Received 13 September 2022
Accepted 28 October 2022

Edited by C. Schulzke, Universität Greifswald, Germany

Keywords: p-nitroaniline; metal complex; crystal structure; hydrogen bond; Hirshfeld surface analysis.

CCDC reference: 2131922

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS
Published under a CC BY 4.0 licence

Synthesis, structure and Hirshfeld surface analysis of diaquadinitratobis(4-nitroaniline)copper(II)

Sanjar Kamolov, ${ }^{\text {a }}$ Bakhrom Babaev, ${ }^{\text {a }}$ Aziz Ibragimov, ${ }^{\text {b }}$ Yuldash Yakubov, ${ }^{\text {b }}$ Akhrorjon Abdullaev, ${ }^{\text {b }}$ Bakhtiyar Ibragimov ${ }^{\text {c }}$ and Jamshid Ashurov ${ }^{\text {c* }}$

${ }^{\text {a }}$ National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, 100174, University str. 4., Uzbekistan, ${ }^{\mathbf{b}}$ Institute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, 100125, M.Ulugbek Str., 77a, Uzbekistan, and 'Institute of Bioorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, 100140, M.Ulugbek Str., 83, Uzbekistan. *Correspondence e-mail: atom.uz@mail.ru

A new metal complex, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, was synthesized from water-ethanol solutions of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and 4-nitroaniline (PNA). The complex molecules are located on inversion centers in monoclinic crystals with space group $P 2_{1} / c$. The copper(II) ions are monodentately coordinated by two neutral PNA molecules through the nitrogen atom of the amino group, two $\mathrm{NO}_{3}{ }^{-}$ anions and two water molecules. The coordination polyhedron of the central ion is a distorted octahedron as a result of the Jahn-Teller effect. There is a weak intramolecular hydrogen bond between the $\mathrm{N}-\mathrm{H}$ group and the oxygen atom of one nitrate anion. Six relatively weak intermolecular hydrogen bonds associate the complex molecules into a three-dimensional network. The Hirshfeld surface analysis indicates that 55.8% of the intermolecular interactions are from $\mathrm{O} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{O}$ contacts, 13.3% are from $\mathrm{H} \cdots \mathrm{H}$ contacts while other contributions are from $\mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}, \mathrm{O} \cdots \mathrm{O}$ and other contacts.

1. Chemical context

p-Nitroaniline (PNA) or 1-amino-4-nitrobenzene is an organic compound with the formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$. It is a yellow solid and one of three isomers of nitroaniline. PNA is an intermediate in the production of dyes, antioxidants, pharmaceuticals, gasoline, gum inhibitors, poultry medicines, and serves as a corrosion inhibitor. In particular, it is mainly used industrially as a precursor to p-phenylenediamine, an important dye component (Booth, 2000). The compound is toxic by way of inhalation, ingestion and absorption and can cause long-term damage to the environment if released as a pollutant. Its LD_{50} is $750.0 \mathrm{mg} \mathrm{kg}^{-1}$ when administered orally and therefore it should be handled with great care. It is well known that the biopharmaceutical properties (water solubility, bioavailability and bioactivity) of active pharmaceutical ingredients (API) may be improved by metal complex formation (Khudoyberganov et al., 2022; Ruzmetov et al., 2022a,b). Moreover, metal complex formation may be responsible for the reduction of the toxicity of metals, especially in chelation therapy applications and respective investigations (Egorova \& Ananikov, 2017; Flora \& Pachauri, 2010; Ahmed et al., 2020). At the same time, this technique may similarly lead to a reduction in the toxicity of hazardous organic substances when they are part of coordination compounds. In order to test this hypothesis for specific molecules, we synthesized metal complexes of various toxic organic substances. This article describes the synthesis, molecular and crystal structure and

Hirshfeld surface analysis of the p-nitroaniline copper(II) complex.

