CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 25 October 2022
Accepted 13 December 2022

Edited by B. Therrien, University of Neuchâtel, Switzerland
\# 1819 Materials Characterization \& Performance.
§ 7546 Power Sources R\&D.

- 1512 Diagnostic Science \& Engineering.

Keywords: crystal structure; LiCl ; DMSO; polymer.

CCDC references: 2226319; 2226318
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$
Published under a CC BY 4.0 licence

Crystal structures of polymerized lithium chloride and dimethyl sulfoxide in the form of $\left\{2 \mathrm{LiCl}^{2 \mathrm{DMSO}}{ }_{n}\right.$ and $\{\mathrm{LiCl} \cdot \mathrm{DMSO}\}_{n}$

Nichole R. Valdez,* \ddagger David J. Herman,§ Martin B. Nemer, \uparrow Mark A. Rodriguez \ddagger and Eric Allcorn§

Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM 87123, USA. *Correspondence e-mail: nrvalde@sandia.gov

Two novel $\mathrm{LiCl} \cdot$ DMSO polymer structures were created by combining dry LiCl salt with dimethyl sulfoxide (DMSO), namely, catena-poly[[chloridolithium(I)]-μ-(dimethyl sulfoxide)- $\kappa^{2} O: O$-[chloridolithium(I)]-di- μ-(dimethyl sulfoxide)$\left.\kappa^{4} O: O\right],\left[\mathrm{Li}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{3}\right]_{n}$, and catena-poly $[$ lithium $(\mathrm{I})-\mu$-chlorido- μ-(dimethyl sulfoxide) $\left.-\kappa^{2} O: O\right],\left[\operatorname{LiCl}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]_{n}$. The initial synthesized phase had very small block-shaped crystals ($<0.08 \mathrm{~mm}$) with monoclinic symmetry and a 2 LiCl : 3 DMSO ratio. As the solution evaporated, a second phase formed with a plateshaped crystal morphology. After about 20 minutes, large ($>0.20 \mathrm{~mm}$) octahedron-shaped crystals formed. The plate crystals and the octahedron crystals are the same tetragonal structure with a $1 \mathrm{LiCl}: 1$ DMSO ratio. These structures are reported and compared to other known LiCl -solvent compounds.

1. Chemical context

Lithium salts are soluble in a wide range of solvents and are widely used in lithium-metal and lithium-ion battery applications (Bushkova et al., 2017; Mauger et al., 2018; Younesi et al. 2015). While typically implemented as liquid electrolyte solutions, the lithium salt and solvent systems can also form complex molecular phases, including intercalating compounds (Yamada et al., 2010), crystalline solvates (Ugata et al., 2021), and polymeric structures (Rao et al., 1984; Chivers et al., 2001).

Dimethyl sulfoxide (DMSO) and lithium chloride (LiCl) are very common materials in many industries, and have each been used in novel battery systems, including solid-polymer (Voigt \& van Wüllen, 2012), dual-ion (Wang et al., 2022), lithium-oxygen (Togasaki et al., 2016; Reddy et al., 2018; Zhang et al., 2021) and molten-salt electrolyte batteries (Allcorn et al., 2020). Given that DMSO and water both exhibit a coordination number of four solvent molecules per cation (Megyes et al., 2006; Bouazizi \& Nasr, 2007), it is reasonable to hypothesize that the two solvents solvate lithium ions similarly. For Li^{+}cations in binary solvent solutions of DMSO and water, the solvent molecules are analogous; there is effectively no selective solvation of Li^{+}cations for either DMSO or water (Pasgreta et al., 2007). Thus it is not surprising that lithium salts would form similar crystalline phases when comparing phase diagrams in pure DMSO (Kirillov et al., 2015) and pure water (Perron et al., 1997). Since LiCl is hydrated with $1-2$ water molecules per Li^{+}cation in ambient conditions (Conde, 2004; Pátek \& Klomfar, 2006), it is reasonable to expect that LiCl would form similar if not
analogous solvate phases in DMSO (1-2 DMSO molecules per Li^{+}cation).

Monoclinic Structure

Monoclinic Structure, Simplified

Tetragonal Structure

Tetragonal Structure, Simplified

2. Synthesis and crystallization

Material samples were prepared using lithium chloride (Acros Organics, $\mathrm{LiCl} 99 \%$ anhydrous) and dimethyl sulfoxide (Sigma-Aldrich, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS} \geq 99.9 \%$ anhydrous). Before use, the LiCl was heated to $423.15 \mathrm{~K}\left(150^{\circ} \mathrm{C}\right)$ under vacuum to remove any trace moisture, and the sample preparation was carried out in a humidity-controlled dry room, dew point below $223.15 \mathrm{~K}\left(-50^{\circ} \mathrm{C}\right)$.

