Wierzbicka-Wieczorek *et al.*, 2011). For Ba₂Y₂Si₄O₁₃, the structure was described as isomorphic to Ba₂Gd₂Si₄O₁₃ (space group C12/c1), but lattice parameters were not reported (Song *et al.*, 2019).

4. Synthesis and crystallization

BaCO₃ (98% purity, Hakushin Chemical Laboratory), Y_2O_3 (99.99% purity, Shin-Etsu Chemical), and SiO₂ (99.999%

Table 1Selected bond lengths (Å).

D 1 017	2 7 4 7 9 (1 7)	N/0 017	0.00(0.(17)
Bal-Ol/	2./4/8 (1/)	Y9-01/	2.3963 (17)
Ba1-O11	2.7696 (19)	Y9-O14	2.4017 (17)
Ba1-O19	2.7793 (17)	Y10-O16	2.1430 (16)
Ba1 - 014	2 8395 (17)	$Y_{10} = 0.26$	2 2131 (16)
$P_{a1} = O_{a1}^{a1}$	2.0595(17)	V10 O21	2.2101(10)
Ba1=032	2.8001 (18)	110-021	2.2207 (16)
Ba1-O8	2.9444 (17)	Y10-O25	2.3482 (16)
Ba1-O3	2.9600 (17)	Y10-O14	2.4055 (16)
Ba1-O5	3 0333 (18)	Y10 - 019	2 4223 (16)
$P_{01} O_{i}^{i}$	2 0551 (10)	V11 020	2.7220(16)
Ba1=04	3.0331 (19)	111-020	2.2790 (10)
Ba1-O12	3.1141 (18)	Y11-016	2.28/6 (16)
$Ba1-O2^{i}$	3.1369 (19)	$Y11 - O28^{ix}$	2.3342 (16)
Ba1-O31 ⁱⁱ	3.274 (2)	Y11-O23	2.3374 (16)
$Y_{1} = 0.16$	2 2005 (16)	Y11-09	2 3637 (16)
$V1 O22^{ii}$	2,2170(16)	V11 026	2,2700(16)
11=055	2.2170 (10)	111-020	2.3733 (10)
Y1-0/*	2.2498 (16)	Y11-030	2.50/1 (16)
Y1-O9	2.3055 (16)	Y12-O24	2.1194 (16)
Y1-O1 ⁱⁱⁱ	2.3079 (16)	Y12-O28	2.1921 (16)
Y_{1-03}	2 5694 (17)	$Y_{12} = 0_{29}$	2 2564 (16)
V2 015	21406(16)	V12 025	2.2001(10) 2.2050(16)
12-013	2.1490 (10)	112-023	2.2939 (10)
Y2-013*	2.1736 (16)	¥12-019	2.46/3 (17)
Y2-O10	2.2282 (16)	Y12-O17	2.4859 (17)
$Y2-O6^{iv}$	2.3233 (17)	Y13-O27	2.2879 (16)
$Y_{2}=05$	2 3485 (17)	¥13-026	2 2892 (16)
\mathbf{V}_{2}^{i}	2.5105(17) 2.5252(19)	$V_{12}^{13} O_{15}^{ix}$	2.2092(10) 2.2000(16)
12-02	2.3233(18)	115-015 V12 010 ^{ix}	2.3290(10)
¥3-07	2.2297 (16)	¥13-010	2.3400 (10)
Y3-07	2.2436 (17)	Y13-O29	2.3585 (16)
$Y3 - O9^{v_1}$	2.2546 (16)	Y13-O23	2.4039 (16)
$Y3-O1^{v}$	2.2620 (16)	Y13-O18	2.4563 (17)
Y3-O28 ^{vii}	2.3197 (17)	$Y14 - O20^{x}$	2.2389 (15)
$Y3-O8^{v}$	2 4654 (17)	Y14-033	2 2856 (16)
$V_{4} = 01^{iv}$	2 1808 (16)	$V_{14} = 07^{ix}$	2.2870(16)
V4 O20 ^{viii}	2.1000(10)	$V_{14} O_{24}^{iii}$	2.2079(10)
14-029	2.2223 (10)	114-024	2.5169 (10)
Y4-O10	2.2772 (16)	Y14-020	2.3499 (16)
Y4-011	2.2894 (19)	$Y14 - O28^{m}$	2.3810 (16)
$Y4-O6^{iv}$	2.3810 (17)	Y14-O30	2.5306 (16)
$Y4-O12^{iv}$	2.4084 (17)	Y15-O33	2.2050 (16)
X5-09	2 1569 (16)	$Y_{15} = 0.027^{iii}$	2 2231 (16)
V5 012	2.1305(10)	$\mathbf{Y}_{15} = \mathbf{O}_2 \mathbf{A}_{\text{iii}}$	2.2231(10)
15-015	2.2113(13)	113-024	2.2612(10)
Y5-023	2.2252 (16)	Y15-021	2.3529 (16)
Y5-018	2.3281 (16)	Y15-O29 ^m	2.3660 (16)
$Y5-O32^{ix}$	2.3295 (17)	Y15-O31	2.4990 (19)
Y5–O5 ⁱ	2.4652 (18)	Y15-O4 ^{ix}	2.5259 (19)
Y6-O10	2.1976 (16)	$Y16-O27^{iii}$	2.1983 (16)
Y6-O33 ^{viii}	2 2074 (16)	$V16-013^{viii}$	2 2097 (16)
V6 O26 ^{viii}	2.2074(10)	$V_{16} O_{22}^{xi}$	2.2077(10) 2.2195(16)
	2.2223(10)	110-022 V16-022	2.3103(10)
10-031	2.3284 (18)	Y10-022	2.3304 (16)
Y6-030****	2.3395 (17)	Y16-015 ^{xi}	2.3343 (16)
$Y6-O3^{iv}$	2.4547 (17)	$Y16-O2^{ix}$	2.5198 (18)
Y7-O24	2.2120 (16)	Y16-O32	2.6127 (17)
$Y7-O20^{vi}$	2.2383 (16)	$Si1-O4^{i}$	1.6218 (19)
$V7 - 016^{vi}$	2 2964 (16)	$Si1 - O6^{iii}$	1.6274(17)
V7_01	2.200 + (10) 2.2112 (16)	Si1_014	1.0274(17) 1.6423(18)
17-01 V7 021 ^{vi}	2.3115(10)	Si1_014	1.0423(18)
$Y / - O21^{-1}$	2.3455 (16)	511-02	1.6428 (18)
Y7-08	2.5336 (17)	S12-O18	1.6205 (17)
Y7-012	2.6233 (17)	Si2-O19	1.6356 (17)
$Y8-O21^{vi}$	2.2060 (16)	Si2-O3	1.6422 (18)
Y8-O27	2.2339 (16)	Si2-O12	1.6441 (18)
Y8-013	2.2527 (16)	Si3-O30 ^{viii}	1.6198 (17)
V8_022 ^{vi}	2 2630 (16)	Si3_08	1.6277(17)
V8 018	2.2030 (10)	Si3 017	1.0277(17) 1.6505(17)
10-010	2.3/12 (10)	515-01/	1.0505 (17)
18-06	2.3887 (17)	515-05	1.6596 (18)
Y9-015	2.1739 (16)	S14-O31	1.6201 (18)
Y9-O23 ^{vm}	2.1745 (16)	$Si4-O11^{ix}$	1.621 (2)
Y9-O22	2.2201 (16)	Si4-O32	1.6240 (17)
Y9-O25	2.2847 (16)	Si4-O25	1.6276 (17)

purity, Mitsuwa Chemicals) were used as starting materials. Each powder was heated at 1273 K for 5 h and kept in an oven at 453 K. The powders were weighed in a molar ratio of Ba:Y:Si = 1:16:4 and mixed in an agate mortar; the mixed powder was then placed in a mold and formed into disks 5 mm in diameter by uniaxial pressing at \sim 60 MPa. The disk was crumbled, and pieces of the fragment were placed on a Pt–Rh plate that was, in turn, placed in an alumina crucible with a lid. The crucible was heated in an electric furnace to 1373 K in air for 3 h; the furnace temperature was then raised from 1373 to 2073 K over a period of 4 h and held at this temperature for 0.5 h. The sample was cooled to room temperature, and a solidified melt was obtained. The sample was crushed, and single crystals were collected from the resulting fragments.

The sample used for powder X-ray diffraction (XRD) analysis was prepared by weighing and mixing the starting materials to obtain a stoichiometric composition of $BaY_{16}Si_4O_{33}$ (Ba:Y:Si molar ratio = 1:16:4). The powder was compacted into a disk shape and heated in an electric furnace from room temperature to 1373 K over a period of 3 h, heated from 1373 to 1793 K over a period of 3 h, maintained at this temperature for 24 h, and then cooled. The resultant polycrystalline ceramic of BaY₁₆Si₄O₃₃ was ground in an agate mortar to obtain a powdered sample. The powder XRD pattern was recorded at room temperature using a powder X-ray diffractometer (Bruker AXS, D2PHASER; Fig. S4) equipped with a Cu K α radiation ($\lambda = 1.5418$ Å) source. Diffraction patterns were recorded in the diffraction-angle range $5^{\circ} \leq 2\theta \leq 140^{\circ}$ with a step interval of 0.025° and a measurement time of 8 s step⁻¹. The obtained XRD pattern was analyzed by the Rietveld method with the program TOPAS (Bruker, 2009) using the model determined by singlecrystal X-ray structure analysis (Fig. S4 and Table S1) (R_{wp} = 3.03%, $R_{\rm B} = 0.752$ %). The refined lattice constants [a = 9.11234 (8) Å, b = 18.73111 (19) Å, c = 18.31827 (17) Å, $\beta =$ $109.0441(7)^{\circ}$ and atomic positions were close to those obtained from the single-crystal structure analysis (Table S2). The composition of BaO: 8.5 (4), Y₂O₃: 81 (1), SiO₂: 10.6 (2) mass%, which is approximately consistent with the formula BaY₁₆Si₄O₃₃ (BaO: 7.0, Y₂O₃: 82.1, SiO₂: 10.9 mass%), was determined by electron-probe microanalysis (EPMA, JEOL A-8200) using a surface-polished and carbon-coated ceramic sample.

