

Received 7 October 2022 Accepted 25 November 2022

Edited by C. Schulzke, Universität Greifswald, Germany

Keywords: synthesis; crystal structure; IR spectra; thermal properties.

CCDC reference: 2222139

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis, crystal structure and thermal properties of tetrakis(3-methylpyridine- κN)bis(thiocyanato- κN)nickel(II)

Christian Näther,* Inke Jess and Christoph Krebs

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

Reaction of Ni(NCS)₂ with 3-methylpyridine in water leads to the formation of crystals of the title compound, $[Ni(NCS)_2(C_6H_7N)_4]$. All of them are of poor quality and non-merohedrally twinned but a refinement using data in HKLF-5 format leads to a reasonable structure model and reliability factors. The crystal structure of the title compound consists of discrete complexes, in which the nickel cations are sixfold coordinated by two terminal N-bonded thiocyanate anions and four 3-methylpyridine ligands within slightly distorted octahedra. One of the 3-methylpyridine ligands is disordered and was refined using a split model. The discrete complexes are arranged into layers. X-ray powder diffraction proves that pure samples have been obtained, and in the IR spectrum, the CN stretching vibration is observed at 2072 cm^{-1} , in agreement with the presence of only terminally coordinated thiocyanate anions. Comparing the calculated powder pattern with those of the residues obtained by solvent removal from several solvates already reported in the literature proves that, in each case, this crystalline phase is formed. Assessing the crystal structures of the solvates in comparison with that of the ansolvate reveals some similarities.

1. Chemical context

Thiocyanate anions are versatile ligands that can coordinate in many different ways to metal cations. The most common coordination is the terminal mode, in which these anionic ligands are only connected *via* the N or S atom, while the latter is only rarely observed. For several reasons, the μ -1,3 bridging coordination is more interesting and can lead to the formation of chains or layers (Näther *et al.*, 2013). There are also a few compounds with more condensed thiocyanate networks that can form if these anionic ligands take up, for example, the μ -1,3,3 (N,S,S) bridging mode (Näther *et al.*, 2013).

We have been interested in this class of compounds for several years targeting, for example, compounds that show interesting magnetic properties (Suckert *et al.*, 2016; Werner *et al.*, 2014, 2015*a,b*). In most cases, the neutral coligands used by us and others comprise pyridine derivatives and many such compounds have been reported in the literature (Mautner *et al.*, 2018; Böhme *et al.*, 2020; Rams *et al.*, 2020). If less chalcophilic metal cations such as Mn^{II}, Fe^{II}, Co^{II} or Ni^{II} are used, compounds with the composition $M(NCS)_2(L)_4$ (M = Mn, Fe, Co, Ni and L = pyridine derivative) are frequently obtained, in which the metal cations are octahedrally coordinated by two terminal N-bonded thiocyanate anions and four coligands. Many of them have already been reported in the literature. If

such compounds are heated, in several cases two of the coligands are removed, leading to a transformation to coliganddeficient compounds, in which the metal cations are linked by the anionic ligands and this is the reason why we are also interested in such discrete complexes (Näther *et al.*, 2013).

Throughout these investigations, we became interested in Ni compounds with 3-methylpyridine as coligand for which some complexes have already been reported in the literature. However, all of these compounds consist of octahedral discrete complexes and the majority forms solvates with the composition Ni(NCS)₂(3-methylpyridine)₄·X with X = bis(trichloromethane) (LAYLOM; Pang et al., 1992), which crystallizes in space group $P\overline{1}$, bis(dichloromethane) (LAYLIG; Pang et al., 1992), which crystallizes in space group C2/c, mono-tetrachloromethane, mono-dibromo-dichloromethane, mono-dichloromethane and mono-2,2-dichloropropane clathrates (JICMIR, LAYLAY, LAYLUS and LAYLEC; Pang et al., 1990, 1992) as well as mono-trichloromethane (CIVJEW and CIFJEW01; Nassimbeni et al., 1984, 1986), all of which crystallize in the orthorhombic space group Fddd. Surprisingly, for unknown reasons, the crystal structure of the ansolvate is unknown. What is common to all of the solvates mentioned above is the fact that they contain non-polar solvents, which cannot coordinate to metal cations. We used solvents with donor atoms able to coordinate when attempting to prepare compounds with the composition Ni(NCS)₂(3methylpyridine)₂(solvent)₂. Upon heating, these should lose their two solvent molecules, transforming into compounds with a bridging coordination. Surprisingly, even in this case, octahedral complexes with the composition Ni(NCS)₂(3methylpyridine)₄·X (X = acetonitrile, ethanol, diethyl ether) were obtained (Krebs et al., 2022). We have found that these solvates are unstable and have lost their solvents already at room temperature. X-ray powder diffraction (XRPD) proves

Figure 1

Experimental X-ray powder patterns of (a) $[Ni(NCS)_2(3-methyl-pyridine)_4]$ -2acetonitrile, (b) $[Ni(NCS)_2(3-methylpyridine)_4]$ -2ethanol, (c) $[Ni(NCS)_2(3-methylpyridine)_4]$ -diethyl ether, each after 2 h in air, and (d) the calculated pattern of the title compound.

