

ISSN 2056-9890

Received 26 October 2022 Accepted 5 January 2023

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

‡ Deceased (April 13, 2021).

Keywords: crystal structure; dinuclear palladium complexes; benzimidazolidine- 2-thione complexes; imidazoline-2-thione complexes.

CCDC references: 2234599; 2234598

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and structures of dinuclear palladium complexes with 1,3-benzimidazolidine-2-thione and 1,3-imidazoline-2-thione

Tarlok S. Lobana,^a* Bandana Thakur,^a Rajni Aggarwal,^a Ray J. Butcher,^b Matthias Zeller^c and Jerry P. Jasinski^d‡

^aDepartment of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, ^cDepartment of Chemistry X-ray Crystallography, Purdue University, Wetherill 101B 560 Oval Drive, West Lafayette, IN 47907-2084, USA, and ^dDepartment of Chemistry, Keene State College, Keene NH 03435-2001, USA. *Correspondence e-mail: tarlokslobana@yahoo.co.in

The synthesis and structures of dinuclear palladium complexes with 1,3benzimidazolidine-2-thione (bzimtH) and 1,3-imidazoline-2-thione (imtH) are reported, namely, bis(μ -1*H*-benzimidazole-2-thiolato)- $\kappa^2 N^3$:S; $\kappa^2 S: N^3$ -bis[cyanido(triphenylphosphine- κP)palladium(II)], [Pd₂(C₇H₅N₂S)₂(CN)₂(C₁₈H₁₅P)₂] or $[Pd_2(\mu-N,S-bzimtH)_2(CN)_2(PPh_3)_2]$ (1), and $bis(\mu-1H-imidazole-2-thiol$ ato)- $\kappa^2 N^3$: S; $\kappa^2 S$: N³-bis[cyanido(triphenylphosphine- κP)palladium(II)] aceto-0.58-solvate, [Pd₂(C₃H₃N₂S)₂(CN)₂(C₁₈H₁₅P)₂]·0.58C₂H₃N nitrile or $[Pd_2(\mu - N, S - imtH)_2(CN)_2(PPh_3)_2] \cdot 0.58C_2H_3N$ (2). The compound $[Pd_2(\mu - N, S - imtH)_2(CN)_2(PPh_3)_2] \cdot 0.58C_2H_3N$ (2). $bzimtH_{2}(CN)_{2}(PPh_{3})_{2}$ is located on a crystallographic twofold axis while $[Pd_2(\mu - N, S-imtH)_2(CN)_2(PPh_3)_2]$. 0.58(C₂H₃N) contains two partially occupied acetonitrile solvent molecules with occupancies of 0.25 and 0.33. In both of these compounds, the anionic bzimtH⁻ and imtH⁻ ligands coordinate through N,Sdonor atoms in a bridging mode, covering four coordination sites of two metal centers and other two sites are occupied by two PPh₃ ligand molecules. Finally, the remaining two sites of two metal centers are occupied by cyano groups, abstracted by the metals from the solvent during reaction. In the packing of the 1,3-benzimidazolidine- 2-thione and 1,3-imidazoline-2-thione complexes, there are intramolecular π - π interactions involving the thione moiety as well as an $N-H\cdots N$ hydrogen bond linking the thione and cyano ligands. In addition, in 2, as well as the π - π interaction involving the thione moieties, there is an additional $\pi - \pi$ interaction involving one of the thione moieties and an adjacent phenyl ring from the triphenylphosphine ligand. There are also C-H···N interactions between the imidazoline rings and the acetonitrile N atoms.

1. Chemical context

The coordination chemistry of N,S-donor heterocyclic-2thione ligands has been in focus for the past four decades, describing synthetic methods, bonding and structures of metal complexes (Raper, 1985, 1994, 1996, 1997; García-Vázquez *et al.*, 1999; Akrivos, 2001), analytical chemistry (Koch, 2001), charge-transfer complexes (Serpe *et al.*, 2008) and anion receptors (Bondy & Loeb, 2003). A recent survey revealed that the reactions of heterocyclic-2-thiones with group 10–12 metals (Ni–Pt, Cu–Au, Zn–Hg; Lobana, 2021) have led not only to the formation of a variety coordination compounds, but have also displayed other aspects of chemical reactivity. For instance, some reactions of heterocyclic thiones involved copper-mediated activation, and rupture of C–S (thione)

research communications

bonds followed by their transformations to other forms of thio-ligands, bonded to the copper metal. Further, there has been an upsurge in explorations of the bio-activity and bio-safe potential of coordination compounds, as antimicrobial and anticancer agents (Lobana, 2021).

The chemistry of palladium is interesting because of the coordination flexibility and catalytic role of this metal in several reactions (Kostas & Steele, 2020; Lobana, 2021). In the literature, pyridine-2-thione (pytH) with palladium(II) has been reported to form dinuclear complexes, namely, $[Pd_2(\mu - N,S-pyt)_4]$ (Umakoshi *et al.*, 1990), $[Pd_2(\mu - N,S-pyt)(\mu - S-pyt)(\kappa^{1:}S-pyt)_2(\mu - P,P-dppm)]$ and $[Pd_2(\mu - \kappa^{2:}N,S-pyt)_3(\kappa^{2:}P,P-dppm)]$

Figure 1

Diagram of 1 showing the atom labeling for unique atoms (the molecule lies of a twofold axis; symmetry operation to generate the rest of the molecule is -x, y, $\frac{1}{2} - z$) and the strong intramolecular $\pi - \pi$ interactions involving both the thione rings and adjacent phenyl rings from the triphenylphosphine ligand. Atomic displacement parameters are at the 30% probability level.

dppm)]Cl (Mendía *et al.*, 2006), [Pd₂Cl₂(μ -*N*,*S*-pyt)₂(PMe₃)₂] (Yamamoto *et al.*, 1991), [Pd₂Cl₂(μ -*N*,*S*-pymt)₂(PMe₃)₂] (Yap & Jensen, 1992). Benz-1,3-imidazoline-2-thioe (bzimtH₂) has formed one dimer, [Pd^{II}₂(μ - κ ²:*N*,*S*-bzimt)₂(κ ¹-*S*-bzimt)(PPh₃)₃]Cl·2H₂O (Lobana *et al.* 2017). In this manuscript, some reactions of this metal with a few heterocyclic-2-thione ligands (bzimtH₂ and imtH₂) are described.

2. Structural commentary

The reaction of PdCl₂(PPh₃)₂ with bzimtH₂ in a 1:2 molar ratio in the presence of Et₃N base was designed to form $[Pd(\kappa^{1}S)$ bzimtH)₂(PPh₃)₂] after removal of both halogens as [Et₃NH]⁺Cl⁻. However, the X-ray crystal structure of the product revealed the formation of the unexpected dinuclear compound $[Pd_2(\mu-N,S-bzimtH)_2(CN)_2(PPh_3)_2]$ (1). Another thio-ligand, imtH₂ yielded a similar dinuclear compound, $[Pd_2(\mu-N,S-imtH)_2-(CN)_2(PPh_3)_2]$ (2). In both these compounds, the anionic bzimtH⁻ and imtH⁻ ligands coordinate through N,S donor atoms in a bridging mode, covering four coordination sites of two metal centers, and other two sites are occupied by two PPh₃ ligand molecules. Finally, the remaining two sites of two metal centers are occupied by cyano groups, abstracted by the metals from the solvent during reaction.

Compound 1 crystallizes in the monoclinic space group C2/c, and compound 2 in the monoclinic space group, $P2_1/c$. Selected bond distances and bond angles are given in Tables 1 and 2, respectively. The molecular structure of compound 1 is shown in Fig. 1, while that of compound 2 is shown in Fig. 2 (leaving out the acetonitrile solvent molecules). Considering first the structure of compound 1, here only half of the molecule is unique as the molecule lies on a crystallographic twofold axis. In 1, the Pd metal atom is bonded to one P, one S, one N and one C atoms with the respective bond distances as follows: Pd-P = 2.2861 (6), Pd-S = 2.3547 (6), Pd-N = 2.0545 (17), and Pd-C = 1.959 (2) Å. The *trans* bond angles,

Figure 2

Diagram of **2** showing the atom labeling and the strong intramolecular π - π interactions involving both the thione rings and adjacent phenyl rings from the triphenylphosphine ligand. Atomic displacement parameters are at the 30% probability level.

Table T Selected geometric parameters (Å, $^{\circ}$) for 1 .						
C1-S1	1.728 (2)	N1-Pd1				
N3-C8	1.127 (3)	P1-Pd1				
C8-Pd1	1.959 (2)	$Pd1-S1^{i}$				

C8-Pd1	1.959 (2)	$Pd1-S1^{i}$	2.3547 (6)
C8-Pd1-N1	178.31 (8)	$C8 - Pd1 - S1^{i}$	84.93 (6)
N1 - Pd1 - P1	87.53 (6) 93.34 (5)	P1-Pd1-S1 $P1-Pd1-S1^{i}$	94.24 (5) 172.26 (2)

2.0545 (17) 2.2861 (6)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Table 2

Selected geometric parameters (Å, °) for 2.

Pd1-C1	1.957 (2)	Pd2-P2	2.2984 (5)
Pd1-N11	2.0346 (17)	Pd2-S1	2.3542 (5)
Pd1-P1	2.2914 (5)	S1-C11	1.734 (2)
Pd1-S2	2.3541 (5)	S2-C21	1.733 (2)
Pd2-C2	1.943 (2)	N1-C1	1.143 (3)
Pd2-N21	2.0345 (17)	N2-C2	1.148 (3)
C1-Pd1-N11	179.31 (8)	C2-Pd2-N21	178.38 (8)
C1-Pd1-P1	87.19 (6)	C2-Pd2-P2	89.18 (7)
N11-Pd1-P1	92.80 (4)	N21-Pd2-P2	92.44 (5)
C1-Pd1-S2	87.99 (6)	C2-Pd2-S1	86.54 (7)
N11-Pd1-S2	92.06 (5)	N21-Pd2-S1	91.84 (5)
P1-Pd1-S2	173.855 (19)	P2-Pd2-S1	174.489 (19)

P-Pd-S and N-Pd-C, of 172.26 (2) and 178.31 (8)°, as well as the *cis* bond angles in the range 84.93 (6)-94.24 (5)°, reveal the distorted square-planar geometry of each metal center. One of the major factors in the conformation adopted by the molecule is the strong π - π interaction between the thione moieties [$Cg \cdots Cg$, 3.1905 (12) Å], as seen in Fig. 1. In addition, there is also a π - π interaction between the thione moieties and an adjacent phenyl ring from the triphenylphosphine ligand [$Cg \cdots Cg = 3.3560$ (9) Å with a slippage of 1.408 Å].

The coordination pattern of compound 2 is similar to that of 1. Nevertheless, there are minor differences in the bond distances and angles pertaining to the two metal centers of compound 2 (Fig. 2). Thus, the respective Pd-P, Pd-S, Pd-N and Pd-C bond distances of 2 are 2.2914 (5), 2.3541 (5), 2.0345 (17) and 1.957 (2) Å (Pd1 metal center), and 2.2984 (5), 2.3542 (5), 2.0345 (17) and 1.943 (2) Å (Pd2 metal center). For both metal centers, the trans bond angles [P-Pd-S and N- $Pd-C = 173.86 (2)-179.31 (8)^{\circ}$ and the adjacent bond angles $[86.54(7) - 92.80(4)^{\circ}]$ are similar to those of compound **1**. These bond angles again reveal the distorted square-planar geometry of each metal center of compound 2. The various bond distances described above are normal and none unusual. Compound 1 has carbon-sulfur (C-S) bond distance of 1.728 (2), while in compound 2 it is 1.734 (2) Å. These distances are in between single (1.81 Å) and double-bond (1.68 Å) C-S distances (Huheey et al., 1993). It shows a weakening of the C-S bond as a result of S to Pd coordination. The C=N distance of the coordinated cyano group is 1.127 (3) in compound **1** and 1.143 (3) /1.148 (3) Å in compound 2. These distances are less than the expected C=N double bond (1.28 Å) and are close to the C \equiv N triple bond distance (1.15 Å; Huheey et al., 1993). The structure of 2 contains partially occupied acetonitrile solvent molecules with research communications

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for 1.						
$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$		
$N2-H2\cdots N3^{ii}$	0.80 (3)	2.00 (3)	2.796 (3)	177 (3)		
Symmetry code: (ii) x	$-\frac{1}{2}, y + \frac{1}{2}, z.$					
Table 4 Hydrogen-bond g	eometry (Å, °) for 2 .				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$N12-H12A\cdots N2^{i}$	0.88	1.90	2.770 (3)	169		
$N22 - H22A \cdot \cdot \cdot N1^{ii}$	0.88	1.92	2.760 (3)	160		
C12_H134N1S	0.95	2 35	3 261 (7)	161		

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

0.95

 $C22 - H23A \cdots N1T$

occupancies of 0.33 and 0.25. As in the case of **1**, in **2** one of the major factors in the conformation adopted by the molecule is the strong π - π interaction between the thione moieties $[Cg \cdots Cg = 3.3559 (12) \text{ Å}]$, as seen in Fig. 2. In addition, there is also a π - π interaction between each of the thione moieties and an adjacent phenyl ring from the triphenylphosphine ligand $[Cg \cdots Cg \text{ distances of } 3.3065 (8) \text{ Å and } 3.3218 (8),$ respectively, with a slippage for the latter of 1.154 Å].

2.29

3.081 (12)

141

The IR spectrum of the bzimtH₂ ligand showed a ν (N–H) band at 3113 (*m*), and in compound **1**, this band appeared at a lower energy, 3055 (*m*) cm⁻¹. The ligand showed a diagnostic ν (C=S) band at 1179 cm⁻¹, which shifted to ν (C=S), 1033(*s*) cm⁻¹, owing to the change of neutral bzimtH₂ ligand to the bzimtH⁻ anionic form, coordinating through N,S donor atoms. The PPh₃ ligand showed its characteristic ν (P–C_{Ph}) band at 1097(*s*) cm⁻¹ in compound **1**. A band at 1734 cm⁻¹ was assigned to the coordinated cyano group. The IR spectroscopic bands of compound **2** are similarly assigned: ν (N–H), 3050 (*m*), ν (C=S), 1020 (*m*), ν (P–C_{Ph}), 1105 (*s*) and ν (C=N), 1740(*s*) cm⁻¹.

In conclusion, the chemistry of heterocyclic-2-thiones remains enigmatic, probably due to the angular flexibility at sulfur, and also due to the short bite angle of the N,S-donor set in case it chelates with the formation of four-membered rings. This leads to a greater tendency of these thio-ligands in anionic forms to adopt bridging modes, noted as for example in dinuclear complexes (Raper, 1997; Lobana, 2021). Benz-1,3-imidazoline-2-thione (bzimtH₂) has formed an N,S-bonded symmetrically bridged dinuclear compound, and so is the case with 1,3-imidazolidine-2-thione, and these are analogous to literature reports (Yamamoto *et al.*, 1991; Yap & Jensen, 1992).