Polycrystalline ceramic samples for measurements of the thermal expansion coefficients and dielectric constants were prepared by heating compacted disks of the starting powder mixture with a stoichiometric metal ratio Ba:Y:Si = 1:16:4 at 1793 K for 24 h. The obtained disks were pulverized, and the powder was compacted and heated again under the same conditions. The resultant disks were pulverized and then compacted into a cuboid for measurement of their thermal expansion coefficient and into a disk shape for measurement of their dielectric constant. These compacts were heated at 1953 K for 12 h. The thermal expansion coefficient was measured using a dilatometer (Netzsch Japan, TD5000SA). The capacitance C and dielectric loss tan δ were measured using an LCR meter (HIOKI, IM3536) for the disk sample (96% relative density) with Au electrodes prepared by baking Au paste at 800°C.

research communications

Table 2Experimental details.

. .

Crystal data	
Chemical formula	$BaY_{16}Si_4O_{33}$
M _r	2200.26
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	300
a, b, c (Å)	9.1095 (2), 18.7306 (4), 18.3105 (4)
β(°)	109.008 (1)
$V(\dot{A}^3)$	2953.90 (11)
Ζ	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	32.60
Crystal size (mm)	$0.09\times0.08\times0.04$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et
	al., 2015)
T_{\min}, T_{\max}	0.037, 0.094
No. of measured, independent and	128151, 8279, 7469
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.054
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.694
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.016, 0.034, 1.07
No. of reflections	8279
No. of parameters	488
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.76, -0.90

Computer programs: *BIS* (Bruker, 2018), *APEX3* (Bruker, 2018), *SAINT* (Bruker, 2018), *SHELXT2015* (Sheldrick, 2015*a*), *SHELXL2015* (Sheldrick, 2015*b*), and *VESTA* (Momma & Izumi, 2011)

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Atomic coordinates, equivalent isotropic displacement parameters and anisotropic displacement parameters are given in the supporting information.

Acknowledgements

The authors would like to thank Takashi Kamaya for conducting the EPMA analysis.

Funding information

This work was supported in part by Mitsubishi Chemical Corporation (a joint research of Tohoku University and Mitsubishi Chemical Corporation, J190002825). RS was partly supported by the Project to Promote Gender Equality and Female Researchers of the Tohoku University Center for Gender Equality Promotion, Japan and the IMRAM project of the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan. References

Brgoch, J., Borg, C. K. H., Denault, K. A., Mikhailovsky, A., DenBaars, S. P. & Seshadri, R. (2013). <i>Inorg. Chem.</i> 52, 8010–8016.
Bruker (2009). TOPAS.B. A. G., Karlsruhe, Germany.
Bruker (2018). <i>BIS</i> , <i>APEX3</i> and <i>SAINT</i> . Bruker AXS inc., Madison, Wisconsin, USA.
Coduri, M., Scavini, M., Allieta, M., Brunelli, M. & Ferrero, C. (2013). <i>Chem. Mater.</i> 25 , 4278–4289.
Denault, K. A., Brgoch, J., Kloss, S. D., Gaultois, M. W., Siewenie, J., Page, K. & Seshadri, R. (2015). <i>Appl. Mater. Interfaces</i> , 7, 7264– 7272.
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.
Gupta, I., Singh, S., Bhagwan, S. & Singh, D. (2021). Ceram. Int. 47, 19282–19303.
Hoppe, R. (1970). Advances in Fluorine Chemistry, 6, 387-438.
ICSD (2022). <i>Inorganic Crystal Structure Database</i> , Web version. FIZ Karlsruhe, Germany.
Kirchner, H. P. (1964). Prog. Solid State Chem. 1, 1–36.
Kolitsch, U., Wierzbicka, M. & Tillmanns, E. (2006). Acta Cryst. C62, i97–i99.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
Liebau, F. (1985). <i>Structural Chemistry of Silicates</i> . Berlin: Springer-Verlag.
Lin, Q., Song, K., Liu, B., Bafrooei, H. B., Zhou, D., Su, W., Shi, F., Wang, D., Lin, H. & M.Reaney, I. (2020). <i>Ceram. Int.</i> 46, 1171–1177.
Liu, WR., Lin, C. C., Chiu, YC., Yeh, YT., Jang, SM., Liu, RS. & Cheng, BM. (2009). <i>Opt. Express</i> , 17 , 18103–18109.
Liu, Y., Zhang, J., Zhang, C., Xu, J., Liu, G., Jiang, J. & Jiang, H. (2015). Adv. Opt. Mater. 3, 1096–1101.
Manchanda, L. & Gurvitch, M. (1988). <i>IEEE Electron Device Lett.</i> 9, 180–182.
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shi, R., Wang, X., Huang, Y., Tao, Y., Zheng, L. & Liang, H. (2018). J. Phys. Chem. C, 122 , 7421–7431.
Singh, D., Sheoran, S. & Tanwar, V. (2017). Adv. Mater. Lett. 8, 656–672.
Smith, G. S. & Alexander, L. E. (1963). Acta Cryst. 16, 462-471.

- Song, W., Chen, X., Teng, L., Zheng, Z., Wen, J., Hu, F., Wei, R., Chen, L. & Guo, H. (2019). J. Am. Ceram. Soc. 102, 1822–1831.
- Tsukuda, Y. (1980). J. Can. Ceram. Soc. 49, 36-41.
- Wierzbicka-Wieczorek, M., Kolitsch, U., Lenz, C. & Giester, G. (2015). J. Lumin. 168, 207–217.
- Wierzbicka-Wieczorek, M., Kolitsch, U. & Tillmanns, E. (2011). Joint Meeting, 19. Jahrestagung der Deutschen Gesellschaft für Kristallographie, 89. Jahrestagung der Deutschen Mineralogischen Gesellschaft, Jahrestagung der Österreichischen Mineralogischen Gesellschaft, pp. 100–101. Oldenbourg Verlag.
- Xia, Z., Liang, Y., Yu, D., Zhang, M., Huang, W., Tong, M., Wu, J. & Zhao, J. (2014). *Opt. Laser Technol.* **56**, 387–392.
- Zhou, J. & Xia, Z. (2015). J. Mater. Chem. C. 3, 7552-7560.
- Zollweg, R. J. (1955). Phys. Rev. 100, 671-673.

Acta Cryst. (2022). E78, 1249-1252 [https://doi.org/10.1107/S2056989022011057]

BaY₁₆Si₄O₃₃ containing Ba(SiO₄)₄ orthosilicates

Shuto Motozawa, Hiromitsu Kimura, Junichi Takahashi, Rayko Simura and Hisanori Yamane

Computing details

Data collection: *BIS* (Bruker, 2018); cell refinement: *APEX3* (Bruker, 2018); data reduction: *SAINT* (Bruker, 2018); program(s) used to solve structure: *SHELXT2015* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2015* (Sheldrick, 2015b); molecular graphics: *VESTA* (Momma & Izumi, 2011).

Barium hexadecayttrium tetrasilicon tritriacontaoxide

Crystal data

BaY₁₆Si₄O₃₃ $M_r = 2200.26$ Monoclinic, $P2_1/c$ a = 9.1095 (2) Å b = 18.7306 (4) Å c = 18.3105 (4) Å $\beta = 109.008$ (1)° V = 2953.90 (11) Å³ Z = 4

Data collection

Bruker APEXII CCD	
diffractometer	
Radiation source: micro focus sealed tube	
Detector resolution: 7.3910 pixels mm ⁻¹	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Krause et al., 2015)	
$T_{\min} = 0.037, T_{\max} = 0.094$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.016$ $wR(F^2) = 0.034$ S = 1.078279 reflections 488 parameters 0 restraints F(000) = 4000 $D_x = 4.948 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 120 reflections $\theta = 6.9-30.7^{\circ}$ $\mu = 32.60 \text{ mm}^{-1}$ T = 300 KPrismatic, translucent colourless $0.09 \times 0.08 \times 0.04 \text{ mm}$