2. Structural commentary

The molecular structure of the title complex is shown in Fig. 1. The central copper(II) ion is located on a crystallographic inversion center. Each of the two PNA molecules coordinates the metal ion through their NH_{2} nitrogen atom. Two $\mathrm{NO}_{3}{ }^{-}$ groups are attached to the Cu^{2+} ion via one of their oxygen atoms (O3) in a monodentate fashion. The other two positions of the octahedral coordination sphere are occupied by water molecules. The formula of the obtained complex is $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{PNA})_{2}\right]$. The coordination polyhedron of the central atom is an octahedron with a distortion due to the Jahn-Teller effect. The $\mathrm{Cu} 1-\mathrm{O} 1 W$ and $\mathrm{Cu} 1-\mathrm{N} 1$ bond lengths are 1.996 (2) and 2.055 (3) \AA while the $\mathrm{Cu} 1-\mathrm{O} 3$ distance is elongated to 2.367 (2) \AA based on this effect. Orthogonal bond angles are in the range of 84.01 (11)$95.99(11)^{\circ}$, i.e. their maximum deviation from an ideal value is about 6°. Compensation of the positive charge of the copper

Figure 1
The molecular structure of the PNA copper(II) title complex generated with Mercury (Macrae et al., 2020). Displacement ellipsoids are plotted at the 50% probability level. Intramolecular hydrogen bonds between the amine and nitrate groups are shown as dashed lines.

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4$	0.82 (4)	2.30 (4)	3.021 (4)	147 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O}^{\text {i }}$	0.81 (5)	2.07 (5)	2.828 (4)	156 (5)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 5^{\mathrm{i}}$	0.81 (5)	2.28 (5)	2.979 (5)	145 (5)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\text {ii }}$	0.82 (4)	2.42 (4)	3.057 (4)	135 (3)
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\mathrm{i}}$	0.86 (4)	2.34 (4)	3.103 (4)	148 (4)
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O}{ }^{\text {iii }}$	0.86 (4)	2.60 (5)	2.968 (4)	107 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 1^{\text {iv }}$	0.76 (6)	2.64 (5)	3.085 (5)	120 (5)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2^{\text {iv }}$	0.77 (6)	2.26 (6)	3.022 (5)	171 (5)

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
ion takes place with the inclusion of the two $\mathrm{NO}_{3}{ }^{-}$ions into the inner coordination sphere. The intramolecular N1$\mathrm{H} \cdots \mathrm{O} 4$ hydrogen bond in the molecule forms a six-membered ring with $S_{1}^{1}(6)$ graph-set notation (Etter, 1990). The NO_{2} group of PNA is nearly coplanar with the aromatic ring - the corresponding dihedral angle is only $5.8(6)^{\circ}$.

3. Supramolecular features

There are five proton-acceptor and two proton-donor hydrogen-bonding functional groups in the asymmetric unit of the molecule. All these groups realize their hydrogen-bonding capabilities (Table 1). The respective seven intermolecular hydrogen bonds are relatively weak. A notable feature of the hydrogen-bonding pattern is that a considerable proportion of them are of a bifurcated nature - atoms $\mathrm{H} 1 A, \mathrm{H} 1 B$ and $\mathrm{H} 1 W A$ are simultaneously hydrogen-bonded to two acceptors. The hydrogen bonds form different rings of various dimensions, i.e. rings with graph-set notations $R_{2}^{2}(4), R_{1}^{2}(6)$ and $R_{2}^{2}(8)$. The hydrogen bonds summarized in Table 1 connect the complex molecules into a three-dimensional network (Fig. 2). The aromatic moieties are co-planar throughout the crystal lattice but do not engage in $\pi-\pi$ stacking interactions.

The Hirshfeld surfaces were calculated and the twodimensional fingerprint plots generated using CrystalExplorer2021 (Spackman et al., 2021). Fig. 3 shows the threedimensional Hirshfeld surface of the PNA copper complex with $d_{\text {norm }}$ (normalized contact distance) plotted over the range of -0.5385 to 1.2851 a.u. The interactions given in Table 1 play a key role in the molecular packing of the

Figure 2
The unit cell of the crystal structure of the title compound with completed molecules viewed along the crystallographic a axis of the crystal packing. Hydrogen bonds are shown as dashed lines..