3. Supramolecular features

In the packing of **1** and **2** there are similar trends in both hydrogen-bond patterns and intramolecular interactions. In both structures, there are strong intramolecular π - π interactions involving the thione moiety and adjacent phenyl rings from the triphenylphosphine ligand as discussed above. Both **1** and **2** have a similar hydrogen-bonding pattern (numerical details in Tables 3 and 4), as shown in Figs. 3 and 4. In each, the

research communications

Diagram showing the packing for **1** showing the two intermolecular $C_1^1(7)$ N-H···N hydrogen-bonded chains in the [110] and [$\overline{1}10$] directions. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry operation to generate the rest of the molecule is -x, y, $\frac{1}{2} - z$.

N-H group of the thione moiety forms an intermolecular hydrogen bond with an adjacent N atom from the coordinated cyanide anion and these form $C_1^1(7)$ chains (Etter *et al.*, 1990) in the [110] and [$\overline{1}10$] directions. In addition, in **2** there are also C-H···N interactions between the imidazoline rings and the partially occupied acetonitrile N atoms and this is shown in Fig. 5.

Figure 4

Diagram showing the packing for **2** showing the two intermolecular $C_1^1(7)$ N-H···N hydrogen bonding chains in the [110] and [$\overline{1}10$] directions. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database for complexes of palladium with either 1, 3-benzimidazolidine- 2-thione or 1,3-imidazoline-2-thione returned nine hits for the former (BEYRUV and BEYWAG, Sandhu *et al.*, 2018; PONKOT, PONKUZ, PONLAG, PONLEK and PONLIO, Talismanova *et al.*, 2008; SANMOK, Talismanova *et al.*, 2004; SAQPEI, Lobana *et al.*, 2017) and three hits for the latter (APIYII, Ahmad *et al.*, 2010; BEYVUZ, Sandhu *et al.*, 2018; HAWYEJ, Kahn *et al.*, 1993, SAQPIM, Lobana *et al.*, 2017).

5. Synthesis and crystallization

The starting materials, namely palladium(II) chloride, triphenylphosphine (PPh₃), 1,3-benzimidazoline-2-thione (bzimtH₂), 1,3-imidazoline-2-thione (imtH₂), and triethylamine were procured from Aldrich. The solvents (acetonitrile, ethanol, methanol and dichloromethane) were of HPLC grade and were stored over molecular sieves. The precursor, $PdCl_2(PPh_3)_2$, was prepared by a literature procedure (Steffen & Palenik, 1976). The melting points were determined with a Gallenkamp electrically heated apparatus using the dried samples in capillary tubes. The analysis for carbon, hydrogen and nitrogen were performed by using CHNS-O analyzer Flash- EA-1112 series. The IR spectra of the compounds were recorded on FTIR–SHIMADZU 8400 Fourier transform spectrophotometer in the range of 4000–400 cm⁻¹ using KBr pellets.

Preparation of the precursor, $[PdCl_2(PPh_3)_2]$

Palladium(II) chloride (0.050 g, 0.282 mmol) was dissolved in hot acetonitrile (25 mL) in a 50 mL round-bottom flask, and

Figure 5

Diagram for **2** showing the packing viewed along the *a*-axis direction. N– $H \cdots N$ hydrogen bonds and $C-H \cdots N$ interactions involving the acetonitrile molecules are shown as dashed lines.

Table 5Experimental details.

	1	2
Crystal data		
Chemical formula	$[Pd_2(C_7H_5N_2S)_2(CN)_2(C_{18}H_{15}P)_2]$	$[Pd_2(C_3H_3N_2S)_2(CN)_2(C_{18}H_{15}P)_2] \cdot 0.58C_2H_3N$
$M_{\rm r}$	1087.76	1011.46
Crystal system, space group	Monoclinic, C2/c	Monoclinic, $P2_1/c$
Temperature (K)	100	110
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.6026 (12), 13.9719 (12), 25.097 (2)	12.7916 (2), 14.6718 (3), 25.3760 (4)
β (°)	97.417 (1)	101.3491 (15)
$V(Å^3)$	4729.8 (7)	4669.34 (14)
Ζ	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.96	0.97
Crystal size (mm)	$0.26 \times 0.15 \times 0.09$	$0.44 \times 0.38 \times 0.18$
Data collection		
Diffractometer	Bruker SMART APEX CCD	Oxford Diffraction Gemini R (Mo)
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.811, 0.917	0.962, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23706, 5857, 5308	15546, 15546, 10002
R _{int}	0.024	0.031
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.667	0.761
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.065, 1.12	0.035, 0.078, 0.95
No. of reflections	5857	15546
No. of parameters	294	561
No. of restraints	0	39
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.57, -0.89	0.98, -1.20

Computer programs: APEX2 and SAINT (Bruker, 2007), CrysAlis RED and CrysAlis CCD (Oxford Diffraction, 2009), SHELXS and SHELXTL (Sheldrick, 2008), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), and ShelXle (Hübschle et al., 2011).

to it was added triphenylphosphine (0.148 g, 0.564 mol). The contents were refluxed for 1 h and the yellow complex formed was filtered and dried *in vacuo*, m.p. 551-553 K

Preparation of **1**

To a solution of PdCl₂(PPh₃)₂ (0.030 g, 0.043 mmol) in 10 mL of CH₃CN, was added solid bzimtH₂ (0.013 g, 0.086 mmol) followed by the addition of Et₃N base (0.5 mL). The solution became yellowish orange and was refluxed for 6 h. The orange compound was formed on refluxing. It was separated and dissolved in a solution of methanol (4 mL) and dichloromethane (1 mL) in a culture tube. A slow evaporation of the reaction mixture over a period of one month, resulted in the formation of orange crystals of compound 1. Yield: 0.015 g; 65%; m.p. 511-513 K. Analysis found: C, 57.71; H, 3.84; N, 7.50; C₅₂H₄₀N₆P₂Pd₂S₂ (1087.8) requires: C, 57.40; H, 3.70; N, 7.72%. IR Data (KBr, cm⁻¹): ν (N–H), 3055 (*m*); ν (C–H), 2950 (m), 2920 (s), 2852 (m); ν (C=N), 1734 (s), ν (C-C) + $\delta(N-H) + \delta(C-H)$, 1635 (*m*), 1440 (*s*), 1380 (*m*); $\nu(P-C_{Ph})$, 1097 (s); v(C=S), 1033 (s). Ligand IR Data: v(N-H), 3113 (*m*), ν (C–H), 3078 (*m*); 2981 (*s*); ν (C=N) 1513 (*s*), δ (N–H), 1467 (s), 1381 (m); ν (C=S), 1179 (s). The compound is partially soluble in dichloromethane, but soluble in methanol and chloroform.

Preparation of 2

To the solution of $PdCl_2(PPh_3)_2$ (0.040 g, 0.060 mmol) in 10 mL of CH_3CN , was added solid imtH₂ (0.012 g,

The solution became yellowish orange and was refluxed for 6 h. The orange compound was formed on refluxing and was separated. It was dissolved in a solution of methanol (4 mL) and dichloromethane (1 mL) in a culture tube. Slow evaporation of the reaction mixture over a period of one month formed yellowish-orange crystals of compound 2. Yield: 0.020 g; 69%; m.p. 485-488 K. Analysis found: C, 53.21; H, 3.92; N, 8.48; $C_{44}H_{36}N_6P_2Pd_2S_2 \cdot 0.58(CH_3CN)$ (1011.5) requires: C, 53.58; H, 3.73; N, 8.36%. IR bands (KBr, cm-1): v(N-H), 3050 (m); v(C-H), 3081 (s), 3005 (m), 2968 (m), 2938 (*m*); ν (C=N), 1740 (*s*), d(N-H) + ν (C=N) + δ (C-H), 1581 (s), 1479 (s), 1401(s); ν (C=S), 1020 (m); ν (P-C_{Ph}), 1105 (s); Ligand IR data: $\nu(N-H)$, 3130 (s), $\nu(C-H)$, 2983 (m); 2876 (s); ν (C=N) 1586 (s), δ (N-H), 1478 (s), 1266 (m); ν (C=S), 1120 (m). The compound is soluble in methanol, chloroform and partially in dichloromethane.

0.120 mmol) followed by the addition of Et₃N base (0.5 mL).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. Hydrogen atoms were fixed geometrically (C-H = 0.93–0.98 Å) with their $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The structure of **2** contains partially occupied acetonitrile solvent molecules with occupancies of 0.33 and 0.25.

Acknowledgements

TSL thanks the Guru Nanak Dev University for an Honorary Professorship. General research facilities for students (BT and RA) at the university are gratefully acknowledged.

Funding information

JPJ acknowledges the NSF–MRI program (Grant No. CHE-1039027) for funds to purchase an X-ray diffractometer. MZ acknowledges the NSF Grant CHE 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University for funds to purchase an X-ray diffractometer.

References

- Ahmad, S., Rüffer, T., Lang, H., Nadeem, S., Tirmizi, S. A., Saleem, M. & Anwar, A. (2010). *Russ. J. Coord. Chem.* 36, 520–524.
- Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.
- Bondy, C. R. & Loeb, S. J. (2003). Coord. Chem. Rev. 240, 77-99.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- García-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. **193–195**, 691–745.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Huheey, J. E., Keiter, E. A. & Keiter, R. L. (1993). *Inorganic Chemistry: Principles of Structure and Reactivity*, 4th ed. New York: Harper Collins College Publishers.
- Kahn, E. S., Rheingold, A. L. & Shupack, S. I. (1993). J. Crystallogr. Spectrosc. Res. 23, 697–710.
- Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.

- Kostas, I. D. & Steele, B. R. (2020). *Catalysts* **10**, 1107; doi: 10.3390/ catal10101107.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. *Appl. Cryst.* **48**, 3–10.
- Lobana, T. S. (2021). Coord. Chem. Rev. 441, 213884.
- Lobana, T. S., Sandhu, A. K., Mahajan, R. K., Hundal, G., Gupta, S. K., Butcher, R. J. & Castineiras, A. (2017). *Polyhedron*, **127**, 25– 35.
- Mendía, A., Cerrada, E., Arnáiz, F. J. & Laguna, M. (2006). Dalton Trans. pp. 609–616.
- Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD, and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Raper, E. S. (1985). Coord. Chem. Rev. 61, 115-184.
- Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-156.
- Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.
- Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.
- Sandhu, A. K., Lobana, T. S., Sran, B. S., Hundal, G. & Jasinski, J. P. (2018). J. Organomet. Chem. 861, 112–124.
- Serpe, A., Artizzu, F., Mercuri, M. L., Pilia, L. & Deplano, P. (2008). Coord. Chem. Rev. 252, 1200–1212.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Steffen, W. L. & Palenik, G. J. (1976). Inorg. Chem. 15, 2432-2439.
- Talismanova, M. O., Sidorov, A. A., Aleksandrov, G. G., Charushin, V. N., Kotovskaya, S. K., Ananikov, V. P., Eremenko, I. L. & Moiseeva, I. I. (2008). *Russ. Chem. Bull.* 57, 47–55.
- Talismanova, M. O., Sidorov, A. A., Aleksandrov, G. G., Oprunenko, Y. F., Eremenko, I. L. & Moiseev, I. I. (2004). *Russ. Chem. Bull.* 53, 1507–1510.
- Umakoshi, K., Ichimura, A., Kinoshita, I. & Ooi, S. (1990). *Inorg. Chem.* **29**, 4005–4010.
- Yamamoto, J. H., Yoshida, W. & Jensen, C. M. (1991). *Inorg. Chem.* **30**, 1353–1357.
- Yap, G. P. A. & Jensen, C. M. (1992). Inorg. Chem. 31, 4823-4828.

supporting information

Acta Cryst. (2023). E79, 79-84 [https://doi.org/10.1107/S2056989023000166]

Synthesis and structures of dinuclear palladium complexes with 1,3benzimidazolidine-2-thione and 1,3-imidazoline-2-thione

Tarlok S. Lobana, Bandana Thakur, Rajni Aggarwal, Ray J. Butcher, Matthias Zeller and Jerry P. Jasinski

Computing details

Data collection: Apex2 (Bruker, 2007) for (1); *CrysAlis CCD* (Oxford Diffraction, 2009) for (2). Cell refinement: *SAINT* (Bruker, 2007) for (1); *CrysAlis RED*, *CrysAlis CCD* (Oxford Diffraction, 2009) for (2). Data reduction: *SAINT* (Bruker, 2007) for (1); *CrysAlis RED*, *CrysAlis CCD* (Oxford Diffraction, 2009) for (2). Program(s) used to solve structure: *SHELXS* (Sheldrick, 2008) for (1); SHELXT (Sheldrick, 2015a) for (2). Program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b), *ShelXle* (Hübschle *et al.*, 2011) for (1); *SHELXL2018/3* (Sheldrick, 2015b) for (2). For both structures, molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Bis(μ -1*H*-benzimidazole-2-thiolato)- $\kappa^2 N^3$:*S*; $\kappa^2 S$: N^3 -bis[cyanido(triphenylphosphine- κP)palladium(II)] (1)

Crystal data

$[Pd_2(C_7H_5N_2S)_2(CN)_2(C_{18}H_{15}P)_2]$
$M_r = 1087.76$
Monoclinic, $C2/c$
a = 13.6026 (12) Å
b = 13.9719 (12) Å
c = 25.097 (2) Å
$\beta = 97.417 \ (1)^{\circ}$
$V = 4729.8 (7) Å^3$
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.811, T_{\max} = 0.917$ F(000) = 2192 $D_x = 1.528 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9977 reflections $\theta = 2.2-31.8^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$ T = 100 KBlock, orange $0.26 \times 0.15 \times 0.09 \text{ mm}$

23706 measured reflections 5857 independent reflections 5308 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 28.3^\circ, \theta_{min} = 1.6^\circ$ $h = -18 \rightarrow 18$ $k = -18 \rightarrow 18$ $l = -33 \rightarrow 33$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$	Secondary atom site location: difference Fourier map Hydrogen site location: mixed
$wR(F^2) = 0.065$	H atoms treated by a mixture of independent
S = 1.12	and constrained refinement
5857 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0241P)^2 + 9.9394P]$
294 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.57 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.89 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	-0.07279 (15)	0.26650 (15)	0.30035 (8)	0.0167 (4)
C2	-0.02067 (16)	0.41441 (16)	0.31826 (8)	0.0204 (4)
N3	0.20989 (15)	-0.05673 (15)	0.29010 (8)	0.0296 (4)
C3	-0.00951 (19)	0.51282 (17)	0.32406 (10)	0.0285 (5)
Н3	-0.065219	0.554027	0.323359	0.034*
C4	0.0864 (2)	0.54824 (18)	0.33093 (10)	0.0333 (6)
H4	0.096907	0.615208	0.334994	0.040*
C5	0.16821 (19)	0.48698 (18)	0.33198 (9)	0.0290 (5)
Н5	0.233000	0.513645	0.336220	0.035*
C6	0.15735 (17)	0.38872 (16)	0.32701 (8)	0.0223 (4)
H6	0.213217	0.347564	0.328414	0.027*
C7	0.06114 (16)	0.35283 (15)	0.31987 (8)	0.0184 (4)
C8	0.17115 (16)	0.01314 (17)	0.29575 (9)	0.0224 (4)
C9	-0.02560 (16)	0.14880 (15)	0.41389 (8)	0.0192 (4)
C10	-0.12021 (17)	0.11322 (17)	0.41677 (9)	0.0245 (5)
H10	-0.135247	0.048473	0.407466	0.029*
C11	-0.19289 (18)	0.1723 (2)	0.43325 (10)	0.0319 (5)
H11	-0.257352	0.147566	0.435347	0.038*
C12	-0.1718 (2)	0.26638 (19)	0.44654 (10)	0.0323 (6)
H12	-0.222246	0.307008	0.456694	0.039*
C13	-0.0770 (2)	0.30173 (18)	0.44508 (10)	0.0303 (5)
H13	-0.061902	0.366039	0.455393	0.036*
C14	-0.00422 (18)	0.24371 (17)	0.42866 (9)	0.0244 (5)
H14	0.060499	0.268435	0.427421	0.029*
C15	0.17398 (16)	0.07885 (16)	0.43693 (9)	0.0221 (4)
C16	0.26896 (17)	0.06387 (18)	0.42373 (10)	0.0289 (5)
H16	0.279017	0.056685	0.387184	0.035*
C17	0.34938 (19)	0.05938 (19)	0.46410 (12)	0.0361 (6)

