

Received 13 January 2023 Accepted 25 January 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; thiazinone; sulfone; enantiopure.

CCDC references: 2238010; 2238009

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of *rac*-2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazine-1,1,4-trione and *N*-[(2*S*,5*R*)-1,1,4-trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide

Hemant P. Yennawar,^a Saige L. Lowe,^b Matthew M. Mammen,^b Connor R. Verhagen^b and Lee J. Silverberg^b*

^aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, and ^bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA. *Correspondence e-mail: ljs43@psu.edu

The syntheses and crystal structures of two thiazinone compounds, namely, *rac*-2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazine-1,1,4-trione, $C_{16}H_{15}NO_3S$, in its racemic form, and N-[(2*S*,5*R*)-1,1,4-trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide, $C_{18}H_{18}N_2O_4S$, in an enantiopure form, are reported. The thiazine rings in the two structures differ in their puckering, as a half-chair in the first and a boat pucker in the second. The extended structures for both compounds have only $C-H \cdots O$ -type interactions between symmetry-related molecules, and exhibit no π - π stacking interactions in spite of each having two phenyl rings.

1. Chemical context

The 2,3-dihydro-4*H*-1,3-thiazin-4-ones are a group of sixmembered heterocycles with a wide range of biological activity (Ryabukhin *et al.*, 1996; Silverberg & Moyer, 2019). Surrey's research (Surrey *et al.*, 1958; Surrey, 1963*a,b*) resulted in the discovery of two drugs, the antianxiety and muscle relaxant chlormezanone, $C_{11}H_{12}$ ClNO₃S, [2-(4-chlorophenyl)-3-methyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one 1,1-dioxide] (O'Neil, 2006; Tanaka & Horayama, 2005) and the muscle relaxant dichlormezanone, $C_{11}H_{11}Cl_2NO_3S$, [2-(3,4-dichlorophenyl)-3-methyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one 1,1dioxide] (Elks & Ganellin, 1990). These sulfones showed greater activity than the sulfides from which they were synthesized (Surrey *et al.*, 1958).

We have previously reported the preparation of the sulfones rac-2,3-dihydro-2,3-diphenyl-4H-1,3-thiazin-4-one 1,1-dioxide and N-[(2S,5R)-1,1-dioxido-4-oxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (Silverberg, 2020). We have also reported X-ray crystal structures of the corresponding sulfides and sulfoxides (Yennawar & Silverberg, 2014, 2015; Yennawar

Figure 1

The asymmetric unit of $\mathbf{1}$ with displacement ellipsoids drawn at 50% probability level.

et al., 2015, 2016, 2017). The crystal structure of chlormezanone has been reported (Tanaka & Horayama, 2005). Herein we report the crystal structures of *rac*-2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazine-1,1,4-trione, **1**, and *N*-[(2*S*,5*R*)-1,1,4-trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide, **2**.

2. Structural commentary

Compound **1** has one chiral center at C1 with an *S* configuration in the arbitrarily chosen asymmetric unit but crystal symmetry generates a racemic mixture (space group $P2_1/c$). Compound **2** has two chiral centers, at C1 and C3 (*S* and *R* respectively), synthesized as such, and crystallizes in space group $P2_12_12_1$. In **1**, the dihedral angles between the thiazine ring (all atoms) and the pendant C5–C10 and C11–C16 phenyl groups are 84.02 (14) and 79.56 (12)°, respectively; the dihedral angle between the pendant rings is 61.26 (15)°. The equivalent angles in **2** are 81.25 (15), 82.58 (13) and 50.40 (15)°, respectively.

The structure of **1** (Fig. 1) has a half-chair puckering of the thiazine ring with puckering amplitude Q = 0.605 (2) Å, $\theta = 47.2$ (2)°, $\varphi = 346.7$ (3)°, while in **2** (Fig. 2) the ring has a boat pucker [Q = 0.770 (2) Å, $\theta = 85.31$ (15)°, $\varphi = 61.89$ (17)°]. This change in the puckering of the central ring system of the two molecules leads to differing orientations of one of the phenyl rings, which is clear from the overlay diagram (Fig. 3).

3. Supramolecular features

In both structures, only C–H···O-type hydrogen-bond interactions between symmetry-related molecules are observed (Tables 1 and 2). In **1**, a single hydrogen bond [C12–H12···O1 = 3.454 (4) Å, 157°] and its symmetry-equivalent

Figure 2 The asymmetric unit of 2 with displacement ellipsoids drawn at 50% probability level.