128151 measured reflections 8279 independent reflections 7469 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 29.6^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -26 \rightarrow 26$ $l = -25 \rightarrow 25$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0053P)^2 + 3.9938P] \\ &where P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{max} = 0.002 \\ &\Delta\rho_{max} = 0.76 \text{ e } \text{Å}^{-3} \\ &\Delta\rho_{min} = -0.90 \text{ e } \text{Å}^{-3} \\ &\text{Extinction correction: SHELXL-2017/1} \\ &(\text{Sheldrick 2015b}) \\ &\text{Extinction coefficient: } 0.000458 (14) \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Bal	0.05096 (2)	0.34871 (2)	0.21348 (2)	0.01140 (3)	
Y1	0.02577 (3)	0.14161 (2)	0.08564 (2)	0.00889 (4)	
Y2	0.04208 (3)	0.55228 (2)	0.10929 (2)	0.00978 (4)	
Y3	0.06456 (3)	0.54810 (2)	0.58895 (2)	0.00912 (4)	
Y4	0.07501 (3)	0.75067 (2)	0.11164 (2)	0.00919 (4)	
Y5	0.21458 (3)	0.03182 (2)	0.28469 (2)	0.00892 (4)	
Y6	0.21892 (3)	0.65949 (2)	0.30143 (2)	0.00932 (4)	
Y7	0.28387 (3)	0.34616 (2)	0.47068 (2)	0.00820 (4)	
Y8	0.33165 (3)	0.14258 (2)	0.46043 (2)	0.00887 (4)	
Y9	0.39522 (3)	0.44733 (2)	0.15331 (2)	0.00900 (4)	
Y10	0.40049 (3)	0.24990 (2)	0.14656 (2)	0.00889 (4)	
Y11	0.40726 (3)	0.05855 (2)	0.14981 (2)	0.00802 (4)	
Y12	0.52776 (3)	0.34670 (2)	0.33477 (2)	0.00940 (4)	
Y13	0.59233 (3)	0.13725 (2)	0.33939 (2)	0.00793 (4)	
Y14	0.65146 (2)	0.06006 (2)	0.01018 (2)	0.00798 (4)	
Y15	0.65622 (3)	0.24911 (2)	0.01128 (2)	0.00842 (4)	
Y16	0.68494 (2)	0.45394 (2)	0.02227 (2)	0.00852 (4)	
Si1	0.04708 (7)	0.35119 (3)	0.04451 (4)	0.00844 (11)	
Si2	0.21185 (7)	0.21283 (3)	0.29091 (4)	0.00787 (11)	
Si3	0.21308 (7)	0.47988 (3)	0.30422 (4)	0.00811 (11)	
Si4	0.71110 (7)	0.34341 (3)	0.20491 (4)	0.00886 (11)	
01	0.02416 (19)	0.34345 (8)	0.46027 (9)	0.0087 (3)	
O2	0.0293 (2)	0.92849 (10)	0.44535 (11)	0.0184 (4)	
O3	0.0538 (2)	0.19082 (9)	0.22050 (10)	0.0140 (3)	
O4	0.0610(2)	0.78439 (10)	0.44866 (11)	0.0197 (4)	
05	0.0615 (2)	0.50967 (10)	0.23272 (10)	0.0155 (3)	
O6	0.0702 (2)	0.15333 (9)	0.46016 (9)	0.0121 (3)	
O7	0.09118 (19)	0.54121 (9)	0.47234 (9)	0.0106 (3)	
08	0.1498 (2)	0.42907 (9)	0.35965 (10)	0.0123 (3)	
09	0.15764 (19)	0.04903 (8)	0.16211 (9)	0.0096 (3)	
O10	0.16254 (19)	0.64694 (8)	0.17595 (9)	0.0097 (3)	
011	0.1635 (2)	0.83162 (11)	0.20990 (11)	0.0241 (4)	
O12	0.1654 (2)	0.25295 (9)	0.36021 (10)	0.0142 (3)	
013	0.20274 (18)	0.04431 (8)	0.40274 (9)	0.0082 (3)	
O14	0.22185 (19)	0.34823 (9)	0.10856 (10)	0.0122 (3)	
015	0.26570 (18)	0.53999 (9)	0.09494 (9)	0.0096 (3)	
O16	0.26979 (19)	0.15764 (8)	0.09357 (9)	0.0092 (3)	
O17	0.3161 (2)	0.42989 (9)	0.26470 (10)	0.0120 (3)	
O18	0.31663 (19)	0.14382 (8)	0.32837 (9)	0.0105 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

019	0.31924 (19)	0.26628 (9)	0.25893 (9)	0.0111 (3)
O20	0.40515 (19)	0.05377 (8)	0.02510 (9)	0.0091 (3)
O21	0.41112 (19)	0.25876 (8)	0.02745 (9)	0.0102 (3)
O22	0.44583 (19)	0.44667 (8)	0.04263 (9)	0.0099 (3)
O23	0.45573 (18)	0.03137 (8)	0.28014 (9)	0.0098 (3)
O24	0.50650 (19)	0.34326 (8)	0.44659 (9)	0.0097 (3)
O25	0.53739 (18)	0.35011 (8)	0.21108 (9)	0.0096 (3)
O26	0.54671 (19)	0.16143 (8)	0.21134 (9)	0.0096 (3)
O27	0.57760 (19)	0.14377 (8)	0.46158 (9)	0.0092 (3)
O28	0.66921 (19)	0.44072 (8)	0.38329 (9)	0.0103 (3)
O29	0.67975 (19)	0.25219 (8)	0.38636 (9)	0.0100 (3)
O30	0.68286 (19)	0.04695 (9)	0.15203 (9)	0.0110 (3)
O31	0.7075 (2)	0.27406 (9)	0.15147 (11)	0.0190 (4)
O32	0.7519 (2)	0.41584 (9)	0.16672 (10)	0.0134 (3)
O33	0.77970 (19)	0.15657 (8)	0.07783 (9)	0.0085 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.01007 (6)	0.01158 (6)	0.01264 (7)	0.00016 (5)	0.00381 (5)	0.00013 (5)
Y1	0.00706 (10)	0.01126 (10)	0.00829 (10)	-0.00009(8)	0.00242 (8)	-0.00038 (7)
Y2	0.00673 (10)	0.00988 (10)	0.01212 (10)	0.00019 (8)	0.00223 (8)	-0.00088 (8)
Y3	0.00828 (10)	0.00970 (9)	0.00923 (10)	0.00122 (8)	0.00264 (8)	0.00187 (8)
Y4	0.00750 (10)	0.00867 (9)	0.01056 (10)	0.00052 (8)	0.00178 (8)	0.00148 (8)
Y5	0.00866 (10)	0.01055 (10)	0.00723 (9)	-0.00086 (8)	0.00217 (8)	-0.00042 (7)
Y6	0.00816 (10)	0.01254 (10)	0.00706 (9)	0.00077 (8)	0.00223 (8)	0.00055 (7)
Y7	0.00724 (10)	0.00913 (9)	0.00804 (9)	-0.00020 (8)	0.00224 (7)	-0.00029(7)
Y8	0.00789 (10)	0.00854 (9)	0.01006 (10)	-0.00088(8)	0.00273 (8)	-0.00153 (7)
Y9	0.01067 (10)	0.00790 (9)	0.00788 (9)	0.00026 (8)	0.00226 (8)	0.00023 (7)
Y10	0.01035 (10)	0.00768 (9)	0.00781 (10)	-0.00013 (7)	0.00182 (8)	-0.00046 (7)
Y11	0.00807 (10)	0.00840 (9)	0.00715 (9)	-0.00019 (7)	0.00186 (7)	-0.00013 (7)
Y12	0.01153 (10)	0.00896 (9)	0.00710 (9)	-0.00063 (8)	0.00222 (8)	-0.00024 (7)
Y13	0.00789 (10)	0.00852 (9)	0.00716 (9)	-0.00028 (7)	0.00215 (7)	-0.00015 (7)
Y14	0.00767 (10)	0.00776 (9)	0.00807 (9)	-0.00032 (7)	0.00196 (7)	-0.00037 (7)
Y15	0.00900 (10)	0.00763 (9)	0.00850 (9)	0.00073 (7)	0.00266 (8)	0.00070 (7)
Y16	0.00846 (10)	0.00831 (9)	0.00839 (9)	-0.00055 (8)	0.00221 (8)	-0.00087 (7)
Si1	0.0082 (3)	0.0095 (3)	0.0074 (3)	-0.0004 (2)	0.0021 (2)	0.0001 (2)
Si2	0.0074 (3)	0.0080 (3)	0.0078 (3)	0.0001 (2)	0.0020 (2)	0.0005 (2)
Si3	0.0081 (3)	0.0082 (3)	0.0078 (3)	-0.0006 (2)	0.0024 (2)	-0.0003 (2)
Si4	0.0077 (3)	0.0089 (3)	0.0098 (3)	0.0004 (2)	0.0026 (2)	0.0016 (2)
01	0.0095 (8)	0.0092 (7)	0.0075 (7)	0.0002 (6)	0.0027 (6)	-0.0005 (6)
O2	0.0129 (9)	0.0146 (8)	0.0244 (10)	-0.0032 (7)	0.0017 (7)	0.0048 (7)
03	0.0102 (8)	0.0183 (9)	0.0112 (8)	-0.0022 (7)	0.0006 (6)	-0.0022 (7)
O4	0.0168 (9)	0.0195 (9)	0.0230 (10)	0.0051 (7)	0.0069 (8)	-0.0031 (8)
05	0.0118 (8)	0.0212 (9)	0.0121 (8)	0.0018 (7)	0.0020 (7)	0.0048 (7)
06	0.0113 (8)	0.0156 (8)	0.0087 (8)	0.0005 (6)	0.0022 (6)	0.0004 (6)
O7	0.0086 (8)	0.0130 (8)	0.0094 (8)	-0.0008 (6)	0.0017 (6)	0.0004 (6)
08	0.0127 (8)	0.0119 (8)	0.0135 (8)	0.0001 (6)	0.0058 (6)	0.0020 (6)