Dry LiCl was added to a jar of DMSO at a ratio of 5 g LiCl per 25 g DMSO, approximately twice the limit at 298.15 K $\left(25^{\circ} \mathrm{C}\right)$ before saturation is initially observed (Xin et al., 2018). As the salt tends to agglomerate quickly upon being added to the DMSO, the initial larger agglomerates were manually broken up. The jar was then sealed and the entire solution was stirred vigorously with a magnetic stir bar for 3 days. An aliquot of the sample (solids and saturated DMSO combined) was removed for analysis. During sample preparation for single crystal X-ray diffraction analysis, DMSO evaporated

Table 1
Hydrogen-bond geometry $\left({ }^{\circ},^{\circ}\right)$ for the monoclinic structure.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.97(1)$	$2.98(4)$	$3.569(3)$	$120(3)$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.97(1)$	$2.79(2)$	$3.690(3)$	$156(3)$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\text {iii }}$	0.98	2.71	$3.680(3)$	169
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 1^{\text {iv }}$	0.98	2.73	$3.632(3)$	153
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{Cl} 1^{\text {iv }}$	0.98	2.88	$3.752(3)$	149

Symmetry codes: (i) $-x+1, y-1,-z+\frac{1}{2}$; (ii) $x,-y+1, z-\frac{1}{2}$; (iii) $-x+1, y,-z+\frac{1}{2}$; (iv) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.
from the sample aliquot, resulting in a second, likely metastable, phase with different crystal morphology.

3. Structural Commentary

Monoclinic Crystals

The initial crystals synthesized as described in the previous section are small ($<0.08 \mathrm{~mm}$), block-shaped, and have monoclinic symmetry $C 2 / c$. The polymer has a $2 \mathrm{LiCl}: 3 \mathrm{DMSO}$

000000

Figure 1
Monoclinic structure: asymmetric unit (a) and polymeric chain view (b). The repeating unit of the polymer has four LiCl and six DMSO. The sulfur atom of the DMSO is disordered across two positions. Only one position is shown.
ratio, and the repeating unit is composed of four LiCl , and six DMSO, see Fig. 1 and Scheme.

The polymers appear to be held together by hydrogen bonding, see Table 1 and packing diagram Fig. 2. The most notable bond is between Cl 1 and $\mathrm{H} 2 B(2.730 \AA)$, where the Cl atom on one polymer chain is connected to one of the hydrogen atoms on one of the methyl groups of the nondisordered DMSO molecule of another polymer chain. There is likely some hydrogen bond contribution from the adjacent $\mathrm{H} 3 B$, which is located on the other methyl group of the same DMSO molecule (hydrogen-bond length $2.88 \AA$). If the disordered DMSO molecule contributes to hydrogen bonding between polymer chains, it would be through hydrogen $\mathrm{H} 1 A$ and Cl 1 , however this bond is very long [2.98 (3) \AA]. The other values in the table represent hydrogen bonding between a DMSO molecule and a Cl atom along the same polymer chain.

Tetragonal Crystals

The second crystal phase formed during sample preparation as DMSO evaporated. At first, plate-shaped crystals appeared among the smaller block-shaped crystals. As more time passed (~ 20 minutes), much larger ($0.2-0.4 \mathrm{~mm}$) octahedron-shaped crystals formed. The plate crystals and the octahedron crystals are the same tetragonal $I 4_{1} / a$ structure with a $1 \mathrm{LiCl}: 1 \mathrm{DMSO}$ ratio. The repeating unit has four LiCl , and four DMSO. The

Figure 2
Monoclinic structure: packing diagram. The structure is held together by hydrogen bonding. The hydrogen bonds between Cl 1 and $\mathrm{H} 2 B$ as well as Cl 1 and $\mathrm{H} 3 B$ are shown.

Table 2
Hydrogen-bond geometry $\left({ }_{\mathrm{A}}{ }^{\circ}{ }^{\circ}\right)$ for the tetragonal structure.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.98(2)$	$2.95(2)$	$3.821(2)$	$148(2)$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.95(2)$	$2.84(2)$	$3.768(2)$	$165(2)$
$\mathrm{C} 2-\mathrm{H} 2 C \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.96(2)$	$2.83(2)$	$3.716(2)$	$153(2)$

Symmetry codes: (i) $x-\frac{1}{2}, y,-z+\frac{3}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+\frac{3}{2}$.

DMSO molecules are not disordered in this structure, see Fig. 3 and Scheme.

As with the monoclinic structure, the tetragonal structure is composed of polymer chains held together by hydrogen bonding, see Table 2 and the packing diagram Fig. 4. The Cl1 of one chain is linked to the DMSO of another chain through $\mathrm{H} 2 A[2.84(2) \AA$] and H 2 C [2.83 (2) \AA]. There may be some

Figure 3
Tetragonal structure: asymmetric unit (a) and polymeric chain view (b). The repeating unit of the polymer has four LiCl and four DMSO. The DMSO molecules in this structure are not disordered.