H17	0.414124	0.048636	0.454978	0.043*
C18	0.3355 (2)	0.07046 (19)	0.51719 (11)	0.0373 (6)
H18	0.390378	0.065693	0.544619	0.045*
C19	0.2424 (2)	0.0884 (2)	0.53042 (10)	0.0374 (6)
H19	0.233304	0.098140	0.566924	0.045*
C20	0.16164 (19)	0.0923 (2)	0.49069 (9)	0.0318 (5)
H20	0.097369	0.104236	0.500179	0.038*
C21	0.02075 (16)	-0.04251 (15)	0.38040 (9)	0.0205 (4)
C22	0.04218 (19)	-0.10869 (17)	0.42181 (9)	0.0274 (5)
H22	0.083356	-0.091135	0.453803	0.033*
C23	0.0030 (2)	-0.20054 (18)	0.41604 (11)	0.0367 (6)
H23	0.017564	-0.245817	0.444194	0.044*
C24	-0.0571 (2)	-0.22642 (18)	0.36955 (11)	0.0351 (6)
H24	-0.084438	-0.289039	0.366194	0.042*
C25	-0.07770 (18)	-0.16150 (18)	0.32787 (10)	0.0293 (5)
H25	-0.118226	-0.179735	0.295793	0.035*
C26	-0.03879 (16)	-0.06974 (16)	0.33325 (9)	0.0239 (5)
H26	-0.052690	-0.025117	0.304710	0.029*
N1	0.02621 (12)	0.26021 (12)	0.30959 (7)	0.0160 (3)
N2	-0.10313 (14)	0.35712 (13)	0.30663 (7)	0.0200 (4)
H2	-0.157 (2)	0.3796 (18)	0.3021 (11)	0.024*
P1	0.06743 (4)	0.07947 (4)	0.38495 (2)	0.01712 (11)
Pd1	0.10174 (2)	0.13416 (2)	0.30350 (2)	0.01536 (5)
S1	-0.15249 (4)	0.17333 (4)	0.28003 (2)	0.01886 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0176 (10)	0.0189 (10)	0.0133 (9)	0.0014 (8)	0.0016 (7)	-0.0006 (7)
C2	0.0239 (11)	0.0209 (11)	0.0158 (10)	-0.0007 (8)	0.0009 (8)	-0.0011 (8)
N3	0.0284 (10)	0.0308 (11)	0.0294 (11)	0.0092 (9)	0.0022 (8)	0.0032 (9)
C3	0.0346 (13)	0.0214 (11)	0.0289 (12)	0.0029 (10)	0.0026 (10)	-0.0027 (9)
C4	0.0457 (15)	0.0225 (12)	0.0308 (13)	-0.0079 (11)	0.0011 (11)	-0.0064 (10)
C5	0.0305 (13)	0.0318 (13)	0.0236 (11)	-0.0118 (10)	-0.0005 (9)	-0.0013 (10)
C6	0.0215 (10)	0.0272 (11)	0.0175 (10)	-0.0029 (9)	-0.0006 (8)	-0.0007 (8)
C7	0.0213 (10)	0.0207 (10)	0.0128 (9)	-0.0013 (8)	0.0011 (7)	-0.0001 (7)
C8	0.0187 (10)	0.0307 (12)	0.0179 (10)	0.0036 (9)	0.0026 (8)	0.0011 (9)
C9	0.0214 (10)	0.0225 (11)	0.0140 (9)	0.0036 (8)	0.0032 (8)	0.0004 (8)
C10	0.0246 (11)	0.0285 (12)	0.0208 (10)	-0.0005 (9)	0.0053 (8)	-0.0025 (9)
C11	0.0218 (11)	0.0448 (15)	0.0302 (13)	0.0023 (11)	0.0076 (9)	-0.0033 (11)
C12	0.0343 (14)	0.0378 (14)	0.0264 (12)	0.0136 (11)	0.0103 (10)	-0.0011 (10)
C13	0.0422 (14)	0.0262 (12)	0.0246 (12)	0.0047 (11)	0.0117 (10)	-0.0031 (9)
C14	0.0277 (12)	0.0257 (11)	0.0208 (11)	-0.0007 (9)	0.0074 (9)	-0.0006 (9)
C15	0.0217 (10)	0.0221 (11)	0.0213 (11)	-0.0006 (8)	-0.0016 (8)	0.0029 (8)
C16	0.0231 (11)	0.0321 (13)	0.0304 (12)	0.0034 (10)	-0.0012 (9)	-0.0043 (10)
C17	0.0240 (12)	0.0332 (14)	0.0480 (16)	0.0037 (10)	-0.0075 (11)	-0.0064 (12)
C18	0.0366 (14)	0.0310 (13)	0.0385 (15)	-0.0026 (11)	-0.0174 (11)	0.0020 (11)
C19	0.0425 (15)	0.0458 (16)	0.0214 (12)	-0.0073 (13)	-0.0058 (11)	0.0062 (11)

C20	0.0277 (12)	0.0449 (15)	0.0217 (11)	-0.0019 (11)	-0.0003 (9)	0.0048 (11)
C21	0.0207 (10)	0.0186 (10)	0.0231 (11)	0.0032 (8)	0.0062 (8)	0.0013 (8)
C22	0.0370 (13)	0.0237 (11)	0.0220 (11)	0.0045 (10)	0.0062 (10)	0.0021 (9)
C23	0.0587 (18)	0.0229 (12)	0.0297 (13)	0.0036 (12)	0.0106 (12)	0.0055 (10)
C24	0.0473 (16)	0.0206 (12)	0.0399 (15)	-0.0035 (11)	0.0154 (12)	-0.0047 (10)
C25	0.0275 (12)	0.0268 (12)	0.0338 (13)	-0.0018 (10)	0.0049 (10)	-0.0062 (10)
C26	0.0230 (11)	0.0229 (11)	0.0252 (11)	0.0015 (9)	0.0009 (9)	0.0001 (9)
N1	0.0154 (8)	0.0176 (8)	0.0150 (8)	-0.0001 (6)	0.0018 (6)	-0.0001 (6)
N2	0.0181 (9)	0.0213 (9)	0.0204 (9)	0.0049 (7)	0.0020 (7)	-0.0011 (7)
P1	0.0167 (2)	0.0192 (3)	0.0156 (2)	0.0018 (2)	0.00211 (19)	0.00103 (19)
Pd1	0.01371 (8)	0.01746 (8)	0.01506 (8)	0.00304 (6)	0.00240 (5)	0.00079 (6)
S1	0.0167 (2)	0.0223 (3)	0.0181 (2)	-0.00317 (19)	0.00424 (18)	-0.00229 (19)

Geometric parameters (Å, °)

C1—N1	1.339 (3)	C15—C16	1.390 (3)
C1—N2	1.347 (3)	C15—C20	1.394 (3)
C1—S1	1.728 (2)	C15—P1	1.820 (2)
C2—N2	1.378 (3)	C16—C17	1.393 (3)
C2—C3	1.389 (3)	C16—H16	0.9500
C2—C7	1.403 (3)	C17—C18	1.378 (4)
N3—C8	1.127 (3)	C17—H17	0.9500
C3—C4	1.385 (4)	C18—C19	1.374 (4)
С3—Н3	0.9500	C18—H18	0.9500
C4—C5	1.401 (4)	C19—C20	1.386 (3)
C4—H4	0.9500	С19—Н19	0.9500
C5—C6	1.385 (3)	С20—Н20	0.9500
С5—Н5	0.9500	C21—C22	1.394 (3)
C6—C7	1.391 (3)	C21—C26	1.398 (3)
С6—Н6	0.9500	C21—P1	1.817 (2)
C7—N1	1.391 (3)	C22—C23	1.390 (4)
C8—Pd1	1.959 (2)	С22—Н22	0.9500
C9—C10	1.390 (3)	C23—C24	1.384 (4)
C9—C14	1.397 (3)	С23—Н23	0.9500
C9—P1	1.818 (2)	C24—C25	1.386 (4)
C10—C11	1.391 (3)	C24—H24	0.9500
C10—H10	0.9500	C25—C26	1.387 (3)
C11—C12	1.378 (4)	С25—Н25	0.9500
C11—H11	0.9500	C26—H26	0.9500
C12—C13	1.387 (4)	N1—Pd1	2.0545 (17)
C12—H12	0.9500	N2—H2	0.80 (3)
C13—C14	1.382 (3)	P1—Pd1	2.2861 (6)
С13—Н13	0.9500	Pd1—S1 ⁱ	2.3547 (6)
C14—H14	0.9500		
N1—C1—N2	110.96 (18)	С16—С17—Н17	119.8
N1—C1—S1	125.44 (16)	C19—C18—C17	120.0 (2)
N2—C1—S1	123.53 (16)	C19—C18—H18	120.0

N2—C2—C3	132.2 (2)	C17—C18—H18	120.0
N2—C2—C7	105.70 (19)	C18—C19—C20	120.2 (3)
C3—C2—C7	121.9 (2)	C18—C19—H19	119.9
C4—C3—C2	117.1 (2)	С20—С19—Н19	119.9
С4—С3—Н3	121.5	C19—C20—C15	120.5 (2)
С2—С3—Н3	121.5	С19—С20—Н20	119.7
C3—C4—C5	121.1 (2)	С15—С20—Н20	119.7
C3—C4—H4	119.4	C22—C21—C26	119.6 (2)
C5—C4—H4	119.4	C22—C21—P1	122.52 (18)
C6—C5—C4	121.9 (2)	C26—C21—P1	117.92 (16)
С6—С5—Н5	119.0	C_{23} C_{22} C_{21}	119.6 (2)
C4—C5—H5	119.0	C23—C22—H22	120.2
C5—C6—C7	117.2 (2)	C21—C22—H22	120.2
C5—C6—H6	121.4	C_{24} C_{23} C_{22}	120.4(2)
C7—C6—H6	121.4	C24—C23—H23	119.8
N1-C7-C6	130.7(2)	$C_{22} = C_{23} = H_{23}$	119.8
N1	108.33(18)	C_{23} C_{24} C_{25}	1204(2)
C6-C7-C2	120.8 (2)	C_{23} C_{24} H_{24}	119.8
N_{3} C_{8} P_{d1}	120.0(2) 178 4 (2)	$C_{25} = C_{24} = H_{24}$	119.8
C10-C9-C14	119.2 (2)	C_{24} C_{25} C_{26} C_{26}	119.6 (2)
C10 - C9 - P1	121.81(17)	C_{24} C_{25} C_{25} H_{25}	120.2
C14 - C9 - P1	118 68 (17)	$C_{26} = C_{25} = H_{25}$	120.2
C9-C10-C11	1201(2)	$C_{25} = C_{26} = C_{21}$	120.2 120.4(2)
C9-C10-H10	119.9	$C_{25} = C_{26} = H_{26}$	119.8
C11—C10—H10	119.9	$C_{21} = C_{26} = H_{26}$	119.8
C12-C11-C10	120.3 (2)	C1-N1-C7	106.42 (17)
C12—C11—H11	119.8	C1-N1-Pd1	12300(14)
C10—C11—H11	119.8	C7-N1-Pd1	130.47 (14)
$C_{11} - C_{12} - C_{13}$	119.9 (2)	C1-N2-C2	108.50 (18)
C11—C12—H12	120.0	C1—N2—H2	130.2 (19)
C13—C12—H12	120.0	C2—N2—H2	121.1 (19)
C14—C13—C12	120.2 (2)	C21—P1—C9	105.62 (10)
C14—C13—H13	119.9	$C_{21} = P_{1} = C_{15}$	106.27 (10)
C12—C13—H13	119.9	C9—P1—C15	104.31 (10)
C13—C14—C9	120.2 (2)	C_21 —P1—Pd1	111.54 (7)
C13—C14—H14	119.9	C9—P1—Pd1	114.34 (7)
C9—C14—H14	119.9	C15—P1—Pd1	114.00 (7)
C16—C15—C20	118.9 (2)	C8—Pd1—N1	178.31 (8)
C16—C15—P1	120.56(17)	C8—Pd1—P1	87.53 (6)
C20—C15—P1	120.58 (18)	N1—Pd1—P1	93.34 (5)
C15—C16—C17	120.0 (2)	C8—Pd1—S1 ⁱ	84.93 (6)
C15—C16—H16	120.0	$N1 - Pd1 - S1^{i}$	94.24 (5)
C17—C16—H16	120.0	P1—Pd1—S1 ⁱ	172.26 (2)
C18—C17—C16	120.4 (3)	C1—S1—Pd1 ⁱ	101.12 (7)
C18—C17—H17	119.8		
N2—C2—C3—C4	-174.0 (2)	P1—C21—C26—C25	-179.03 (18)
C7—C2—C3—C4	0.8 (3)	N2-C1-N1-C7	-2.9 (2)