Figure 3
View of the three-dimensional Hirshfeld surface of the PNA copper title complex plotted over $d_{\text {norm }}$.
complex. The overall 2D fingerprint plot and those delineated into the individual contributions are shown in Fig. 4. The percentage contributions to the Hirshfeld surfaces from the various interatomic contacts are as follows: $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ $55.8 \%, \mathrm{H} \cdots \mathrm{H} 13.3 \%, \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C} 9.3 \%, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C} 7.7 \%$ and $\mathrm{O} \cdots \mathrm{O} 6.1 \%$. Other minor contributions to the Hirshfeld surface are from $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}(3.1 \%), \mathrm{O} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{O}(2.2 \%)$ and $\mathrm{C} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{C}(1.5 \%)$ contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of November 2021; Groom et al., 2016) for PNA metal complexes gave only five hits. In all entries, neutral PNA molecules are coordinated through their amine nitrogen atoms. In all cases, two chloride ions are coordinated in order to compensate for the twofold positive charge of the central ion. In the structures with refcodes BEMZAW (Feng, 2012), LUKLEK (Nguyen et al., 2015) and MEFWAY (Chen et al., 2017), the coordination polyhedron is tetrahedral while in

Figure 4

The full two-dimensional fingerprint plots for the PNA copper title complex showing all interactions and delineated into $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$, $\mathrm{H} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ and $\mathrm{O} \cdots \mathrm{O}$ interactions. The d_{i} and d_{e} values are the closest internal and external distances (\AA) from given points on the Hirshfeld surface.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta{ }^{\circ}{ }^{\circ}{ }^{3}$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.045,0.123,1.04$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

1832
$\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
499.86
Monoclinic, $P 2_{1} / c$
293
$5.4741(2), 22.5679(6), 7.6478(2)$
$92.286(3)$
$944.05(5)$
2
$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
2.38
$0.18 \times 0.15 \times 0.14$

XtaLAB Synergy, Single source at home/near, HyPix3000
Multi-scan (CrysAlis PRO; Rigaku

> OD, 2020)
0.829, 1.000

8364, 1832, 1457
0.062
0.615

1832
159
H atoms treated by a mixture of independent and constrained refinement
$0.52,-0.87$

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).
case of compounds with refcodes HEXBUJ (Ip et al., 2012) and WOJKIR (Belghith et al., 2014), the central ion is sixfold coordinated and the complexes are octahedral. There is no precedent for structures with the coordination of water molecules or $\mathrm{NO}_{3}{ }^{-}$anions.

5. Synthesis and crystallization

The salt $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(0.187 \mathrm{~g}, 1.0 \mathrm{mmol})$ was dissolved in 2 ml of water and 4-nitroaniline ($0.276 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in 2 ml of absolute alcohol at 333 K . The solutions were mixed, filtered and left at room temperature for evaporation. After two weeks, green crystals had formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound hydrogen atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93)$ and refined in the riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. Hydrogen atoms of the water molecule and the amino group were freely refined.

Funding information

The authors would like to thank the Uzbekistan government for direct financial support of the research.

References

Ahmed, S. A., Hasan, M. N., Bagchi, D., Altass, H. M., Morad, M., Jassas, R. S., Hameed, A. M., Patwari, J., Alessa, H., Alharbi, A. \& Pal, S. K. (2020). ACS Omega, 5, 15666-15672.
Belghith, Y., Mansour, A. \& Nasri, H. (2014). Acta Cryst. E70, m312m313.
Booth, G. (2000). Editor. Nitro Compounds, Aromatic. In Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/ 14356007.a17_411

Chen, A.-L., Huang, F., Hu, M.-L., Jin, Z.-M., Miao, Q. \& Tian, B. (2017). Z. Anorg. Allg. Chem. 643, 1045-1048.

Egorova, K. S. \& Ananikov, V. P. (2017). Organometallics, 36, 40714090.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Feng, T.-J. (2012). Acta Cryst. E68, m1351.
Flora, S. J. S. \& Pachauri, V. (2010). Int. J. Environ. Res. Public Health, 7, 2745-2788.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Ip, H.-F., So, Y.-M., Sung, H. H. Y., Williams, I. D. \& Leung, W.-H. (2012). Organometallics, 31, 7020-7023.