that, independent of the crystal structure of the precursor, the same crystalline phase is always obtained (Fig. 1) which. according to IR spectroscopic data, bears only terminal Nbonded anionic ligands. Unfortunately no single crystals were obtained by this procedure, which means that the crystal structure of the ansolvate remained unknown. Starting from these observations, we tried to prepare crystals of the ansolvate using a variety of solvents and we eventually obtained crystals with the desired composition from H₂O. The CN stretching vibration of the anions in the crystals is observed at 2072 cm⁻¹, indicating the presence of terminal thiocyanate anions (Fig. S1). Single crystal X-ray diffraction proves that the hitherto missing ansolvate has formed and XRPD investigations reveal the formation of a phase-pure sample (Fig. S2). Comparison of the experimental powder pattern obtained by solvent removal from the acetonitrile, ethanol and diethyl ether solvates with that calculated for the ansolvate proves that all of these crystalline phases are identical (Fig. 1). TG-DTA measurements show that the title compound decomposes in three steps, which are all accompanied by an endothermic event in the DTA curve (Fig. S3). The calculated mass loss per coligand amounts to 17.0%, which means that the first step (33.3%) is in reasonable agreement with the loss of two ligands and the second (15.7%) and third (14.9%) step with the loss of one ligand each, indicating the formation of additional compounds.

2. Structural commentary

The asymmetric unit of the title compound, Ni(NCS)₂(3methylpyridine)₄, consists of one Ni^{II} cation, two thiocyanate anions and four 3-methylpyridine coligands that occupy general positions. One of the 3-methylpyridine coligands is disordered and was refined using a split model (Fig. 2). In the crystal structure of the title compound, the nickel cations are sixfold coordinated by two terminal N-bonded thiocyanate anions and four 3-methylpyridine coligands and from the bond lengths and angles it is obvious that the octahedra are slightly distorted (Table 1). This can also be seen from the octahedral angle variance (with a value of 11.2355°²) and the mean octahedral quadratic elongation (with a value of 1.0042) determined by the method of Robinson *et al.* (1971).

Selected geometri	c parameters (A,	°).	
Ni1-N1	2.064 (4)	Ni1-N31	2.126 (3)
Ni1-N2	2.037 (4)	Ni1-N41	2.193 (10)
Ni1-N11	2.124 (3)	Ni1-N41A	2.075 (11)
Ni1-N21	2.118 (3)		
N1-Ni1-N11	90.23 (15)	N2-Ni1-N41A	82.0 (3)
N1-Ni1-N21	90.76 (14)	N11-Ni1-N31	177.86 (12)
N1-Ni1-N31	90.57 (14)	N11-Ni1-N41	87.7 (3)
N1-Ni1-N41	83.7 (3)	N21-Ni1-N11	87.12 (12)
N1-Ni1-N41A	98.2 (3)	N21-Ni1-N31	90.89 (12)
N2-Ni1-N1	178.73 (15)	N21-Ni1-N41	172.4 (3)
N2-Ni1-N11	91.01 (14)	N31-Ni1-N41	94.4 (3)
N2-Ni1-N21	89.04 (14)	N41A-Ni1-N11	95.6 (3)
N2-Ni1-N31	88.17 (14)	N41A-Ni1-N21	170.6 (3)
N2-Ni1-N41	96.6 (3)	N41A-Ni1-N31	86.2 (3)

Table 1 Selected geometric parameters (Å, °).

3. Supramolecular features

In the crystal structure of the title compound, the discrete complexes are arranged into layers that are located in the *ab* plane (Fig. 3: top). These layers are separated from neighbouring layers by pairs of 3-methylpyridine ligands that show a butterfly-like arrangement. There are no indications for π - π stacking or intermolecular hydrogen bonding. There are only C-H···N and C-H···S contacts, but from the distances and angles it is obvious that these are not significant interactions. The arrangement of the complexes in the title compound is similar to that in the solvates Ni(NCS)₂(3-methylpyridine)₄·ethanol and the isotypic compound Ni(NCS)₂(3-methylpyridine)₄·acetonitrile (Krebs *et al.*, 2022), indicating

Figure 2

Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level using XP in *SHELX-PC* (Sheldrick, 1996). The disorder of one of the 3-methyl-pyridine ligands is shown as full and open bonds.

some structural relationship (Fig. 3). However, the third solvate, Ni(NCS)₂(3-methylpyridine)₄·diethyl ether (Krebs *et al.*, 2022) is not isotypic to the ethanol and acetonitrile solvates, yet also transforms into the title compound upon solvent removal. Even in this compound, a similar arrangement of the complexes is formed, which strongly suggests that the same crystalline ansolvate phase is particularly stable.

