Published under a CC BY 4.0 licence

Syntheses, crystal structures and Hirshfeld surface analysis of 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate and 4-(4-nitrophenyl)piperazin-1ium trichloroacetate

Holehundi J. Shankara Prasad,^a Devaraju,^a* Subbaiah M. Murthy,^b Hanna Kaspiaruk,^c Hemmige S. Yathirajan,^d* Sabine Foro^e and Lilianna Checińska^c

^aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, ^bDepartment of Microbiology, Yuvaraja's College, University of Mysore, Mysore 570 005, India, ^cFaculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland, ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, and ^eInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany. *Correspondence e-mail: Passion49432005@gmail.com, vathirajan@hotmail.com

The synthesis and crystal structures of the molecular salts of 4-(4-nitrophenyl)piperazine with trifluoroacetate, namely, 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate, $C_{10}H_{14}N_3O_2^+$, $C_2F_3O_2^-$ (I), and with trichloroacetate, namely, 4-(4-nitrophenyl)piperazin-1-ium trichloroacetate, $C_{10}H_{14}N_3O_2^+ \cdot C_2Cl_3O_2^-$, (II), are reported and compared. A partial positional disorder of the anions was found. In both structures, the piperazine rings adopt a chair conformation, whereas the positions of the nitrophenyl group on the piperazine ring differ from bisectional in (I) to equatorial in (II). In both structures, the supramolecular assemblies are mono-periodic on the basis of the chain-of-rings motifs supported by aromatic π - π interactions. Hirshfeld surface analysis was used to explore the intermolecular close contacts in both crystals. The most dominant contacts of the Hirshfeld surface of the cation-anion pairs of the asymmetric units are $O \cdots H/H \cdots O$, and those with a contribution of halogen atoms: F...H/H...F in (I) and Cl...H/H...Cl in (II), respectively.

1. Chemical context

Piperazines and their derivatives have attracted growing attention for years (Berkheij et al., 2005; Elliott, 2011; Asif, 2015; Brito et al., 2019), mainly because of their multivalent biological profiles in a number of different therapeutic areas (Upadhayaya et al., 2004; Chaudhary et al., 2006; Kharb et al., 2012). The pharmacological significance of piperazines is also manifested in the application of its framework in the assemblies of inclusion, hybrid and other functional materials (Brockunier et al., 2004; Bogatcheva et al., 2006; Jin et al., 2020; Gharbi et al., 2022). Among them, a potential application for 4-nitrophenylpiperazine (NPP) can be indicated (König et al., 1997; Lu, 2007; Wang et al., 2014). We have recently reported the crystal structures of eight salts of 4-nitrophenylpiperazine (Mahesha et al., 2022; Shankara Prasad et al., 2022). In view of the importance of piperazines in general and the use of 4nitrophenylpiperazine in particular, the present article reports the synthesis, crystal structure and Hirshfeld surface analysis of two salts of 4-nitrophenylpiperazine with organic acids, namely, 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate, C₁₂H₁₄F₃N₃O₄, (I) and 4-(4-nitropheny)piperazin-1-ium trichloroacetate, C₁₂H₁₄Cl₃N₃O₄, (II).

Received 22 November 2022 Accepted 30 November 2022

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; piperazine; hydrogen bonding; chain of rings; supramolecular assembly.

CCDC references: 2223441; 2223442

Supporting information: this article has supporting information at journals.iucr.org/e

2. Structural commentary

The title compounds are shown in Figs. 1 and 2. The piperazine rings adopt a chair conformation with puckering parameters (Cremer & Pople, 1975) in (I) of Q = 0.576(2) Å, $\theta =$ 177.8 (2)°, $\varphi = 182$ (4)°, and in (II) of Q = 0.571 (2) Å, $\theta =$ 177.1 (2)°, $\varphi = 189$ (4)°, respectively. The position of the nitrophenyl group on the piperazine ring differs in the two structures, from bisectional in (I) to occupying an equatorial site in (II) (Fig. 3). The angle between the N1-C1 bond and the normal to the Cremer & Pople mean plane is 39.57 (11)° in (I) and 60.87 (14) $^{\circ}$ in (II) (Spek, 2020; see Database survey section for further comparisons). In addition, the delocalization effect within the benzene ring is slightly disturbed due to the presence of the electron-donating piperazinyl $[-C_4H_8N_2;$ for the structurally similar piperidino substituent the Hammett σ_p constant is -0.12 (Perrin *et al.*, 1981)] and the electron-withdrawing nitro [-NO₂, $\sigma_p = 0.78$ (Hansch *et al.*, 1991)] groups located in the *para*- position: the lengthening of the C1-C2 and C1-C6 bonds is accompanied by the shortening of the remaining C-C bonds within the ring and C-Ndistances to the substituents.

In the anions, the C-O bond lengths in the carboxylate group are more similar in compound (II) than in compound

Independent components of compound (I) showing the atom-labelling scheme and the hydrogen bond (drawn as dashed line) within the selected asymmetric unit. The major disorder component is drawn using unbroken lines (A) and the minor disorder component is drawn using dashed lines (B). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Independent components of compound (II) showing the atom-labelling scheme and the hydrogen bonds (drawn as dashed lines) within the selected asymmetric unit. The disorder components A and B of chlorine atoms have equal site-occupancies (1/2) within s.u. Displacement ellipsoids are drawn at the 30% probability level.

(I), although in both cases these distances are shorter than the mean value for its type (Allen *et al.*, 1987). The geometries of the COO⁻ groups can be affected by the positional disorder of the CF₃ group in (I) and the chlorine atoms in (II). In (I), the CF₃ group is found to be disordered over two orientations, with a refined occupancy ratio of 0.779 (4):0.221 (4), while in (II), the disordered chlorine atoms in the CCl₃ group show an almost equivalent contribution of components *A* and *B* [0.494 (15) and 0.506 (15)] (Figs. 1 and 2).

