

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 6 January 2023
Accepted 10 January 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; nickel selenocyanate; discrete complex; thermal properties.

CCDC reference: 2235328
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \rightleftharpoons ACCESS
Published under a CC BY 4.0 licence

Synthesis, crystal structure and properties of bis(isoselenocyanato- κN)tetrakis(pyridine- κN)nickel(II)

Christian Näther* and Jan Boeckmann

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

The reaction of nickel chloride hexahydrate with potassium selenocyanate and pyridine in water leads to the formation of crystals of the title complex, $\left[\mathrm{Ni}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$, which were characterized by single-crystal X-ray diffraction. Its crystal structure consists of discrete complexes, located on centers of inversion, in which the Ni cations are sixfold coordinated by two terminal N-bonded selenocyanate anions and four pyridine ligands within a slightly distorted octahedral coordination. In the crystal, the complexes are connected by weak $\mathrm{C}-\mathrm{H} \cdots$. Se interactions. PXRD investigations revealed that a pure crystalline phase has formed. In the IR and Raman spectra, the $\mathrm{C}-\mathrm{N}$ stretching vibrations are observed at 2083 and $2079 \mathrm{~cm}^{-1}$, respectively, in agreement with the presence of only terminally bonded anionic ligands. Upon heating, one well-resolved mass loss is observed, in which two of the four pyridine ligands are removed, leading to a compound with the composition $\mathrm{Ni}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}$. In this compound, the $\mathrm{C}-\mathrm{N}$ stretching vibration is shifted to $2108 \mathrm{~cm}^{-1}$ (Raman) and $2115 \mathrm{~cm}^{-1}$ (IR), indicating the presence of $\mu-1,3-$ bridging anionic ligands. In its PXRD pattern, very broad reflections are observed, indicating for poor crystallinity and/or very small particle size. This crystalline phase is not isotypic to its Co and Fe analogs.

1. Chemical context

Coordination compounds based on thiocanate anions are well investigated, which can partly be traced back to their versatile magnetic behavior, including antiferro- or ferromagnetic ordering as well as single-chain magnet behavior (Shurdha et al., 2013; Prananto et al., 2017; Mautner et al., 2018; Werner et al., 2014; Rams et al., 2020). In contrast, much less is known about the corresponding selenocyanate coordination compounds, which might be related to the fact that their synthesis is more difficult to achieve. This is especially the case if less chalcophilic metal cations are used and compounds with bridging anionic ligands are to be prepared. Therefore, only a very limited number of such compounds have been reported in the literature (Turpeinen, 1977; Vicente et al., 1993; Wöhlert et al., 2012). To overcome this problem, we developed a synthetic procedure that allows a more directed preparation of thio- and selenocyanate coordination compounds with bridging anionic ligands, which is based on thermal treatment of suitable precursor compounds in which the anionic ligands are only terminally bonded (Werner et al., 2015; Wriedt \& Näther, 2010). Upon heating, the neutral coligands are usually stepwise removed, leading to the formation of the desired compounds with a bridging coordination as intermediates.

This procedure works perfectly for the synthesis of thiocyanates but can also be used for the synthesis of selenocyanates (Wöhlert et al., 2012).

In this context we have reported on compounds with the composition $M(\mathrm{NCSe})_{2}$ (pyridine) $)_{4}(M=\mathrm{Fe}, \mathrm{Co})$ that upon heating lose two of the pyridine coligands and transform into compounds with the composition $M(\mathrm{NCSe})_{2}(\text { pyridine })_{2}(M=$ Fe, Co), in which the metal cations are linked by pairs of $\mu-1,3-$ bridging selenocyanate anions into chains (Boeckmann et al., 2012; Boeckmann \& Näther, 2011). In the course of our systematic work we also became interested in the corresponding Ni compounds, which are not reported in the literature. The synthesis of the desired compound $\mathrm{Ni}(\mathrm{NCSe})_{2^{-}}$ (pyridine) $)_{2}$ in solution was unsuccessful but we found that single crystals, as well as larger amounts of a microcrystalline powder with the composition $\mathrm{Ni}(\mathrm{NCSe})_{2}$ (pyridine) $)_{4}$, can easily be prepared from solution. The CN stretching vibrations of the anionic ligand are observed at $2083 \mathrm{~cm}^{-1}$ in the IR and at $2079 \mathrm{~cm}^{-1}$ in the Raman spectrum, which indicates that the selenocyanate anions are only terminally bonded (Fig. S1 in