C2—C3—C4—C5	-0.1 (4)	S1—C1—N1—C7	174.31 (15)
C3—C4—C5—C6	-0.9 (4)	N2—C1—N1—Pd1	-179.43 (13)
C4—C5—C6—C7	1.2 (3)	S1—C1—N1—Pd1	-2.2 (2)
C5—C6—C7—N1	174.3 (2)	C6—C7—N1—C1	-173.3 (2)
C5—C6—C7—C2	-0.5 (3)	C2	2.0 (2)
N2-C2-C7-N1	-0.4 (2)	C6—C7—N1—Pd1	2.9 (3)
C3—C2—C7—N1	-176.4 (2)	C2—C7—N1—Pd1	178.18 (14)
N2—C2—C7—C6	175.44 (19)	N1—C1—N2—C2	2.7 (2)
C3—C2—C7—C6	-0.5 (3)	S1—C1—N2—C2	-174.57 (15)
C14—C9—C10—C11	1.2 (3)	C3—C2—N2—C1	174.0 (2)
P1-C9-C10-C11	-172.37 (18)	C7—C2—N2—C1	-1.3 (2)
C9—C10—C11—C12	0.3 (4)	C22—C21—P1—C9	-90.0 (2)
C10-C11-C12-C13	-2.0 (4)	C26—C21—P1—C9	90.01 (18)
C11—C12—C13—C14	2.1 (4)	C22—C21—P1—C15	20.4 (2)
C12—C13—C14—C9	-0.6 (4)	C26—C21—P1—C15	-159.57 (17)
C10—C9—C14—C13	-1.0 (3)	C22—C21—P1—Pd1	145.20 (17)
P1-C9-C14-C13	172.69 (18)	C26—C21—P1—Pd1	-34.77 (19)
C20-C15-C16-C17	2.1 (4)	C10-C9-P1-C21	-14.5 (2)
P1-C15-C16-C17	-177.2 (2)	C14—C9—P1—C21	171.94 (17)
C15—C16—C17—C18	-0.5 (4)	C10—C9—P1—C15	-126.31 (19)
C16—C17—C18—C19	-1.6 (4)	C14—C9—P1—C15	60.13 (19)
C17—C18—C19—C20	2.1 (4)	C10-C9-P1-Pd1	108.52 (18)
C18—C19—C20—C15	-0.5 (4)	C14—C9—P1—Pd1	-65.04 (18)
C16—C15—C20—C19	-1.6 (4)	C16—C15—P1—C21	92.0 (2)
P1-C15-C20-C19	177.7 (2)	C20-C15-P1-C21	-87.2 (2)
C26—C21—C22—C23	-0.9 (3)	C16—C15—P1—C9	-156.63 (19)
P1-C21-C22-C23	179.13 (19)	C20-C15-P1-C9	24.1 (2)
C21—C22—C23—C24	-0.1 (4)	C16—C15—P1—Pd1	-31.2 (2)
C22—C23—C24—C25	1.0 (4)	C20-C15-P1-Pd1	149.50 (18)
C23—C24—C25—C26	-0.9 (4)	$N1$ — $C1$ — $S1$ — $Pd1^i$	-61.89 (18)
C24—C25—C26—C21	-0.1 (4)	$N2-C1-S1-Pd1^{i}$	114.98 (17)
C22—C21—C26—C25	1.0 (3)		

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H2···N3 ⁱⁱ	0.80 (3)	2.00 (3)	2.796 (3)	177 (3)

Symmetry code: (ii) x-1/2, y+1/2, z.

 $\mathbb{E} S:(\mu-1H-imidazole-2-thiolato)-\kappa^2N^3:S; \kappa^2S:N^3-bis[cyanido(triphenylphosphine-\kappa P) palladium(II)]$ acetonitrile 0.58-solvate (2)

Crystal data	
$[Pd_2(C_3H_3N_2S)_2(CN)_2(C_{18}H_{15}P)_2] \cdot 0.58C_2H_3N$	<i>b</i> = 14.6718 (3) Å
$M_r = 1011.46$	c = 25.3760 (4) Å
Monoclinic, $P2_1/c$	$\beta = 101.3491 (15)^{\circ}$
a = 12.7916 (2) Å	$V = 4669.34 (14) \text{ Å}^3$

Z = 4	$\theta = 4.7-32.7^{\circ}$
F(000) = 2035	$\mu = 0.97 \text{ mm}^{-1}$
$D_x = 1.439 \text{ Mg m}^{-3}$	T = 110 K
Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$	Plate, yellow
Cell parameters from 15979 reflections	$0.44 \times 0.38 \times 0.18 \text{ mm}$
Data collection	
Oxford Diffraction Gemini R (Mo)	15546 measured reflections
diffractometer	15546 independent reflections
Graphite monochromator	10002 reflections with $I > 2\sigma(I)$
Detector resolution: 10.5081 pixels mm ⁻¹	$R_{int} = 0.031$
ω scans	$\theta_{max} = 32.8^{\circ}, \theta_{min} = 4.7^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(CrysAlisPro; Oxford Diffraction, 2009)	$k = -17 \rightarrow 22$
$T_{min} = 0.962, T_{max} = 1.000$	$l = -34 \rightarrow 36$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from

$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.078$	neighbouring sites
S = 0.95	H-atom parameters constrained
15546 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0359P)^2]$
561 parameters	where $P = (F_o^2 + 2F_c^2)/3$
39 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.98 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates	and isotropic or	equivalent isotropic	displacement	parameters ($(Å^2)$
	······································	· · · · · · · · · · · · · · · · · · ·	r · · · · · · · · · · · · · · · · · · ·	\mathbf{r} · · · · · · · · · · · · · · · · · · ·	< /

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pd1	0.35095 (2)	0.87099 (2)	0.30663 (2)	0.02356 (4)	
Pd2	0.14320 (2)	0.88485 (2)	0.19323 (2)	0.02559 (4)	
S1	0.08912 (4)	0.94151 (4)	0.27044 (2)	0.03170 (12)	
S2	0.41813 (4)	0.90816 (4)	0.22938 (2)	0.03362 (12)	
P1	0.30170 (4)	0.82559 (4)	0.38464 (2)	0.02500 (11)	
P2	0.17961 (4)	0.82426 (4)	0.11528 (2)	0.03002 (12)	
N1	0.43502 (18)	0.67452 (15)	0.29819 (7)	0.0548 (6)	
N2	0.0059 (2)	0.71602 (18)	0.20621 (8)	0.0727 (8)	
N11	0.29215 (13)	0.99892 (11)	0.31143 (6)	0.0272 (4)	
N12	0.17481 (16)	1.10817 (13)	0.30467 (7)	0.0410 (5)	
H12A	0.113398	1.137168	0.298069	0.049*	
N21	0.23236 (13)	0.99792 (12)	0.18750 (6)	0.0284 (4)	
N22	0.37399 (16)	1.08292 (14)	0.19348 (6)	0.0416 (5)	
H22A	0.441192	1.100160	0.199723	0.050*	
C1	0.40581 (17)	0.74749 (16)	0.30153 (7)	0.0363 (5)	

C2	0.05709 (19)	0.77821 (17)	0.20056 (7)	0.0412 (6)
C11	0.18880 (16)	1.01847 (15)	0.29650 (7)	0.0291 (5)
C12	0.2718 (2)	1.14654 (17)	0.32489 (8)	0.0480 (7)
H13A	0.285290	1.208633	0.334479	0.058*
C13	0.3447 (2)	1.07915 (16)	0.32859 (8)	0.0385 (5)
H14A	0.419358	1.085725	0.340892	0.046*
C21	0.33859 (16)	0.99883 (15)	0.20226 (7)	0.0311 (5)
C22	0.2886 (2)	1.13701 (17)	0.17333 (9)	0.0484 (7)
H23A	0.290465	1.199438	0.163621	0.058*
C23	0.20113 (19)	1.08439 (16)	0.16993 (8)	0.0381 (5)
H24A	0 129679	1 103756	0 157463	0.046*
CIA	0.24085(17)	0.71348 (15)	0.37962 (7)	0.0324(5)
C2A	0.16469(19)	0 69425 (17)	0.33331(8)	0.0424(6)
H2AA	0 148149	0.738927	0.305829	0.051*
C3A	0.1134(2)	0.61103(19)	0.32715(9)	0.0575 (8)
НЗАА	0.060788	0.599083	0.295887	0.069*
C4A	0.1386(3)	0.54504 (19)	0.36657 (10)	0.0654 (9)
	0.102770	0.487976	0.362623	0.0094 ())
C54	0.102770 0.2166 (2)	0.56257 (18)	0.302023	0.0563 (8)
Н5АА	0.235385	0.516640	0.438678	0.068*
C6A	0.255585	0.510040 0.64645 (16)	0.41884 (8)	0.000
Нблл	0.310336	0.658288	0.450210	0.0363 (5)
CIR	0.319330	0.038288 0.82116 (14)	0.430210 0.44038(7)	0.040
C1B C2B	0.41003(10) 0.51745(18)	0.82110(14) 0.80500(18)	0.44038(7) 0.43012(8)	0.0293(4)
	0.51745(10)	0.80390 (18)	0.43012(8)	0.0442(0)
П2DA C2P	0.527274	0.798230 0.8010 (2)	0.394240 0.47257(0)	0.0557(8)
	0.0042(2)	0.8019(2)	0.47237 (9)	0.0557 (8)
пэра	0.073349	0.790030	0.403021	0.007
	0.3911(2)	0.81419 (18)	0.52455 (9)	0.0437 (0)
П4DA C5D	0.031230	0.811910	0.555208	0.033
	0.4920 (2)	0.82902 (18)	0.55501 (8)	0.0434 (0)
НЭВА	0.483094	0.838279	0.570956	0.054*
	0.40439 (18)	0.83263 (17)	0.49303 (7)	0.0398 (6)
H6BA	0.335423	0.842/14	0.500531	0.048*
	0.20732(16)	0.89953 (15)	0.40931(7)	0.0286(4)
	0.23993 (18)	0.98632 (16)	0.42808 (8)	0.0363 (5)
H2CA	0.311953	1.004513	0.430333	0.044*
030	0.16/2 (2)	1.04648 (18)	0.44355 (8)	0.045/(6)
H3CA	0.189705	1.105585	0.456258	0.055*
C4C	0.0636 (2)	1.0207 (2)	0.44049 (9)	0.0533 (7)
H4CA	0.013952	1.062039	0.450704	0.064*
C5C	0.0311 (2)	0.9349 (2)	0.42266 (11)	0.0607 (8)
H5CA	-0.040582	0.916511	0.421319	0.073*
C6C	0.10260 (19)	0.87539 (18)	0.40664 (9)	0.0446 (6)
H6CA	0.078935	0.816741	0.393571	0.054*
C1D	0.28204 (18)	0.88581 (15)	0.08915 (7)	0.0335 (5)
C2D	0.25910 (19)	0.97236 (17)	0.06660 (8)	0.0403 (6)
H2DA	0.188431	0.995509	0.061180	0.048*
C3D	0.3395 (2)	1.02420 (19)	0.05223 (8)	0.0494 (7)