4. Database survey

Some compounds with 3-methylpyridine as coligand and transition-metal thiocyanates other than $Ni(NCS)_2$ (see

Crystal structure of the title compound drawn with *DIAMOND* (Brandenburg & Putz, 1999) with a view along the crystallographic *a*-axis (top) and of the compounds Ni(NCS)₂(3-methylpyridine)₄·2ethanol (mid) and Ni(NCS)₂(3-methylpyridine)₄·diethyl ether (bottom) retrieved from the literature (Krebs *et al.*, 2022).

research communications

Chemical context) were found in the CSD (version 5.43, last update November 2021; Groom et al., 2016) using ConQuest (Bruno et al., 2002). They include discrete complexes with Co(NCS)₂ with an octahedral coordination around the metal center such as Co(NCS)₂(3-methylpyridine)₄ (EYAROM and EYAROM01; Boeckmann et al., 2011 and Małecki et al., 2012) and Co(NCS)₂(3-methylpyridine)₂(H₂O)₂ (EYAREC; Boeckmann et al., 2011) and a tedrahedral coordination as in Co(NCS)₂(3-methylpyridine)₂ (EYARIG; Boeckmann et al., 2011). Some $Cu(NCS)_2$ compounds are also known from the literature. These are the tetrahedrally coordinated compound Cu(NCS)(3-methylpyridine)₂ where thiocyanate anions link the copper cations into chains (CUHBEM; Healy et al., 1984), $Cu(NCS)_2(3-methylpyridine)_3$ with a fivefold trigonal-bipyramidal-like coordination (VEPBAT; Kabešová & Kožíšková, 1989), and $Cu(NCS)_2(3-methylpyridine)_2$ where the metal center is square planar and coordinated by two thiocyanate anions and two 3-methylpyridine coligands (ABOTET; Handy et al., 2017). Additionally, two isotypic iron and manganese complexes with the composition $M(NCS)_2(3-methylpyridine)_4$ (M = Fe, Mn) are reported (Ceglarska *et al.*, 2022). With Cd(NCS)₂, only the octahedral complex Cd(NCS)₂(3-methylpyridine)₂ is known, in which the cadmium cations are bridged into chains by thiocyanate anions (FIYGUP; Taniguchi et al., 1987). There is also one zinc complex with the composition Zn(NCS)₂(3-methylpyridine)₂ (ETUSAO; Boeckmann & Näther, 2011), where the metal centers are tetrahedrally coordinated. Finally, the two non-heterometallic complexes catena-[tetrakis(thiocyanato)bis(3-methylpyridine)manganesemercury] (NAQYOW; Małecki, 2017a) and catena-[tetrakis(μ -thiocyanato)bis(3-methylpyridine)mercuryzinc (QAM-SIJ; Małecki, 2017b) are also known.

5. Synthesis and crystallization

Synthesis

 $Ni(NCS)_2$ was purchased from Santa Cruz Biotechnology. 3-Methylpyridine (also known as 3-picoline) was purchased from Alfa Aesar.

 $Ni(NCS)_2(3-methylpyridine)_4: 0.25 mmol Ni(SCN)_2$ (43.7 mg) and 2.5 mmol 3-methylpyridine (243 µl) where added to 1.5 mL deionized H₂O and stored under hydrothermal conditions for 2 d at 403 K. As a result, light-blue single crystals were obtained.

Experimental details

The data collection for single crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu $K\alpha$ radiation.

The XRPD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using Cu $K\alpha_1$ radiation ($\lambda = 1.540598$ Å).

The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: *WINFIRST*, from ATI Mattson.

Thermogravimetry and differential thermoanalysis (TG-DTA) measurements were performed in a dynamic nitrogen

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$[Ni(NCS)_2(C_6H_7N)_4]$
Mr	547.37
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.2012 (4), 15.2704 (4), 26.1738 (6)
$V(Å^3)$	5676.0 (3)
Z	8
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	2.55
Crystal size (mm)	$0.15\times0.1\times0.1$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2021)
T_{\min}, T_{\max}	0.814, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6767, 6767, 5975
R _{int}	?
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.072, 0.203, 1.08
No. of reflections	6767
No. of parameters	386
No. of restraints	15
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.74, -0.61

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 1999) and publCIF (Westrip, 2010).

atmosphere in Al_2O_3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

All crystals are of poor quality and merohedrally twinned with at least two componenents that are difficult to separate as is obvious from a view along the b^* direction (Fig. S4). Therefore, a twin refinement using data in HKLF-5 format was performed, leading to a BASF parameter of 0.457 (5). Refinement using anisotropic displacement parameters leads to relatively large components of the anisotropic displacement parameters, indicating static or dynamic disordering. For one of the four crystallographically independent 3-methylpyridine coligands, the disorder was resolved and this ligand was refined using a split model with restraints. The C-bound H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and with $U_{iso}(H) = 1.2 U_{eq}(C)$ for all other H atoms using a riding model. Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work was supported by the state of Schleswig-Holstein.

References

- Boeckmann, J. & Näther, C. (2011). Acta Cryst. E67, m994.
- Boeckmann, J., Reimer, B. & Näther, C. (2011). Z. Naturforsch. Teil B, 66, 819–827.
- Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). *Inorg. Chem.* **59**, 5325–5338.
- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Ceglarska, M., Krebs, C. & Näther, C. (2022). Acta Cryst. E78, 755–760.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Handy, J. V., Ayala, G. & Pike, R. D. (2017). *Inorg. Chim. Acta*, **456**, 64–75.
- Healy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). *Inorg. Chem.* 23, 3769–3776.
- Kabešová, M. & Kožíšková, Z. (1989). Collect. Czech. Chem. Commun. 54, 1800–1807.
- Krebs, C., Jess, I. & Näther, C. (2022). Acta Cryst. E78, 993-998.
- Małecki, J. G. (2017*a*). *CSD Communication* (refcode NAQYOW). CCDC, Cambridge, England.
- Małecki, J. G. (2017b). *CSD Communication* (refcode QAMSIJ). CCDC, Cambridge, England.
- Małecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). *Struct. Chem.* 23, 1219–1232.
- Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). *Polyhedron*, 154, 436–442.