Khudoyberganov, O. I., Ruzmetov, A., Ibragimov, A. B., Ashurov, J. M., Khasanov, S. B., Eshchanov, E. U. \& Ibragimov, B. T. (2022). Chem. Data Collect. 37, 100802.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Nguyen Thi Thanh, C., Hoang Van, T., Pham Van, T., Nguyen Bich, N. \& Van Meervelt, L. (2015). Acta Cryst. E71, 644-646.
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
Ruzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. \& Usmanov, S. (2022b). Acta Cryst. E78, 660-664.
Ruzmetov, A. Kh., Ibragimov, A. B., Myachina, O. V., Kim, R. N., Mamasalieva, L. E., Ashurov, J. M. \& Ibragimov, B. T. (2022a). Chem. Data Collect, 38, 100845.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2022). E78, 1165-1168 [https://doi.org/10.1107/S2056989022010404]
Synthesis, structure and Hirshfeld surface analysis of diaquadinitratobis(4-nitroaniline) copper(II)

Sanjar Kamolov, Bakhrom Babaev, Aziz Ibragimov, Yuldash Yakubov, Akhrorjon Abdullaev, Bakhtiyar Ibragimov and Jamshid Ashurov

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaquadinitratobis(4-nitroaniline)copper(II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=499.86$
Monoclinic, $P 2_{1} / c$
$a=5.4741$ (2) \AA
$b=22.5679(6) \AA$
$c=7.6478(2) \AA$
$\beta=92.286(3)^{\circ}$
$V=944.05(5) \AA^{3}$
$Z=2$

Data collection

XtaLAB Synergy, Single source at home/near,
HyPix 3000
diffractometer
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.123$
$S=1.04$
1832 reflections
$F(000)=510$
$D_{\mathrm{x}}=1.758 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 2724 reflections
$\theta=3.9-70.2^{\circ}$
$\mu=2.38 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, metallic greenish green
$0.18 \times 0.15 \times 0.14 \mathrm{~mm}$
$T_{\text {min }}=0.829, T_{\text {max }}=1.000$
8364 measured reflections
1832 independent reflections
1457 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=71.5^{\circ}, \theta_{\text {min }}=3.9^{\circ}$
$h=-6 \rightarrow 6$
$k=-27 \rightarrow 19$
$l=-9 \rightarrow 9$

159 parameters
0 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed

```
H atoms treated by a mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0573 P)^{2}+0.7131 P\right]\)
    where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3}\)
```

$\Delta \rho_{\text {min }}=-0.87 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL-2019/2
(Sheldrick 2015a),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0033 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cu1	0.500000	0.500000	0.500000	$0.0261(2)$
O1W	$0.6912(5)$	$0.57083(11)$	$0.4300(4)$	$0.0379(6)$
N1	$0.6669(6)$	$0.45393(11)$	$0.3061(4)$	$0.0294(6)$
O3	$0.1479(4)$	$0.52675(14)$	$0.3283(3)$	$0.0495(7)$
O4	$0.3458(5)$	$0.53819(13)$	$0.0932(4)$	$0.0554(7)$
N3	$0.1596(5)$	$0.54597(13)$	$0.1725(4)$	$0.0370(6)$
C1	$0.6119(6)$	$0.39265(13)$	$0.2771(4)$	$0.0282(6)$
O2	$0.5581(9)$	$0.17631(14)$	$0.2427(5)$	$0.0967(14)$
O5	$-0.0187(6)$	$0.57134(19)$	$0.1086(5)$	$0.0865(12)$
C6	$0.4005(6)$	$0.37830(15)$	$0.1797(5)$	$0.0379(8)$
H6	0.300983	0.408167	0.132632	0.046^{*}
N2	$0.4156(10)$	$0.21426(17)$	$0.1934(6)$	$0.0727(13)$
C2	$0.7614(7)$	$0.34918(15)$	$0.3474(5)$	$0.0400(8)$
H2	0.901766	0.358992	0.413589	0.048^{*}
C4	$0.4876(8)$	$0.27703(16)$	$0.2229(5)$	$0.0490(10)$
C5	$0.3390(8)$	$0.32017(17)$	$0.1532(5)$	$0.0488(9)$
H5	0.197557	0.310181	0.088452	0.059^{*}
C3	$0.6984(9)$	$0.28969(16)$	$0.3173(6)$	$0.0532(11)$
H3	0.798430	0.259361	0.360899	0.064^{*}
O1	$0.2167(10)$	$0.20459(17)$	$0.1186(7)$	$0.1147(17)$
H1A	$0.628(7)$	$0.4740(17)$	$0.220(5)$	$0.032(9)^{*}$
H1B	$0.818(8)$	$0.4609(19)$	$0.334(6)$	$0.053(13)^{*}$
H1WA	$0.813(10)$	$0.565(2)$	$0.376(7)$	$0.075(17)^{*}$
H1WB	$0.621(10)$	$0.595(3)$	$0.379(7)$	$0.071(18)^{*}$