3. Supramolecular features

In (I), the 4-(4-nitrophenyl)piperazin-1-ium cation interacts with two trifluoroacetate anions, which are related by translation, by two N-H···O hydrogen bonds: N2-H21···O3 and N2-H21···O4(x + 1, y, z). Additionally, if one considers the C7-H7A···O3(x + 1, y, z) interaction the hydrogen-bonded

research communications

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N2-H21\cdots O3\\ N2-H22\cdots O4^{i}\\ C7-H7A\cdots O3^{i}\end{array}$	0.90 (2)	1.98 (2)	2.844 (2)	161 (2)
	0.87 (2)	1.93 (2)	2.786 (2)	165 (2)
	0.97	2.53	3.492 (2)	169

Symmetry code: (i) x + 1, y, z.

 Table 2

 Hydrogen-bond geometry (Å, °) for (II).

	•			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H21···O3	0.87 (2)	2.01 (2)	2.795 (2)	151 (2)
$N2-H21\cdots Cl1A$	0.87 (2)	2.82 (2)	3.510 (5)	138 (2)
$N2-H22\cdots O4^{1}$	0.87 (2)	1.89 (2)	2.738 (2)	167 (2)

Symmetry code: (i) x, y + 1, z.

motif can be described as a $C(6)C(6)[R_2^2(8)]$ chain of rings (Etter, 1990; Etter *et al.*, 1990; Bernstein *et al.*, 1995) running parallel to the [100] direction (Fig. 4, Table 1).

In (II), the ionic components of the asymmetric unit are linked by two N2—H21···O3 and N2—H21···Cl1*A* hydrogen bonds, forming an $R_1^2(5)$ ring motif. This ring system is further propagated along the [010] direction through the N2—H22···O3(*x*, *y* + 1, *z*) hydrogen bond; and a $C(6)C(7)[R_1^2(5)]$ chain of rings is created (Fig. 5, Table 2).

Close inspection of the crystal packings of both structures reveals the aromatic π - π interactions between adjacent chains of rings (Figs. 6 and 7). The centroid-centroid distances $(Cg1\cdots Cg1)$ between the phenyl rings are 3.788 (1) and 4.268 (1) Å in (I) and 3.800 (1) Å in (II); the perpendicular

Figure 4

Part of the crystal structure of compound (I) showing the formation of a chain of rings parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines, and for the sake of clarity, the H atoms bonded to C atoms have been omitted. Symmetry code: (i) x + 1, y, z.

Figure 5

Part of the crystal structure of compound (II) showing the formation of a chain of rings parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines, and for the sake of clarity, the H atoms bonded to C atoms have been omitted. Symmetry code: (i) x, y + 1, z.

Figure 6

A part of the crystal structure of compound (I) showing the aromatic π - π - π interactions between adjacent chains of rings. Red balls represent the centroids of the phenyl rings (*Cg*1).

Figure 7

A part of the crystal structure of compound (II) showing the aromatic π - π interactions between adjacent chains of rings. Red balls represent the centroids of the phenyl rings (*Cg*1).

distances from the centroid to the plane of the opposite ring are 3.333 (1) and 3.253 (1) Å in (I) and 3.303 (1) Å in (II).

Crystal packing of (I) in a view along the crystallographic a axis (herringbone type).

Although in (I) the slippage distance (2.764 Å) between the centroids spaced by 4.27 Å is markedly far from a value of 1.8 Å (suggesting an overlap of rings), one can still consider molecular stacks along the [100] direction to be comparable to those undoubtedly observed in structure (II) in the [010] direction.

Finally, both supramolecular structures can be described as mono-periodic; no other specific close contacts or interactions can be found in addition to those mentioned above. Despite the similarities in the formation of 1D-chains of rings and their stacking assemblies, the packing of these motifs in the analysed crystals is fundamentally different. In (I), the packing fashion can be described as herringbone-type (Fig. 8), whereas in (II) a linear mode is seen (Fig. 9). It seems that the halogen atoms [F in (I) and Cl in (II)] in the anions influence the crystal-packing modes because of the difference in their van der Waals radii.

Figure 9 Crystal packing of (II) in a view along the crystallographic *b* axis (linear type).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis is a valuable tool for understanding crystal packing. It offers both identification and visualization of intermolecular interactions, as well as reflecting the interplay between atoms in the structure. The Hirshfeld surfaces of ionic pairs in the asymmetric units of (I) and (II), are shown in Fig. 10. In addition, in Fig. 10, the corresponding 2D fingerprint plots of the most dominant contacts are also presented and combined with the information about their percentage contributions to the Hirshfeld surface. For both structures, the most significant contacts percentages are attributed to O···H/H···O interactions, 34.3% in (I) and 31.7% in (II). The closest contacts of this type appear as two sharp symmetric spikes in the 2D maps, and the intermolecular contacts as representatives are visualized between the Hirshfeld surface of the ionic components and neighbouring molecules. Competing close contacts are those with halogen atom, $Cl \cdot \cdot H/H \cdot \cdot Cl$ type in (I) (32.1%) and $F \cdots H/H \cdots F$ in (II) (28.8%). The former contacts in the fingerprint plot of (II) can be seen as wings, whereas the latter contacts dominate in the structure of (I) are spread over the

Figure 10

Views of the Hirshfeld surfaces of the ionic components of (I) (upper) and (II) (lower) mapped over d_{norm} showing intermolecular hydrogen bonds as dashed lines. Hirshfeld surface analysis were carried out using *CrystalExplorer* (Spackman & Jayatilaka, 2009; Turner *et al.*, 2017).

central part of plot; their distances are essentially comparable or longer than the sum of the van der Waals radii of the atoms involved. The much lower contributions of the $H \cdots H$ contacts are consistent with the moderate number of H atoms per two molecules in the asymmetric units. The contributions of the remaining contact types constitute about 20%, among which 6-8% of the Hirshfeld surface area of (I) and (II) is covered by $C \cdots H/H \cdots C$ contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, September 2022; Groom et al. 2016) for 4-nitrophenylpiperazines in organic compounds revealed 45 structures, most of which contain a substituent at the N2 atom. Only a few compounds are directly comparable to title compounds (I) and (II): eight structures of 4-nitrophenylpiperazin-1-ium salts with different benzoate anions (NEBVOJ; NEBVUP; NEBWAW; NEBWEA; NEBWIE; NEBWOK; Mahesha et al., 2022; BEFGIG; BEFGOM, Shankara Prasad et al., 2022) and one with chloride (LIJNAU; Lu, 2007). In addition, two neutral NPP molecules have been reported in an inclusion material (König et al., 1997) or co-crystal (Wang et al., 2014). We have compared the molecular conformation of thirteen independent 4-(4-nitrophenyl)piperazin-1-ium cations: nine published structures (2 with Z' > 1) and the two reported in this article. As shown in Fig. 11, the molecular structures of the NPP cations differ from each other with respect to the position of the nitrophenyl group on the piperazine ring: the equatorial site is preferred (9/13), whereas the axial position (3/13) is rare, and bisectional is uncommon (1/13). All compared piperazine rings adopt a chair conformation.