Figure 1
Experimental (top) and calculated PXRD pattern (bottom) of the title compound.
the supporting information). A comparison of the experimental powder X-ray pattern with that calculated from singlecrystal data reveals that a pure crystalline phase has formed (Fig. 1). Measurements using differential thermal analysis and thermogravimetry coupled to mass spectrometry (DTA-TGMS) show one well-resolved mass loss in which the pyridine ligands are emitted and that is accompanied with an endothermic event in the DTA curve at $140^{\circ} \mathrm{C}$ (Fig. 2). Upon further heating, the TG curve is poorly resolved and two additionally endothermic events are observed. The experimental mass loss of 26.4% in the first step is close to that calculated for the removal of half of the pyridine ligands (27.0%). Therefore, it can be assumed that in the first mass loss a compound with the composition $\mathrm{Ni}(\mathrm{NCS})_{2}$ (pyridine) $)_{2}$ is formed that, upon further heating, loses the remaining pyridine ligands and that this event cannot be separated from the decomposition of nickel selenocyanate at higher temperatures. For this residue, IR and Raman spectroscopy show that the CN stretching vibrations are located at $2115 \mathrm{~cm}^{-1}$ in the IR and at $2108 \mathrm{~cm}^{-1}$ in the Raman spectrum, indicating that $\mu-1,3$-bridging selenocyanate anions are present (Fig. S2).

Figure 2
DTG, TG, DTA and MS trend scan curves for the title compound measured at $4^{\circ} \mathrm{C} \mathrm{min}^{-1}$ in helium.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Ni1-N1	$2.061(2)$	$\mathrm{Ni} 1-\mathrm{N} 21$	$2.165(2)$
$\mathrm{Ni} 1-\mathrm{N} 11$	$2.159(2)$		
$\mathrm{N}^{1}{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	180.0	$\mathrm{~N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 21$	$90.75(9)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 11$	$91.10(9)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 21$	$89.25(9)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 11$	$88.90(9)$	$\mathrm{N} 11-\mathrm{Ni} 1-\mathrm{N} 21$	$92.40(8)$

Symmetry code: (i) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$.
PXRD investigations proved that the reflections of the precursor compound are absent but that a residue of poor crystallinity and/or very small particle size is obtained (Fig. S3). A comparison of the experimental powder pattern with that calculated for $\mathrm{Co}(\mathrm{NCSe})_{2}$ (pyridine) $)_{2}$ retrieved from literature shows that these compounds are not isotypic (Fig. S3). Indexing of this powder pattern failed.

2. Structural commentary

Single-crystal structure determination proves that the title compound, $\mathrm{Ni}(\mathrm{NCSe})_{2}$ (pyridine) $)_{4}$, is isotypic to its $\mathrm{Co}, \mathrm{Fe}, \mathrm{Cd}$ and Zn analogs already described in the literature (Boeckmann \& Näther, 2011; Boeckmann et al., 2011 and 2012). The asymmetric unit consists of one crystallographically independent $\mathrm{Ni}^{\mathrm{II}}$ cation that is located on a center of inversion as well as one selenocyanate anion and two pyridine ligands in a general position (Fig. 3). The Ni cations are sixfold coordinated by four pyridine coligands and two terminally N -bonded selenocyanate anions in trans-positions. Bond lengths are