C4D $0.4415 (2)$ $0.9915 (2)$ $0.05946 (9)$ $0.0533 (7)$ H4DA 0.49407 1.027784 0.049892 $0.064*$ C5D $0.4644 (2)$ $0.9055 (2)$ $0.08075 (11)$ $0.0566 (7)$ H5DA 0.534715 0.881930 0.084976 $0.068*$ C6D $0.3844 (2)$ $0.83306 (18)$ $0.09605 (9)$ $0.0453 (6)$ H6DA $0.06406 (17)$ $0.82453 (15)$ $0.05978 (7)$ $0.0334 (5)$ C1E $0.06406 (17)$ $0.82453 (15)$ $0.05978 (7)$ $0.0334 (5)$ C2E $0.07759 (19)$ $0.82814 (18)$ $0.00681 (8)$ $0.0446 (6)$ H2EA 0.147239 0.832430 -0.00792 $0.054*$ C3E $-0.0108 (2)$ $0.828247 (19)$ $-0.03151 (0.0497 (7)$ H3EA -0.001292 0.828234 -0.071351 $0.060*$ C4E $-0.1110 (2)$ $0.81890 (18)$ $-0.02400 (8)$ $0.0459 (6)$ C4E -0.11923 0.816583 -0.05380 $0.055*$ C5E $-0.12546 (19)$ $0.81559 (18)$ $0.02794 (8)$ $0.0446 (6)$ H5EA -0.048286 0.811418 0.035189 $0.054*$ C6E $-0.03805 (18)$ $0.81836 (16)$ $0.07012 (8)$ $0.0375 (5)$ H6EA -0.048286 0.816099 0.16170 $0.0454*$ C1F $0.22604 (18)$ $0.7070 (15)$ $0.2111 (7)$ $0.0351 (5)$ H2FA $0.16246 (7)$ 0.055249 $0.077*$ H2FA $0.2487 (2)$ $0.55233 (18)$ $0.332 (10)$ $0.066*$	H3DA	0.323656	1.083075	0.037180	0.059*	
H4DA 0.496407 1.027784 0.049892 0.064^* C5D 0.4644 (2) 0.9055 (2) 0.08075 (11) 0.0566 (7)H5DA 0.534715 0.881930 0.084976 0.068^* C6D 0.3844 (2) 0.85306 (18) 0.99605 (9) 0.0453 (6)H6DA 0.400780 0.794418 0.111328 0.054^* C1E 0.06466 (17) 0.822433 (15) 0.05978 (7) 0.0334 (5)C2E 0.07759 (19) 0.82814 (18) 0.00681 (8) 0.0446 (6)H2EA 0.147239 0.832430 -0.00792 0.554^* C3E -0.0108 (2) 0.828234 -0.071351 0.660^* C4E -0.1110 (2) 0.81890 (18) -0.02460 (8) 0.0445 (6)H4EA -0.17923 0.816583 -0.02380 0.055^* C5E -0.12546 (19) 0.81559 (18) 0.07794 (8) 0.0446 (6)H5EA -0.195388 0.811418 0.035189 0.054^* C6E -0.03805 (18) 0.81836 (16) 0.0712 (8) 0.045^* C1F 0.22604 (18) 0.7070 (15) 0.12111 (7) 0.0351 (5)C2F 0.162463 0.662591 0.0454314 0.405^* C3F 0.33104 0.516470 0.055249 0.057^* C4F 0.3142 (2) 0.55233 (18) 0.18427 (9) 0.067^* H3FA 0.235070 0.17436 (10) 0.064^* $-1473044444444444444444444444444444444444$	C4D	0.4415 (2)	0.9915 (2)	0.05946 (9)	0.0533 (7)	
$ \begin{array}{c cccc} CSD & 0.4644 (2) & 0.9055 (2) & 0.08075 (11) & 0.0566 (7) \\ H5DA & 0.334715 & 0.881930 & 0.084976 & 0.068* \\ C6D & 0.3844 (2) & 0.85306 (18) & 0.09605 (9) & 0.0453 (6) \\ H6DA & 0.400780 & 0.794418 & 0.111328 & 0.054* \\ C1E & 0.06406 (17) & 0.82453 (15) & 0.05978 (7) & 0.0334 (5) \\ C2E & 0.07759 (19) & 0.82431 (18) & 0.00681 (8) & 0.0446 (6) \\ H2EA & 0.147239 & 0.82547 (19) & -0.03519 (8) & 0.0497 (7) \\ H3EA & -0.0108 (2) & 0.82547 (19) & -0.03519 (8) & 0.0497 (7) \\ H3EA & -0.01192 & 0.828233 & -0.00792 & 0.0459 (6) \\ H4EA & -0.170923 & 0.816583 & -0.053380 & 0.055* \\ C5E & -0.12546 (19) & 0.81559 (18) & 0.02794 (8) & 0.0445 (6) \\ H5EA & -0.095388 & 0.811418 & 0.035189 & 0.054* \\ C6E & -0.03805 (18) & 0.81836 (16) & 0.07012 (8) & 0.0375 (5) \\ H6EA & -0.048286 & 0.816009 & 0.106170 & 0.045* \\ C1F & 0.2604 (18) & 0.70707 (15) & 0.12111 (7) & 0.0351 (5) \\ L2FA & 0.162463 & 0.662691 & 0.045431 & 0.045* \\ C3F & 0.24847 (2) & 0.55839 (18) & 0.05427 (9) & 0.0477 (6) \\ H3FA & 0.23104 & 0.516470 & 0.055249 & 0.057* \\ C4F & 0.3142 (2) & 0.55839 (18) & 0.05427 (9) & 0.0477 (6) \\ H3FA & 0.345070 & 0.473104 & 0.135577 & 0.066* \\ C5F & 0.3342 (2) & 0.59283 (19) & 0.17436 (10) & 0.0614 (8) \\ L5FA & 0.378526 & 0.575078 & 0.207321 & 0.074* \\ C6F & 0.2903 (2) & 0.67900 (18) & 0.16923 (9) & 0.0513 (7) \\ H4FA & 0.345070 & 0.47104 & 0.135597 & 0.066* \\ C5F & 0.3342 (2) & 0.59283 (19) & 0.17436 (10) & 0.0614 (8) \\ L5FA & 0.378526 & 0.575078 & 0.207321 & 0.074* \\ C6F & 0.2903 (2) & 0.67900 (18) & 0.16923 (9) & 0.0513 (7) \\ H6FA & 0.30984 & 0.719733 & 0.198891 & 0.622* \\ C1F & 0.3142 (2) & 0.59283 (19) & 0.1748 (10) & 0.0514 (14) & 0.33 \\ C2S & 0.2930 (8) & 1.4590 (7) & 0.2900 (4) & 0.0818 (15) & 0.33 \\ C1S & 0.2748 (8) & 1.4030 (6) & 0.3321 (4) & 0.0744 (14) & 0.33 \\ C2S & 0.2930 (8) & 1.4590 (7) & 0.2900 (4) & 0.0818 (15) & 0.33 \\ H2S2 & 0.224550 & 1.478602 & 0.268390 & 0.123* & 0.33 \\ H2S2 & 0.224550 & 1.478602 & 0.268390 & 0.123* & 0.33 \\ H2S3 & 0.332939 & 1.424861 & 0.267223 & 0.123* & 0.33 \\ H2S2 & 0.224550 & 1.47860$	H4DA	0.496407	1.027784	0.049892	0.064*	
$ \begin{array}{cccccc} HSDA & 0.534715 & 0.881930 & 0.084976 & 0.068* \\ C6D & 0.3844 (2) & 0.85306 (18) & 0.09605 (9) & 0.0453 (6) \\ C1E & 0.06406 (17) & 0.82453 (15) & 0.05978 (7) & 0.0334 (5) \\ C2E & 0.07759 (19) & 0.82814 (18) & 0.00681 (8) & 0.0446 (6) \\ H2EA & 0.147239 & 0.832430 & -0.000792 & 0.054* \\ C3E & -0.0108 (2) & 0.82547 (19) & -0.03519 (8) & 0.0497 (7) \\ H3EA & -0.001292 & 0.828324 & -0.071351 & 0.060* \\ C4E & -0.1110 (2) & 0.81890 (18) & -0.02460 (8) & 0.0459 (6) \\ H4EA & -0.170923 & 0.816583 & -0.065380 & 0.055* \\ C5E & -0.12546 (19) & 0.81559 (18) & 0.02794 (8) & 0.0446 (6) \\ H5EA & -0.05805 (18) & 0.81836 (16) & 0.07012 (8) & 0.0375 (5) \\ H6EA & -0.048286 & 0.816009 & 0.106170 & 0.045* \\ C1F & 0.22604 (18) & 0.70707 (15) & 0.12111 (7) & 0.0351 (5) \\ C2F & 0.20602 (18) & 0.64505 (16) & 0.07863 (8) & 0.0379 (5) \\ H3EA & 0.162463 & 0.662691 & 0.045431 & 0.045* \\ C3F & 0.3142 (2) & 0.55839 (18) & 0.05249 & 0.057* \\ C4F & 0.3142 (2) & 0.552323 (18) & 0.13203 (10) & 0.0546 (7) \\ H4FA & 0.345070 & 0.473104 & 0.135597 & 0.066* \\ C5F & 0.3342 (2) & 0.59283 (19) & 0.17436 (10) & 0.0614 (8) \\ H5FA & 0.378526 & 0.575078 & 0.207321 & 0.074* \\ C6F & 0.2903 (2) & 0.67900 (18) & 0.16923 (9) & 0.0513 (7) \\ H4FA & 0.3345070 & 0.471313 & 0.198891 & 0.062* \\ NIS & 0.257 (6) & 1.3556 (5) & 0.3677 (3) & 0.0704 (14) & 0.33 \\ C2S & 0.2930 (8) & 1.4590 (7) & 0.2900 (4) & 0.818 (15) & 0.33 \\ H2S1 & 0.33223 (18) & 0.13203 (10) & 0.0513 (7) \\ H6FA & 0.303984 & 0.719733 & 0.198891 & 0.062* \\ NIS & 0.257 (6) & 1.3556 (5) & 0.3677 (3) & 0.0704 (14) & 0.33 \\ C2S & 0.2930 (8) & 1.4590 (7) & 0.2900 (4) & 0.818 (15) & 0.33 \\ H2S1 & 0.33223 (18) & 0.1238 (10) & 0.0513 (7) \\ H6FA & 0.303984 & 1.4030 (6) & 0.3321 (4) & 0.074 (4) & 0.33 \\ C2S & 0.2930 (8) & 1.4590 (7) & 0.2900 (4) & 0.818 (15) & 0.33 \\ C1S & 0.2748 (8) & 1.4030 (6) & 0.3221 (4) & 0.074 (4) & 0.33 \\ C2S & 0.2930 (8) & 1.4590 (7) & 0.2900 (4) & 0.0818 (15) & 0.33 \\ H2S1 & 0.332939 & 1.424861 & 0.267223 & 0.123* & 0.33 \\ H2S1 & 0.332939 & 1.424861 & 0.26723 & 0.123* & 0.33 \\ H$	C5D	0.4644 (2)	0.9055 (2)	0.08075 (11)	0.0566 (7)	
C6D 0.3844 (2) 0.85306 (18) 0.09605 (9) 0.0453 (6) H6DA 0.400780 0.794418 0.111328 0.054* C1E 0.06406 (17) 0.82453 (15) 0.05978 (7) 0.0334 (5) C2E 0.07759 (19) 0.8214 (18) 0.00681 (8) 0.0446 (6) H2EA 0.147239 0.82824 -0.001792 0.654* C3E -0.0108 (2) 0.828234 -0.071351 0.060* C4E -0.110 (2) 0.81890 (18) -0.02460 (8) 0.0459 (6) C4E -0.170923 0.816583 -0.053380 0.055* C5E -0.12546 (19) 0.81599 (18) 0.02794 (8) 0.0446 (6) H5EA -0.193385 0.811418 0.035189 0.645* C5E -0.2640 (18) 0.7070 (15) 0.1211 (7) 0.0351 (5) C2F 0.26062 (18) 0.64505 (16) 0.7863 (8) 0.379 (5) L2FA 0.162463 0.662691 0.45431 0.454* C3F 0.2487 (2) 0.53239 (18)	H5DA	0.534715	0.881930	0.084976	0.068*	
H6DA 0.400780 0.794418 0.111328 0.054* C1E 0.66406 (17) 0.82453 (15) 0.05978 (7) 0.0334 (5) C2E 0.07759 (19) 0.82814 (18) 0.00681 (8) 0.0446 (6) L2EA 0.147239 0.832430 -0.000792 0.054* C3E -0.0108 (2) 0.82547 (19) -0.03519 (8) 0.0497 (7) H3EA -0.001292 0.828234 -0.071351 0.060* C4E -0.1110 (2) 0.81890 (18) -0.02460 (8) 0.0459 (6) H4EA -0.170923 0.81559 (18) 0.02794 (8) 0.0446 (6) H5EA -0.195388 0.811418 0.035189 0.054* C6E -0.03805 (18) 0.81356 (16) 0.07012 (8) 0.0375 (5) H6EA -0.048286 0.816009 0.166170 0.045* C1F 0.22604 (18) 0.7070 (15) 0.12111 (7) 0.0351 (5) C2F 0.0602 (18) 0.64505 (16) 0.045431 0.0457* C3F 0.12467 0 0.55249 0.67* C4F 0.3142 (2) 0.53223 (1	C6D	0.3844 (2)	0.85306 (18)	0.09605 (9)	0.0453 (6)	
C1E 0.06406 (17) 0.82453 (15) 0.05978 (7) 0.0334 (5) C2E 0.07759 (19) 0.8214 (18) 0.00681 (8) 0.0446 (6) H2EA 0.147239 0.832430 -0.000792 0.054* C3E -0.0108 (2) 0.828234 -0.071351 0.060* H3EA -0.0110 (2) 0.81890 (18) -0.02460 (8) 0.0497 (7) H4EA -0.110 (2) 0.81890 (18) -0.023380 0.055* C5E -0.12546 (19) 0.81559 (18) 0.02794 (8) 0.0446 (6) H5EA -0.195388 0.811418 0.035189 0.054* C6E -0.03805 (18) 0.81860 (16) 0.07012 (8) 0.0375 (5) L6EA -0.048286 0.816009 0.106170 0.045* C1F 0.22604 (18) 0.7077 (15) 0.12111 (7) 0.0351 (5) C2F 0.20602 (18) 0.64505 (16) 0.7863 (8) 0.379 (5) H2FA 0.16243 0.662691 0.045431 0.04547 C3F 0.2487 (2) 0.532	H6DA	0.400780	0.794418	0.111328	0.054*	
C2E $0.07759 (19)$ $0.82814 (18)$ $0.00681 (8)$ $0.0446 (6)$ H2EA 0.147239 0.822430 -0.000792 0.054^* C3E $-0.0108 (2)$ $0.82547 (19)$ $-0.03519 (8)$ $0.0497 (7)$ H3EA -0.01292 0.828234 -0.071351 0.060^* C4E $-0.1110 (2)$ $0.81890 (18)$ $-0.02460 (8)$ $0.0459 (6)$ H4EA -0.17923 0.816583 -0.053380 0.055^* C5E $-0.12546 (19)$ $0.81559 (18)$ $0.02794 (8)$ $0.0446 (6)$ H5EA $-0.093805 (18)$ 0.811418 0.035189 0.054^* C6E $-0.03805 (18)$ $0.81836 (16)$ $0.07012 (8)$ $0.0375 (5)$ H6EA -0.048286 0.816009 0.106170 0.045^* C1F $0.22604 (18)$ $0.70707 (15)$ $0.12111 (7)$ $0.0351 (5)$ C2F $0.20602 (18)$ $0.64505 (16)$ $0.07863 (8)$ $0.0379 (5)$ H2FA 0.162463 0.662691 $0.04477 (9)$ $0.0477 (6)$ H3FA 0.233104 0.516470 0.055249 $0.0546 (7)$ H4FA 0.345070 0.473104 0.135297 0.066^* C5F $0.3342 (2)$ $0.59283 (19)$ $0.17436 (10)$ $0.0614 (8)$ H5FA 0.378526 0.575078 0.20721 $0.0744 (14)$ 0.33 C1F $0.2903 (2)$ $0.67900 (18)$ 0.62390 0.123^* 0.33 C1F $0.2393 (8)$ $1.4590 (7)$ $2.900 (4)$ $0.818 (15)$ 0.33 C1F	C1E	0.06406 (17)	0.82453 (15)	0.05978 (7)	0.0334 (5)	
H2EA 0.147239 0.832430 -0.000792 0.054* C3E -0.0108 (2) 0.828234 -0.071351 0.060* H3EA -0.001292 0.828234 -0.071351 0.060* C4E -0.110 (2) 0.81890 (18) -0.02460 (8) 0.0459 (6) H4EA -0.170923 0.816583 -0.053380 0.055* C5E -0.12546 (19) 0.81559 (18) 0.02794 (8) 0.0446 (6) H5EA -0.195388 0.811418 0.035189 0.054* C6E -0.03805 (18) 0.81836 (16) 0.07012 (8) 0.0375 (5) H6EA -0.04286 0.816009 0.106170 0.045* C1F 0.22604 (18) 0.70707 (15) 0.12111 (7) 0.0351 (5) C2F 0.20602 (18) 0.64505 (16) 0.07863 (8) 0.0379 (5) H2FA 0.162463 0.66291 0.045431 0.0447 G3F 0.2487 (2) 0.55829 (18) 0.13203 (10) 0.0544 G3F 0.2487 (2) 0.59283 (19) 0.17436 (10) 0.066* C3F 0.3342 (2) 0.59283 (19	C2E	0.07759 (19)	0.82814 (18)	0.00681 (8)	0.0446 (6)	
C3E $-0.0108 (2)$ $0.82547 (19)$ $-0.03519 (8)$ $0.0497 (7)$ H3EA -0.001292 0.828234 -0.071351 0.060^* C4E $-0.1110 (2)$ $0.81890 (18)$ $-0.02460 (8)$ $0.0459 (6)$ H4EA -0.170923 0.816583 -0.053380 0.055^* C5E $-0.12546 (19)$ $0.81559 (18)$ $0.02794 (8)$ $0.0446 (6)$ H5EA -0.195388 0.811418 0.035189 0.054^* C6E $-0.03805 (18)$ $0.81836 (16)$ $0.07012 (8)$ $0.0375 (5)$ H6EA -0.048286 0.816099 0.106170 0.045^* C1F $0.22604 (18)$ $0.7077 (15)$ $0.12111 (7)$ $0.0351 (5)$ C2F $0.20602 (18)$ $0.64505 (16)$ $0.07863 (8)$ $0.0379 (5)$ H2FA 0.162463 0.662691 0.045431 0.045^* C3F $0.2487 (2)$ $0.55239 (18)$ $0.8427 (9)$ 0.057^* C4F $0.3142 (2)$ $0.53223 (18)$ $0.13203 (10)$ $0.0546 (7)$ H4FA 0.345070 0.473104 0.135597 0.066^* C5F $0.3342 (2)$ $0.59283 (19)$ $0.17436 (10)$ $0.0614 (8)$ C5F 0.33984 0.719733 0.198891 0.062^* N1S $0.2657 (6)$ $1.3556 (5)$ $0.3677 (3)$ $0.0700 (15)$ 0.33 C2S $0.2930 (8)$ $1.4590 (7)$ $0.2900 (4)$ $0.818 (15)$ 0.33 C2F $0.2903 (8)$ $1.4590 (7)$ $0.2900 (4)$ $0.818 (15)$ 0.33 C2	H2EA	0.147239	0.832430	-0.000792	0.054*	