An overlay of thirteen 4-(4-nitrophenyl)piperazin-1-ium cations, showing the best fit for the piperazine ring: the colour code is red = (I), green = (II), orange = BEFGIG, blue = BEFGOM, black = NEBVOJ, light green = NEBVUP, purple = NEBWAW, cyan = NEBWEA, light grey = NEBWIE (molecule 1), grey = NEBWIE (molecule 2), violet = NEBWOK (molecule 1), magenta = NEBWOK (molecule 2) and yellow = LIJNAU.

research communications

Table	3	
Experi	mental	details

	(I)	(II)
Crystal data		
Chemical formula	$C_{10}H_{14}N_2O_2^+ \cdot C_2F_2O_2^-$	$C_{10}H_{14}N_2O_2^+ \cdot C_2Cl_2O_2^-$
M_r	321.26	370.61
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	293	293
a, b, c (Å)	6.6889 (4), 18.376 (1), 11.2600 (7)	11.7825 (5), 6.6142 (3), 20.3271 (9)
β (°)	91.131 (6)	104.173 (4)
$V(A^3)$	1383.76 (14)	1535.91 (12)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.14	0.62
Crystal size (mm)	$0.50 \times 0.44 \times 0.44$	$0.48 \times 0.44 \times 0.40$
Data collection		
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibu with Sapphire CCD
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction (2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction (2009)
T_{\min}, T_{\max}	0.784, 1.000	0.840, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4855, 2515, 1908	5078, 2802, 2068
R _{int}	0.020	0.013
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.106, 1.02	0.036, 0.104, 1.09
No. of reflections	2515	2802
No. of parameters	239	236
No. of restraints	84	35
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({ m e} \; { m \AA}^{-3})$	0.28, -0.28	0.25, -0.28

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

6. Synthesis and crystallization

A solution of commercially available (from Sigma-Aldrich) 4-nitrophenylpiperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) *viz.*, trifluoroacetic acid (55 mg, 0.483 mol) for (I) and trichloroacetic acid (79 mg, 0.483 mol) for (II). The corresponding solutions were stirred for 30 minutes at 323 K and allowed to stand at room temperature. X-ray quality crystals were formed on slow evaporation for a week for both of the compounds, where ethanol ethyl acetate (1:1) was used for crystallization. The corresponding melting points were 425–427 K (I) and 388–390 K (II).

7. Refinement

Crystal data, data collection and structure refinement details for both compounds are summarized in Table 3. In both structures, an extinction parameter was refined.

The CF₃ group of (I) was found to be disordered over two orientations, with a refined occupancy ratio of 0.779 (4):0.221 (4). The disorder was restrained using SIMU, ISOR and DELU commands in *SHELXL* for the six resulting fluorine atoms. Anisotropic displacement parameters for pairs of the disordered carbon atom (C12*A* and C12*B*) were constrained to be the same. The three C–F bonds of the minor disorder component (*B*) and two C11–C12 bonds were restrained to be similar in length. In (II), the refined occupancies of disordered chlorine atoms in the CCl_3 group of 0.494 (15) and 0.506 (15), show the equivalent contribution of the components *A* and *B*. The ellipsoids of three chlorine atoms of the *B* disorder component were modelled using SIMU, ISOR and DELU commands in *SHELXL*. All six C-Cl distances were restrained to be similar in length.

In both structures, the H atoms bound to C atoms were positioned geometrically with C–H distances of 0.93 Å (aromatic) and 0.97 Å (CH₂), and with $U_{iso}(H) = 1.2U_{eq}(C)$. The positions of the NH₂ hydrogen atoms were refined. N–H distances within the NH₂ group were restrained to 0.87 (2) Å.

Acknowledgements

HJS is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
 Acif M (2015) Int. I. Adv. Sci. Pag. 1, 05
- Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05.

Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). *Tetrahedron Lett.* 46, 2369–2371.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.
- Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). *Fundam. Clin. Pharmacol.* 33, 13–24.
- Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). *Bioorg. Med. Chem. Lett.* 14, 4763–4766.
- Chaudhary, P., Kumar, R., Verma, A. K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). *Bioorg. Med. Chem.* 14, 1819–1826.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Elliott, S. (2011). Drug Test. Anal. 3, 430-438.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Gharbi, C., Toumi, B., Soudani, S., Lefebvre, F., Kaminsky, W., Jelsch, C., Nasr, C. B. & Khedhiri, L. (2022). *J. Mol. Struct.* **1257**, 132620.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hansch, C., Leo, A. & Taft, R. W. (1991). Chem. Rev. 91, 2, 165-195.
- Jin, Y., Huang, T., Zhao, W., Yang, X., Meng, Y. & Ma, P. (2020). RSC Adv. 10, 37369–37373.
- Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.
- König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640.