Figure 3
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) $-x+\frac{3}{2}$, $-y+\frac{3}{2},-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Se} 1^{\mathrm{ii}}$	0.95	3.09	$3.895(3)$	144
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N}^{\mathrm{i}}$	0.95	2.67	$3.173(4)$	114
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Se} 1^{\mathrm{iii}}$	0.95	3.11	$3.972(3)$	151
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~N} 1$	0.95	2.60	$3.074(4)$	111
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{~N} 1$	0.95	2.54	$3.061(4)$	115
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Se} 1^{\mathrm{iv}}$	0.95	3.13	$4.022(3)$	157
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Se}^{\mathrm{ii}}$	0.95	3.00	$3.725(3)$	134
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.55	$3.103(4)$	118

Symmetry codes: (i) $\quad-x+\frac{3}{2},-y+\frac{3}{2},-z+1$; (ii) $\quad x+\frac{1}{2}, y-\frac{1}{2}, z$;
$-x+1,-y+1,-z+1$; (iv) $-x+1, y,-z+\frac{3}{2}$.
similar to those in the corresponding Fe and Co compounds, even if the $\mathrm{Ni}-\mathrm{N}$ bond lengths are slightly shortened because of the lower ionic radii. From the bond lengths and angles (Table 1) it is obvious that the octahedra are slightly distorted.

3. Supramolecular features

In the crystal, the $\mathrm{Ni}(\mathrm{NCSe})_{2}$ units are arranged in corrugated layers in the $a c$ plane and the pyridine rings are arranged in columns that proceed along the crystallographic c-axis direction with no sign of $\pi-\pi$ interactions (Fig. 4). There are some $\mathrm{C}-\mathrm{H} \cdots$ Se contacts, with angles above 150°, indicating weak hydrogen-bonding interactions (Table 2). There are additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts, but distances and especially angles indicate that they should not correspond to any significant interactions (Table 2).

Figure 4
Crystal structure of the title compound with view along the crystallographic c-axis direction. $\mathrm{C}-\mathrm{H} \cdots$ Se interactions are shown as red dashed lines.

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}{ }^{\circ}{ }^{3}\right.$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Ni}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$
585.07

Monoclinic, C2/c
170
12.4422 (10), 13.2302 (9), 15.0723 (12)
108.755 (9)
2349.4 (3)

4
Mo $K \alpha$
3.95
$0.50 \times 0.40 \times 0.30$

Stoe IPDS2
Numerical (X-SHAPE and X-RED
32; Stoe, 2008)
$0.486,0.563$
7129, 2485, 1971
0.034
0.639
$0.030,0.075,1.02$
2485
142
H -atom parameters constrained $0.89,-0.64$

Computer programs: X-AREA (Stoe, 2008), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 1999) and publCIF (Westrip, 2010).

4. Database survey

Some selenocyanate compounds with pyridine as ligand have been deposited in the Cambridge Structural Database [ConQuest Version 2022.2.0, CSD Version 5.43 (March 2022); Groom et al., 2016], including isotypic compounds with composition $M(\mathrm{NCSe})_{2}(\text { pyridine })_{4}(M=\mathrm{Co}, \mathrm{Fe}, \mathrm{Cd}, \mathrm{Zn})$ in which the metal cations are octahedrally coordinated by two terminal N -bonded selenocyanate anions and four pyridine ligands (refcodes ITISOU, CAQVEX, OWOJAM and OWOHUE; Boeckmann \& Näther, 2011; Boeckmann et al., 2012, 2011). For these compounds, mixed crystals with the composition $\mathrm{Co}(\mathrm{NCS})_{\mathrm{x}}(\mathrm{NCSe})_{2-\mathrm{x}}(\text { pyridine })_{4}$ have also been reported (refcodes TIXDOW and TIXDOW01; Neumann et al., 2019).

There are compounds with the composition $M(\mathrm{NCSe})_{2}{ }^{-}$ (pyridine) $)_{2}(M=\mathrm{Co}, \mathrm{Fe}, \mathrm{Cd})$ in which the metal cations are octahedrally coordinated by two terminal N - and S-bonded selenocyanate anions and two pyridine ligands and are linked by pairs of selenocyanate anions into chains (refcodes: ITISUA, CAQVIB and OWOHOY; Boeckmann \& Näther, 2011; Boeckmann et al., 2012, 2011). These compounds are also isotypic. There is an additional compound of composition $\mathrm{Zn}(\mathrm{NCSe})_{2}$ (pyridine) $)_{2}$ that consists of discrete complexes in which the Zn cations are tetrahedrally coordinated by two terminal N -bonded selenocyanate anions and two pyridine ligands (refcode OWOJEQ; Boeckmann et al., 2011).