Table 3
Experimental details.

	Monoclinic	Tetragonal
Crystal data		
Chemical formula	$\left[\mathrm{Li}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{3}\right]$	[$\left.\mathrm{LiCl}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$
M_{r}	319.16	120.52
Crystal system, space group	Monoclinic, C2/c	Tetragonal, $14{ }_{1} / a$
Temperature (K)	100	100
$a, b, c(\AA)$	19.2841 (17), 7.6436 (7), 11.5335 (10)	14.2411 (14), 14.2411 (14), 10.8809 (16)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 118.315 (5), 90	90, 90, 90
$V\left(\AA^{3}\right)$	1496.6 (2)	2206.7 (5)
Z	4	16
Radiation type	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	7.72	8.49
Crystal size (mm)	$0.07 \times 0.07 \times 0.05$	$0.4 \times 0.4 \times 0.4$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.639, 0.754	0.513, 0.754
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	10606, 1417, 1166	8174, 1072, 1030
R_{int}	0.064	0.047
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.610	0.618
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.035, 0.081, 1.09	0.028, 0.073, 1.07
No. of reflections	1417	1072
No. of parameters	92	79
No. of restraints	68	0
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	All H -atom parameters refined
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.46, -0.39	0.32, -0.37

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).
contribution from $\mathrm{H} 1 B$, though the bond is much longer [2.95 (2) Å].

Figure 4
Tetragonal structure: packing diagram. The structure is held together by hydrogen bonding. The hydrogen bonds between Cl 1 and $\mathrm{H} 2 A$ and Cl 1 and H2C are shown. The atoms involved in hydrogen bonding are darkened for clarity.

4. Database Survey

After the structures were solved, a search was performed on the Cambridge Structural Database (CSD, version 5.43, November 2021; Groom et al., 2016). There were only two results with the relevant chemistry, and neither had DMSO. One was a LiCl sulfolane adduct (SIWFOT; Harvey et al., 1991), and the other was a crown ether complex (XEGBIX; Reuter et al., 2017). These two LiCl-DMSO structures are novel, and other phases likely exist in the LiCl-DMSO system as a function of temperature, analogous to the $\mathrm{LiCl}-\mathrm{H}_{2} \mathrm{O}$ system (Perron et al., 1997). An extensive list of LiCl structures with various other ligands can be found in Chivers et al. (2001).

5. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3. One of the DMSO molecules on the monoclinic structure is disordered. The two positions of the sulfur atom show a C_{2} symmetry-related disorder about the oxygen atom in the b-axis direction of the unit cell. An attempt was made to model the disorder using a lower space group ($C c$); however, the refinement was unstable. Without the ability to use a PART instruction, the DMSO molecule was fixed to an occupancy of 0.5 . The hydrogen atoms on the disordered DMSO molecule were placed manually. For the monclinic structure, all H atoms were refined with $U_{\text {iso }}(\mathrm{H})=$
$1.5 U_{\text {eq }}(\mathrm{C})$. Bond-length restraints of $0.98 \pm 0.02 \AA$ were applied to the H atoms on C 2 and C 3 .

Acknowledgements

The authors wish to thank Bertha Montoya and Claudina Cammack for aiding the synthesis. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology \& Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

References

Allcorn, E., Nagasubramanian, G. \& Apblett, C. A. (2020). U. S. Patent No. 10,727,474. Washington, DC: U. S. Patent and Trademark Office.
Bouazizi, S. \& Nasr, S. (2007). J. Mol. Struct. 837, 206-213.
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bushkova, O. V., Yaroslavtseva, T. V. \& Dobrovolsky, Y. A. (2017). Russ. J. Electrochem. 53, 677-699.
Chivers, T., Downard, A., Parvez, M. \& Schatte, G. (2001). Inorg. Chem. 40, 1975-1977.
Conde, M. R. (2004). Int. J. Therm. Sci. 43, 367-382.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Harvey, S., Skelton, B. W. \& White, A. H. (1991). Aust. J. Chem. 44, 309-312.

Kirillov, S. A., Gorobets, M. I., Tretyakov, D. O., Ataev, M. B. \& Gafurov, M. M. (2015). J. Mol. Liq. 205, 78-84.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Mauger, A., Julien, C. M., Paolella, A., Armand, M. \& Zaghib, K. (2018). Mater. Sci. Eng. Rep. 134, 1-21.