H3EA -0.001292 0.828234 -0.071351 0.060* C4E -0.1110 (2) 0.81890 (18) -0.02460 (8) 0.0459 (6) H4EA -0.170923 0.816583 -0.053380 0.055* C5E -0.12546 (19) 0.81559 (18) 0.02794 (8) 0.0446 (6) H5EA -0.195388 0.811418 0.035189 0.054* C6E -0.03805 (18) 0.81836 (16) 0.07012 (8) 0.0375 (5) H6EA -0.048286 0.816009 0.106170 0.045* C1F 0.22604 (18) 0.64505 (16) 0.07863 (8) 0.0379 (5) H2FA 0.162463 0.662691 0.045431 0.045* C3F 0.2487 (2) 0.55839 (18) 0.8427 (9) 0.0477 (6) H3FA 0.23104 0.516470 0.055249 0.057* C4F 0.3142 (2) 0.59233 (19) 0.17436 (10) 0.0614 (8) H5FA 0.378526 0.575078 0.207321 0.074* C6F 0.2903 (2) 0.67900 (18) 0.16923 (9) 0.0513 (7) H6FA 0.303984 0.719733 </td <td>C3E</td> <td>-0.0108 (2)</td> <td>0.82547 (19)</td> <td>-0.03519 (8)</td> <td>0.0497 (7)</td> <td></td>	C3E	-0.0108 (2)	0.82547 (19)	-0.03519 (8)	0.0497 (7)	
C4E -0.1110 (2) 0.81890 (18) -0.02460 (8) 0.0459 (6)H4EA -0.170923 0.816833 -0.053380 $0.055*$ C5E -0.12546 (19) 0.81559 (18) 0.02794 (8) 0.0446 (6)H5EA -0.0933588 0.811418 0.035189 $0.054*$ C6E -0.03805 (18) 0.81836 (16) 0.7012 (8) 0.0375 (5)H6EA -0.048286 0.816009 0.106170 $0.045*$ C1F 0.22604 (18) 0.7077 (15) 0.12111 (7) 0.0351 (5)C2F 0.2602 (18) 0.64505 (16) 0.70863 (8) 0.0379 (5)L2FA 0.162463 0.662691 0.045431 $0.045*$ C3F 0.2487 (2) 0.55839 (18) 0.8427 (9) 0.0477 (6)H3FA 0.23104 0.516470 0.055249 $0.057*$ C4F 0.3142 (2) 0.53223 (18) 0.13203 (10) 0.0614 (8)H5FA 0.378526 0.575078 0.207321 $0.074*$ C5F 0.3342 (2) 0.67900 (18) 0.16923 (9) 0.0513 (7)H6FA 0.303984 0.719733 0.198891 $0.062*$ N1S 0.2657 (6) 1.3556 (5) 0.3677 (3) 0.7000 (15) 0.33 C2S 0.2930 (8) 1.4590 (7) 0.2900 (4) 0.818 (15) 0.33 L2S1 0.334222 1.512578 0.304829 $0.123*$ 0.33 L2S1 0.33205 0.1440 (5) 0.995 (19) 0.25 C1F $0.16991(10)$ <	H3EA	-0.001292	0.828234	-0.071351	0.060*	
H4EA -0.170923 0.816583 -0.053380 0.055* C5E -0.12546 (19) 0.81559 (18) 0.02794 (8) 0.0446 (6) H5EA -0.195388 0.811418 0.035189 0.0375 (5) C6E -0.03805 (18) 0.81836 (16) 0.07012 (8) 0.0375 (5) H6EA -0.048286 0.816009 0.106170 0.045* C1F 0.22604 (18) 0.7070 (15) 0.12111 (7) 0.0351 (5) C2F 0.20602 (18) 0.64505 (16) 0.07863 (8) 0.0379 (5) H2FA 0.162463 0.662691 0.045431 0.045* C3F 0.2487 (2) 0.55239 (18) 0.032010 0.057* H4FA 0.312 (2) 0.53223 (18) 0.13203 (10) 0.0546 (7) H4FA 0.345070 0.473104 0.135597 0.066* C5F 0.3342 (2) 0.59283 (19) 0.17436 (10) 0.0614 (8) H5FA 0.378526 0.575078 0.20731 0.0704 (15) 0.33 C1F 0.2090 (2) 0.67900 (18) 0.16923 (9) 0.0513 (7) M6FA<	C4E	-0.1110 (2)	0.81890 (18)	-0.02460 (8)	0.0459 (6)	
CSE -0.12546 (19) 0.81559 (18) 0.02794 (8) 0.0446 (6) H5EA -0.195388 0.811418 0.035189 0.054* C6E -0.03805 (18) 0.81836 (16) 0.07012 (8) 0.0375 (5) H6EA -0.048286 0.816009 0.106170 0.045* C1F 0.22604 (18) 0.7070 (15) 0.12111 (7) 0.0351 (5) C2F 0.20602 (18) 0.64505 (16) 0.07863 (8) 0.0379 (5) H2FA 0.162463 0.662691 0.045431 0.045* C3F 0.2487 (2) 0.55839 (18) 0.8427 (9) 0.0477 (6) H3FA 0.3142 (2) 0.53223 (18) 0.13203 (10) 0.057* C4F 0.3142 (2) 0.53223 (18) 0.13203 (10) 0.064* SFA 0.3342 (2) 0.593283 (19) 0.17436 (10) 0.0614 (8) SFA 0.33984 0.719733 0.198891 0.662* N1S 0.2657 (6) 1.3556 (5) 0.3677 (3) 0.0704 (14) 0.33 C2S 0.2930 (8)	H4EA	-0.170923	0.816583	-0.053380	0.055*	
H5EA-0.1953880.8114180.0351890.054*C6E-0.03805 (18)0.81836 (16)0.07012 (8)0.0375 (5)H6EA-0.0482860.8160090.1061700.045*C1F0.22604 (18)0.7070 (15)0.12111 (7)0.0351 (5)C2F0.20602 (18)0.64505 (16)0.07863 (8)0.0379 (5)L2FA0.1624630.6626910.0454310.045*C3F0.2487 (2)0.55839 (18)0.8427 (9)0.0477 (6)H3FA0.2331040.5164700.0552490.057*C4F0.3142 (2)0.53223 (18)0.13203 (10)0.0546 (7)H4FA0.3450700.4731040.1355970.066*C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)H5FA0.3785260.5750780.2073210.074*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.267230.123*0.33H2S30.3329391.4248610.267230.123*0.3	C5E	-0.12546 (19)	0.81559 (18)	0.02794 (8)	0.0446 (6)	
C6E $-0.03805(18)$ $0.81836(16)$ $0.07012(8)$ $0.0375(5)$ H6EA -0.048286 0.816009 0.106170 $0.045*$ C1F $0.22604(18)$ $0.7077(15)$ $0.12111(7)$ $0.0351(5)$ C2F $0.20602(18)$ $0.64505(16)$ $0.07863(8)$ $0.0379(5)$ H2FA 0.162463 0.662691 0.045431 $0.045*$ C3F $0.2487(2)$ $0.55839(18)$ $0.08427(9)$ $0.0477(6)$ H3FA 0.233104 0.516470 0.055249 $0.057*$ C4F $0.3142(2)$ $0.53223(18)$ $0.13203(10)$ $0.066*$ C5F $0.3342(2)$ $0.59283(19)$ $0.17436(10)$ $0.0614(8)$ H5FA 0.378526 0.575078 0.207321 $0.074*$ C6F $0.2903(2)$ $0.67900(18)$ $0.16923(9)$ $0.0513(7)$ H6FA 0.303984 0.719733 0.198891 $0.0700(15)$ 0.33 C1S $0.2657(6)$ $1.3556(5)$ $0.3321(4)$ $0.0704(14)$ 0.33 C2S $0.2903(8)$ $1.4590(7)$ $0.2900(4)$ $0.818(15)$ 0.33 H2S1 0.334222 1.512578 0.304829 $0.123*$ 0.33 H2S2 0.24550 1.478602 0.268390 $0.123*$ 0.33 H2S2 0.224550 1.478602 0.268390 $0.123*$ 0.33 H2S2 $0.1267(12)$ $1.3567(10)$ $0.1851(5)$ $0.0995(19)$ 0.25 C1T $0.1924(12)$ $1.4067(10)$ $0.2333(5)$ $0.9912(17)$ 0.25	H5EA	-0.195388	0.811418	0.035189	0.054*	
H6EA-0.0482860.8160090.1061700.045*C1F0.22604 (18)0.70707 (15)0.12111 (7)0.0351 (5)C2F0.20602 (18)0.64505 (16)0.07863 (8)0.0379 (5)H2FA0.1624630.6626910.0454310.045*C3F0.2487 (2)0.55839 (18)0.08427 (9)0.0477 (6)H3FA0.231040.5164700.0552490.057*C4F0.3142 (2)0.53223 (18)0.13203 (10)0.0546 (7)H4FA0.3450700.4731040.1355970.066*C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)H5FA0.3785260.5750780.2073210.0704*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.309840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2000 (4)0.818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33H2S30.3320391.4248610.267230.123*0.33H2S10.1767 (12)1.3567 (10)0.1851 (5)0.0995 (19)0.25C1T0.1924 (12)1.4067 (10) <td>C6E</td> <td>-0.03805 (18)</td> <td>0.81836 (16)</td> <td>0.07012 (8)</td> <td>0.0375 (5)</td> <td></td>	C6E	-0.03805 (18)	0.81836 (16)	0.07012 (8)	0.0375 (5)	
C1F 0.22604 (18) 0.7070 (15) 0.12111 (7) 0.0351 (5) C2F 0.20602 (18) 0.64505 (16) 0.07863 (8) 0.0379 (5) H2FA 0.162463 0.662691 0.045431 0.045* C3F 0.2487 (2) 0.55839 (18) 0.08427 (9) 0.0477 (6) H3FA 0.233104 0.516470 0.055249 0.057* C4F 0.3142 (2) 0.53223 (18) 0.13203 (10) 0.0546 (7) H4FA 0.345070 0.473104 0.135597 0.066* C5F 0.3342 (2) 0.59283 (19) 0.17436 (10) 0.0614 (8) H5FA 0.378526 0.575078 0.207321 0.074* C6F 0.2903 (2) 0.67900 (18) 0.16923 (9) 0.0513 (7) H6FA 0.303984 0.719733 0.198891 0.662* N1S 0.2657 (6) 1.3556 (5) 0.3677 (3) 0.0700 (15) 0.33 C2S 0.2930 (8) 1.4590 (7) 0.2900 (4) 0.818 (15) 0.33 C2S 0.2	H6EA	-0.048286	0.816009	0.106170	0.045*	
C2F 0.20602 (18) 0.64505 (16) 0.07863 (8) 0.0379 (5) H2FA 0.162463 0.662691 0.045431 0.045* C3F 0.2487 (2) 0.55839 (18) 0.08427 (9) 0.0477 (6) H3FA 0.233104 0.516470 0.055249 0.057* C4F 0.3142 (2) 0.53223 (18) 0.13203 (10) 0.0546 (7) H4FA 0.345070 0.473104 0.135597 0.066* C5F 0.3342 (2) 0.59283 (19) 0.17436 (10) 0.0614 (8) H5FA 0.378526 0.575078 0.207321 0.074* C6F 0.2903 (2) 0.67900 (18) 0.16923 (9) 0.0513 (7) H6FA 0.303984 0.719733 0.198891 0.062* N1S 0.2657 (6) 1.3556 (5) 0.3677 (3) 0.0700 (15) 0.33 C1S 0.2748 (8) 1.4030 (6) 0.3321 (4) 0.818 (15) 0.33 H2S1 0.334222 1.512578 0.304829 0.123* 0.33 H2S2	C1F	0.22604 (18)	0.70707 (15)	0.12111 (7)	0.0351 (5)	
H2FA0.1624630.6626910.0454310.045*C3F0.2487 (2)0.55839 (18)0.08427 (9)0.0477 (6)H3FA0.2331040.5164700.0552490.057*C4F0.3142 (2)0.53223 (18)0.13203 (10)0.0546 (7)H4FA0.3450700.4731040.1355970.066*C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)H5FA0.3785260.5750780.2073210.074*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.07144 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0912 (17)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T30.1630141.4681070.2260430.137*0.25	C2F	0.20602 (18)	0.64505 (16)	0.07863 (8)	0.0379 (5)	
C3F0.2487 (2)0.55839 (18)0.08427 (9)0.0477 (6)H3FA0.2331040.5164700.0552490.057*C4F0.3142 (2)0.53223 (18)0.13203 (10)0.0546 (7)H4FA0.3450700.4731040.1355970.066*C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)H5FA0.3785260.5750780.2073210.074*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.07144 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H2FA	0.162463	0.662691	0.045431	0.045*	
H3FA0.2331040.5164700.0552490.057*C4F0.3142 (2)0.53223 (18)0.13203 (10)0.0546 (7)H4FA0.3450700.4731040.1355970.066*C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)H5FA0.3785260.5750780.2073210.074*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1630141.4681070.2260430.137*0.25	C3F	0.2487 (2)	0.55839 (18)	0.08427 (9)	0.0477 (6)	
C4F0.3142 (2)0.53223 (18)0.13203 (10)0.0546 (7)H4FA0.3450700.4731040.1355970.066*C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)H5FA0.3785260.5750780.2073210.074*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0912 (17)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H3FA	0.233104	0.516470	0.055249	0.057*	
H4FA0.3450700.4731040.1355970.066*C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)H5FA0.3785260.5750780.2073210.074*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	C4F	0.3142 (2)	0.53223 (18)	0.13203 (10)	0.0546 (7)	
C5F0.3342 (2)0.59283 (19)0.17436 (10)0.0614 (8)H5FA0.3785260.5750780.2073210.074*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0912 (17)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H4FA	0.345070	0.473104	0.135597	0.066*	
H5FA0.3785260.5750780.2073210.074*C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0912 (17)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2500020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	C5F	0.3342 (2)	0.59283 (19)	0.17436 (10)	0.0614 (8)	
C6F0.2903 (2)0.67900 (18)0.16923 (9)0.0513 (7)H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H5FA	0.378526	0.575078	0.207321	0.074*	
H6FA0.3039840.7197330.1988910.062*N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T30.1630141.4681070.2260430.137*0.25	C6F	0.2903 (2)	0.67900 (18)	0.16923 (9)	0.0513 (7)	
N1S0.2657 (6)1.3556 (5)0.3677 (3)0.0700 (15)0.33C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H6FA	0.303984	0.719733	0.198891	0.062*	
C1S0.2748 (8)1.4030 (6)0.3321 (4)0.0744 (14)0.33C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T30.1630141.4681070.2260430.137*0.25	N1S	0.2657 (6)	1.3556 (5)	0.3677 (3)	0.0700 (15)	0.33
C2S0.2930 (8)1.4590 (7)0.2900 (4)0.0818 (15)0.33H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	C1S	0.2748 (8)	1.4030 (6)	0.3321 (4)	0.0744 (14)	0.33
H2S10.3342221.5125780.3048290.123*0.33H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	C2S	0.2930 (8)	1.4590 (7)	0.2900 (4)	0.0818 (15)	0.33
H2S20.2245501.4786020.2683900.123*0.33H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H2S1	0.334222	1.512578	0.304829	0.123*	0.33
H2S30.3329391.4248610.2672230.123*0.33N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H2S2	0.224550	1.478602	0.268390	0.123*	0.33
N1T0.1809 (10)1.3230 (8)0.1440 (5)0.0995 (19)0.25C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H2S3	0.332939	1.424861	0.267223	0.123*	0.33
C1T0.1767 (12)1.3567 (10)0.1851 (5)0.0967 (18)0.25C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	N1T	0.1809 (10)	1.3230 (8)	0.1440 (5)	0.0995 (19)	0.25
C2T0.1924 (12)1.4067 (10)0.2333 (5)0.0912 (17)0.25H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	C1T	0.1767 (12)	1.3567 (10)	0.1851 (5)	0.0967 (18)	0.25
H2T10.2689411.4108180.2483530.137*0.25H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	C2T	0.1924 (12)	1.4067 (10)	0.2333 (5)	0.0912 (17)	0.25
H2T20.1563591.3759990.2590020.137*0.25H2T30.1630141.4681070.2260430.137*0.25	H2T1	0.268941	1.410818	0.248353	0.137*	0.25
H2T3 0.163014 1.468107 0.226043 0.137* 0.25	H2T2	0.156359	1.375999	0.259002	0.137*	0.25
	H2T3	0.163014	1.468107	0.226043	0.137*	0.25