One mixed-metal compound with the composition $\mathrm{HgSr}(\mathrm{NCSe})_{4}$ (pyridine) $)_{6}$ is also reported, in which the Hg cations are tetrahedrally coordinated by four Se-bonded selenocyanate anions and linked to the Sr cations that are octahedrally coordinated by two N -bonded selenocyanate anions and four pyridine ligands (refcode CICLOP; Brodersen et al., 1984).

A dinuclear complex with the composition $\left(\mathrm{Fe}(\mathrm{NCS})_{2}\right)_{2}{ }^{-}$ (pyridine) $)_{2}\left(\left(3,5-b i s(\text { pyridin-2-yl)pyrazolyl })_{2}\right.\right.$ is found that shows spin-crossover behavior (refcode FIZYEU; Sy et al., 2014). Finally, there is another spin-crossover complex with the composition $\mathrm{Fe}(\mathrm{NCSe})_{2}$ (pyridine) $)_{2}$-2-methyldipyrido-[3,2-f: $2^{\prime}, 3^{\prime}-h$)(quinoxaline) pyridine solvate (refcode TISWOI; Tao et al., 2007).

5. Synthesis and crystallization

$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}(\mathrm{SeCN})_{2}$ were purchased from Merck and pyridine was purchased from Alfa Aesar.

Synthesis:

Larger amounts of a microcrystalline powder were obtained by the reaction of 59.4 mg of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{mmol})$ and $72.0 \mathrm{mg}(0.5 \mathrm{mmol})$ of KSeCN in a mixture of 1.5 ml of pyridine and 1.5 ml of water by stirring for 3 d at room temperature. The precipitate was filtered off and washed with a very small amount of water. Single crystals in the form of purple blocks were obtained under the same conditions but without stirring.

Experimental details:

Differential thermal analysis and thermogravimetric (DTA-TG-MS) measurements were performed in a dynamic helium atmosphere in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles using a Netzsch thermobalance with skimmer coupling and a Balzer Quadrupol MS. The XRPD measurements were performed by using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a linear, position-sensitive MYTHEN detector from Stoe \& Cie with $\mathrm{Cu} K \alpha$ radiation. The IR data were measured using a Bruker Alpha-P ATR-IR spectrometer and the Raman spectra were measured with a Bruker Vertex 70 spectrometer.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned with idealized geometry $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ using a riding model.

Acknowledgements

This work was supported by the state of Schleswig-Holstein.

References

Boeckmann, J. \& Näther, C. (2011). Chem. Commun. 47, 7104-7106. Boeckmann, J., Reinert, T. \& Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.
Boeckmann, J., Wriedt, M. \& Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.

Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brodersen, K., Cygan, M. \& Hummel, H. U. (1984). Z. Naturforsch. Teil B, 39, 2582-585.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. \& Näther, C. (2019). Chem. Commun. 55, 2652-2655.
Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. \& Batten, S. R. (2017). Aust. J. Chem. 70, 516528.

Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. \& Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. \& Miller, J. S. (2013). Inorg. Chem. 52, 1058310594.

Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Sy, M., Varret, F., Boukheddaden, K., Bouchez, G., Marrot, S., Kawata, S. \& Kaizaki, S. (2014). Angew. Chem. Int. Ed. 53, 75397542.

Tao, J. Q., Gu, Z. G., Wang, T. W., Yang, Q. F., Zuo, J. L. \& You, X. Z. (2007). Inorg. Chim. Acta, 360, 4125-4132.