Atomic displacement parameters $\left(\hbar^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0308(4)$	$0.0154(3)$	$0.0324(4)$	$-0.0018(2)$	$0.0046(2)$	$-0.0005(2)$
O1W	$0.0446(15)$	$0.0204(11)$	$0.0499(15)$	$-0.0021(10)$	$0.0169(12)$	$0.0013(10)$
N1	$0.0377(15)$	$0.0218(12)$	$0.0287(14)$	$-0.0019(11)$	$0.0008(12)$	$-0.0001(11)$
O3	$0.0377(13)$	$0.0797(19)$	$0.0313(13)$	$-0.0009(13)$	$0.0027(10)$	$0.0111(12)$
O4	$0.0581(16)$	$0.0696(19)$	$0.0397(15)$	$0.0147(14)$	$0.0168(12)$	$0.0132(13)$

N3	$0.0356(15)$	$0.0397(15)$	$0.0352(15)$	$0.0028(12)$	$-0.0034(12)$	$0.0006(12)$
C1	$0.0340(16)$	$0.0215(14)$	$0.0294(15)$	$-0.0018(12)$	$0.0060(12)$	$-0.0035(12)$
O2	$0.176(4)$	$0.0286(16)$	$0.088(3)$	$0.001(2)$	$0.034(3)$	$-0.0019(17)$
O5	$0.0543(19)$	$0.124(3)$	$0.079(2)$	$0.039(2)$	$-0.0156(17)$	$0.020(2)$
C6	$0.0439(19)$	$0.0309(17)$	$0.0389(18)$	$-0.0031(15)$	$0.0005(15)$	$-0.0043(14)$
N2	$0.121(4)$	$0.038(2)$	$0.061(3)$	$-0.017(2)$	$0.036(3)$	$-0.0115(18)$
C2	$0.0434(19)$	$0.0308(17)$	$0.046(2)$	$0.0057(15)$	$0.0022(16)$	$-0.0030(15)$
C4	$0.074(3)$	$0.0274(18)$	$0.047(2)$	$-0.0150(18)$	$0.019(2)$	$-0.0110(15)$
C5	$0.056(2)$	$0.041(2)$	$0.049(2)$	$-0.0184(18)$	$0.0041(18)$	$-0.0133(17)$
C3	$0.078(3)$	$0.0278(18)$	$0.055(2)$	$0.0184(18)$	$0.018(2)$	$0.0068(16)$
O1	$0.138(4)$	$0.059(2)$	$0.146(4)$	$-0.045(3)$	$-0.002(4)$	$-0.036(2)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