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.02286 (7)	0.03057 (9)	0.01702 (7)	0.00603 (6)	0.00335 (5)	0.00011 (6)
Pd2	0.02643 (8)	0.03380 (9)	0.01603 (7)	-0.00787 (7)	0.00293 (5)	0.00017 (6)
S1	0.0255 (3)	0.0476 (4)	0.0223 (2)	0.0063 (2)	0.00533 (18)	0.0017 (2)

supporting information

S2	0.0291 (3)	0.0485 (4)	0.0253 (2)	-0.0039 (3)	0.01024 (19)	-0.0011 (2)
P1	0.0293 (3)	0.0286 (3)	0.0164 (2)	0.0046 (2)	0.00299 (18)	0.00043 (19)
P2	0.0365 (3)	0.0359 (3)	0.0171 (2)	-0.0075 (3)	0.00384 (19)	-0.0021 (2)
N1	0.0692 (15)	0.0542 (14)	0.0369 (11)	0.0373 (12)	0.0003 (9)	-0.0038 (10)
N2	0.0887 (18)	0.0875 (19)	0.0348 (11)	-0.0607 (16)	-0.0051 (11)	0.0123 (11)
N11	0.0345 (9)	0.0289 (9)	0.0172 (7)	0.0039 (8)	0.0028 (6)	-0.0003 (6)
N12	0.0564 (13)	0.0378 (11)	0.0256 (9)	0.0245 (10)	0.0002 (8)	-0.0022 (8)
N21	0.0337 (9)	0.0324 (10)	0.0183 (7)	-0.0077 (8)	0.0034 (6)	0.0014 (7)
N22	0.0480 (12)	0.0498 (13)	0.0247 (9)	-0.0249 (10)	0.0017 (8)	0.0027 (8)
C1	0.0385 (12)	0.0475 (14)	0.0213 (10)	0.0216 (11)	0.0018 (8)	-0.0009(9)
C2	0.0484 (14)	0.0545 (16)	0.0182 (9)	-0.0221(12)	0.0001 (9)	0.0018 (9)
C11	0.0373 (11)	0.0330 (12)	0.0166 (8)	0.0129 (10)	0.0039 (7)	0.0013 (8)
C12	0.0769 (19)	0.0327(13)	0.0291 (11)	0.0036 (13)	-0.0023(11)	-0.0074(10)
C13	0.0486 (14)	0.0383(13)	0.0247(10)	-0.0040(11)	-0.0020(9)	-0.0030(9)
C21	0.0383(12)	0.0382(12)	0.0171(9)	-0.0130(10)	0.0058(8)	-0.0007(8)
C22	0.0741(19)	0.0302(12) 0.0377(14)	0.0299(12)	-0.0152(14)	0.0020(0)	0.0070(10)
C23	0.0711(19) 0.0488(14)	0.0377(11) 0.0380(13)	0.0252(12)	-0.0022(11)	0.0013(11) 0.0021(9)	0.0061 (9)
C14	0.0400(14) 0.0416(12)	0.0319(12)	0.0232(10)	0.0022(11)	0.0021(9)	0.0001(9)
$C_{2\Lambda}$	0.0410(12) 0.0558(15)	0.0317(12) 0.0428(14)	0.0231(9)	-0.0114(12)	-0.0013(9)	0.0001(0)
C2A	0.0550(15)	0.0420(14) 0.0572(18)	0.0249(10) 0.0314(12)	-0.0266(16)	-0.0015(0)	0.0040(9)
	0.077(2)	0.0372(18)	0.0314(12)	-0.0274(17)	0.0040(12)	-0.0011(11)
C5A	0.104(2)	0.0472(17)	0.0410(14) 0.0342(13)	-0.0140(15)	0.0040(14)	0.0003(12)
CGA	0.092(2)	0.0407(13) 0.0338(13)	0.0342(13)	-0.0020(11)	0.0003(13)	0.0072(11)
CID	0.0337(13)	0.0338(13)	0.0240(10)	-0.0039(11)	0.0043 (9)	0.0022(9)
CIB	0.0303(11)	0.0294(11)	0.0202(9)	0.0032(9)	-0.0011(8)	0.0016(8)
C2B	0.0401 (13)	0.0606(17)	0.0287 (11)	0.0152 (12)	-0.0010(9)	-0.0082 (11)
C3B	0.0399 (14)	0.081 (2)	0.0400 (13)	0.0209 (14)	-0.00/4 (10)	-0.0121(13)
C4B	0.0489 (15)	0.0501 (16)	0.0305 (12)	0.0024 (13)	-0.0105 (10)	-0.0006 (10)
C5B	0.0552 (15)	0.0591 (17)	0.0191 (10)	-0.0084 (13)	0.0007 (9)	0.0023 (10)
C6B	0.0401 (13)	0.0564 (16)	0.0220 (10)	0.0003 (12)	0.0042 (8)	0.0013 (10)
CIC	0.0318 (10)	0.0367 (12)	0.0180 (9)	0.0049 (9)	0.0066 (7)	0.0008 (8)
C2C	0.0412 (12)	0.0409 (14)	0.0296 (10)	0.0073 (11)	0.0138 (9)	-0.0022 (9)
C3C	0.0614 (17)	0.0448 (15)	0.0342 (12)	0.0128 (13)	0.0175 (11)	-0.0029 (10)
C4C	0.0507 (16)	0.071 (2)	0.0425 (14)	0.0266 (15)	0.0195 (11)	-0.0012 (13)
C5C	0.0335 (14)	0.090 (3)	0.0632 (17)	0.0040 (15)	0.0216 (12)	-0.0104 (16)
C6C	0.0374 (13)	0.0560 (17)	0.0429 (13)	-0.0036 (12)	0.0139 (10)	-0.0054 (11)
C1D	0.0412 (12)	0.0432 (14)	0.0174 (9)	-0.0092 (10)	0.0088 (8)	-0.0040 (8)
C2D	0.0445 (13)	0.0522 (15)	0.0243 (10)	-0.0115 (12)	0.0070 (9)	0.0041 (10)
C3D	0.0653 (17)	0.0568 (17)	0.0289 (11)	-0.0141 (15)	0.0158 (11)	0.0059 (11)
C4D	0.0581 (17)	0.070 (2)	0.0386 (13)	-0.0245 (15)	0.0250 (11)	-0.0068 (12)
C5D	0.0507 (16)	0.066 (2)	0.0603 (17)	-0.0054 (15)	0.0290 (13)	-0.0093 (15)
C6D	0.0494 (15)	0.0484 (16)	0.0423 (13)	-0.0043 (13)	0.0193 (11)	-0.0062 (11)
C1E	0.0427 (12)	0.0358 (13)	0.0198 (9)	-0.0067 (10)	0.0015 (8)	-0.0032 (8)
C2E	0.0484 (14)	0.0616 (17)	0.0230 (10)	-0.0045 (13)	0.0049 (9)	-0.0039 (10)
C3E	0.0586 (16)	0.0666 (19)	0.0203 (10)	-0.0040 (15)	-0.0013 (10)	-0.0051 (10)
C4E	0.0530 (15)	0.0497 (16)	0.0278 (11)	-0.0079 (13)	-0.0098 (10)	-0.0034 (10)
C5E	0.0435 (13)	0.0538 (16)	0.0327 (12)	-0.0080 (12)	-0.0021 (10)	0.0043 (11)
C6E	0.0448 (13)	0.0431 (14)	0.0227 (10)	-0.0098 (11)	0.0018 (9)	0.0014 (9)
C1F	0.0431 (13)	0.0376 (13)	0.0242 (10)	-0.0076 (10)	0.0059 (8)	-0.0015 (9)
	· · /	· /	· /	× /	× /	· · /

supporting information

C2F	0.0463 (13)	0.0431 (14)	0.0248 (10)	-0.0099 (11)	0.0084 (9)	-0.0027 (9)
C3F	0.0661 (17)	0.0425 (15)	0.0375 (13)	-0.0076 (13)	0.0171 (11)	-0.0096 (11)
C4F	0.078 (2)	0.0376 (15)	0.0483 (15)	0.0073 (14)	0.0135 (13)	0.0001 (12)
C5F	0.088 (2)	0.0457 (17)	0.0427 (15)	0.0098 (16)	-0.0065 (14)	0.0002 (12)
C6F	0.0735 (18)	0.0430 (16)	0.0313 (12)	0.0033 (14)	-0.0045 (11)	-0.0044 (10)
N1S	0.084 (3)	0.040 (3)	0.098 (4)	0.014 (3)	0.049 (3)	-0.006 (2)
C1S	0.089 (3)	0.046 (3)	0.101 (4)	0.015 (3)	0.051 (3)	-0.002 (2)
C2S	0.098 (3)	0.055 (3)	0.105 (4)	0.016 (3)	0.051 (3)	0.004 (2)
N1T	0.113 (4)	0.071 (4)	0.119 (5)	0.021 (4)	0.033 (4)	-0.004 (3)
C1T	0.109 (4)	0.069 (4)	0.118 (4)	0.020 (3)	0.037 (4)	0.000 (3)
C2T	0.104 (4)	0.065 (3)	0.114 (4)	0.017 (3)	0.044 (3)	0.004 (3)

Geometric parameters (Å, °)

Pd1—C1	1.957 (2)	C6B—H6BA	0.9500
Pd1—N11	2.0346 (17)	C1C—C6C	1.374 (3)
Pd1—P1	2.2914 (5)	C1C—C2C	1.394 (3)
Pd1—S2	2.3541 (5)	C2C—C3C	1.394 (3)
Pd2—C2	1.943 (2)	C2C—H2CA	0.9500
Pd2—N21	2.0345 (17)	C3C—C4C	1.366 (3)
Pd2—P2	2.2984 (5)	СЗС—НЗСА	0.9500
Pd2—S1	2.3542 (5)	C4C—C5C	1.373 (4)
S1—C11	1.734 (2)	C4C—H4CA	0.9500
S2—C21	1.733 (2)	C5C—C6C	1.383 (3)
P1—C1A	1.813 (2)	C5C—H5CA	0.9500
P1—C1C	1.823 (2)	C6C—H6CA	0.9500
P1—C1B	1.8247 (18)	C1D—C6D	1.373 (3)
P2—C1F	1.815 (2)	C1D—C2D	1.400 (3)
P2—C1D	1.820 (2)	C2D—C3D	1.384 (3)
P2—C1E	1.830 (2)	C2D—H2DA	0.9500
N1-C1	1.143 (3)	C3D—C4D	1.369 (4)
N2—C2	1.148 (3)	C3D—H3DA	0.9500
N11-C11	1.333 (2)	C4D—C5D	1.381 (4)
N11-C13	1.382 (3)	C4D—H4DA	0.9500
N12-C11	1.350 (3)	C5D—C6D	1.395 (3)
N12-C12	1.367 (3)	C5D—H5DA	0.9500
N12—H12A	0.8800	C6D—H6DA	0.9500
N21—C21	1.337 (3)	C1E—C6E	1.385 (3)
N21—C23	1.377 (3)	C1E—C2E	1.390 (3)
N22-C21	1.348 (3)	C2E—C3E	1.394 (3)
N22—C22	1.365 (3)	C2E—H2EA	0.9500
N22—H22A	0.8800	C3E—C4E	1.363 (3)
C12—C13	1.349 (3)	СЗЕ—НЗЕА	0.9500
C12—H13A	0.9500	C4E—C5E	1.383 (3)
C13—H14A	0.9500	C4E—H4EA	0.9500
C22—C23	1.348 (3)	C5E—C6E	1.388 (3)
С22—Н23А	0.9500	C5E—H5EA	0.9500
C23—H24A	0.9500	C6E—H6EA	0.9500