Turpeinen, U. (1977). Finn. Chem. Lett. 3, 75-78.
Vicente, R., Escuer, A., Ribas, J., Solans, X. \& Font-Bardia, M. (1993). Inorg. Chem. 32, 6117-6118.
Werner, J., Rams, M., Tomkowicz, Z. \& Näther, C. (2014). Dalton Trans. 43, 17333-17342.
Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Ruschewitz, U. \& Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.
Wriedt, M. \& Näther, C. (2010). Chem. Commun. 46, 4707-4709.

supporting information

Acta Cryst. (2023). E79, 90-94 [https://doi.org/10.1107/S2056989023000245]

Synthesis, crystal structure and properties of bis(isoselenocyanato- κN)tetrakis-(pyridine- κ N) nickel(II)

Christian Näther and Jan Boeckmann

Computing details

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure:
SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(isoselenocyanato- $\kappa \mathrm{N}$)tetrakis(pyridine- $\kappa \mathrm{N}$)nickel(II)

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$
$M_{r}=585.07$
Monoclinic, $C 2 / c$
$a=12.4422$ (10) \AA
$b=13.2302$ (9) \AA
$c=15.0723(12) \AA$
$\beta=108.755(9)^{\circ}$
$V=2349.4$ (3) \AA^{3}
$Z=4$

Data collection

Stoe IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-Shape and X-Red 32; Stoe, 2008)
$T_{\text {min }}=0.486, T_{\text {max }}=0.563$
7129 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.075$
$S=1.02$
2485 reflections
142 parameters
0 restraints
Primary atom site location: dual
$F(000)=1160$
$D_{\mathrm{x}}=1.654 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7129 reflections
$\theta=2.3-27.0^{\circ}$
$\mu=3.95 \mathrm{~mm}^{-1}$
$T=170 \mathrm{~K}$
Block, purple
$0.50 \times 0.40 \times 0.30 \mathrm{~mm}$

2485 independent reflections
1971 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-15 \rightarrow 15$
$k=-13 \rightarrow 16$
$l=-19 \rightarrow 19$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0461 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.89$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.64 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Ni1	0.750000	0.750000	0.500000	$0.01661(12)$
N11	$0.63560(19)$	$0.62770(17)$	$0.43798(16)$	$0.0204(5)$
C11	$0.6697(3)$	$0.5310(2)$	$0.4492(2)$	$0.0277(6)$
H11	0.747512	0.517340	0.481265	0.033^{*}
C12	$0.5971(3)$	$0.4497(3)$	$0.4165(2)$	$0.0365(7)$
H12	0.624361	0.382260	0.427221	0.044^{*}
C13	$0.4841(3)$	$0.4692(3)$	$0.3678(2)$	$0.0397(8)$
H13	0.432159	0.415397	0.344311	0.048^{*}
C14	$0.4487(3)$	$0.5685(3)$	$0.3543(3)$	$0.0391(8)$
H14	0.371805	0.584215	0.320745	0.047^{*}
C15	$0.5265(3)$	$0.6448(2)$	$0.3902(2)$	$0.0291(6)$
H15	0.501079	0.712884	0.380325	0.035^{*}
N21	$0.78775(18)$	$0.68763(17)$	$0.63947(15)$	$0.0193(5)$
C21	$0.7547(2)$	$0.7336(2)$	$0.7063(2)$	$0.0258(6)$
H21	0.716401	0.796653	0.692048	0.031^{*}
C22	$0.7742(3)$	$0.6931(3)$	$0.7948(2)$	$0.0312(7)$
H22	0.750093	0.728412	0.839944	0.037^{*}
C23	$0.8288(3)$	$0.6010(3)$	$0.8172(2)$	$0.0319(7)$
H23	0.842008	0.571618	0.877261	0.038^{*}
C24	$0.8638(3)$	$0.5528(2)$	$0.7495(2)$	$0.0299(6)$
H24	0.901305	0.489356	0.762043	0.036^{*}
C25	$0.8428(2)$	$0.5993(2)$	$0.6628(2)$	$0.0244(6)$
H25	0.868951	0.566730	0.617400	0.029^{*}
Se1	$0.41596(3)$	$0.85023(2)$	$0.58223(2)$	$0.02991(11)$
C1	$0.5366(2)$	$0.83774(19)$	$0.54277(18)$	$0.0196(5)$
N1	$0.6154(2)$	$0.82749(18)$	$0.51901(16)$	$0.0228(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0135(2)$	$0.0166(2)$	$0.0203(2)$	$0.00038(17)$	$0.0062(2)$	$-0.00075(18)$
N11	$0.0182(12)$	$0.0201(12)$	$0.0227(11)$	$-0.0014(9)$	$0.0061(10)$	$-0.0024(9)$
C11	$0.0268(16)$	$0.0216(15)$	$0.0342(16)$	$0.0006(12)$	$0.0090(14)$	$-0.0016(12)$
C12	$0.044(2)$	$0.0225(15)$	$0.0430(18)$	$-0.0059(14)$	$0.0145(17)$	$-0.0052(14)$
C13	$0.041(2)$	$0.0353(19)$	$0.0436(19)$	$-0.0199(15)$	$0.0143(17)$	$-0.0140(15)$
C14	$0.0221(17)$	$0.041(2)$	$0.046(2)$	$-0.0095(13)$	$0.0004(16)$	$-0.0070(16)$
C15	$0.0228(16)$	$0.0275(15)$	$0.0333(16)$	$-0.0016(12)$	$0.0038(14)$	$-0.0019(12)$
N21	$0.0173(12)$	$0.0204(11)$	$0.0201(11)$	$-0.0011(9)$	$0.0061(10)$	$-0.0006(9)$
C21	$0.0231(15)$	$0.0300(15)$	$0.0244(14)$	$-0.0004(11)$	$0.0078(13)$	$-0.0056(12)$