- Nassimbeni, L. R., Bond, D. R., Moore, M. & Papanicolaou, S. (1984). *Acta Cryst.* A40, C111.
- Nassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31-42.
- Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.
- Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1990). J. Am. Chem. Soc. 112, 8754–8764.
- Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63–76.
- Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). *Chem. Eur. J.* 26, 2837–2851.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.
- Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, **172**, 567–570.
- Sheldrick, G. M. (1996). XP. Program for drawing crystal structures. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Suckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). *Dalton Trans.* 45, 18190– 18201.
- Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321–1326.
- Werner, J., Rams, M., Tomkowicz, Z. & N\u00e4ther, C. (2014). Dalton Trans. 43, 17333–17342.
- Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. 2015, 3236–3245.
- Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2023). E79, 19-23 [https://doi.org/10.1107/S2056989022011379]

Synthesis, crystal structure and thermal properties of tetrakis(3-methylpyridine- κN)bis(thiocyanato- κN)nickel(II)

Christian Näther, Inke Jess and Christoph Krebs

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2021); cell refinement: *CrysAlis PRO* (Rigaku OD, 2021); data reduction: *CrysAlis PRO* (Rigaku OD, 2021); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Tetrakis(3-methylpyridine-κN)bis(thiocyanato-κN)nickel(II)

Crystal data	
$[Ni(NCS)_{2}(C_{6}H_{7}N)_{4}]$ $M_{r} = 547.37$ Orthorhombic, <i>Pbca</i> a = 14.2012 (4) Å b = 15.2704 (4) Å c = 26.1738 (6) Å V = 5676.0 (3) Å ³ Z = 8 F(000) = 2288	$D_x = 1.281 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 11586 reflections $\theta = 3.4-77.9^{\circ}$ $\mu = 2.55 \text{ mm}^{-1}$ T = 100 K Block, light blue $0.15 \times 0.1 \times 0.1 \text{ mm}$
Data collection	
 XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) 	$T_{\min} = 0.814, T_{\max} = 1.000$ 6767 measured reflections 6767 independent reflections 5975 reflections with $I > 2\sigma(I)$ $\theta_{\max} = 68.3^{\circ}, \theta_{\min} = 3.4^{\circ}$ $h = -15 \rightarrow 17$ $k = -17 \rightarrow 18$ $l = -31 \rightarrow 31$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.203$ S = 1.08 6767 reflections	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0864P)^2 + 8.6753P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$
386 parameters	$\Delta ho_{ m max} = 0.74 \ m e \ m \AA^{-3}$