09	0.0092 (8)	0.0104 (7)	0.0085 (7)	-0.0016 (6)	0.0017 (6)	-0.0010 (6)
O10	0.0099 (8)	0.0099 (7)	0.0083 (7)	0.0003 (6)	0.0018 (6)	-0.0008 (6)
O11	0.0132 (9)	0.0377 (12)	0.0181 (9)	0.0014 (8)	0.0005 (7)	-0.0145 (8)
012	0.0133 (9)	0.0170 (8)	0.0147 (8)	-0.0021 (7)	0.0077 (7)	-0.0038 (7)
013	0.0084 (7)	0.0085 (7)	0.0073 (7)	-0.0001 (6)	0.0020 (6)	-0.0002 (6)
O14	0.0092 (8)	0.0126 (8)	0.0113 (8)	0.0008 (6)	-0.0016 (6)	-0.0013 (6)
015	0.0085 (8)	0.0108 (7)	0.0097 (7)	0.0008 (6)	0.0031 (6)	0.0004 (6)
016	0.0081 (8)	0.0099 (7)	0.0093 (7)	0.0003 (6)	0.0026 (6)	0.0001 (6)
017	0.0125 (8)	0.0121 (8)	0.0125 (8)	0.0015 (6)	0.0054 (6)	-0.0004 (6)
O18	0.0102 (8)	0.0092 (7)	0.0111 (8)	-0.0002 (6)	0.0021 (6)	0.0011 (6)
019	0.0128 (8)	0.0109 (7)	0.0107 (8)	-0.0021 (6)	0.0053 (6)	0.0001 (6)
O20	0.0105 (8)	0.0077 (7)	0.0089 (7)	-0.0011 (6)	0.0028 (6)	-0.0006 (6)
O21	0.0115 (8)	0.0091 (7)	0.0110 (8)	0.0004 (6)	0.0049 (6)	0.0013 (6)
O22	0.0092 (8)	0.0114 (8)	0.0097 (7)	0.0003 (6)	0.0038 (6)	-0.0004 (6)
O23	0.0081 (8)	0.0121 (8)	0.0086 (7)	-0.0005 (6)	0.0021 (6)	0.0011 (6)
O24	0.0081 (8)	0.0112 (7)	0.0099 (7)	-0.0003 (6)	0.0030 (6)	0.0005 (6)
O25	0.0081 (8)	0.0108 (7)	0.0094 (7)	0.0004 (6)	0.0019 (6)	0.0004 (6)
O26	0.0084 (8)	0.0108 (7)	0.0088 (7)	0.0003 (6)	0.0020 (6)	0.0003 (6)
O27	0.0099 (8)	0.0091 (7)	0.0086 (7)	-0.0002 (6)	0.0032 (6)	-0.0009 (6)
O28	0.0104 (8)	0.0104 (7)	0.0091 (7)	-0.0017 (6)	0.0020 (6)	0.0001 (6)
O29	0.0093 (8)	0.0099 (7)	0.0107 (8)	0.0003 (6)	0.0031 (6)	0.0005 (6)
O30	0.0103 (8)	0.0109 (7)	0.0111 (8)	0.0023 (6)	0.0024 (6)	0.0025 (6)
O31	0.0301 (11)	0.0097 (8)	0.0221 (10)	0.0016 (7)	0.0153 (8)	-0.0009 (7)
O32	0.0161 (9)	0.0114 (8)	0.0130 (8)	-0.0029 (7)	0.0052 (7)	0.0014 (6)
O33	0.0082 (7)	0.0086 (7)	0.0082 (7)	0.0002 (6)	0.0019 (6)	-0.0003 (6)

Geometric parameters (Å, °)

Ba1—O17	2.7478 (17)	Y8—O12	2.8503 (18)
Ba1—O11 ⁱ	2.7696 (19)	Y9—O15	2.1739 (16)
Ba1019	2.7793 (17)	Y9—O23 ^{viii}	2.1745 (16)
Ba1014	2.8395 (17)	Y9—O22	2.2201 (16)
Ba1—O32 ⁱⁱ	2.8661 (18)	Y9—O25	2.2847 (16)
Ba1—O8	2.9444 (17)	Y9—O17	2.3963 (17)
Ba1—O3	2.9600 (17)	Y9—O14	2.4017 (17)
Ba1—O5	3.0333 (18)	Y10—O16	2.1430 (16)
Ba1—Si2	3.0467 (6)	Y10—O26	2.2131 (16)
Ba1—Si4 ⁱⁱ	3.0500 (7)	Y10—O21	2.2207 (16)
Ba1—O4 ⁱ	3.0551 (19)	Y10—O25	2.3482 (16)
Ba1—Si3	3.0626 (6)	Y10—O14	2.4055 (16)
Ba1—Si1	3.0831 (6)	Y10—O19	2.4223 (16)
Ba1-012	3.1141 (18)	Y10-031	2.8058 (19)
Ba1—O2 ⁱ	3.1369 (19)	Y11—O20	2.2790 (16)
Ba1—O31 ⁱⁱ	3.274 (2)	Y11—O16	2.2876 (16)
Ba1—Y9	4.0878 (3)	Y11—O28 ^{ix}	2.3342 (16)
Ba1—Y4 ⁱ	4.1637 (3)	Y11—O23	2.3374 (16)
Ba1—Y12	4.1851 (3)	Y11—O9	2.3637 (16)
Ba1—Y10	4.1960 (3)	Y11—O26	2.3799 (16)

V1 01(2 2005 (1()	V11 020	0 5071 (1()
Y1-016	2.2005 (16)	Y11—030	2.50/1 (16)
Y1-033 ⁿ	2.2170 (16)	Y12—024	2.1194 (16)
Y1	2.2498 (16)	Y12—O28	2.1921 (16)
Y1—O9	2.3055 (16)	Y12—O29	2.2564 (16)
Y1—01 ^m	2.3079 (16)	Y12—O25	2.2959 (16)
Y1—O3	2.5694 (17)	Y12—O19	2.4673 (17)
Y1—O4 ⁱ	2.8014 (19)	Y12—017	2.4859 (17)
Y1—Y14 ⁱⁱ	3.5777 (3)	Y13—O27	2.2879 (16)
Y1—Y11	3.6356 (3)	Y13—O26	2.2892 (16)
Y2—O15	2.1496 (16)	Y13—O15 ^{ix}	2.3290 (16)
Y2—O13 ^{iv}	2.1736 (16)	Y13—O10 ^{ix}	2.3466 (16)
Y2—O10	2.2282 (16)	Y13—O29	2.3585 (16)
Y2—O6 ^{iv}	2.3233 (17)	Y13—O23	2.4039 (16)
Y2—O5	2.3485 (17)	Y13—O18	2.4563 (17)
$Y2-O2^i$	2.5253 (18)	Y14—O20 ^x	2.2389 (15)
Y3—07	2.2297 (16)	Y14—O33	2.2856 (16)
Y3-07 ^v	2.2436 (17)	Y14—07 ^{ix}	2.2879 (16)
Y3-09 ^{vi}	2 2546 (16)	Y14-024 ⁱⁱⁱ	2,3189 (16)
$Y_{3}=01^{v}$	2 2620 (16)	V14-020	2.3499 (16)
$V_3 = O_2 8^{\text{vii}}$	2.2020(10) 2.3197(17)	$V14_{-028}^{-028}$	2.3 (10)
V3_08 ^v	2.3197(17) 2 4654 (17)	V14_030	2.5010 (10)
$V_{4} = 01^{iv}$	2.4094(17) 2.1808(16)	V15 023	2.3300 (10)
$V_4 = O_1$	2.1090(10) 2.2225(16)	V15 027iii	2.2030(10)
14-029 V4 010	2.2223(10) 2.2772(16)	V15 024	2.2231(10)
14-010 X4 011	2.2772(10)	N15 021	2.2812(10)
Y4-OII	2.2894 (19)	¥15—021	2.3529 (16)
$Y4-O6^{iv}$	2.3810 (17)	¥15—029 ^m	2.3660 (16)
Y4—O12 ^{iv}	2.4084 (17)	Y15-031	2.4990 (19)
Y5-09	2.1569 (16)	Y15—O4 ^{ix}	2.5259 (19)
Y5—O13	2.2115 (15)	Y16—O27 ^m	2.1983 (16)
Y5—O23	2.2252 (16)	Y16—O13 ^{viii}	2.2097 (16)
Y5—O18	2.3281 (16)	Y16—O22 ^{xi}	2.3185 (16)
Y5—O32 ^{ix}	2.3295 (17)	Y16—O22	2.3304 (16)
Y5—O5 ⁱ	2.4652 (18)	Y16—O15 ^{xi}	2.3343 (16)
Y6—O10	2.1976 (16)	Y16—O2 ^{ix}	2.5198 (18)
Y6—O33 ^{viii}	2.2074 (16)	Y16—O32	2.6127 (17)
Y6—O26 ^{viii}	2.2225 (16)	Si1—O4 ⁱ	1.6218 (19)
Y6—O31 ^{viii}	2.3284 (18)	Si1—O6 ⁱⁱⁱ	1.6274 (17)
Y6—O30 ^{viii}	2.3395 (17)	Si1014	1.6423 (18)
Y6-03 ^{iv}	2.4547 (17)	Si1—O2 ⁱ	1.6428 (18)
Y7—O24	2.2120 (16)	Si2—O18	1.6205 (17)
Y7—O20 ^{vi}	2.2383 (16)	Si2—O19	1.6356 (17)
Y7—O16 ^{vi}	2.2964 (16)	Si2—O3	1.6422 (18)
Y7—01	2.3113 (16)	Si2-012	1.6441 (18)
Y7—021 ^{vi}	2.3455 (16)	Si3—O30 ^{viii}	1.6198 (17)
Y7-08	2 5336 (17)	Si3-08	1.6277(17)
Y7-012	2.6233 (17)	Si3-017	1.6277(17)
V8-021 ^{vi}	2 2060 (16)	Si3-05	1 6596 (18)
V8 027	2.2000(10) 2.2300(16)	Sid 031	1.0000(10) 1.6001(10)
10-02/	2.2339 (10)	514-051	1.0201 (10)