Megyes, T., Bakó, I., Radnai, T., Grósz, T., Kosztolányi, T., Mroz, B. \& Probst, M. (2006). Chem. Phys. 321, 100-110.
Pasgreta, E., Puchta, R., Galle, M., van Eikema Hommes, N., Zahl, A. \& van Eldik, R. (2007). ChemPhysChem, 8, 1315-1320.
Pátek, J. \& Klomfar, J. (2006). Fluid Phase Equilib. 250, 138-149.
Perron, G., Brouillette, D. \& Desnoyers, J. E. (1997). Can. J. Chem. 75, 1608-1614.
Pranay Reddy, K., Fischer, P., Marinaro, M. \& Wohlfahrt-Mehrens, M. (2018). ChemElectroChem, 5, 2758-2766.

Rao, C. P., Rao, A. M. \& Rao, C. N. R. (1984). Inorg. Chem. 23, 20802085.

Reuter, K., Rudel, S. S., Buchner, M. R., Kraus, F. \& von Hänisch, C. (2017). Chem. Eur. J. 23, 9607-9617.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Togasaki, N., Momma, T. \& Osaka, T. (2016). J. Power Sources, 307, 98-104.
Ugata, Y., Shigenobu, K., Tatara, R., Ueno, K., Watanabe, M. \& Dokko, K. (2021). Phys. Chem. Chem. Phys. 23, 21419-21436.
Voigt, N. \& van Wüllen, L. (2012). Solid State Ionics, 208, 8-16.
Wang, F., Wang, J., Li, G., Guo, Z., Chu, J., Ai, X. \& Song, Z. (2022). Energy Storage Mater. 50, 658-667, doi: 10.1016/j. ensm. 2022.05.055.

Xin, N., Sun, Y., He, M., Radke, C. \& Prausnitz, J. (2018). Fluid Phase Equilib. 461, 1-7.
Yamada, Y., Takazawa, Y., Miyazaki, K. \& Abe, T. (2010). J. Phys. Chem. C, 114, 11680-11685.
Younesi, R., Veith, G. M., Johansson, P., Edström, K. \& Vegge, T. (2015). Energy Environ. Sci. 8, 1905-1922.

Zhang, Q., Zhou, Y., Dai, W., Cui, X., Lyu, Z., Hu, Z. \& Chen, W. (2021). Batteries \& Supercaps. 4, 232-239.

supporting information

Acta Cryst. (2023). E79, 33-37 [https://doi.org/10.1107/S2056989022011896]

Crystal structures of polymerized lithium chloride and dimethyl sulfoxide in the form of $\{2 \mathrm{LiCl} \cdot 3 \mathrm{DMSO}\}_{n}$ and $\{\mathrm{LiCl} \cdot \mathrm{DMSO}\}_{n}$

Nichole R. Valdez, David J. Herman, Martin B. Nemer, Mark A. Rodriguez and Eric Allcorn

Computing details

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction:
SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).
catena-Poly[[chloridolithium(I)]- μ-(dimethyl sulfoxide)- $\kappa^{2} O: O$-[chloridolithium(I)]-di- μ-(dimethyl sulfoxide)-
$\left.\kappa^{4} O: O\right]$ (Monoclinic)

Crystal data

$\left[\mathrm{Li}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{3}\right]$
$M_{r}=319.16$
Monoclinic, C2/c
$a=19.2841$ (17) \AA
$b=7.6436$ (7) \AA
$c=11.5335(10) \AA$
$\beta=118.315(5)^{\circ}$
$V=1496.6(2) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.639, T_{\text {max }}=0.754$
10606 measured reflections
$F(000)=664$
$D_{\mathrm{x}}=1.416 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 4022 reflections
$\theta=5.2-71.2^{\circ}$
$\mu=7.72 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.07 \times 0.07 \times 0.05 \mathrm{~mm}$