- Lu, Y.-X. (2007). Acta Cryst. E63, 03611.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510– 518.
- Oxford Diffraction (2009). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Perrin, D. D., Dempsey, B. & Serjeant, E. P. (1981). pKa Prediction for organic acids and bases, Appendix: p. 119. Chapman & Hall, London.
- Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). *Acta Cryst.* E78, 840–845.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17.5*. University of Western Australia.
- Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). *Bioorg. Med. Chem.* **12**, 2225–2238.
- Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97–98.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2023). E79, 1-7 [https://doi.org/10.1107/S2056989022011501]

Syntheses, crystal structures and Hirshfeld surface analysis of 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate and 4-(4-nitrophenyl)piperazin-1-ium trichloroacetate

Holehundi J. Shankara Prasad, Devaraju, Subbaiah M. Murthy, Hanna Kaspiaruk, Hemmige S. Yathirajan, Sabine Foro and Lilianna Chęcińska

Computing details

For both structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2019/2* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

4-(4-Nitrophenyl)piperazin-1-ium trifluoroacetate (I)

Crystal data

 $C_{10}H_{14}N_{3}O_{2}^{+}C_{2}F_{3}O_{2}^{-1}M_{r} = 321.26$ Monoclinic, $P2_{1}/c$ a = 6.6889 (4) Å b = 18.376 (1) Å c = 11.2600 (7) Å $\beta = 91.131$ (6)° V = 1383.76 (14) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction (2009) $T_{\min} = 0.784, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.106$ S = 1.022515 reflections 239 parameters F(000) = 664 $D_x = 1.542 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2766 reflections $\theta = 2.9-27.8^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.50 \times 0.44 \times 0.44 \text{ mm}$

4855 measured reflections 2515 independent reflections 1908 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 25.3^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -8 \rightarrow 7$ $k = -17 \rightarrow 22$ $l = -11 \rightarrow 13$

84 restraintsPrimary atom site location: structure-invariant direct methodsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0484P)^2 + 0.5034P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Extinction correction: SHELXL2019/2

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.053 (3)

(Sheldrick, 2015b),

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.6694 (3)	0.05792 (11)	-0.27331 (14)	0.0805 (6)	
O2	0.6790 (2)	-0.05336 (10)	-0.21928 (14)	0.0636 (5)	
N1	0.8545 (2)	0.10090 (8)	0.26900 (12)	0.0356 (4)	
N2	0.6570 (2)	0.12077 (8)	0.48752 (13)	0.0312 (4)	
N3	0.6925 (2)	0.01145 (11)	-0.19696 (15)	0.0476 (5)	
C1	0.8114 (2)	0.07873 (10)	0.15542 (15)	0.0312 (4)	
C2	0.8000 (3)	0.12928 (11)	0.06160 (16)	0.0419 (5)	
H2	0.818859	0.178501	0.077433	0.050*	
C3	0.7615 (3)	0.10711 (12)	-0.05228 (17)	0.0447 (5)	
Н3	0.753987	0.141171	-0.113294	0.054*	
C4	0.7339 (3)	0.03448 (11)	-0.07686 (15)	0.0365 (4)	
C5	0.7466 (2)	-0.01673 (11)	0.01221 (16)	0.0377 (4)	
Н5	0.729993	-0.065848	-0.005234	0.045*	
C6	0.7840 (3)	0.00528 (10)	0.12678 (16)	0.0355 (4)	
H6	0.791371	-0.029400	0.186860	0.043*	
C7	0.8875 (3)	0.05084 (10)	0.36718 (15)	0.0341 (4)	
H7A	1.001562	0.066979	0.414794	0.041*	
H7B	0.917467	0.002845	0.336392	0.041*	
C8	0.7060 (3)	0.04672 (9)	0.44371 (15)	0.0320 (4)	
H8A	0.593779	0.027324	0.397946	0.038*	
H8B	0.732201	0.014504	0.510461	0.038*	
C9	0.6318 (3)	0.17363 (10)	0.38863 (16)	0.0373 (4)	
H9A	0.610217	0.221963	0.420550	0.045*	
H9B	0.515721	0.160535	0.340249	0.045*	
C10	0.8162 (3)	0.17372 (10)	0.31302 (16)	0.0401 (5)	
H10A	0.796762	0.206785	0.246641	0.048*	
H10B	0.930352	0.190504	0.359862	0.048*	
C11	0.1577 (3)	0.17011 (10)	0.61221 (17)	0.0386 (5)	
C12A	0.2811 (6)	0.2193 (2)	0.6965 (3)	0.0574 (11)	0.779 (4)
C12B	0.295 (2)	0.2305 (8)	0.6565 (13)	0.0574 (11)	0.221 (4)
03	0.2518 (2)	0.12351 (8)	0.55930 (14)	0.0522 (4)	
O4	-0.0240 (2)	0.18168 (9)	0.61548 (14)	0.0593 (5)	
F1A	0.4768 (4)	0.22180 (19)	0.6652 (3)	0.0873 (11)	0.779 (4)
F2A	0.2265 (4)	0.28753 (13)	0.6917 (4)	0.0974 (13)	0.779 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