Figure 3 Overlay plot of 1 and 2 where the three atoms S1, N1, and C11 are matched. Atoms C3 and C8 of compound 1 are labeled.

research communications

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for 1.						
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$		
$C12-H12\cdots O1^{i}$	0.95	2.56	3.454 (4)	157		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

form a pair of parallel interactions (Fig. 4). In **2** (Fig. 5), the carbon atoms C1 and C4, both of the thiazine ring, as well as C8 of one of the phenyl rings each donate an H atom for three distinct interactions involving three of the four oxygen atoms in the molecule. Although both compounds each have two phenyl rings, neither of the lattices exhibit any π - π stacking interactions.

4. Database survey

Searches undertaken using the American Chemical Society's Chemical Abstract Service (CAS) Scifinder platform did not find crystal structures of any 1,3-thiazin-4-one sulfones other than chlormezanone (CSD refcode KAPNAR; Tanaka & Horayama, 2005).

5. Synthesis and crystallization

General oxidation procedure (Surrey *et al.*, 1958; Silverberg, 2020; Cannon *et al.* 2015): the heterocycle (0.267 mmol) was dissolved in glacial acetic acid (1.2 ml). An aqueous solution of KMnO₄ (0.535 mmol in 1.45 ml water) was added dropwise at room temperature with vigorous stirring. The reaction was followed by TLC. Solid sodium bisulfite (NaHSO₃/Na₂S₂O₅) was added until the mixture remained colorless and then 1.45 ml of water were added and stirred for 10 min. The

Figure 4 Crystal packing diagram for 1 showing intermolecular pairs of $C-H\cdots O$ hydrogen bonds.

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$) for 2.	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1 - H1 \cdots O2^{i}$	0.98	2.39	3.365 (3)	173
$C4-H4A\cdots O4^{ii}$	0.97	2.29	3.185 (4)	153
$C8-H8\cdots O3^{iii}$	0.93	2.51	3.378 (5)	155

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

mixture was extracted with CH_2Cl_2 (3 × 5 ml). The organics were combined and washed once with sat. NaCl. The solution was dried over Na₂SO₄ and filtered. The product was purified by chromatography in a silica gel micro-column.

rac-2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazine-1,1,4trione, 1: Eluted with mixtures of ethyl acetate and hexanes. White solid (0.053 g, 70%). m.p.: 418–421 K. Crystals for X-ray diffraction studies were grown by slow evaporation from toluene solution.

N-[(2*S*,5*R*)-1,1,4-trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide, 2: Eluted with a mixture of 10% acetone and 90% ethyl acetate. White solid (0.076 g, 80%). m.p.: 443–467 K (decomposition). Crystals were grown by slow evaporation from ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms were placed

Figure 5 Crystal packing diagram for **2** showing intermolecular $C-H\cdots O$ hydrogen bonds.

Table 3Experimental details.