 $\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3}$

Primary atom site location: dual

15 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.51000 (5)	0.76369 (4)	0.61618 (2)	0.0493 (2)	
N1	0.4176 (3)	0.8666 (3)	0.62644 (15)	0.0654 (9)	
C1	0.3581 (3)	0.9147 (3)	0.63485 (14)	0.0595 (10)	
S1	0.27254 (11)	0.98387 (12)	0.64613 (6)	0.0992 (6)	
N2	0.6035 (3)	0.6638 (2)	0.60680 (13)	0.0647 (10)	
C2	0.6745 (4)	0.6257 (3)	0.60497 (15)	0.0683 (14)	
S2	0.77540 (12)	0.57472 (10)	0.60158 (6)	0.0984 (6)	
N11	0.4125 (2)	0.7018 (2)	0.56639 (11)	0.0510 (8)	
C11	0.4102 (3)	0.6152 (3)	0.56289 (14)	0.0546 (10)	
H11	0.437953	0.582251	0.589725	0.065*	
C12	0.3696 (3)	0.5693 (3)	0.52235 (15)	0.0575 (10)	
C13	0.3294 (3)	0.6190 (3)	0.48387 (15)	0.0623 (11)	
H13	0.302533	0.591038	0.454903	0.075*	
C14	0.3283 (3)	0.7090 (3)	0.48761 (15)	0.0627 (11)	
H14	0.299610	0.743464	0.461734	0.075*	
C15	0.3698 (3)	0.7485 (3)	0.52963 (15)	0.0550 (9)	
H15	0.367899	0.810485	0.532513	0.066*	
C16	0.3721 (4)	0.4712 (3)	0.52121 (19)	0.0778 (14)	
H16A	0.422808	0.450120	0.543429	0.117*	
H16B	0.383374	0.451212	0.486156	0.117*	
H16C	0.311698	0.448037	0.533300	0.117*	
N21	0.5673 (2)	0.8250 (2)	0.55058 (12)	0.0503 (7)	
C21	0.5828 (3)	0.7784 (3)	0.50761 (15)	0.0570 (10)	
H21	0.577635	0.716422	0.509351	0.068*	
C22	0.6058 (3)	0.8161 (4)	0.46099 (17)	0.0750 (15)	
C23	0.6157 (4)	0.9059 (5)	0.4605 (3)	0.098 (2)	
H23	0.631190	0.934897	0.429489	0.117*	
C24	0.6034 (4)	0.9536 (4)	0.5041 (3)	0.0869 (17)	
H24	0.611759	1.015283	0.503588	0.104*	
C25	0.5787 (3)	0.9119 (3)	0.5489 (2)	0.0654 (12)	
H25	0.569678	0.945459	0.579052	0.079*	
C26	0.6213 (4)	0.7585 (5)	0.41446 (19)	0.102 (2)	
H26A	0.673140	0.717732	0.421148	0.153*	
H26B	0.636960	0.795217	0.384962	0.153*	
H26C	0.563707	0.725337	0.407245	0.153*	
N31	0.6110 (3)	0.8264 (2)	0.66364 (12)	0.0526 (8)	
C31	0.7026 (3)	0.8279 (3)	0.65102 (15)	0.0560 (9)	
H31	0.720195	0.803220	0.619100	0.067*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C32	0.7734 (3)	0.8631 (3)	0.68143 (17)	0.0636 (11)	
C33	0.7455 (4)	0.8989 (3)	0.72751 (18)	0.0705 (12)	
H33	0.790971	0.923652	0.749867	0.085*	
C34	0.6519 (4)	0.8988 (3)	0.74102 (17)	0.0686 (12)	
H34	0.632489	0.923237	0.772691	0.082*	
C35	0.5854 (3)	0.8623 (3)	0.70773 (16)	0.0602 (10)	
H35	0.520662	0.863337	0.716855	0.072*	
C36	0.8747 (4)	0.8623 (5)	0.6636 (2)	0.0935 (18)	
H36A	0.884808	0.812250	0.640852	0.140*	
H36B	0.916506	0.857366	0.693291	0.140*	
H36C	0.888383	0.916723	0.645267	0.140*	
N41	0.4324 (8)	0.7054 (7)	0.6801 (3)	0.038 (2)	0.508 (9)
C41	0.4817 (8)	0.6676 (6)	0.7171 (3)	0.047 (2)	0.508 (9)
H41	0.548178	0.663650	0.713665	0.056*	0.508 (9)
C42	0.4391 (10)	0.6336 (8)	0.7607 (5)	0.060 (4)	0.508 (9)
C43	0.3410 (8)	0.6417 (6)	0.7648 (4)	0.058 (3)	0.508 (9)
H43	0.309505	0.619128	0.794012	0.070*	0.508 (9)
C44	0.2899 (8)	0.6821 (6)	0.7267 (3)	0.055 (2)	0.508 (9)
H44	0.223478	0.688128	0.729071	0.066*	0.508 (9)
C45	0.3393 (8)	0.7135 (6)	0.6849 (3)	0.044 (2)	0.508 (9)
H45	0.305316	0.742056	0.658496	0.053*	0.508 (9)
C46	0.4967 (7)	0.5905 (8)	0.8022 (4)	0.077 (3)	0.508 (9)
H46A	0.553891	0.565381	0.787301	0.115*	0.508 (9)
H46B	0.459517	0.544001	0.818299	0.115*	0.508 (9)
H46C	0.513938	0.634263	0.827964	0.115*	0.508 (9)
N41A	0.4738 (7)	0.6913 (7)	0.6803 (4)	0.045 (3)	0.492 (9)
C41A	0.3824 (10)	0.6897 (7)	0.6936 (4)	0.044 (2)	0.492 (9)
H41A	0.339204	0.717790	0.671248	0.053*	0.492 (9)
C42A	0.3452 (8)	0.6500 (6)	0.7378 (4)	0.052 (3)	0.492 (9)
C43A	0.4107 (10)	0.6097 (8)	0.7696 (5)	0.060 (4)	0.492 (9)
H43A	0.390213	0.583224	0.800541	0.072*	0.492 (9)
C44A	0.5050 (8)	0.6076 (7)	0.7569 (3)	0.061 (2)	0.492 (9)
H44A	0.549538	0.579352	0.778394	0.073*	0.492 (9)
C45A	0.5335 (8)	0.6479 (6)	0.7114 (3)	0.048 (2)	0.492 (9)
H45A	0.598007	0.644640	0.702042	0.058*	0.492 (9)
C46A	0.2399 (7)	0.6515 (7)	0.7488 (4)	0.067 (3)	0.492 (9)
H46D	0.211614	0.703204	0.732851	0.101*	0.492 (9)
H46E	0.229632	0.653656	0.785833	0.101*	0.492 (9)
H46F	0.210660	0.598466	0.734885	0.101*	0.492 (9)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0694 (5)	0.0412 (4)	0.0372 (4)	-0.0156 (3)	-0.0019 (3)	-0.0012 (2)
0.060 (2)	0.070 (2)	0.066 (2)	-0.0123 (19)	0.0107 (17)	-0.0036 (19)
0.066 (3)	0.071 (3)	0.0416 (19)	-0.008 (2)	0.0102 (17)	0.0098 (18)
0.1028 (10)	0.1118 (12)	0.0831 (9)	0.0356 (9)	0.0467 (8)	0.0492 (8)
0.098 (3)	0.0470 (19)	0.0487 (18)	-0.003 (2)	-0.0278 (18)	-0.0025 (15)
	U ¹¹ 0.0694 (5) 0.060 (2) 0.066 (3) 0.1028 (10) 0.098 (3)	U^{11} U^{22} 0.0694 (5)0.0412 (4)0.060 (2)0.070 (2)0.066 (3)0.071 (3)0.1028 (10)0.1118 (12)0.098 (3)0.0470 (19)	U^{11} U^{22} U^{33} 0.0694 (5) 0.0412 (4) 0.0372 (4) 0.060 (2) 0.070 (2) 0.066 (2) 0.066 (3) 0.071 (3) 0.0416 (19) 0.1028 (10) 0.1118 (12) 0.0831 (9) 0.098 (3) 0.0470 (19) 0.0487 (18)	U^{11} U^{22} U^{33} U^{12} 0.0694 (5)0.0412 (4)0.0372 (4) $-0.0156 (3)$ 0.060 (2)0.070 (2)0.066 (2) $-0.0123 (19)$ 0.066 (3)0.071 (3)0.0416 (19) $-0.008 (2)$ 0.1028 (10)0.1118 (12)0.0831 (9)0.0356 (9)0.098 (3)0.0470 (19)0.0487 (18) $-0.003 (2)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0694 (5) 0.0412 (4) 0.0372 (4) -0.0156 (3) -0.0019 (3) 0.060 (2) 0.070 (2) 0.066 (2) -0.0123 (19) 0.0107 (17) 0.066 (3) 0.071 (3) 0.0416 (19) -0.008 (2) 0.0102 (17) 0.1028 (10) 0.1118 (12) 0.0831 (9) 0.0356 (9) 0.0467 (8) 0.098 (3) 0.0470 (19) 0.0487 (18) -0.003 (2) -0.0278 (18)