F3A	0.2611 (5)	0.2012 (2)	0.8079 (2)	0.1261 (13)	0.779 (4)
F1B	0.2251 (14)	0.2549 (8)	0.7591 (12)	0.089 (3)	0.221 (4)
F2B	0.4517 (17)	0.1991 (8)	0.7164 (11)	0.090 (3)	0.221 (4)
F3B	0.2926 (17)	0.2875 (5)	0.5852 (13)	0.129 (3)	0.221 (4)
H21	0.541 (3)	0.1200 (11)	0.5272 (17)	0.047 (6)*	
H22	0.752 (2)	0.1340 (10)	0.5372 (15)	0.038 (5)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.1184 (16)	0.0917 (14)	0.0310 (8)	-0.0055 (11)	-0.0098 (9)	0.0050 (9)
O2	0.0640 (10)	0.0726 (12)	0.0539 (10)	0.0033 (8)	-0.0089 (8)	-0.0253 (8)
N1	0.0441 (9)	0.0359 (8)	0.0268 (8)	0.0041 (7)	0.0012 (6)	0.0023 (7)
N2	0.0272 (8)	0.0362 (8)	0.0301 (8)	0.0006 (7)	-0.0020 (6)	-0.0032 (7)
N3	0.0359 (9)	0.0719 (13)	0.0349 (9)	0.0018 (9)	-0.0004 (7)	-0.0080 (9)
C1	0.0234 (8)	0.0406 (10)	0.0298 (9)	0.0020 (7)	0.0030 (7)	0.0014 (8)
C2	0.0518 (12)	0.0397 (11)	0.0341 (10)	0.0012 (9)	0.0002 (8)	0.0025 (9)
C3	0.0508 (12)	0.0527 (13)	0.0306 (10)	0.0033 (10)	-0.0012 (8)	0.0079 (9)
C4	0.0277 (9)	0.0528 (12)	0.0289 (9)	0.0020 (8)	-0.0003 (7)	-0.0037 (9)
C5	0.0269 (9)	0.0433 (11)	0.0429 (11)	-0.0001 (8)	0.0005 (8)	-0.0064 (9)
C6	0.0317 (9)	0.0404 (11)	0.0344 (10)	0.0005 (8)	0.0001 (7)	0.0038 (8)
C7	0.0342 (9)	0.0388 (10)	0.0291 (9)	0.0075 (8)	-0.0028 (7)	0.0002 (8)
C8	0.0358 (9)	0.0312 (9)	0.0288 (9)	0.0000 (8)	-0.0048 (7)	0.0006 (7)
C9	0.0438 (11)	0.0314 (10)	0.0363 (10)	0.0062 (8)	-0.0056 (8)	0.0005 (8)
C10	0.0523 (11)	0.0346 (10)	0.0335 (10)	-0.0058 (9)	-0.0005 (8)	0.0011 (8)
C11	0.0313 (10)	0.0398 (11)	0.0446 (11)	-0.0015 (8)	-0.0029 (8)	-0.0100 (9)
C12A	0.0369 (14)	0.068 (2)	0.067 (3)	0.0037 (13)	0.0025 (19)	-0.036 (2)
C12B	0.0369 (14)	0.068 (2)	0.067 (3)	0.0037 (13)	0.0025 (19)	-0.036 (2)
03	0.0386 (8)	0.0484 (8)	0.0695 (10)	0.0011 (7)	-0.0020 (7)	-0.0248 (8)
O4	0.0308 (8)	0.0745 (11)	0.0724 (11)	-0.0014 (7)	-0.0055 (7)	-0.0315 (8)
F1A	0.0316 (11)	0.103 (2)	0.128 (3)	-0.0196 (12)	0.0112 (14)	-0.0703 (18)
F2A	0.0739 (15)	0.0495 (14)	0.168 (4)	0.0015 (12)	-0.012 (2)	-0.0513 (17)
F3A	0.146 (3)	0.168 (3)	0.0625 (16)	-0.035 (2)	-0.0317 (15)	-0.0260 (18)
F1B	0.055 (4)	0.112 (6)	0.100 (5)	-0.010 (5)	0.006 (4)	-0.068 (4)
F2B	0.036 (4)	0.120 (5)	0.111 (5)	0.015 (4)	-0.032 (4)	-0.057 (4)
F3B	0.126 (5)	0.083 (5)	0.178 (6)	-0.035 (4)	0.003 (5)	-0.029 (5)

Geometric parameters (Å, °)

01—N3	1.219 (2)	С7—С8	1.505 (2)	
O2—N3	1.220 (2)	C7—H7A	0.9700	
N1-C1	1.368 (2)	C7—H7B	0.9700	
N1—C10	1.452 (2)	C8—H8A	0.9700	
N1—C7	1.452 (2)	C8—H8B	0.9700	
N2—C9	1.485 (2)	C9—C10	1.512 (3)	
N2—C8	1.486 (2)	С9—Н9А	0.9700	
N2—H21	0.901 (15)	С9—Н9В	0.9700	
N2—H22	0.873 (15)	C10—H10A	0.9700	

N3—C4	1.439 (2)	C10—H10B	0.9700
C1—C6	1.399 (3)	C11—O3	1.224 (2)
C1—C2	1.408 (2)	C11—O4	1.235 (2)
C2—C3	1.365 (3)	C11—C12B	1.518 (15)
C2—H2	0.9300	C11—C12A	1 539 (4)
$C_2 C_4$	1,375(3)	C12A $F2A$	1.306 (5)
$C_3 = U_3$	0.0300	C12A = F2A	1.300(5)
C4 C5	1,277(2)	C12A = F1A	1.307(3)
C4 - C3	1.377(3)	Cl2A—FIA Cl2D E2D	1.304(3)
C5—C6	1.370 (3)	CI2B—F3B	1.319 (13)
C5—H5	0.9300	C12B—F1B	1.332 (14)
С6—Н6	0.9300	C12B—F2B	1.365 (14)
C1—N1—C10	123.95 (15)	N2—C8—C7	109.25 (14)
C1—N1—C7	123.34 (15)	N2—C8—H8A	109.8
C10 - N1 - C7	110 45 (13)	C7—C8—H8A	109.8
C9-N2-C8	111 88 (13)	N2-C8-H8B	109.8
C_{0} N2 H21	107.2(13)	C7 C8 H8B	109.0
$C_{2} = N_{2} = H_{2} I$	107.2(13) 110.4(13)		109.8
$C_0 = N_2 = H_2 T$	110.4(13) 111.7(12)	$H_0A = C_0 = H_0B$	100.5
C9 - N2 - H22	111.7(13)	N2 = C9 = U0A	109.95 (15)
C8—N2—H22	107.8 (12)	$N_2 = C_9 = H_9 A$	109.7
$H_2I = N_2 = H_{22}$	107.9 (18)	С10—С9—Н9А	109.7
01—N3—02	122.05 (18)	N2—C9—H9B	109.7
O1—N3—C4	118.42 (19)	С10—С9—Н9В	109.7
O2—N3—C4	119.53 (19)	H9A—C9—H9B	108.2
N1—C1—C6	121.82 (16)	N1—C10—C9	110.05 (15)
N1—C1—C2	120.84 (17)	N1—C10—H10A	109.7
C6—C1—C2	117.31 (16)	C9—C10—H10A	109.7
C3—C2—C1	120.96 (18)	N1-C10-H10B	109.7
С3—С2—Н2	119.5	C9-C10-H10B	109.7
C1—C2—H2	119.5	H10A—C10—H10B	108.2
C2—C3—C4	120.06 (18)	O3—C11—O4	130.58 (17)
С2—С3—Н3	120.0	O3—C11—C12B	111.0 (6)
C4—C3—H3	120.0	04—C11—C12B	116.9 (6)
$C_{3}-C_{4}-C_{5}$	120 72 (17)	03-C11-C12A	1159(2)
$C_3 - C_4 - N_3$	119.83 (18)	04-C11-C12A	113.3(2)
$C_5 - C_4 - N_3$	119.65 (18)	$F_{2} = C_{12} = F_{3}$	1045(4)
C_{5}	110.45 (18)	$F_{2A} = C_{12A} = F_{13A}$	104.3(4)
C6 C5 H5	119.45 (10)	$\Gamma_{2A} = C_{12A} = \Gamma_{1A}$	103.1(4)
$C_0 = C_5 = H_5$	120.5	$F_{3A} = C_{12A} = F_{1A}$	112.0(4)
$C_4 = C_5 = C_1$	120.5	$F_{2A} = C_{12A} = C_{11}$	113.1(3)
	121.49 (17)	F3A—C12A—C11	112.2 (3)
С5—С6—Н6	119.3	FIA—CI2A—CII	111.5 (3)
	119.3	F3B—C12B—F1B	105.1 (13)
NI-C7-C8	110.83 (14)	F3B—C12B—F2B	129.5 (15)
N1—C7—H7A	109.5	F1B—C12B—F2B	89.6 (11)
С8—С7—Н7А	109.5	F3B—C12B—C11	112.5 (10)
N1—C7—H7B	109.5	F1B—C12B—C11	108.2 (11)
С8—С7—Н7В	109.5	F2B—C12B—C11	107.8 (11)
H7A—C7—H7B	108.1		