1417 independent reflections
1166 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=70.0^{\circ}, \theta_{\text {min }}=5.2^{\circ}$
$h=-22 \rightarrow 23$
$k=-9 \rightarrow 9$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.081$
$S=1.09$
1417 reflections
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0023 P)^{2}+6.8363 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
92 parameters
$\Delta \rho_{\text {max }}=0.46 \mathrm{e} \AA^{-3}$
68 restraints
$\Delta \rho_{\text {min }}=-0.39$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Li1	$0.4831(3)$	$0.5661(7)$	$0.3715(4)$	$0.0215(10)$	
C11	$0.39011(4)$	$0.78167(9)$	$0.26503(6)$	$0.02346(19)$	
O1	0.500000	$0.4171(4)$	0.250000	$0.0231(6)$	
S1	$0.46168(7)$	$0.23074(17)$	$0.24491(12)$	$0.0150(3)$	0.5
C1	$0.46522(18)$	$0.1205(4)$	$0.1177(3)$	$0.0227(6)$	
H1A	$0.463(2)$	$-0.006(2)$	$0.125(4)$	$0.052(12)^{*}$	
H1B	$0.439(2)$	$0.178(5)$	$0.033(2)$	$0.052(12)^{*}$	
H1C	$0.519(2)$	$0.121(12)$	$0.129(9)$	$0.21(4)^{*}$	
O2	$0.57073(10)$	$0.5856(3)$	$0.55161(17)$	$0.0184(4)$	
S2	$0.65940(4)$	$0.60785(9)$	$0.63468(6)$	$0.01629(18)$	
C2	$0.68091(16)$	$0.8173(4)$	$0.5918(3)$	$0.0207(6)$	
H2A	0.659005	0.824918	0.496007	0.031^{*}	0.031^{*}
H2B	0.738110	0.833830	0.633975	0.031^{*}	
H2C	0.657431	0.908521	0.621951	$0.0229(6)$	
C3	$0.70219(17)$	$0.4751(4)$	$0.5580(3)$	0.034^{*}	
H3A	0.694545	0.351352	0.571155	0.034^{*}	
H3B	0.758674	0.500205	0.597297	0.034^{*}	
H3C	0.676854	0.500799	0.463501		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Li1	$0.017(2)$	$0.032(3)$	$0.014(2)$	$-0.001(2)$	$0.0064(18)$	$-0.0028(19)$
C11	$0.0195(3)$	$0.0272(4)$	$0.0174(3)$	$-0.0028(3)$	$0.0037(3)$	$0.0043(3)$
O1	$0.0408(17)$	$0.0139(13)$	$0.0175(14)$	0.000	$0.0162(13)$	0.000
S1	$0.0136(6)$	$0.0169(6)$	$0.0141(6)$	$-0.0003(5)$	$0.0063(5)$	$-0.0001(5)$
C1	$0.0275(16)$	$0.0185(15)$	$0.0152(14)$	$-0.0019(13)$	$0.0045(13)$	$-0.0008(11)$
O2	$0.0111(9)$	$0.0284(11)$	$0.0139(9)$	$-0.0011(8)$	$0.0046(7)$	$0.0003(8)$
S2	$0.0125(3)$	$0.0213(4)$	$0.0138(3)$	$-0.0014(3)$	$0.0052(3)$	$0.0013(3)$
C2	$0.0189(14)$	$0.0214(15)$	$0.0198(14)$	$-0.0024(11)$	$0.0074(12)$	$0.0001(11)$
C3	$0.0202(14)$	$0.0260(16)$	$0.0238(15)$	$-0.0008(12)$	$0.0114(12)$	$-0.0019(12)$

Geometric parameters (${ }^{(},{ }^{\circ}$)

$\mathrm{Li} 1 — \mathrm{Li1}^{\mathrm{i}}$	$3.162(9)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	$0.972(14)$
$\mathrm{Li} 1-\mathrm{Li} 1^{\mathrm{ii}}$	$2.899(9)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	$0.967(14)$
$\mathrm{Li} 1-\mathrm{Cl} 1$	$2.313(5)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	$0.974(15)$
$\mathrm{Li} 1-\mathrm{O} 1$	$1.949(5)$	$\mathrm{O} 2-\mathrm{S} 2$	$1.5219(18)$
$\mathrm{Li} 1-\mathrm{S} 1$	$2.881(5)$	$\mathrm{S} 2-\mathrm{C} 2$	$1.782(3)$