Y8—013	2.2527 (16)	Si4—O11 ^{ix}	1.621 (2)
Y8-022 ^{vi}	2.2630 (16)	Si4—O32	1.6240 (17)
Y8—018	2.3772 (16)	Si4—025	1.6276 (17)
Y8—O6	2.3887 (17)		
O17—Ba1—O11 ⁱ	125.29 (6)	O15 ^{ix} —Y13—O18	117.55 (5)
O17—Ba1—O19	67.40 (5)	O10 ^{ix} —Y13—O18	166.82 (5)
O11 ⁱ —Ba1—O19	118.72 (5)	O29—Y13—O18	101.48 (5)
O17—Ba1—O14	67.54 (5)	O23—Y13—O18	68.84 (5)
O11 ⁱ —Ba1—O14	167.12 (5)	O20 ^x —Y14—O33	159.82 (6)
O19-Ba1-O14	65.07 (5)	O20 ^x —Y14—O7 ^{ix}	91.30 (6)
O17—Ba1—O32 ⁱⁱ	120.23 (5)	O33—Y14—O7 ^{ix}	74.14 (6)
O11 ⁱ —Ba1—O32 ⁱⁱ	56.19 (5)	O20 ^x —Y14—O24 ⁱⁱⁱ	123.98 (6)
O19-Ba1-O32 ⁱⁱ	172.15 (5)	O33—Y14—O24 ⁱⁱⁱ	76.20 (6)
O14—Ba1—O32 ⁱⁱ	118.45 (5)	O7 ^{ix} —Y14—O24 ⁱⁱⁱ	125.50 (6)
O17—Ba1—O8	55.42 (5)	O20 ^x —Y14—O20	81.19 (6)
O11 ⁱ —Ba1—O8	69.87 (5)	O33—Y14—O20	108.39 (6)
O19—Ba1—O8	91.90 (5)	O7 ^{ix} —Y14—O20	161.75 (6)
O14—Ba1—O8	122.96 (5)	O24 ⁱⁱⁱ —Y14—O20	71.84 (5)
O32 ⁱⁱ —Ba1—O8	91.53 (5)	O20 ^x —Y14—O28 ⁱⁱⁱ	78.17 (6)
O17—Ba1—O3	122.95 (5)	O33—Y14—O28 ⁱⁱⁱ	110.40 (6)
O11 ⁱ —Ba1—O3	81.95 (6)	O7 ^{ix} —Y14—O28 ⁱⁱⁱ	75.13 (6)
O19—Ba1—O3	55.78 (5)	O24 ⁱⁱⁱ —Y14—O28 ⁱⁱⁱ	73.94 (5)
O14—Ba1—O3	91.56 (5)	O20—Y14—O28 ⁱⁱⁱ	118.95 (6)
O32 ⁱⁱ —Ba1—O3	116.44 (5)	O20 ^x —Y14—O30	98.17 (5)
O8—Ba1—O3	118.40 (5)	O33—Y14—O30	69.73 (5)
O17—Ba1—O5	54.50 (5)	O7 ^{ix} —Y14—O30	94.20 (5)
O11 ⁱ —Ba1—O5	93.27 (6)	O24 ⁱⁱⁱ —Y14—O30	116.53 (5)
O19—Ba1—O5	121.73 (5)	O20—Y14—O30	70.66 (5)
O14—Ba1—O5	94.48 (5)	O28 ⁱⁱⁱ —Y14—O30	168.52 (5)
O32 ⁱⁱ —Ba1—O5	65.78 (5)	O33—Y15—O27 ⁱⁱⁱ	166.92 (6)
08—Ba1—O5	52.96 (5)	O33—Y15—O24 ⁱⁱⁱ	78.57 (6)
O3—Ba1—O5	171.32 (5)	O27 ⁱⁱⁱ —Y15—O24 ⁱⁱⁱ	114.43 (6)
O17—Ba1—O4 ⁱ	121.87 (5)	O33—Y15—O21	108.96 (6)
O11 ⁱ —Ba1—O4 ⁱ	112.30 (5)	O27 ⁱⁱⁱ —Y15—O21	77.87 (6)
O19—Ba1—O4 ⁱ	93.13 (5)	O24 ⁱⁱⁱ —Y15—O21	72.07 (6)
O14—Ba1—O4 ⁱ	54.85 (5)	O33—Y15—O29 ⁱⁱⁱ	109.61 (6)
O32 ⁱⁱ —Ba1—O4 ⁱ	84.19 (5)	O27 ⁱⁱⁱ —Y15—O29 ⁱⁱⁱ	74.46 (6)
O8—Ba1—O4 ⁱ	172.47 (5)	O24 ⁱⁱⁱ —Y15—O29 ⁱⁱⁱ	73.58 (6)
O3—Ba1—O4 ⁱ	69.12 (5)	O21—Y15—O29 ⁱⁱⁱ	120.73 (6)
O5—Ba1—O4 ⁱ	119.52 (5)	O33—Y15—O31	71.83 (6)
017—Ba1—012	90.81 (5)	O27 ⁱⁱⁱ —Y15—O31	100.32 (6)
$O11^{i}$ —Ba1—O12	65.77 (5)	O24 ⁱⁱⁱ —Y15—O31	123.73 (6)
019—Ba1—012	53.63 (4)	O21—Y15—O31	73.98 (6)
014—Ba1—012	118.59 (5)	O29 ⁱⁱⁱ —Y15—O31	161.71 (6)
O32 ⁱⁱ —Ba1—O12	121.94 (5)	O33—Y15—O4 ^{ix}	75.92 (6)
08—Ba1—012	65.98 (5)	027 ⁱⁱⁱ —Y15—O4 ^{ix}	92.57 (6)
O3—Ba1—O12	52.51 (4)	O24 ⁱⁱⁱ —Y15—O4 ^{ix}	136.88 (6)
	\ • /		