C10—N1—C1—C6	-157.34 (17)	C10—N1—C7—C8	61.08 (19)
C7—N1—C1—C6	3.9 (3)	C9—N2—C8—C7	54.85 (18)
C10—N1—C1—C2	24.9 (2)	N1-C7-C8-N2	-57.36 (18)
C7—N1—C1—C2	-173.79 (16)	C8—N2—C9—C10	-54.97 (19)
N1—C1—C2—C3	178.48 (17)	C1—N1—C10—C9	103.02 (19)
C6—C1—C2—C3	0.7 (3)	C7—N1—C10—C9	-60.34 (19)
C1—C2—C3—C4	-0.2 (3)	N2-C9-C10-N1	56.90 (19)
C2—C3—C4—C5	-0.7 (3)	O3—C11—C12A—F2A	139.1 (3)
C2-C3-C4-N3	179.71 (17)	O4—C11—C12A—F2A	-45.3 (4)
O1—N3—C4—C3	-4.9 (3)	O3—C11—C12A—F3A	-103.0 (3)
O2—N3—C4—C3	175.97 (18)	O4—C11—C12A—F3A	72.6 (4)
O1—N3—C4—C5	175.49 (18)	O3-C11-C12A-F1A	23.5 (5)
O2—N3—C4—C5	-3.6 (3)	O4-C11-C12A-F1A	-160.9 (3)
C3—C4—C5—C6	1.1 (3)	O3—C11—C12B—F3B	98.1 (11)
N3—C4—C5—C6	-179.33 (15)	O4—C11—C12B—F3B	-69.4 (12)
C4—C5—C6—C1	-0.6 (3)	O3—C11—C12B—F1B	-146.3 (10)
N1-C1-C6-C5	-178.08 (16)	O4-C11-C12B-F1B	46.2 (12)
C2-C1-C6-C5	-0.3 (3)	O3—C11—C12B—F2B	-50.7 (12)
C1—N1—C7—C8	-102.40 (18)	O4—C11—C12B—F2B	141.8 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N2—H21…O3	0.90 (2)	1.98 (2)	2.844 (2)	161 (2)
N2—H22···O4 ⁱ	0.87 (2)	1.93 (2)	2.786 (2)	165 (2)
C7—H7 <i>A</i> ···O3 ⁱ	0.97	2.53	3.492 (2)	169

Symmetry code: (i) x+1, y, z.

4-(4-Nitrophenyl)piperazin-1-ium trichloroacetate (II)

Crystal data

 $C_{10}H_{14}N_{3}O_{2}^{+}C_{2}Cl_{3}O_{2}^{-}M_{r} = 370.61$ Monoclinic, $P2_{1}/c$ a = 11.7825 (5) Å b = 6.6142 (3) Å c = 20.3271 (9) Å $\beta = 104.173$ (4)° V = 1535.91 (12) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibu with Sapphire CCD diffractometer
Radiation source: Enhance (Mo) X-ray Source
Rotation method data acquisition using ω scans.
Absorption correction: multi-scan

(CrysAlis RED; Oxford Diffraction (2009)

F(000) = 760 $D_x = 1.603 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2813 reflections $\theta = 3.0-27.8^{\circ}$ $\mu = 0.62 \text{ mm}^{-1}$ T = 293 KPrism, brown $0.48 \times 0.44 \times 0.40 \text{ mm}$

 $T_{\min} = 0.840, T_{\max} = 1.000$ 5078 measured reflections 2802 independent reflections 2068 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ $\theta_{\max} = 25.4^{\circ}, \ \theta_{\min} = 3.0^{\circ}$

$h = -14 \rightarrow 13$ $k = -7 \rightarrow 6$	$l = -24 \rightarrow 14$
<i>Refinement</i>	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.104$ S = 1.09 2802 reflections 236 parameters 35 restraints Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0553P)^2 + 0.1937P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å ⁻³ $\Delta\rho_{min} = -0.28$ e Å ⁻³ Extinction correction: <i>SHELXL2019/2</i> (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0 0084 (12)
Hydrogen site location: mixed	Exunction coefficient: 0.0084 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	1.25261 (14)	0.5140 (3)	0.20561 (10)	0.0741 (5)	
O2	1.24364 (14)	0.5039 (2)	0.30936 (10)	0.0669 (5)	
N1	0.70718 (14)	0.5089 (3)	0.16441 (8)	0.0449 (4)	
N2	0.47368 (15)	0.3654 (3)	0.13414 (9)	0.0428 (4)	
N3	1.19635 (15)	0.5092 (2)	0.24883 (10)	0.0477 (5)	
C1	0.82694 (16)	0.5103 (2)	0.18508 (9)	0.0332 (4)	
C2	0.89695 (17)	0.5088 (3)	0.13812 (10)	0.0410 (5)	
H2	0.861345	0.508580	0.091922	0.049*	
C3	1.01632 (18)	0.5077 (3)	0.15913 (11)	0.0432 (5)	
Н3	1.061159	0.506564	0.127313	0.052*	
C4	1.07033 (16)	0.5084 (3)	0.22736 (10)	0.0369 (4)	
C5	1.00483 (17)	0.5083 (3)	0.27476 (10)	0.0379 (5)	
Н5	1.041717	0.507704	0.320778	0.046*	
C6	0.88472 (17)	0.5091 (3)	0.25404 (9)	0.0370 (4)	
H6	0.840985	0.508872	0.286420	0.044*	
C7	0.63004 (17)	0.5611 (3)	0.20782 (11)	0.0452 (5)	
H7A	0.590860	0.688009	0.192889	0.054*	
H7B	0.675741	0.578246	0.254138	0.054*	
C8	0.54056 (16)	0.3977 (3)	0.20527 (10)	0.0425 (5)	
H8A	0.579293	0.273110	0.223440	0.051*	
H8B	0.487520	0.436125	0.232840	0.051*	
C9	0.55236 (18)	0.3230 (3)	0.08906 (10)	0.0466 (5)	
H9A	0.506515	0.312758	0.042528	0.056*	
H9B	0.591456	0.194556	0.101561	0.056*	
C10	0.64214 (18)	0.4869 (3)	0.09421 (10)	0.0489 (5)	
H10A	0.695324	0.453110	0.066221	0.059*	