Li1- $\mathrm{O}^{2 i}$	2.021 (5)	S2-C3	1.785 (3)
Li1-O2	1.966 (5)	C2-H2A	0.9800
Li1-S2 ${ }^{\text {ii }}$	3.024 (5)	C2-H2B	0.9800
O1-S1	1.593 (3)	C2-H2C	0.9800
O1-S1 ${ }^{\text {i }}$	1.593 (3)	C3-H3A	0.9800
S1-S1 ${ }^{\text {i }}$	1.426 (2)	C3-H3B	0.9800
S1-C1	1.721 (3)	C3-H3C	0.9800
$\mathrm{S} 1-\mathrm{C} 1^{\text {i }}$	1.758 (3)		
Li1 ${ }^{\text {ii }}-\mathrm{Li1}-\mathrm{Li}^{\text {i }}$	149.9 (3)	S1 ${ }^{\text {i }}$ - $\mathrm{S} 1-\mathrm{O} 1$	63.41 (6)
Li1i-Lil-S2 ${ }^{\text {ii }}$	68.36 (17)	$\mathrm{S} 1{ }^{\text {i }} \mathrm{S} 1-\mathrm{Cl}{ }^{\text {i }}$	64.48 (13)
Cl1-Lil-Li11i	122.2 (3)	S1- ${ }^{\text {i }}$ 1-C1	67.14 (13)
Cl1-Li1-Li1 ${ }^{\text {i }}$	87.91 (16)	C1-S1-Li1	96.24 (14)
C11-Li1-S1	118.43 (18)	C1-S1-Li1	144.41 (15)
Cl1-Lil-S2ii	80.40 (13)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cl}^{\text {i }}$	101.25 (18)
O1-Li1-Li1 ${ }^{\text {ii }}$	119.9 (3)	S1-C1-S1 ${ }^{\text {i }}$	48.38 (11)
O1-Li1-Li1 ${ }^{\text {i }}$	35.76 (16)	S1 ${ }^{\text {i }}$ C1- H 1 A	117 (2)
O1-Li1-Cl1	112.8 (2)	S1-C1-H1A	113 (2)
O1-Lil-S1	31.64 (11)	S1-C1-H1B	115 (2)
O1-Li1-O2	116.8 (2)	$\mathrm{S} 1{ }^{\text {i- }} \mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	120 (2)
$\mathrm{O} 1-\mathrm{Li1}-\mathrm{O}^{\text {ii }}$	106.0 (3)	S1-C1-H1C	111 (5)
O1-Lil-S2 ${ }^{\text {ii }}$	100.72 (19)	$\mathrm{Sl}{ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{HlC}$	62 (5)
S1-Li1-Li1 ${ }^{\text {i }}$	65.90 (10)	H1A-C1-H1B	121 (3)
S1-Li1-Li1 ${ }^{\text {ii }}$	96.7 (2)	H1A-C1-H1C	95 (5)
S1-Li1-S2i	71.72 (12)	H1B-C1-H1C	98 (5)
$\mathrm{O} 22^{\text {ii }}-\mathrm{Li} 11-\mathrm{Lil}^{\text {ii }}$	42.59 (14)	Li1-O2-Li1 ${ }^{\text {ii }}$	93.3 (2)
O2-Li1-Li1 ${ }^{\text {i }}$	120.1 (3)	S2-O2-Li1 ${ }^{\text {ii }}$	116.46 (16)
O2-Li1-Li1 ${ }^{\text {ii }}$	44.10 (13)	S2-O2-Li1	145.04 (17)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Li} 11-\mathrm{Li}^{\text {i }}$	138.89 (18)	O2-S2-Li1 ${ }^{\text {ii }}$	36.75 (11)
$\mathrm{O} 22^{\text {ii }}$-Li1- Cl 1	102.2 (2)	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 2$	105.41 (12)
O2-Lil-Cl1	124.6 (2)	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 3$	105.66 (12)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{Li1}-\mathrm{S} 1$	74.44 (17)	C2-S2-Li1i ${ }^{\text {ii }}$	135.83 (14)
O2-Li1-S1	116.6 (2)	C2-S2-C3	98.65 (14)
$\mathrm{O} 2-\mathrm{Li1}-\mathrm{O}^{\text {ii }}$	86.7 (2)	C3-S2-Li1 ${ }^{\text {ii }}$	111.54 (14)
$\mathrm{O} 22^{\text {ii }}-\mathrm{Li1}-\mathrm{S}^{\text {ii }}$	26.78 (8)	S2-C2-H2A	109.5
O2-Lil-S2i	111.96 (19)	S2-C2-H2B	109.5
S2ii-Li1-Li1 ${ }^{\text {i }}$	123.1 (2)	S2-C2-H2C	109.5
Li1 ${ }^{\text {i }}$ - $\mathrm{O} 1-\mathrm{Li1}$	108.5 (3)	H2A-C2-H2B	109.5
S1-O1-Li1 ${ }^{\text {i }}$	136.79 (16)	H2A-C2-H2C	109.5
S1 ${ }^{\text {i }}$-O1-Li1 ${ }^{\text {i }}$	108.45 (16)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
S1-O1-Li1	108.45 (16)	S2-C3-H3A	109.5
S1-O1-Li1	136.79 (16)	S2-C3-H3B	109.5
S1-O1-S1 ${ }^{\text {i }}$	53.18 (13)	$\mathrm{S} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
O1-S1-Li1	39.92 (10)	H3A-C3-H3B	109.5
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{Cl}^{\text {i }}$	103.64 (12)	H3A-C3-H3C	109.5
O1-S1-C1	105.29 (13)	H3B-C3-H3C	109.5
S1-S1-Li1	93.68 (11)		