O5—Ba1—O12	118.90 (5)	O21—Y15—O4 ^{ix}	149.68 (6)
O4 ⁱ —Ba1—O12	121.55 (5)	O29 ⁱⁱⁱ —Y15—O4 ^{ix}	83.02 (6)
O17—Ba1—O2 ⁱ	88.07 (5)	O31—Y15—O4 ^{ix}	79.68 (6)
O11 ⁱ —Ba1—O2 ⁱ	122.33 (5)	O27 ⁱⁱⁱ —Y16—O13 ^{viii}	172.57 (6)
O19—Ba1—O2 ⁱ	117.32 (5)	O27 ⁱⁱⁱ —Y16—O22 ^{xi}	109.86 (6)
O14—Ba1—O2 ⁱ	52.26 (5)	O13 ^{viii} —Y16—O22 ^{xi}	76.11 (6)
O32 ⁱⁱ —Ba1—O2 ⁱ	66.56 (5)	O27 ⁱⁱⁱ —Y16—O22	75.36 (6)
O8—Ba1—O2 ⁱ	120.61 (5)	O13 ^{viii} —Y16—O22	102.30 (6)
O3—Ba1—O2 ⁱ	120.81 (5)	O22 ^{xi} —Y16—O22	77.17 (6)
O5—Ba1—O2 ⁱ	67.87 (5)	O27 ⁱⁱⁱ —Y16—O15 ^{xi}	76.29 (6)
O4 ⁱ —Ba1—O2 ⁱ	51.95 (5)	O13 ^{viii} —Y16—O15 ^{xi}	110.19 (6)
O12—Ba1—O2 ⁱ	170.28 (4)	O22 ^{xi} —Y16—O15 ^{xi}	73.17 (6)
O17—Ba1—O31 ⁱⁱ	171.58 (5)	O22—Y16—O15 ^{xi}	128.31 (6)
O11 ⁱ —Ba1—O31 ⁱⁱ	51.27 (5)	O27 ⁱⁱⁱ —Y16—O2 ^{ix}	102.52 (6)
O19—Ba1—O31 ⁱⁱ	120.95 (5)	O13 ^{viii} —Y16—O2 ^{ix}	76.41 (6)
O14—Ba1—O31 ⁱⁱ	115.88 (5)	O22 ^{xi} —Y16—O2 ^{ix}	126.26 (6)
O32 ⁱⁱ —Ba1—O31 ⁱⁱ	51.38 (5)	O22—Y16—O2 ^{ix}	154.03 (6)
O8—Ba1—O31 ⁱⁱ	120.55 (4)	O15 ^{xi} —Y16—O2 ^{ix}	74.45 (6)
O3—Ba1—O31 ⁱⁱ	65.30 (5)	O27 ⁱⁱⁱ —Y16—O32	101.72 (6)
O5—Ba1—O31 ⁱⁱ	117.09 (5)	O13 ^{viii} —Y16—O32	70.85 (5)
O4 ⁱ —Ba1—O31 ⁱⁱ	61.03 (5)	O22 ^{xi} —Y16—O32	130.53 (5)
O12—Ba1—O31 ⁱⁱ	93.83 (5)	O22—Y16—O32	75.19 (5)
O2 ⁱ —Ba1—O31 ⁱⁱ	88.51 (5)	O15 ^{xi} —Y16—O32	153.20 (6)
O16—Y1—O33 ⁱⁱ	164.90 (6)	O2 ^{ix} —Y16—O32	80.06 (6)
O16—Y1—O7 ⁱ	117.27 (6)	O4 ⁱ —Si1—O6 ⁱⁱⁱ	107.60 (10)
$O33^{ii}$ —Y1— $O7^{i}$	76.22 (6)	O4 ⁱ —Si1—O14	112.98 (10)
016—Y1—09	75.36 (6)	O6 ⁱⁱⁱ —Si1—O14	106.32 (9)
O33 ⁱⁱ —Y1—O9	116.75 (6)	$O4^{i}$ —Si1— $O2^{i}$	112.40 (10)
O7 ⁱ —Y1—O9	74.38 (6)	O6 ⁱⁱⁱ —Si1—O2 ⁱ	110.10 (10)
016—Y1—01 ⁱⁱⁱ	74.23 (6)	O14—Si1—O2 ⁱ	107.27 (9)
O33 ⁱⁱ —Y1—O1 ⁱⁱⁱ	103.99 (6)	O18—Si2—O19	107.53 (9)
07 ⁱ —Y1—O1 ⁱⁱⁱ	77.49 (6)	O18—Si2—O3	112.15 (9)
09—Y1—O1 ⁱⁱⁱ	121.91 (6)	O19—Si2—O3	110.27 (9)
O16—Y1—O3	96.07 (6)	O18—Si2—O12	107.58 (9)
O33 ⁱⁱ —Y1—O3	78.37 (6)	O19—Si2—O12	109.31 (9)
O7 ⁱ —Y1—O3	129.56 (6)	O3—Si2—O12	109.91 (9)
O9—Y1—O3	79.47 (6)	O30 ^{viii} —Si3—O8	114.47 (9)
O1 ⁱⁱⁱ —Y1—O3	151.51 (6)	O30 ^{viii} —Si3—O17	109.39 (9)
O16-Y1-O4 ⁱ	95.15 (6)	O8—Si3—O17	108.02 (9)
O33 ⁱⁱ —Y1—O4 ⁱ	70.09 (5)	O30 ^{viii} —Si3—O5	109.38 (9)
$O7^{i}$ —Y1—O4 ⁱ	129.53 (6)	O8—Si3—O5	108.41 (9)
09—Y1—O4 ⁱ	155.15 (6)	O17—Si3—O5	106.90 (9)
01 ⁱⁱⁱ —Y1—O4 ⁱ	75.60 (5)	O31—Si4—O11 ^{ix}	109.95 (11)
O3—Y1—O4 ⁱ	78.78 (6)	O31—Si4—O32	111.84 (10)
O15—Y2—O13 ^{iv}	164.19 (6)	O11 ^{ix} —Si4—O32	109.85 (10)
O15—Y2—O10	80.50 (6)	O31—Si4—O25	105.96 (10)
O13 ^{iv} —Y2—O10	114.60 (6)	O11 ^{ix} —Si4—O25	109.90 (10)
O15—Y2—O6 ^{iv}	106.62 (6)	O32—Si4—O25	109.25 (9)

O13 ^{iv} —Y2—O6 ^{iv}	75.30 (6)	Y3 ^v	99.97 (6)
O10—Y2—O6 ^{iv}	72.67 (6)	Y4 ⁱ	106.13 (6)
O15—Y2—O5	107.69 (6)	Y3 ^v —O1—Y7	103.68 (6)
O13 ^{iv} —Y2—O5	80.07 (6)	Y1 ^{vi} —O1—Y7	103.92 (6)
O10—Y2—O5	82.76 (6)	Si1 ^{iv} —O2—Y16 ^{viii}	125.68 (10)
O6 ^{iv} —Y2—O5	133.27 (6)	Sil ^{iv} —O2—Y2 ^{iv}	142.19 (10)
O15—Y2—O2 ⁱ	89.15 (6)	$Y16^{viii}$ $O2$ $Y2^{iv}$	91.86 (6)
$O13^{iv}$ Y2 $O2^{i}$	76.91 (6)	$Si1^{iv}$ — $O2$ — $Ba1^{iv}$	72.88 (7)
$010 - Y2 - 02^{i}$	164.80 (6)	$Y16^{viii}$ $O2$ $Ba1^{iv}$	102.67 (6)
$O6^{iv} Y2 O2^{i}$	121.37 (6)	$Y2^{iv}$ — $O2$ — $Ba1^{iv}$	96.77 (6)
$05 - Y2 - 02^{i}$	89.90 (6)	$Si2-O3-Y6^{i}$	140.38 (10)
07—Y3—07 ^v	74.11 (7)	Si2-03-Y1	129.18 (9)
07—Y3—09 ^{vi}	112.65 (6)	$Y_{6^{i}} - 0_{3} - Y_{1}$	88.78 (5)
07^{v} Y3 09^{vi}	75.50 (6)	Si2-03-Ba1	77.07 (7)
$07 - Y3 - 01^{v}$	78.85 (6)	$Y6^{i}$ O3 Bal	103.76 (6)
$07^{v} - Y3 - 01^{v}$	112.62 (6)	Y1-03-Ba1	108.66 (6)
09^{vi} Y3 -01^{v}	167 88 (6)	Si1 ^{iv} -04 $-Y15viii$	140.05(11)
$07 - Y3 - 028^{vii}$	77 47 (6)	$Si1^{iv} - 04 - Y1^{iv}$	128 30 (10)
$07^{v} - Y3 - 028^{vii}$	128 51 (6)	$V15^{viii}$ $O4$ $V1^{iv}$	90.11 (6)
09^{vi} 300020	77 21 (6)	Siliv -04 Baliv	75 63 (7)
$01^{v} - Y_{3} - 028^{vii}$	102 63 (6)	$Y_{15^{\text{viii}}} 04 Ba_{1^{\text{iv}}}$	111 80 (6)
$07 - Y3 - 08^{v}$	136 24 (6)	$V1^{iv} - 04 - Ba1^{iv}$	100 26 (6)
$0.7^{v} - Y_{3} - 0.8^{v}$	82,52,(6)	Si3-05-Y2	131.00(10)
$09^{vi} - V3 - 08^{v}$	95 99 (6)	Si3-05-Y5 ^{iv}	135 25 (9)
$01^{v} - Y_{3} - 08^{v}$	76 80 (6)	$Y2-O5-Y5^{iv}$	93 69 (6)
028^{vii} 3300^{v}	143 34 (6)	Si3-05-Ba1	75 18 (7)
01^{iv} Y4 029^{viii}	102.44 (6)	$Y_{2}=05$ Bal	103 67 (6)
$01^{iv} Y4 010$	173.96 (6)	$Y5^{iv}$ —O5—Bal	99 19 (6)
029^{viii} Y4 010	79 72 (6)	$Si1^{vi}$ $O6$ $Y2^{i}$	107 89 (8)
$01^{iv} Y4 011$	85.27 (7)	$Si1^{vi}$ $O6$ $Y4^{i}$	110.09 (9)
$029^{viii} Y4 011$	83.33 (6)	$Y2^{i}-06-Y4^{i}$	104.79 (7)
010 - Y4 - 011	100.62 (7)	Sil ^{vi} -O6-Y8	115.51 (9)
$01^{iv} Y4 - 06^{iv}$	103.27(6)	Y2 ⁱ -06-Y8	101 15 (6)
029^{viii} Y4 06^{iv}	113 18 (6)	Y4 ⁱ	116.09(7)
$010 - Y4 - 06^{iv}$	70.74 (6)	Y3-07-Y3 ^v	105.89 (7)
$011 - Y4 - 06^{iv}$	158.61 (7)	Y3-07-Y1 ^{iv}	102.77(7)
$01^{iv} Y4 012^{iv}$	83.61 (6)	$Y_{3^{v}} - 07 - Y_{1^{iv}}$	105.20(7)
029^{viii} Y4 012^{iv}	167.30 (6)	$Y3-O7-Y14^{viii}$	106.45(7)
$010 - Y4 - 012^{iv}$	95.40 (6)	$Y_{3^{v}} = 07 = Y_{14^{viii}}$	129.59 (8)
$011 - Y4 - 012^{iv}$	86.09 (7)	Y1 ^{iv} -07-Y14 ^{viii}	104.07 (6)
$06^{iv} - Y4 - 012^{iv}$	75.61 (6)	Si3—08—Y3 ^v	128.47 (9)
09—Y5—013	158.36 (6)	Si3-08-Y7	133.04 (9)
09—Y5—023	82.38 (6)	$Y_{3^{v}} = 08 = Y_{7}$	91.99 (5)
013 - Y5 - 023	113.58 (6)	Si3—O8—Ba1	78.32 (7)
09—Y5—018	99.01 (6)	$Y_{3^{v}} = 08 = Ba_{1}$	112.96 (6)
O13—Y5—O18	73.14 (6)	Y7-08-Ba1	109.92 (6)
023—Y5—018	74.20 (6)	Y5-09-Y3 ⁱⁱⁱ	114.47 (7)
$09 - Y5 - 032^{ix}$	119 60 (6)	Y5-09-Y1	13021(7)
0, 10 002			