supporting information

C2	0.119 (4)	0.041 (2)	0.045 (2)	0.004 (3)	-0.040 (2)	-0.0070 (17)
S2	0.1265 (12)	0.0774 (9)	0.0913 (9)	0.0348 (8)	-0.0594 (9)	-0.0317 (7)
N11	0.0614 (19)	0.0553 (19)	0.0365 (14)	-0.0197 (15)	0.0011 (12)	0.0000 (13)
C11	0.069 (2)	0.058 (2)	0.0371 (17)	-0.0218 (19)	0.0012 (16)	-0.0019 (16)
C12	0.059 (2)	0.066 (3)	0.0469 (19)	-0.019 (2)	0.0017 (16)	-0.0111 (18)
C13	0.058 (2)	0.082 (3)	0.047 (2)	-0.022 (2)	-0.0059 (17)	-0.010 (2)
C14	0.054 (2)	0.084 (3)	0.049 (2)	-0.015 (2)	-0.0061 (17)	0.005 (2)
C15	0.052 (2)	0.064 (2)	0.049 (2)	-0.0147 (19)	0.0028 (16)	0.0041 (18)
C16	0.090 (3)	0.075 (3)	0.069 (3)	-0.020 (3)	-0.012 (2)	-0.024 (2)
N21	0.0485 (16)	0.0506 (18)	0.0518 (17)	-0.0086 (14)	-0.0036 (13)	0.0102 (14)
C21	0.053 (2)	0.072 (3)	0.046 (2)	-0.0062 (19)	-0.0031 (16)	0.0132 (19)
C22	0.052 (2)	0.118 (5)	0.055 (2)	-0.007 (3)	0.0010 (18)	0.031 (3)
C23	0.063 (3)	0.132 (6)	0.098 (4)	-0.004 (3)	0.008 (3)	0.073 (4)
C24	0.065 (3)	0.076 (3)	0.121 (5)	-0.005 (3)	0.002 (3)	0.048 (3)
C25	0.050 (2)	0.058 (3)	0.088 (3)	-0.0111 (19)	-0.003 (2)	0.025 (2)
C26	0.090 (4)	0.169 (7)	0.047 (3)	-0.003 (4)	0.008 (2)	0.021 (3)
N31	0.074 (2)	0.0369 (16)	0.0472 (16)	-0.0094 (15)	-0.0043 (15)	-0.0048 (13)
C31	0.074 (3)	0.045 (2)	0.049 (2)	-0.0072 (19)	-0.0067 (18)	-0.0036 (16)
C32	0.068 (3)	0.058 (3)	0.065 (2)	-0.004 (2)	-0.017 (2)	-0.003 (2)
C33	0.083 (3)	0.060 (3)	0.068 (3)	-0.011 (2)	-0.021 (2)	-0.016 (2)
C34	0.092 (3)	0.054 (2)	0.060(2)	-0.007 (2)	-0.012 (2)	-0.020 (2)
C35	0.080 (3)	0.047 (2)	0.054 (2)	-0.010 (2)	-0.0031 (19)	-0.0122 (17)
C36	0.075 (3)	0.118 (5)	0.087 (4)	-0.002 (3)	-0.018 (3)	-0.014 (4)
N41	0.031 (6)	0.052 (5)	0.032 (3)	-0.015 (5)	0.006 (4)	-0.004 (3)
C41	0.059 (6)	0.039 (4)	0.042 (5)	-0.001 (4)	-0.008 (4)	0.001 (3)
C42	0.086 (10)	0.044 (6)	0.050(7)	-0.016 (6)	-0.015 (6)	0.014 (4)
C43	0.087 (8)	0.044 (5)	0.044 (5)	-0.013 (5)	0.006 (5)	0.000 (4)
C44	0.052 (5)	0.053 (5)	0.060 (5)	-0.008 (4)	0.008 (4)	-0.001 (4)
C45	0.056 (6)	0.040 (5)	0.037 (4)	-0.010 (4)	-0.002 (4)	-0.005 (3)
C46	0.083 (7)	0.086 (7)	0.062 (6)	-0.008 (5)	-0.012 (4)	0.026 (5)
N41A	0.033 (5)	0.050 (5)	0.051 (5)	-0.017 (4)	0.007 (5)	-0.016 (4)
C41A	0.049 (8)	0.044 (5)	0.039 (5)	-0.002 (5)	0.001 (5)	-0.008 (4)
C42A	0.074 (7)	0.041 (5)	0.042 (5)	-0.012 (5)	0.019 (6)	-0.012 (4)
C43A	0.092 (10)	0.044 (7)	0.043 (5)	-0.005 (6)	0.021 (5)	-0.001 (5)
C44A	0.079 (7)	0.057 (6)	0.047 (5)	0.001 (5)	-0.002 (4)	0.005 (4)
C45A	0.055 (6)	0.050 (5)	0.040 (4)	-0.003 (4)	0.002 (4)	-0.004 (3)
C46A	0.069 (6)	0.065 (6)	0.067 (5)	-0.005 (5)	0.031 (5)	0.000 (5)