H10B	0.603791	0.613458	0.077935	0.059*	
O3	0.39831 (14)	-0.0360 (2)	0.13071 (8)	0.0613 (5)	
O4	0.35547 (15)	-0.3109 (2)	0.06595 (8)	0.0619 (5)	
C11	0.33900 (17)	-0.1382 (3)	0.08446 (10)	0.0412 (5)	
C12	0.22438 (17)	-0.0367 (3)	0.04153 (9)	0.0394 (5)	
Cl1A	0.1882 (4)	0.1717 (9)	0.0837 (2)	0.0708 (9)	0.494 (15)
Cl2A	0.2502 (7)	0.0289 (11)	-0.0355 (3)	0.0911 (17)	0.494 (15)
Cl3A	0.1076 (4)	-0.2089 (7)	0.0240 (3)	0.0746 (11)	0.494 (15)
Cl1B	0.2023 (4)	0.2189 (9)	0.0640 (4)	0.0790 (16)	0.506 (15)
Cl2B	0.2284 (6)	-0.0136 (10)	-0.0438 (2)	0.0839 (13)	0.506 (15)
Cl3B	0.1049 (4)	-0.1756 (13)	0.0517 (5)	0.100 (2)	0.506 (15)
H21	0.4277 (18)	0.263 (3)	0.1340 (11)	0.047 (6)*	
H22	0.4300 (19)	0.468 (3)	0.1176 (11)	0.061 (7)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0405 (9)	0.0979 (15)	0.0875 (13)	0.0003 (9)	0.0227 (9)	-0.0052 (10)
O2	0.0443 (9)	0.0759 (12)	0.0697 (11)	-0.0015 (8)	-0.0068 (8)	-0.0106 (9)
N1	0.0330 (9)	0.0664 (12)	0.0364 (9)	-0.0058 (8)	0.0106 (7)	-0.0123 (8)
N2	0.0334 (9)	0.0375 (10)	0.0536 (11)	-0.0019 (8)	0.0033 (8)	0.0032 (8)
N3	0.0357 (9)	0.0363 (10)	0.0689 (13)	0.0012 (7)	0.0087 (9)	-0.0069 (8)
C1	0.0344 (10)	0.0273 (9)	0.0388 (10)	-0.0020 (8)	0.0106 (8)	-0.0025 (8)
C2	0.0406 (11)	0.0483 (12)	0.0350 (10)	0.0030 (9)	0.0108 (8)	0.0016 (9)
C3	0.0405 (11)	0.0439 (12)	0.0491 (12)	0.0042 (9)	0.0181 (9)	0.0022 (9)
C4	0.0333 (10)	0.0252 (9)	0.0506 (12)	-0.0004 (8)	0.0076 (8)	-0.0017 (8)
C5	0.0429 (11)	0.0286 (10)	0.0395 (10)	-0.0014 (8)	0.0046 (9)	-0.0032 (8)
C6	0.0423 (11)	0.0349 (10)	0.0359 (10)	-0.0026 (8)	0.0136 (8)	-0.0024 (8)
C7	0.0348 (10)	0.0567 (12)	0.0464 (12)	-0.0050 (9)	0.0144 (9)	-0.0130 (10)
C8	0.0368 (10)	0.0466 (12)	0.0442 (11)	0.0020 (9)	0.0104 (8)	0.0017 (9)
C9	0.0449 (12)	0.0509 (12)	0.0388 (11)	0.0026 (10)	0.0001 (9)	-0.0060 (9)
C10	0.0391 (11)	0.0675 (15)	0.0386 (11)	-0.0004 (10)	0.0066 (8)	-0.0006 (10)
O3	0.0579 (10)	0.0507 (9)	0.0598 (10)	-0.0039 (8)	-0.0152 (8)	0.0023 (7)
O4	0.0640 (10)	0.0505 (9)	0.0616 (10)	0.0210 (8)	-0.0030 (8)	-0.0044 (8)
C11	0.0383 (11)	0.0456 (12)	0.0375 (11)	0.0031 (9)	0.0054 (8)	0.0057 (9)
C12	0.0386 (11)	0.0401 (10)	0.0378 (11)	0.0010 (9)	0.0062 (8)	-0.0024 (8)
Cl1A	0.0801 (15)	0.0735 (19)	0.0577 (13)	0.0376 (13)	0.0150 (12)	-0.0120 (11)
Cl2A	0.121 (3)	0.099 (3)	0.067 (3)	0.040 (2)	0.050 (2)	0.053 (2)
Cl3A	0.0501 (11)	0.0651 (12)	0.095 (2)	-0.0146 (8)	-0.0082 (13)	0.0026 (15)
Cl1B	0.0603 (14)	0.0597 (17)	0.095 (3)	0.0272 (12)	-0.0224 (15)	-0.0358 (18)
Cl2B	0.100 (2)	0.107 (3)	0.0388 (11)	0.060 (2)	0.0071 (13)	0.0062 (15)
Cl3B	0.0427 (9)	0.115 (3)	0.137 (4)	-0.0141 (15)	0.0102 (19)	0.063 (3)