$\mathrm{Li} 11^{\mathrm{i}}-\mathrm{O} 1-\mathrm{S} 1-\mathrm{Li} 1$	$-147.5(2)$	$\mathrm{Li} 1-\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 2$	$63.5(4)$
$\mathrm{Li} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$	$77.3(2)$	$\mathrm{Li} 11^{\mathrm{i}}-\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 2$	$-151.0(2)$
$\mathrm{Li} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$	$-135.24(17)$	$\mathrm{Li} 11^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 3$	$105.2(2)$
$\mathrm{Li} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1^{\mathrm{i}}$	$129.2(2)$	$\mathrm{Li} 1-\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 3$	$-40.4(4)$
$\mathrm{Li} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$170.72(19)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}$	$51.77(9)$
$\mathrm{Li} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$23.3(3)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{S} 1-\mathrm{Li} 1$	$135.24(17)$
$\mathrm{Li} 1-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1^{\mathrm{i}}$	$-83.35(19)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1^{\mathrm{i}}$	$51.89(13)$
$\mathrm{Li} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}$	$62.0(2)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$-54.04(13)$
$\mathrm{Li} 1-\mathrm{O} 2-\mathrm{S} 2-\mathrm{Li} 1^{\mathrm{ii}}$	$-145.5(3)$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}$	$-55.91(15)$

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	$0.97(1)$	$2.98(4)$	$3.569(3)$	$120(3)$
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl}^{\text {iv }}$	$0.97(1)$	$2.79(2)$	$3.690(3)$	$156(3)$
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl1}^{\mathrm{i}}$	0.98	2.71	$3.680(3)$	169
$\mathrm{C} 2 — \mathrm{H} 2 B \cdots \mathrm{Cl1}^{\mathrm{v}}$	0.98	2.73	$3.632(3)$	153
$\mathrm{C} 3 — \mathrm{H} 3 B \cdots \mathrm{Cl1}{ }^{\mathrm{v}}$	0.98	2.88	$3.752(3)$	149

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (iii) $-x+1, y-1,-z+1 / 2$; (iv) $x,-y+1, z-1 / 2$; (v) $x+1 / 2,-y+3 / 2, z+1 / 2$.
catena-Poly[lithium(I)- μ-chlorido- μ-(dimethyl sulfoxide)- $\left.\kappa^{2} \mathrm{O}: O\right]$ (Tetragonal)

Crystal data

[$\mathrm{LiCl}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)$]
$M_{r}=120.52$
Tetragonal, $I 4_{1} / a$
$a=14.2411$ (14) \AA
$c=10.8809$ (16) \AA
$V=2206.7(5) \AA^{3}$
$Z=16$
$F(000)=992$

Data collection

Bruker APEXII CCD

diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min }=0.513, T_{\text {max }}=0.754$
8174 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.073$
$S=1.07$
1072 reflections
79 parameters
0 restraints
$D_{\mathrm{x}}=1.451 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 6535 reflections
$\theta=4.4-72.3^{\circ}$
$\mu=8.49 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Octahedron, clear colourless
$0.4 \times 0.4 \times 0.4 \mathrm{~mm}$

1072 independent reflections
1030 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=72.3^{\circ}, \theta_{\text {min }}=5.1^{\circ}$
$h=-17 \rightarrow 16$
$k=-16 \rightarrow 17$
$l=-13 \rightarrow 13$

Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0416 P)^{2}+1.762 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C11	$0.81811(3)$	$0.36163(2)$	$0.89755(3)$	$0.02090(17)$
S1	$0.58855(3)$	$0.44534(2)$	$0.62126(3)$	$0.01513(16)$
O1	$0.69499(7)$	$0.45632(8)$	$0.62414(8)$	$0.0182(3)$
C1	$0.56163(11)$	$0.37206(12)$	$0.74923(14)$	$0.0238(3)$
H1A	$0.6017(15)$	$0.3177(14)$	$0.7468(19)$	$0.035(5)^{*}$
H1B	$0.4949(14)$	$0.3561(14)$	$0.7438(18)$	$0.032(5)^{*}$
H1C	$0.5707(14)$	$0.4087(14)$	$0.822(2)$	$0.030(5)^{*}$
C2	$0.56716(10)$	$0.36370(11)$	$0.50047(14)$	$0.0194(3)$
H2A	$0.6049(14)$	$0.3099(14)$	$0.5150(18)$	$0.030(5)^{*}$
H2B	$0.5842(13)$	$0.3952(14)$	$0.425(2)$	$0.029(5)^{*}$
H2C	$0.5011(14)$	$0.3503(14)$	$0.5012(18)$	$0.030(5)^{*}$
Li1	$0.77950(17)$	$0.48024(16)$	$0.7596(2)$	$0.0185(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0232(2)$	$0.0197(2)$	$0.0198(2)$	$0.00734(14)$	$0.00006(13)$	$0.00281(13)$
S1	$0.0163(2)$	$0.0145(2)$	$0.0145(2)$	$-0.00053(13)$	$0.00054(12)$	$0.00014(11)$
O1	$0.0173(6)$	$0.0243(6)$	$0.0128(5)$	$-0.0070(4)$	$-0.0005(3)$	$0.0004(4)$
C1	$0.0222(8)$	$0.0307(9)$	$0.0184(8)$	$-0.0065(7)$	$0.0026(6)$	$0.0052(6)$
C2	$0.0176(7)$	$0.0212(7)$	$0.0193(7)$	$-0.0011(6)$	$-0.0023(5)$	$-0.0025(6)$
Li1	$0.0216(12)$	$0.0206(12)$	$0.0133(10)$	$0.0025(10)$	$-0.0006(9)$	$-0.0006(9)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