Geometric parameters (Å, °)

Ni1—N1	2.064 (4)	C31—H31	0.9500	_
Ni1—N2	2.037 (4)	C31—C32	1.391 (6)	
Ni1—N11	2.124 (3)	C32—C33	1.383 (7)	
Ni1—N21	2.118 (3)	C32—C36	1.511 (7)	
Ni1—N31	2.126 (3)	С33—Н33	0.9500	
Ni1—N41	2.193 (10)	C33—C34	1.375 (7)	
Ni1—N41A	2.075 (11)	С34—Н34	0.9500	
N1—C1	1.142 (6)	C34—C35	1.400 (6)	

supporting information

C1—S1	1.637 (5)	С35—Н35	0.9500
N2—C2	1.165 (6)	C36—H36A	0.9800
C2—S2	1.633 (6)	С36—Н36В	0.9800
N11—C11	1.326 (5)	С36—Н36С	0.9800
N11—C15	1.342 (5)	N41—C41	1.326 (12)
C11—H11	0.9500	N41—C45	1.333 (11)
C11—C12	1.396 (5)	C41—H41	0.9500
C12—C13	1.384 (6)	C41—C42	1.394 (14)
C12 - C16	1 499 (7)	C42-C43	1403(14)
C13—H13	0.9500	C_{42} C_{46}	1510(13)
C13 - C14	1 378 (7)	C_{43} H43	0.9500
	0.9500	C43 C44	1.378(13)
C_{14} C_{15}	1 386 (6)	$C_{43} = C_{44}$	0.0500
C15_U15	1.580 (0)	C44 $C44$ $C45$	1.295(12)
	0.9300	C44 - C43	1.383 (12)
	0.9800	С45—Н45	0.9500
	0.9800	C46—H46A	0.9800
C16—H16C	0.9800	C46—H46B	0.9800
N21—C21	1.349 (5)	C46—H46C	0.9800
N21—C25	1.337 (6)	N41A—C41A	1.343 (12)
C21—H21	0.9500	N41A—C45A	1.349 (13)
C21—C22	1.388 (6)	C41A—H41A	0.9500
C22—C23	1.379 (9)	C41A—C42A	1.410 (14)
C22—C26	1.518 (9)	C42A—C43A	1.392 (15)
С23—Н23	0.9500	C42A—C46A	1.524 (13)
C23—C24	1.365 (10)	C43A—H43A	0.9500
C24—H24	0.9500	C43A—C44A	1.381 (14)
C24—C25	1.380 (7)	C44A—H44A	0.9500
С25—Н25	0.9500	C44A—C45A	1.398 (11)
C26—H26A	0.9800	C45A—H45A	0.9500
C26—H26B	0.9800	C46A—H46D	0.9800
C26—H26C	0.9800	C46A—H46E	0.9800
N31—C31	1 342 (6)	C46A - H46F	0.9800
N31—C35	1 329 (5)		0.9000
101 000	1.525 (5)		
N1N11N11	90.23 (15)	C31_N31_Ni1	121 2 (3)
NI NI NO	90.25(13) 90.76(14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.2(3)
$\frac{1}{1} \frac{1}{1} \frac{1}$	90.70(14)	$C_{25} = N_{21} = N_{11}$	120.0(3)
NI NI NA	90.37(14)	N21 C21 H21	117.7
NI-NII-N4I	83.7 (5)	N31-C31-H31	11/./
NI—NII—N4IA	98.2 (3)	$N_{31} = C_{31} = C_{32}$	124.5 (4)
N2—N11—N1	1/8./3 (15)	C32—C31—H31	11/./
N2—N11—N11	91.01 (14)	C31—C32—C36	120.6 (4)
N2—N11—N21	89.04 (14)	C33—C32—C31	116.4 (4)
N2—Ni1—N31	88.17 (14)	C33—C32—C36	123.0 (4)
N2—Ni1—N41	96.6 (3)	С32—С33—Н33	120.0
N2—Ni1—N41A	82.0 (3)	C34—C33—C32	120.1 (4)
N11—Ni1—N31	177.86 (12)	С34—С33—Н33	120.0
N11—Ni1—N41	87.7 (3)	C33—C34—H34	120.3
N21—Ni1—N11	87.12 (12)	C33—C34—C35	119.5 (4)