O13—Y5—O32 ^{ix}	76.55 (6)	Y3 ⁱⁱⁱ —O9—Y1	103.02 (6)
O23—Y5—O32 ^{ix}	90.16 (6)	Y5—O9—Y11	101.40 (6)
O18—Y5—O32 ^{ix}	136.15 (6)	Y3 ⁱⁱⁱ —O9—Y11	101.04 (6)
O9—Y5—O5 ⁱ	90.07 (6)	Y1—O9—Y11	102.27 (6)
O13—Y5—O5 ⁱ	76.80 (6)	Y6—O10—Y2	124.30 (7)
O23—Y5—O5 ⁱ	166.55 (6)	Y6—O10—Y4	111.88 (7)
O18—Y5—O5 ⁱ	118.19 (6)	Y2—O10—Y4	111.63 (7)
$O32^{ix}$ Y5 $O5^{i}$	83.90 (6)	Y6—O10—Y13 ^{viii}	103.06 (6)
010—Y6—033 ^{viii}	165.38 (6)	Y2_010_Y13 ^{viii}	101.01 (6)
010 Y6 026^{viii}	78.30 (6)	Y4-010-Y13 ^{viii}	100.99 (6)
033^{viii} Y6 026^{viii}	114 42 (6)	$Si4^{viii}$ O11 Y4	14351(12)
$010 - Y6 - 031^{viii}$	115.27 (6)	Si4 ^{viii} —O11—Ba1 ^{iv}	83.64 (8)
033^{viii} Y6 031^{viii}	75 21 (6)	$Y4-011-Ba1^{iv}$	11042(7)
$0.000 \times 10^{-0.001}$	81 58 (6)	$Si2-012-Y4^{i}$	129.61(10)
$010 - Y6 - 030^{viii}$	102 46 (6)	Si2-012-Y7	129.01(10) 139.00(9)
033^{viii} Y6 030^{viii}	74 70 (6)	$Y_{4i} = 012 = Y_{7}$	91 21 (5)
0.00000000000000000000000000000000000	77.67.(6)	Si2-012-Y8	87.08(7)
$0.20^{-10} 0.00^{-10}$	13174(7)	$V_{4^{i}}$ 012 10	100 30 (6)
$010 - V6 - 03^{iv}$	88 57 (6)	V7_012_V8	89 28 (5)
033^{viii} V6 03^{iv}	81.09(6)	$S_{12} = 012 = 18$	72 27 (6)
O_{26}^{viii} V6 O_{2}^{iv}	150 14 (6)	$V_{A_{1}}^{i} = O_{12}^{i} - B_{21}^{i}$	97.04 (6)
020 - 10 - 03	89.66 (6)	V7 012 Ba1	$\frac{97.04}{102}$ (0)
$O_{31}^{\text{viii}} = 10 - O_{31}^{\text{viii}}$	121 43 (6)	$V_{1} = 0.12 = 0.12$	158 69 (6)
030 - 10 - 03	75.08 (6)	$V_{2i}^{i} O_{12}^{i} V_{16ix}^{ix}$	138.09(0)
024 - 17 - 020	122.82 (6)	12 - 013 - 110	111.38(7)
024-17-010	122.82(0)	12 - 013 - 13 V16ix 012 V5	100.40(7)
020 - 1 = 010	164.43(6)	110 - 013 - 15 V2i 013 V8	111.40(7)
024-17-01	104.43(0) 113.40(6)	12 - 013 - 18 V16 ^{ix} 013 V8	110.03(7)
020 - 1 / - 01	113.49(0)	110 - 013 - 18	103.03(0)
$010^{-1} - 1 - 01$	72.41(0)	13-013-18	111.10(7) 126.47(0)
024-17-021	73.43(0)	SII-014-19 Si1-014 V10	120.47(9)
$020^{-1} - 1 - 021^{-1}$	115.78(0)	SII = 014 = 110	129.70 (9)
$010^{10} - 1 - 021^{11}$	75.50 (0) 111.28 (C)	19-014-110	100.08(0)
01 - 1 - 021	111.28(0)	SII = OI4 = BaI	82.27 (7)
024 - 1 - 08	95.10(6)	$\frac{19-014}{2}$	102.19 (6)
$020^{-1} - 1 = 08$	83.28 (0)	Y10-015 V0	105.96 (6)
$016^{-1} - 108$	129.72 (6)	$Y_2 = 015 = Y_1 2 $	114.18 (7)
01 - Y = 08	74.59 (5) 155.22 (6)	$Y_2 = 015 = Y_13^{\text{vin}}$	104.01 (6)
$021^{-4} - 12$	155.33 (6)	$Y_{2} = 015 - Y_{13}$	104.44 (7)
024 Y -012	90.20 (6)	$Y_2 = 015 - Y_16^{x_1}$	125.55 (7)
$020^{4} - Y / - 012$	156.93 (6)	Y9-015-Y16 ^{x1}	104.76 (6)
$016^{-1} - Y - 012$	126.50 (6)	$Y 13^{\text{vin}} - 015 - Y 16^{\text{vi}}$	101.29 (6)
01 - Y - 012	/6.64 (5)	Y10-016-Y1	122.70(7)
$021^{v_1} - Y^2 - 012$	78.69 (6)	Y10—016—Y11	107.97 (7)
U8 - Y / - U12	/9.60 (6)		108.19 (7)
021^{v_1} Y8 027	80.79 (6)	Y10—016—Y7 ^m	105.58 (7)
021 ^{vi} —Y8—013	166.37 (6)	Y1-016-Y'/m	107.98 (7)
027—Y8—013	112.37 (6)	Y11—O16—Y7 ^m	102.64 (6)
$O21^{v_1}$ Y8 $O22^{v_1}$	104.62 (6)	S13—O17—Y9	131.87 (9)