Cl1-Li1	2.326 (2)	C1-H1B	0.98 (2)
Cl1-Li1 ${ }^{\text {i }}$	2.336 (2)	C1-H1C	0.96 (2)
S1-O1	1.5241 (11)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.95 (2)
S1-C1	1.7819 (15)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.97 (2)
S1-C2	1.7810 (15)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.96 (2)
O1-Li1 ${ }^{\text {ii }}$	1.943 (3)	Li1-Li1 ${ }^{\text {i }}$	2.8126 (10)
O1-Li1	1.933 (3)	Li1-Li1 ${ }^{\text {ii }}$	2.8127 (10)
C1-H1A	0.96 (2)		
Li1- $\mathrm{Cl} 1-\mathrm{Li}^{1}{ }^{\text {i }}$	74.22 (7)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	113.1 (18)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	104.95 (7)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	110.1 (16)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 2$	104.61 (6)	$\mathrm{Cl1}-\mathrm{Lil}-\mathrm{Cl1}^{\text {ii }}$	124.69 (11)
C2-S1-C1	99.06 (8)	$\mathrm{C} 11^{\mathrm{ii}}$-Li1-Li1 ${ }^{\text {i }}$	134.17 (10)
S1-O1-Li1	130.77 (9)	C11—Li1-Li1 ${ }^{\text {ii }}$	144.79 (11)

supporting information

$\mathrm{S} 1-\mathrm{O} 1-\mathrm{Li} 1^{\text {ii }}$	125.94 (9)	$\mathrm{Cl1}{ }^{\text {iii }}$-Li1- $\mathrm{Li} 1{ }^{\text {ii }}$	52.72 (8)
Li1-O1-Li1 ${ }^{\text {ii }}$	93.06 (8)	$\mathrm{Cl1}-\mathrm{Li} 1-\mathrm{Li}^{1}{ }^{\text {i }}$	53.05 (7)
S1-C1-H1A	108.8 (12)	O1- ${ }^{\text {i }} \mathrm{Li} 1-\mathrm{Cl1}$	96.36 (10)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.3 (12)	O1- ${ }^{\text {i }}$ Li1- $\mathrm{Cl}^{1 i}$	113.41 (11)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	107.3 (12)	$\mathrm{O} 1-\mathrm{Li} 1-\mathrm{Cl1}^{\text {ii }}$	96.30 (10)
H1A-C1-H1B	112.8 (18)	O1-Li1-Cl1	120.75 (12)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	112.5 (17)	O1-Li1-O1 ${ }^{\text {i }}$	104.58 (12)
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	107.9 (16)	O1—Li1-Li1 ${ }^{\text {i }}$	124.99 (13)
S1-C2-H2A	107.9 (12)	O1-LLil-Li1 ${ }^{\text {i }}$	43.34 (7)
S1-C2-H2B	106.4 (12)	O1-Li1-Li $1^{\text {ii }}$	117.22 (12)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	107.0 (12)	O1—Li1-Li1 ${ }^{1 i}$	43.60 (6)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.9 (16)	Li1 ${ }^{\text {i }}$ Li1 1 Li1 ${ }^{\text {ii }}$	159.29 (10)
C1-S1-O1-Li1 ${ }^{\text {ii }}$	-179.33 (12)	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{O} 1-\mathrm{Li} 1^{\text {ii }}$	76.90 (13)
C1—S1-O1—Li1	-43.92 (15)	C2—S1-O1-Li1	-147.69 (13)

Symmetry codes: (i) $y+1 / 4,-x+5 / 4, z+1 / 4$; (ii) $-y+5 / 4, x-1 / 4, z-1 / 4$.
Hydrogen-bond geometry (A, ${ }^{9}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	$0.98(2)$	$2.95(2)$	$3.821(2)$	$148(2)$
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl1} 1^{\text {iv }}$	$0.95(2)$	$2.84(2)$	$3.768(2)$	$165(2)$
$\mathrm{C} 2 — \mathrm{H} 2 C \cdots \mathrm{Cl1}{ }^{\mathrm{iii}}$	$0.96(2)$	$2.83(2)$	$3.716(2)$	$153(2)$

Symmetry codes: (iii) $x-1 / 2, y,-z+3 / 2$; (iv) $-x+3 / 2,-y+1 / 2,-z+3 / 2$.