Geometric parameters (Å, °)

01—N3	1.224 (3)	С7—С8	1.502 (3)
O2—N3	1.221 (2)	C7—H7A	0.9700
N1—C1	1.370 (2)	С7—Н7В	0.9700

N1—C10	1.452 (2)	C8—H8A	0.9700
N1—C7	1.455 (2)	C8—H8B	0.9700
N2—C9	1.481 (3)	C9—C10	1.501 (3)
N2—C8	1.483 (2)	С9—Н9А	0.9700
N2—H21	0.867 (16)	С9—Н9В	0.9700
N2—H22	0 870 (16)	C10—H10A	0 9700
N3-C4	1 442 (2)	C10—H10B	0.9700
C1 - C6	1.112(2) 1 400(3)	$O_3 - C_{11}$	1.228(2)
C1 - C2	1.100(3) 1.406(3)	04-C11	1.220(2) 1.233(2)
$C_2 = C_3$	1 366 (3)	C_{11}	1.255(2) 1 568(3)
$C_2 = C_3$	0.0300	C_{12} C_{12}	1.300(3) 1.722(4)
$C_2 = C_1$	0.9300	C12 - C12A	1.722(4) 1.720(5)
C_{2} U_{2}	1.377 (3)	C12 $C12$ $C12P$	1.730(3) 1.726(4)
C3—H3	0.9300	C12—CI3B	1.752 (4)
C4—C3	1.374 (3)	C12—C12B	1.753 (5)
C5—C6	1.3/4 (3)	CI2—CI3A	1.754 (5)
С5—Н5	0.9300	CI2—CIIB	1.787 (4)
С6—Н6	0.9300		
C1—N1—C10	123.91 (16)	H7A—C7—H7B	108.1
C1—N1—C7	124.18 (17)	N2-C8-C7	109.76 (16)
C10 - N1 - C7	111 23 (17)	N2-C8-H8A	109.7
C9-N2-C8	111.52 (15)	C7—C8—H8A	109.7
C9 - N2 - H21	109.6(14)	$N_2 - C_8 - H_8B$	109.7
C8_N2_H21	107.4(14)	C7_C8_H8B	109.7
$C_0 = N_2 = H_2^2$	107.4(14) 108.0(16)		109.7
$C_{2} = N_{2} = M_{2}^{2}$	112.8(16)	N2 C9 C10	110.03 (16)
122 - 1122	112.0(10)	N2 = C0 = H0A	100.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107(2) 122.05(10)	$N_2 - C_9 - H_9 A$	109.5
02 - N3 - 01	122.03(19)	C10 - C9 - H9A	109.5
02-N3-C4	119.10 (19)	$N_2 - C_9 - H_9B$	109.5
01 - N3 - C4	118.79 (19)		109.5
NI-CI-C6	121.24 (17)	H9A—C9—H9B	108.0
NI-CI-C2	121.54 (17)	NI-C10-C9	109.53 (17)
C6—C1—C2	117.21 (18)	N1—C10—H10A	109.8
C3—C2—C1	121.20 (18)	C9—C10—H10A	109.8
C3—C2—H2	119.4	N1—C10—H10B	109.8
C1—C2—H2	119.4	C9—C10—H10B	109.8
C2—C3—C4	120.09 (19)	H10A—C10—H10B	108.2
С2—С3—Н3	120.0	O3—C11—O4	129.89 (19)
С4—С3—Н3	120.0	O3—C11—C12	116.20 (18)
C5—C4—C3	120.39 (18)	O4—C11—C12	113.91 (17)
C5—C4—N3	120.10 (18)	C11—C12—Cl2A	107.1 (3)
C3—C4—N3	119.52 (18)	C11—C12—Cl1A	110.38 (19)
C4—C5—C6	119.88 (18)	Cl2A—C12—Cl1A	111.7 (2)
С4—С5—Н5	120.1	C11—C12—Cl3B	108.7 (2)
С6—С5—Н5	120.1	C11—C12—Cl2B	111.1 (2)
C5—C6—C1	121.24 (18)	Cl3B—C12—Cl2B	112.5 (3)
С5—С6—Н6	119.4	C11—C12—Cl3A	111.2 (2)
С1—С6—Н6	119.4	Cl2A—Cl2—Cl3A	106.4 (3)

N1—C7—C8	110.22 (17)	Cl1A—C12—Cl3A	110.0 (2)
N1—C7—H7A	109.6	C11—C12—Cl1B	114.97 (18)
C8—C7—H7A	109.6	Cl3B—C12—Cl1B	107.3 (2)
N1—C7—H7B	109.6	Cl2B—C12—Cl1B	102.2 (3)
Co-C/	109.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-172.70 (18) 17.6 (3) 6.0 (3) -163.77 (18) -179.19 (18) -0.5 (3) -0.1 (3) 0.6 (3) -179.41 (18) 2.1 (3) -178.32 (17) -177.92 (18) 1.7 (3) -0.5 (3) 179.50 (16) -0.1 (3) 179.29 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 60.7 (2) \\ 54.7 (2) \\ -57.0 (2) \\ -54.9 (2) \\ 129.3 (2) \\ -59.8 (2) \\ 56.4 (2) \\ 105.8 (4) \\ -74.1 (4) \\ -16.0 (3) \\ 164.1 (3) \\ -117.0 (5) \\ 63.2 (5) \\ 118.7 (3) \\ -61.1 (3) \\ -138.3 (3) \\ 41.8 (3) \end{array}$
C2-C1-C6-C5	0.6 (3)	O3-C11-C12-C11B	3.3 (5)
C1-N1-C7-C8	-128.4 (2)	O4-C11-C12-C11B	-176.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N2—H21…O3	0.87 (2)	2.01 (2)	2.795 (2)	151 (2)
N2—H21…Cl1A	0.87 (2)	2.82 (2)	3.510 (5)	138 (2)
$N2$ — $H22$ ···· $O4^{i}$	0.87 (2)	1.89 (2)	2.738 (2)	167 (2)

Symmetry code: (i) x, y+1, z.