O27—Y8—O22 ^{vi}	76.04 (6)	Si3—O17—Y12	125.83 (9)
O13—Y8—O22 ^{vi}	76.40 (6)	Y9—017—Y12	97.30 (6)
O21 ^{vi} —Y8—O18	117.22 (6)	Si3—O17—Ba1	84.34 (7)
O27—Y8—O18	74.62 (6)	Y9—O17—Ba1	105.04 (6)
O13—Y8—O18	71.48 (6)	Y12-017-Ba1	106.08 (6)
O22 ^{vi} —Y8—O18	123.05 (6)	Si2—O18—Y5	117.33 (9)
O21 ^{vi} —Y8—O6	94.41 (6)	Si2—O18—Y8	105.61 (8)
O27—Y8—O6	174.58 (6)	Y5—O18—Y8	103.00 (6)
O13—Y8—O6	72.59 (6)	Si2—O18—Y13	121.35 (9)
O22 ^{vi} —Y8—O6	107.80 (6)	Y5—O18—Y13	105.44 (6)
O18—Y8—O6	105.67 (6)	Y8—O18—Y13	101.38 (6)
O21 ^{vi} —Y8—O12	76.10 (6)	Si2—O19—Y10	127.62 (9)
O27—Y8—O12	108.64 (5)	Si2—O19—Y12	127.79 (9)
O13—Y8—O12	101.78 (5)	Y10—O19—Y12	99.39 (6)
O22 ^{vi} —Y8—O12	175.29 (5)	Si2—O19—Ba1	82.94 (7)
O18—Y8—O12	59.70 (5)	Y10-019-Ba1	107.35 (6)
O6—Y8—O12	67.50 (5)	Y12-019-Ba1	105.67 (6)
O15—Y9—O23 ^{viiii}	80.64 (6)	Y7 ⁱⁱⁱ —O20—Y14 ^x	129.43 (7)
O15—Y9—O22	78.25 (6)	Y7 ⁱⁱⁱ —O20—Y11	104.78 (6)
O23 ^{viii} —Y9—O22	103.77 (6)	Y14 ^x —O20—Y11	104.63 (6)
O15—Y9—O25	177.52 (6)	Y7 ⁱⁱⁱ —O20—Y14	104.94 (6)
O23 ^{viii} —Y9—O25	99.28 (6)	Y14 ^x —O20—Y14	98.81 (6)
O22—Y9—O25	99.39 (6)	Y11—O20—Y14	114.69 (7)
O15—Y9—O17	105.18 (6)	Y8 ⁱⁱⁱ —O21—Y10	119.84 (7)
O23 ^{viii} —Y9—O17	85.86 (6)	Y8 ⁱⁱⁱ —O21—Y7 ⁱⁱⁱ	115.47 (7)
O22—Y9—O17	170.26 (6)	Y10—O21—Y7 ⁱⁱⁱ	101.50 (6)
O25—Y9—O17	77.27 (6)	Y8 ⁱⁱⁱ —O21—Y15	98.47 (6)
O15—Y9—O14	104.95 (6)	Y10—O21—Y15	117.68 (7)
O23 ^{viii} —Y9—O14	166.38 (6)	Y7 ⁱⁱⁱ —O21—Y15	103.42 (6)
O22—Y9—O14	89.61 (6)	Y9—O22—Y8 ⁱⁱⁱ	115.09 (7)
O25—Y9—O14	75.67 (6)	Y9—O22—Y16 ^{xi}	103.81 (6)
O17—Y9—O14	80.71 (6)	Y8 ⁱⁱⁱ —O22—Y16 ^{xi}	101.78 (6)
O16—Y10—O26	77.73 (6)	Y9—O22—Y16	128.94 (7)
O16—Y10—O21	79.11 (6)	Y8 ⁱⁱⁱ —O22—Y16	100.83 (6)
O26—Y10—O21	111.79 (6)	Y16 ^{xi} —O22—Y16	102.83 (6)
O16—Y10—O25	176.38 (6)	Y9 ^{ix} —O23—Y5	115.19(7)
O26—Y10—O25	101.57 (6)	Y9 ^{ix} —O23—Y11	127.28 (7)
O21—Y10—O25	104.39 (6)	Y5—O23—Y11	100.19 (6)
O16—Y10—O14	105.23 (6)	Y9 ^{ix} —O23—Y13	101.97 (6)
O26—Y10—O14	163.87 (6)	Y5—O23—Y13	110.62 (7)
O21—Y10—O14	84.29 (6)	Y11—O23—Y13	100.31 (6)
O25—Y10—O14	74.45 (6)	Y12—O24—Y7	124.75 (8)
O16—Y10—O19	102.02 (6)	Y12—O24—Y15 ^{vi}	107.30 (7)
O26—Y10—O19	86.37 (6)	Y7—O24—Y15 ^{vi}	110.31 (7)
O21—Y10—O19	161.43 (6)	Y12—O24—Y14 ^{vi}	104.19 (6)
O25—Y10—O19	74.37 (5)	Y7-024-Y14 ^{vi}	106.85 (6)
O14—Y10—O19	77.51 (6)	Y15 ^{vi} —O24—Y14 ^{vi}	100.67 (6)
O16—Y10—O31	123.07 (6)	Si4—O25—Y9	116.53 (8)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O26—Y10—O31	71.57 (6)	Si4—O25—Y12	114.63 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O21—Y10—O31	69.97 (6)	Y9—O25—Y12	106.31 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O25—Y10—O31	59.63 (5)	Si4-025-Y10	105.81 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O14—Y10—O31	117.33 (5)	Y9—O25—Y10	106.03 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O19—Y10—O31	121.98 (6)	Y12—O25—Y10	106.82 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O20—Y11—O16	75.89 (6)	Y10-026-Y6 ^{ix}	112.77 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O20—Y11—O28 ^{ix}	78.36 (6)	Y10—O26—Y13	125.02 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O16—Y11—O28 ^{ix}	125.24 (6)	Y6 ^{ix} —O26—Y13	104.14 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O20—Y11—O23	162.10 (6)	Y10—O26—Y11	102.55 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O16—Y11—O23	122.00 (6)	Y6 ^{ix} —O26—Y11	108.66 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O28 ^{ix} —Y11—O23	90.02 (6)	Y13—O26—Y11	102.45 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O20—Y11—O9	113.46 (6)	Y16 ^{vi} —O27—Y15 ^{vi}	120.90 (7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O16—Y11—O9	72.64 (6)	Y16 ^{vi} —O27—Y8	106.02 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O28 ^{ix} —Y11—O9	74.83 (6)	Y15 ^{vi} —O27—Y8	101.61 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23—Y11—O9	75.75 (5)	Y16 ^{vi} —O27—Y13	106.97 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O20—Y11—O26	109.58 (5)	Y15 ^{vi} —O27—Y13	109.56 (7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O16—Y11—O26	71.68 (6)	Y8—O27—Y13	111.61 (7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O28 ^{ix} —Y11—O26	163.06 (6)	Y12—O28—Y3 ^{vii}	126.58 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23—Y11—O26	78.39 (6)	Y12—O28—Y11 ^{viii}	124.62 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O9—Y11—O26	113.44 (5)	Y3 ^{vii} —O28—Y11 ^{viii}	100.01 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O20—Y11—O30	72.21 (6)	Y12-028-Y14 ^{vi}	99.94 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O16—Y11—O30	118.43 (6)	Y3 ^{vii} —O28—Y14 ^{vi}	100.67 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O28 ^{ix} —Y11—O30	97.75 (6)	Y11 ^{viii} —O28—Y14 ^{vi}	98.62 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23—Y11—O30	96.28 (5)	Y4 ^{ix} —O29—Y12	119.57 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O9—Y11—O30	168.90 (5)	Y4 ^{ix} —O29—Y13	102.27 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O26—Y11—O30	71.65 (5)	Y12—O29—Y13	118.37 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24—Y12—O28	81.93 (6)	Y4 ^{ix} —O29—Y15 ^{vi}	113.01 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24—Y12—O29	78.96 (6)	Y12—O29—Y15 ^{vi}	100.15 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O28—Y12—O29	105.13 (6)	Y13—O29—Y15 ^{vi}	102.53 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24—Y12—O25	177.11 (6)	Si3 ^{ix} —O30—Y6 ^{ix}	115.21 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O28—Y12—O25	99.85 (6)	Si3 ^{ix} —O30—Y11	119.79 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O29—Y12—O25	102.67 (6)	Y6 ^{ix} —O30—Y11	100.95 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O24—Y12—O19	103.26 (6)	Si3 ^{ix} —O30—Y14	115.80 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O28—Y12—O19	164.10 (6)	Y6 ^{ix} —O30—Y14	100.86 (6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O29—Y12—O19	90.66 (6)	Y11—O30—Y14	101.37 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O25—Y12—O19	74.42 (5)	Si4—O31—Y6 ^{ix}	124.64 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24—Y12—O17	102.60 (6)	Si4—O31—Y15	136.94 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O28—Y12—O17	87.72 (6)	Y6 ^{ix} —O31—Y15	98.23 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O29—Y12—O17	167.12 (6)	Si4—O31—Y10	88.42 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O25—Y12—O17	75.27 (5)	Y6 ^{ix} —O31—Y10	91.53 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O19—Y12—O17	76.51 (6)	Y15—O31—Y10	94.93 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O27—Y13—O26	160.42 (6)	Si4—O31—Ba1 ^{xii}	67.62 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O27—Y13—O15 ^{ix}	74.71 (6)	Y6 ^{ix} —O31—Ba1 ^{xii}	97.93 (6)
$O27-Y13-O10^{ix}$ $118.30(6)$ $Y10-O31-Ba1^{xii}$ $155.51(7)$ $O26-Y13-O10^{ix}$ $74.01(6)$ $Si4-O32-Y5^{viii}$ $129.38(9)$ $O15^{ix}-Y13-O10^{ix}$ $74.47(5)$ $Si4-O32-Y16$ $130.79(9)$ $O27-Y13-O29$ $73.44(6)$ $Y5^{viii}-O32-Y16$ $95.18(6)$	O26—Y13—O15 ^{ix}	124.66 (6)	Y15—O31—Ba1 ^{xii}	105.91 (6)
O26—Y13—O10 ^{ix} 74.01 (6)Si4—O32—Y5 ^{viii} 129.38 (9)O15 ^{ix} —Y13—O10 ^{ix} 74.47 (5)Si4—O32—Y16130.79 (9)O27—Y13—O2973.44 (6)Y5 ^{viii} —O32—Y1695.18 (6)	O27—Y13—O10 ^{ix}	118.30 (6)	Y10—O31—Ba1 ^{xii}	155.51 (7)
$O15^{ix}$ —Y13—O10 ^{ix} 74.47 (5)Si4—O32—Y16130.79 (9) $O27$ —Y13—O2973.44 (6)Y5 ^{viii} —O32—Y1695.18 (6)	O26—Y13—O10 ^{ix}	74.01 (6)	Si4—O32—Y5 ^{viii}	129.38 (9)
O27—Y13—O29 73.44 (6) Y5 ^{viii} —O32—Y16 95.18 (6)	O15 ^{ix} —Y13—O10 ^{ix}	74.47 (5)	Si4—O32—Y16	130.79 (9)
	O27—Y13—O29	73.44 (6)	Y5 ^{viii} —O32—Y16	95.18 (6)

O26—Y13—O29	96.89 (6)	Si4—O32—Ba1 ^{xii}	80.42 (7)
O15 ^{ix} —Y13—O29	117.45 (6)	Y5 ^{viii} —O32—Ba1 ^{xii}	107.55 (6)
O10 ^{ix} —Y13—O29	75.62 (6)	Y16—O32—Ba1 ^{xii}	107.95 (6)
O27—Y13—O23	107.38 (5)	Y15—O33—Y6 ^{ix}	111.69 (7)
O26—Y13—O23	78.84 (5)	Y15—O33—Y1 ^{xii}	117.26 (7)
O15 ^{ix} —Y13—O23	72.93 (6)	Y6 ^{ix} —O33—Y1 ^{xii}	105.23 (7)
O10 ^{ix} —Y13—O23	112.50 (5)	Y15—O33—Y14	104.09 (6)
O29—Y13—O23	168.89 (6)	Y6 ^{ix} —O33—Y14	113.43 (7)
O27—Y13—O18	72.16 (6)	Y1 ^{xii} —O33—Y14	105.22 (6)
O26—Y13—O18	93.80 (6)		

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x-1, y, z; (iii) x, -y+1/2, z-1/2; (iv) -x, y+1/2, -z+1/2; (v) -x, -y+1, -z+1; (vi) x, -y+1/2, z+1/2; (vii) -x+1, -y+1/2, z+1/2; (viii) -x+1, -y+1/2, -z+1/2; (viii) -x+1, -y+1/2; (viii) -x+1, -y+1/2, -z+1/2; (viii) -x+1, -y+1/2; (viii) -x+1, -z+1/2; (viii) -x+1, -z+1/