supporting information

C22	$0.0315(17)$	$0.0428(18)$	$0.0207(13)$	$-0.0025(14)$	$0.0103(14)$	$-0.0067(13)$
C23	$0.0279(17)$	$0.047(2)$	$0.0198(14)$	$-0.0048(14)$	$0.0059(14)$	$0.0037(13)$
C24	$0.0295(16)$	$0.0296(16)$	$0.0301(14)$	$0.0048(13)$	$0.0088(14)$	$0.0073(13)$
C25	$0.0242(16)$	$0.0243(15)$	$0.0249(14)$	$0.0029(11)$	$0.0079(13)$	$-0.0008(11)$
Se1	$0.02946(18)$	$0.02786(17)$	$0.04138(19)$	$0.00354(12)$	$0.02390(15)$	$0.00093(13)$
C1	$0.0225(14)$	$0.0150(12)$	$0.0186(13)$	$0.0024(10)$	$0.0028(12)$	$-0.0001(10)$
N1	$0.0186(12)$	$0.0235(12)$	$0.0270(12)$	$0.0028(9)$	$0.0084(11)$	$0.0007(9)$

Geometric parameters (A, ${ }^{\circ}$)

Nil-N1 ${ }^{\text {i }}$	2.061 (2)	C14-H14	0.9500
Ni1-N1	2.061 (2)	C15-H15	0.9500
Ni1-N11	2.159 (2)	N21-C25	1.342 (4)
Ni1-N11 ${ }^{\text {i }}$	2.159 (2)	N21-C21	1.350 (3)
Ni1-N21	2.165 (2)	C21-C22	1.384 (4)
Ni1-N21 ${ }^{\text {i }}$	2.165 (2)	C21-H21	0.9500
N11-C15	1.336 (4)	C22-C23	1.383 (5)
N11-C11	1.342 (4)	C22-H22	0.9500
C11-C12	1.388 (4)	C23-C24	1.387 (4)
C11-H11	0.9500	C23-H23	0.9500
C12-C13	1.385 (5)	C24-C25	1.391 (4)
C12-H12	0.9500	C24-H24	0.9500
C13-C14	1.380 (5)	C25-H25	0.9500
C13-H13	0.9500	Se1-C1	1.792 (3)
C14-C15	1.384 (4)	C1-N1	1.154 (3)
N1- ${ }^{\text {- }}$ - $11-\mathrm{N} 1$	180.0	C13-C14-C15	119.1 (3)
N1 ${ }^{\text {- }}$ Ni1-N11	91.10 (9)	C13-C14-H14	120.4
N1-Ni1-N11	88.90 (9)	C15-C14-H14	120.4
N1 ${ }^{\text {i }}$ - $\mathrm{Ni1}-\mathrm{N} 11^{\text {i }}$	88.90 (9)	N11-C15-C14	123.3 (3)
N1-Ni1-N11 ${ }^{\text {i }}$	91.10 (9)	N11-C15-H15	118.3
N11-Ni1-N11 ${ }^{\text {i }}$	180.00 (8)	C14-C15-H15	118.3
N1- ${ }^{\text {- }}$ i1 -N 21	90.75 (9)	C25-N21-C21	116.7 (2)
N1-Ni1-N21	89.25 (9)	C25-N21-Ni1	121.25 (17)
N11-Ni1-N21	92.40 (8)	C21-N21-Nil	122.01 (19)
N11--Nil-N21	87.60 (8)	N21-C21-C22	122.9 (3)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni1}-\mathrm{N} 21^{\text {i }}$	89.25 (9)	N21-C21-H21	118.5
N1-Ni1-N21 ${ }^{\text {i }}$	90.75 (9)	C22-C21-H21	118.5