N21—Ni1—N31	90.89 (12)	С35—С34—Н34	120.3
N21—Ni1—N41	172.4 (3)	N31—C35—C34	121.3 (5)
N31—Ni1—N41	94.4 (3)	N31—C35—H35	119.3
N41A—Ni1—N11	95.6 (3)	С34—С35—Н35	119.3
N41A—Ni1—N21	170.6 (3)	С32—С36—Н36А	109.5
N41A—Ni1—N31	86.2 (3)	С32—С36—Н36В	109.5
C1—N1—Ni1	170.3 (4)	С32—С36—Н36С	109.5
N1—C1—S1	179.3 (4)	H36A—C36—H36B	109.5
C2—N2—Ni1	160.5 (3)	H36A—C36—H36C	109.5
N2—C2—S2	178.4 (5)	H36B—C36—H36C	109.5
C11—N11—Ni1	120.2 (3)	C41—N41—Ni1	117.8 (7)
C11—N11—C15	118.0 (3)	C41—N41—C45	119.7 (9)
C15—N11—Ni1	119.9 (3)	C45—N41—Ni1	122.2 (6)
N11—C11—H11	117.8	N41—C41—H41	119.0
N11—C11—C12	124.3 (4)	N41—C41—C42	122.0 (10)
C12—C11—H11	117.8	C42—C41—H41	119.0
C11—C12—C16	120.5 (4)	C41—C42—C43	117.4 (9)
C13—C12—C11	116.6 (4)	C41-C42-C46	121.1(11)
C_{13} C_{12} C_{16}	122.9 (4)	C43 - C42 - C46	121.4(10)
С12—С13—Н13	120.0	C42—C43—H43	119.8
C14 - C13 - C12	120.0 (4)	C44—C43—C42	120.5 (10)
С14—С13—Н13	120.0	C44—C43—H43	119.8
C13—C14—H14	120.5	C43—C44—H44	121.3
C13—C14—C15	119.1 (4)	C43—C44—C45	117.4 (11)
C15—C14—H14	120.5	C45—C44—H44	121.3
N11—C15—C14	122.0 (4)	N41—C45—C44	123.0 (10)
N11—C15—H15	119.0	N41—C45—H45	118.5
C14—C15—H15	119.0	C44—C45—H45	118.5
C12—C16—H16A	109.5	C42—C46—H46A	109.5
C12—C16—H16B	109.5	C42—C46—H46B	109.5
C12—C16—H16C	109.5	C42—C46—H46C	109.5
H16A—C16—H16B	109.5	H46A—C46—H46B	109.5
H16A—C16—H16C	109.5	H46A—C46—H46C	109.5
H16B—C16—H16C	109.5	H46B—C46—H46C	109.5
C21—N21—Ni1	120.3 (3)	C41A—N41A—Ni1	117.3 (7)
C25—N21—Ni1	120.8 (3)	C41A—N41A—C45A	116.2 (10)
C25—N21—C21	118.4 (4)	C45A—N41A—Ni1	126.5 (7)
N21—C21—H21	118.2	N41A—C41A—H41A	117.2
N21—C21—C22	123.5 (5)	N41A—C41A—C42A	125.6 (11)
C22—C21—H21	118.2	C42A—C41A—H41A	117.2
C21—C22—C26	119.9 (5)	C41A—C42A—C46A	121.1 (12)
C23—C22—C21	116.4 (5)	C43A—C42A—C41A	115.6 (10)
C_{23} C_{22} C_{26}	123.6 (5)	C43A—C42A—C46A	123.3 (10)
C22—C23—H23	119.7	C42A—C43A—H43A	119.6
C24—C23—C22	120.6 (5)	C44A—C43A—C42A	120.9 (10)
C24—C23—H23	119.7	C44A—C43A—H43A	119.6
C23—C24—H24	120.1	C43A—C44A—H44A	120.8
C_{23} C_{24} C_{25}	119.8 (5)	C43A - C44A - C45A	118.4(10)

C25—C24—H24	120.1	C45A—C44A—H44A	120.8
N21—C25—C24	121.1 (5)	N41A—C45A—C44A	123.2 (10)
N21—C25—H25	119.4	N41A—C45A—H45A	118.4
C24—C25—H25	119.4	C44A—C45A—H45A	118.4
C22—C26—H26A	109.5	C42A—C46A—H46D	109.5
C22—C26—H26B	109.5	C42A—C46A—H46E	109.5
C22—C26—H26C	109.5	C42A—C46A—H46F	109.5
H26A—C26—H26B	109.5	H46D—C46A—H46E	109.5
H26A—C26—H26C	109.5	H46D—C46A—H46F	109.5
H26B—C26—H26C	109.5	H46E—C46A—H46F	109.5