Cu1-O1W	1.996 (2)	C1-C6	1.389 (5)
$\mathrm{Cu}-\mathrm{O}^{\text {W }}{ }^{\text {i }}$	1.996 (2)	C1-C2	1.373 (5)
$\mathrm{Cu} 1-\mathrm{N} 1$	2.055 (3)	$\mathrm{O} 2-\mathrm{N} 2$	1.209 (6)
$\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	2.055 (3)	C6-H6	0.9300
$\mathrm{Cu}-\mathrm{O3}^{\text {i }}$	2.367 (2)	C6-C5	1.368 (5)
Cu1-O3	2.367 (2)	N2-C4	1.485 (5)
O1W-H1WA	0.81 (6)	N2-O1	1.229 (6)
O1W-H1WB	0.76 (6)	C2-H2	0.9300
N1-C1	1.431 (4)	C2-C3	1.403 (5)
N1-H1A	0.82 (4)	C4-C5	1.363 (6)
N1-H1B	0.86 (4)	C4-C3	1.367 (6)
O3-N3	1.272 (4)	C5-H5	0.9300
O4-N3	1.219 (4)	C3-H3	0.9300
N3-O5	1.217 (4)		
O1W-Cul-O1W ${ }^{\text {i }}$	180.0	O4-N3-O3	119.4 (3)
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{1}$	87.62 (11)	$\mathrm{O} 5-\mathrm{N} 3-\mathrm{O} 3$	117.8 (3)
O1W ${ }^{\text {- }} \mathrm{Cu} 1-\mathrm{N} 1$	92.38 (11)	O5-N3-O4	122.8 (3)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}-\mathrm{N} 1^{\text {i }}$	92.38 (11)	C6- $\mathrm{C} 1-\mathrm{N} 1$	118.3 (3)
O1W-Cu1-N1	87.62 (11)	C2- $\mathrm{C} 1-\mathrm{N} 1$	120.8 (3)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}-\mathrm{O3}^{\text {i }}$	85.93 (12)	C2-C1-C6	120.9 (3)
O1W-Cu1-O3	94.07 (12)	C1-C6-H6	120.1
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}-\mathrm{O}^{\text {i }}$	94.07 (12)	C5-C6-C1	119.9 (3)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}-\mathrm{O} 3$	85.93 (12)	C5-C6-H6	120.1
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 1$	180.0	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 4$	117.7 (5)
$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{O3}^{\text {i }}$	95.99 (11)	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 1$	124.6 (4)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	84.01 (11)	$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 4$	117.7 (5)
$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{O} 3$	84.01 (11)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6
N1-Cu1-O3	95.99 (11)	C1-C2-C3	118.7 (4)
O3 ${ }^{\text {i-Cu1-O3 }}$	180.0	C3-C2-H2	120.6
Cu1-O1W-H1WA	117 (4)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 2$	118.1 (4)
Cu1-O1W-H1WB	116 (4)	C5-C4-C3	122.4 (3)
H1WA-O1W-H1WB	105 (5)	C3- $\mathrm{C} 4-\mathrm{N} 2$	119.5 (4)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	101 (3)	C6-C5-H5	120.4

$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$100(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.2(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	$120.2(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.4
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$111(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$114(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.9(4)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$109(4)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.5
$\mathrm{~N} 3-\mathrm{O} 3-\mathrm{Cu} 1$	$122.4(2)$		
		$-5.9(6)$	
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$81.0(3)$	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$0.7(5)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-97.5(3)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.5(4)$
$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{N} 3-\mathrm{O} 4$	$17.1(4)$	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-178.6(4)$
$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{N} 3-\mathrm{O} 5$	$-163.2(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$0.2(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.4(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.6(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$-0.7(6)$	
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$-0.2(6)$	$-5.2(3)$	$-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$

Symmetry code: (i) $-x+1,-y+1,-z+1$.
Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 4$	$0.82(4)$	$2.30(4)$	$3.021(4)$	$147(4)$
$\mathrm{O} 1 W — \mathrm{H} 1 W A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.81(5)$	$2.07(5)$	$2.828(4)$	$156(5)$
$\mathrm{O} 1 W — \mathrm{H} 1 W A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.81(5)$	$2.28(5)$	$2.979(5)$	$145(5)$
$\mathrm{N} 1 — \mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{iii}}$	$0.82(4)$	$2.42(4)$	$3.057(4)$	$135(3)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots 3^{\mathrm{ii}}$	$0.86(4)$	$2.34(4)$	$3.103(4)$	$148(4)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	$0.86(4)$	$2.60(5)$	$2.968(4)$	$107(3)$
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 1^{\mathrm{iv}}$	$0.76(6)$	$2.64(5)$	$3.085(5)$	$120(5)$
$\mathrm{O} 1 W — \mathrm{H} 1 W B \cdots \mathrm{O}^{\mathrm{iv}}$	$0.77(6)$	$2.26(6)$	$3.022(5)$	$171(5)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+1, y, z$; (iii) $-x+1,-y+1,-z$; (iv) $-x+1, y+1 / 2,-z+1 / 2$.