N11-Ni1-N21 ${ }^{\text {i }}$	87.61 (8)	C23-C22-C21	119.8 (3)
$\mathrm{N} 11^{\mathrm{i}}$ - $\mathrm{Ni} 11-\mathrm{N} 21^{\text {i }}$	92.40 (8)	C23-C22-H22	120.1
N21-Nil-N21 ${ }^{\text {i }}$	180.0	C21-C22-H22	120.1
C15-N11-C11	117.1 (3)	C22-C23-C24	118.1 (3)
C15-N11-Ni1	121.4 (2)	C22-C23-H23	120.9
C11-N11-Ni1	121.5 (2)	C24-C23-H23	120.9
N11-C11-C12	123.4 (3)	C23-C24-C25	118.7 (3)
N11-C11-H11	118.3	C23-C24-H24	120.7
C12-C11-H11	118.3	C25-C24-H24	120.7
C13-C12-C11	118.5 (3)	N21-C25-C24	123.8 (3)

supporting information

$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	120.7	$\mathrm{~N} 21-\mathrm{C} 25-\mathrm{H} 25$	118.1
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.7	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 25$	118.1
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$118.5(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Se} 1$	$178.1(2)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	120.8	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	$155.6(2)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	120.8		

Symmetry code: (i) $-x+3 / 2,-y+3 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{Se}^{\mathrm{ii}}$	0.95	3.09	$3.895(3)$	144
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.67	$3.173(4)$	114
$\mathrm{C} 12 — \mathrm{H} 12 \cdots \mathrm{Se}^{\mathrm{iii}}$	0.95	3.11	$3.972(3)$	151
$\mathrm{C} 15 — \mathrm{H} 15 \cdots \mathrm{~N} 1$	0.95	2.60	$3.074(4)$	111
$\mathrm{C} 21 — \mathrm{H} 21 \cdots \mathrm{~N} 1$	0.95	2.54	$3.061(4)$	115
$\mathrm{C} 22 — \mathrm{H} 22 \cdots \mathrm{Se}^{\mathrm{iv}}$	0.95	3.13	$4.022(3)$	157
$\mathrm{C} 25 — \mathrm{H} 25 \cdots \mathrm{Se}^{\mathrm{ii}}$	0.95	3.00	$3.725(3)$	134
$\mathrm{C} 25 — \mathrm{H} 25 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.55	$3.103(4)$	118

Symmetry codes: (i) $-x+3 / 2,-y+3 / 2,-z+1$; (ii) $x+1 / 2, y-1 / 2, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x+1, y,-z+3 / 2$.