C1A—C6A	1.392 (3)	C1F—C6F	1.393 (3)
C1A—C2A	1.400 (3)	C1F—C2F	1.395 (3)
C2A—C3A	1.381 (3)	C2F—C3F	1.380 (3)
C2A—H2AA	0.9500	C2F—H2FA	0.9500
C3A—C4A	1.384 (3)	C3F—C4F	1.385 (3)
C3A—H3AA	0.9500	C3F—H3FA	0.9500
C4A - C5A	1 395 (3)	C4F—C5F	1 379 (3)
C4A—H4AA	0.9500	C4F—H4FA	0.9500
C5A-C6A	1 384 (3)	C5F—C6F	1,379(4)
C5A—H5AA	0.9500	C5F—H5FA	0.9500
C6A—H6AA	0.9500	C6F—H6FA	0.9500
C1B-C6B	1 383 (3)	N1S-C1S	1.163(10)
C1B - C2B	1 301 (3)	C1S = C2S	1.105(10) 1.405(11)
C^{2B} C^{2B}	1.391(3) 1 387(3)	C_{2S} H2S1	0.9800
C2B H2BA	0.9500	C25 H2S2	0.9800
C_{2D} C_{4D}	1.374(3)	C25 H2S3	0.9800
$C_{3D} = C_{4D}$	0.0500	N1T C1T	1.167(10)
CAD C5D	0.9300		1.107(10)
C4D = U4DA	1.304 (3)	C11 - C21	1.403(11)
C4D—II4DA	0.9300		0.9800
CSB—C6B	1.387 (3)	C21—H212	0.9800
СЗВ—НЗВА	0.9500	C21—H213	0.9800
C1—Pd1—N11	179.31 (8)	C6B—C5B—H5BA	120.1
C1—Pd1—P1	87.19 (6)	C1B—C6B—C5B	120.9 (2)
N11—Pd1—P1	92.80 (4)	C1B—C6B—H6BA	119.6
C1—Pd1—S2	87.99 (6)	С5В—С6В—Н6ВА	119.6
N11—Pd1—S2	92.06 (5)	C6C—C1C—C2C	118.4 (2)
P1—Pd1—S2	173.855 (19)	C6C-C1C-P1	122.32 (18)
C2—Pd2—N21	178.38 (8)	C2C-C1C-P1	119.14 (16)
C2—Pd2—P2	89.18 (7)	C3C-C2C-C1C	120.2 (2)
$N_2 I - Pd_2 - P_2$	92.44 (5)	C3C—C2C—H2CA	119.9
C_2 —Pd2—S1	86.54 (7)	C1C—C2C—H2CA	119.9
$N_2 I - Pd_2 - SI$	91.84 (5)	C4C-C3C-C2C	120.2(2)
P2— $Pd2$ — $S1$	174 489 (19)	C4C-C3C-H3CA	1199
C_{11} S_{1} Pd_{2}	103.47 (7)	C2C—C3C—H3CA	119.9
C_21 — S_2 — Pd_1	103.09(7)	$C_3C - C_4C - C_5C$	120.0(2)
C1A - P1 - C1C	105.05(10)	C3C-C4C-H4CA	120.0 (2)
C1A - P1 - C1B	106 83 (9)	C5C-C4C-H4CA	120.0
C1C-P1-C1B	103.83(9)	C4C-C5C-C6C	120.0 120.1(3)
C1A - P1 - Pd1	112 97 (6)	C4C-C5C-H5CA	120.1 (3)
C1C - P1 - Pd1	115.90 (6)	C6C - C5C - H5CA	120.0
C1B - P1 - Pd1	113.90(0) 111.44(7)	C1C - C6C - C5C	120.0 121.2(2)
$C1E = P^2 = C1D$	104 60 (11)	C1C - C6C - H6CA	119.4
$C1F_P2_C1F$	105.46 (10)	$C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}$	119. 4
C1D P2 C1E	107.40 (10)	C6D $C1D$ $C2D$	119.7
C1E P2 Pd2	114 40 (7)	C(D) = C(D) = C(D)	121 00 (18)
C1D P2 Pd2	117.77(7) 112.82(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.09(10) 110.20(10)
C1D $F2$ $FU2$	113.02(7)	$C_2 D = C_1 D = C_1 D$	119.39(10)
UIE-F2-FUZ	113.00(7)	$C_{2}D - C_{2}D - C_{1}D$	119.9 (2)

C11—N11—C13	107.43 (18)	C3D—C2D—H2DA	120.0
C11—N11—Pd1	122.63 (14)	C1D—C2D—H2DA	120.0
C13—N11—Pd1	129.94 (15)	C4D—C3D—C2D	120.7 (3)
C11—N12—C12	108.74 (19)	C4D—C3D—H3DA	119.7
C11—N12—H12A	125.6	C2D—C3D—H3DA	119.7
C12—N12—H12A	125.6	C3D—C4D—C5D	119.7 (3)
C21—N21—C23	107.19 (18)	C3D—C4D—H4DA	120.1
C21—N21—Pd2	122.77 (15)	C5D—C4D—H4DA	120.1
C23—N21—Pd2	130.03 (15)	C4D-C5D-C6D	120.2 (3)
C21—N22—C22	108.90 (19)	C4D—C5D—H5DA	119.9
C21—N22—H22A	125.6	C6D—C5D—H5DA	119.9
C22—N22—H22A	125.6	C1D—C6D—C5D	120.3 (3)
N1—C1—Pd1	178.1 (2)	C1D—C6D—H6DA	119.8
N2—C2—Pd2	178.2 (2)	C5D—C6D—H6DA	119.8
N11—C11—N12	108.68 (19)	C6E—C1E—C2E	119.17 (18)
N11—C11—S1	125.60 (16)	C6E—C1E—P2	120.21 (14)
N12-C11-S1	125.72 (16)	C2E—C1E—P2	120.60 (17)
C13—C12—N12	106.7 (2)	C1E—C2E—C3E	120.1 (2)
C13—C12—H13A	126.6	C1E—C2E—H2EA	119.9
N12—C12—H13A	126.6	C3E—C2E—H2EA	119.9
C12—C13—N11	108.4 (2)	C4E—C3E—C2E	120.3 (2)
C12—C13—H14A	125.8	C4E—C3E—H3EA	119.9
N11—C13—H14A	125.8	С2Е—С3Е—Н3ЕА	119.9
N21—C21—N22	108.60 (19)	C3E—C4E—C5E	120.2 (2)
N21—C21—S2	126.07 (16)	C3E—C4E—H4EA	119.9
N22—C21—S2	125.32 (17)	C5E—C4E—H4EA	119.9
C23—C22—N22	106.5 (2)	C4E—C5E—C6E	120.1 (2)
C23—C22—H23A	126.8	C4E—C5E—H5EA	119.9
N22—C22—H23A	126.8	C6E—C5E—H5EA	119.9
C22—C23—N21	108.8 (2)	C1E—C6E—C5E	120.17 (19)
C22—C23—H24A	125.6	C1E—C6E—H6EA	119.9
N21—C23—H24A	125.6	C5E—C6E—H6EA	119.9
C6A—C1A—C2A	119.2 (2)	C6F—C1F—C2F	118.1 (2)
C6A—C1A—P1	123.45 (16)	C6F—C1F—P2	118.58 (17)
C2A—C1A—P1	117.38 (16)	C2F—C1F—P2	123.18 (16)
C3A—C2A—C1A	120.7 (2)	C3F—C2F—C1F	120.8 (2)
СЗА—С2А—Н2АА	119.7	C3F—C2F—H2FA	119.6
С1А—С2А—Н2АА	119.7	C1F—C2F—H2FA	119.6
C2A—C3A—C4A	119.9 (2)	C2F—C3F—C4F	120.3 (2)
С2А—С3А—НЗАА	120.0	C2F—C3F—H3FA	119.8
С4А—С3А—НЗАА	120.0	C4F—C3F—H3FA	119.8
C3A—C4A—C5A	119.8 (2)	C5F—C4F—C3F	119.4 (3)
СЗА—С4А—Н4АА	120.1	C5F—C4F—H4FA	120.3
С5А—С4А—Н4АА	120.1	C3F—C4F—H4FA	120.3
C6A—C5A—C4A	120.4 (2)	C4F—C5F—C6F	120.5 (2)
С6А—С5А—Н5АА	119.8	C4F—C5F—H5FA	119.7
С4А—С5А—Н5АА	119.8	C6F—C5F—H5FA	119.7
C5A-C6A-C1A	120.0 (2)	C5F-C6F-C1F	120.8 (2)
			1=0.0 (2)

С5А—С6А—Н6АА	120.0	C5F—C6F—H6FA	119.6
С1А—С6А—Н6АА	120.0	C1F—C6F—H6FA	119.6
C6B—C1B—C2B	118.82 (17)	N1S-C1S-C2S	176.2 (11)
C6B—C1B—P1	121.48 (16)	C1S—C2S—H2S1	109.5
C2B-C1B-P1	119.70 (14)	C1S-C2S-H2S2	109.5
C3B-C2B-C1B	119.6 (2)	H2S1 - C2S - H2S2	109.5
C3B-C2B-H2BA	120.2	C1S-C2S-H2S3	109.5
C1B-C2B-H2BA	120.2	$H_{2S1} - C_{2S} - H_{2S3}$	109.5
C4B-C3B-C2B	120.2 120.7(2)	H2S2-C2S-H2S3	109.5
C4B-C3B-H3BA	119.7	NIT-CIT-C2T	167.3 (16)
$C^{2}B$ $C^{3}B$ $H^{3}B^{4}$	119.7	C1T C2T H2T1	109.5
C5B-C4B-C3B	120.1 (2)	C1T - C2T - H2T2	109.5
C5B - C4B - H4BA	110.0	$H_{21} = C_{21} = H_{212}$	109.5
C_{3B} C_{4B} H_{4BA}	119.9	C1T - C2T - H2T3	109.5
$C_{AB} = C_{AB} = C_{AB} = C_{AB}$	119.9 110.8(2)	$\begin{array}{c} 11 \\ -0.21 \\ -1.213 \\ 1$	109.5
C4B = C5B = C0B	119.8 (2)	$H_2T_1 = C_2T = H_2T_3$ $H_2T_2 = C_2T = H_2T_3$	109.5
C4D—C5D—II5DA	120.1	11212-021-11213	109.5
C13 N11 C11 N12	-1.0(2)	Pd1 P1 C1C C6C	107 61 (17)
Pd1 N11 C11 N12	1.0(2) 170.60(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.01(17) 166.82(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.09(12) 178.50(14)	C1R = P1 = C1C = C2C	54.80(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.8(2)	$\begin{array}{c} C1D - F1 - C1C - C2C \\ Pd1 P1 - C1C - C2C \\ \end{array}$	-67.74(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8(2)	$\frac{1}{1} - \frac{1}{1} - \frac{1}$	07.74(10)
C12 - N12 - C11 - N11	0.3(2) -170.08(15)	$P_1 = C_1 C_2 C_2 C_2 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3 C_3$	-0.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1/9.06(13)	FI = CIC = C2C = C3C	1/3.43(13)
Pd2—SI—CII—NII	-38.55(17)	C1C - C2C - C3C - C4C	0.1(3)
Pd2 = SI = CII = NI2	120.92(16)	121 - 131 - 141 - 151	0.7(4)
CII = NI2 = CI2 = CI3	0.3(2)	$C_{3}C_{-}C_{4}C_{-}C_{5}C_{-}C_{6}C_{-}C_{-$	-1.5 (4)
N12—C12—C13—N11	-1.0(2)	C_2C — C_1C — C_6C — C_5C	-0.7(3)
CII—NII—CI3—CI2	1.3 (2)	PI-CIC-C6C-C5C	-176.07 (19)
Pd1—N11—C13—C12	-179.55 (14)	C4C—C5C—C6C—C1C	1.5 (4)
C23—N21—C21—N22	-1.0 (2)	C1F—P2—C1D—C6D	-23.41 (19)
Pd2—N21—C21—N22	179.80 (12)	C1E—P2—C1D—C6D	-133.98 (18)
C23—N21—C21—S2	177.87 (14)	Pd2—P2—C1D—C6D	102.27 (17)
Pd2—N21—C21—S2	-1.3(2)	C1F—P2—C1D—C2D	163.28 (16)
C22—N22—C21—N21	0.7 (2)	C1E—P2—C1D—C2D	52.72 (18)
C22—N22—C21—S2	-178.16 (16)	Pd2—P2—C1D—C2D	-71.03 (17)
Pd1—S2—C21—N21	-57.77 (17)	C6D—C1D—C2D—C3D	-0.8 (3)
Pd1—S2—C21—N22	120.92 (16)	P2—C1D—C2D—C3D	172.62 (16)
C21—N22—C22—C23	-0.1 (2)	C1D—C2D—C3D—C4D	0.4 (3)
N22—C22—C23—N21	-0.5(2)	C2D—C3D—C4D—C5D	0.8 (4)
C21—N21—C23—C22	0.9 (2)	C3D—C4D—C5D—C6D	-1.6 (4)
Pd2—N21—C23—C22	-179.96 (14)	C2D-C1D-C6D-C5D	0.0 (3)
C1C—P1—C1A—C6A	-98.1 (2)	P2—C1D—C6D—C5D	-173.35 (18)
C1B—P1—C1A—C6A	11.7 (2)	C4D-C5D-C6D-C1D	1.2 (4)
Pd1—P1—C1A—C6A	134.63 (18)	C1F—P2—C1E—C6E	96.5 (2)
C1C—P1—C1A—C2A	82.64 (19)	C1D—P2—C1E—C6E	-153.57 (19)
C1B—P1—C1A—C2A	-167.49 (17)	Pd2—P2—C1E—C6E	-29.3 (2)
Pd1—P1—C1A—C2A	-44.6 (2)	C1F—P2—C1E—C2E	-81.6 (2)
C6A—C1A—C2A—C3A	2.1 (4)	C1D—P2—C1E—C2E	28.4 (2)

P1 C1A C2A C3A	-1787(2)	PA2 P2 C1E C2E	152 62 (17)
$C_{1A} = C_{2A} = C_{3A}$	1/8.7(2)		152.02(17)
CIA—C2A—C3A—C4A	-1.2 (4)	COE—CIE—C2E—C3E	-0.1 (4)
C2A—C3A—C4A—C5A	-0.7 (5)	P2—C1E—C2E—C3E	178.0 (2)
C3A—C4A—C5A—C6A	1.8 (5)	C1E—C2E—C3E—C4E	-0.3 (4)
C4A—C5A—C6A—C1A	-0.9 (4)	C2E—C3E—C4E—C5E	0.5 (4)
C2A—C1A—C6A—C5A	-1.0 (4)	C3E—C4E—C5E—C6E	-0.4 (4)
P1—C1A—C6A—C5A	179.8 (2)	C2E—C1E—C6E—C5E	0.2 (3)
C1A—P1—C1B—C6B	-83.0 (2)	P2-C1E-C6E-C5E	-177.91 (18)
C1C—P1—C1B—C6B	27.7 (2)	C4E—C5E—C6E—C1E	0.1 (4)
Pd1—P1—C1B—C6B	153.15 (17)	C1D—P2—C1F—C6F	90.2 (2)
C1A—P1—C1B—C2B	97.0 (2)	C1E—P2—C1F—C6F	-160.00 (19)
C1C—P1—C1B—C2B	-152.31 (19)	Pd2—P2—C1F—C6F	-35.1 (2)
Pd1—P1—C1B—C2B	-26.9 (2)	C1D—P2—C1F—C2F	-85.8 (2)
C6B—C1B—C2B—C3B	0.4 (4)	C1E—P2—C1F—C2F	24.1 (2)
P1—C1B—C2B—C3B	-179.6 (2)	Pd2—P2—C1F—C2F	148.98 (17)
C1B—C2B—C3B—C4B	-0.9 (4)	C6F—C1F—C2F—C3F	0.0 (4)
C2B—C3B—C4B—C5B	0.6 (4)	P2—C1F—C2F—C3F	175.98 (19)
C3B—C4B—C5B—C6B	0.2 (4)	C1F—C2F—C3F—C4F	-1.4 (4)
C2B—C1B—C6B—C5B	0.4 (4)	C2F—C3F—C4F—C5F	1.6 (4)
P1—C1B—C6B—C5B	-179.63 (19)	C3F—C4F—C5F—C6F	-0.5 (5)
C4B—C5B—C6B—C1B	-0.7 (4)	C4F—C5F—C6F—C1F	-0.8 (5)
C1A—P1—C1C—C6C	-17.83 (19)	C2F—C1F—C6F—C5F	1.1 (4)
C1B—P1—C1C—C6C	-129.86 (18)	P2-C1F-C6F-C5F	-175.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H···A
N12—H12 A ···N2 ⁱ	0.88	1.90	2.770 (3)	169
N22—H22A····N1 ⁱⁱ	0.88	1.92	2.760 (3)	160
C12—H13A···N1S	0.95	2.35	3.261 (7)	161
C22—H23 <i>A</i> ···N1 <i>T</i>	0.95	2.29	3.081 (12)	141

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x+1, y+1/2, -z+1/2.