Crystal data Cup H12NO2S Cup H12NO2S M_r 301.35 358.40 Crystal system, space group Monoclinic, P21/c Orthorhombic, P212121 Temperature (K) 173 298 a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 5.5230 (4), 10.6887 (9), 28.430 (2) a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 5.5230 (4), 10.6887 (9), 28.430 (2) a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 5.5230 (4), 10.6887 (9), 28.430 (2) a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 4.52320 (4), 10.6887 (9), 28.430 (2) a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 5.5230 (4), 10.6887 (9), 28.430 (2) a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 4.52220 (2) $A (a)$ 1478.13 (11) 1677.8 (2) Z 4 4 Radiation type Cu Ka 0.22 Crystal size (mm) 0.2 × 0.18 × 0.09 0.22 Data collection Bruker SMART CCD area detector Timin Tmax Gagku Oxford Diffraction Synergy Custom Bruker SMART CCD area detector $a, b, c \alpha (f^{-1})$		1	2
	Crystal data		
M_r 301.35 358.40^{-1} $Crystal system, space group Monocline, P_2/c Orthorhombic, P_2/2_1 Crystal system, space group Monocline, P_2/c Orthorhombic, P_2/2_1 cmepcrature (K) 173 298 a, b, c (Å) 14.4485 (6), 10.2031 (5), 10.4950 (4) 5.5230 (4), 10.6857 (9), 28.430 (2) a, b, r (°) 90, 107.179 (4), 90 90, 90, 90 90, 90, 90 V(Å^3) 1478.13 (11) 1677.8 (2) Z 4 4 Radiation type Cu K\alpha Mo K\alpha \mu (mm-1) 2.03 0.22 \times 0.06 \times 0.06 Data collection Diffractometer Bruker SMART CCD area detector System, HyPix-Arc 150 Multi-scan (SADABS; Krause et al., 2015) 0.668, 1.000 No. of measured, independent and observed (independent and constrained refinement R[F^2 > 2\sigma(F^2)], wR(F^2), S 0.052, 0.150, 1.10 $	Chemical formula	C ₁₆ H ₁₅ NO ₃ S	$C_{18}H_{18}N_2O_4S$
Cystal system, space groupMonoclinic, P_2/c Orthorhombic, $P_2_12_1$ Temperature (K)173298 a, b, c (Å)14.4485 (6), 10.2031 (5), 10.4950 (4)5.5230 (4), 10.6857 (9), 28.430 (2) a, b, c (Å)90, 90, 90 a, b, c (Å)1478.13 (11)1677.8 (2) Z 44Radiation typeCu $K\alpha$ Mo $K\alpha$ μ (mm ⁻¹)2.030.22Crystal size (mm)0.2 × 0.18 × 0.090.22 × 0.06 × 0.06Data collectionUlti-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)Absorption correctionMulti-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)Absorption correction0.668, 1.0000.656, 0.900No. of measured, independent and observed [$I > 2\sigma(I)$] reflections0.52, 0.150, 1.100.042, 0.103, 1.04No. of reflections285640374037No. of reflections28564037231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $(I') - (I') (I') + (I') (Parsons et al., 2015)Absolute structureFlack x determined using 1213 quotients(I') - (I') (I') + (I') (Parsons et al., 2015)Absolute structureAbsolute structure parameters-0.07 (4)-$	M.	301.35	358.40
Temperature (K)173298 a, b, c (Å)14.4485 (6), 10.2031 (5), 10.4950 (4)5.5230 (4), 10.6857 (9), 28.430 (2) a, b, γ (°)90, 107.179 (4), 9090, 90, 90 V (Å ⁵)1478.13 (11)1677.8 (2) Z 44Radiation typeCu KacMo Ka μ (mm ⁻¹)2.030.22Crystal size (mm)0.2 × 0.18 × 0.090.22 × 0.06 × 0.06Data collectionDiffraction Synergy CustomBruker SMART CCD area detectorsystem, HyPix-Arc 150Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)Absorption correctionMulti-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)No. of measured, independent and observed [$I > 2a(I)$] reflections0.0560.035Rmi0.0560.0350.667RefinementR[$F^2 > 2a(F^2)$], wR(F^2), S0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement ad constrained refinement $(2^4, -0.14$ C24, -0.14Absolute structure- $(T') - ((T'))[((T')+(T')] (Parsons et al., 2013)(T') - ((T))[((T')+(T')] (Parsons et al., 2013)$	Crystal system, space group	Monoclinic, $P2_1/c$	Orthorhombic, $P2_12_12_1$
a, b, c (\dot{A}) 14.4485 (6), 10.2031 (5), 10.4950 (4)5.5230 (4), 10.6857 (9), 28.430 (2) a, β, γ 90, 00, 00, 90, 9090, 107.179 (4), 9090, 90, 90 $V(\dot{A}^3)$ 1478.13 (11)1677.8 (2) Z 44Radiation typeCu KaMo Ka μ (mm ⁻¹)2.030.22Crystal size (mm)0.2 × 0.18 × 0.090.22 × 0.06 × 0.06Data collectionData collectionBruker SMART CCD area detectorsystem, HyPix-Arc 150System, HyPix-Arc 150Absorption correctionMulti-scan (CrysAlis PRO; Rigaku OD, 2022)Multi-scan (SADABS; Krause et al., 2015) n_{inin}, T_{max} 0.668, 1.0000.656, 0.900No. of measured, independent and observed [$I > 2\sigma(I)$] reflections7437, 2856, 213913301, 4037, 3460Rat Rif0.0560.0350.667Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.052, 0.150, 1.100.042, 0.103, 1.04No. of predictors28564037No. of reflections28564037No. of reflectors28564037No. of reflectors231H-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (\dot{A}^{-3})0.32, -0.340.24, -0.14Absolute structure-10.7((-))/[(P')+(-)] (Parsons et al., 2013)Absolute structure-0.007 (4)	Temperature (K)	173	298
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a, b, c (Å)	14,4485 (6), 10,2031 (5), 10,4950 (4)	5,5230 (4), 10,6857 (9), 28,430 (2)
$V(\tilde{A}^{5})$ $I478.13 (11)$ $I677.8 (2)$ Z Z A Radiation type $Cu K\alpha$ 2.03 0.22 $Crystal size (mm)$ $0.2 \times 0.18 \times 0.09$ $0.22 \times 0.06 \times 0.06$ Data collection Diffractometer $Sigteu Oxford Diffraction Synergy Custom$ $System, HyPix-Arc 150$ $Absorption correction$ $Multi-scan (CrysAlis PRO; Rigaku OD, 2022)$ $Multi-scan (SADABS; Krause et al., 2015)$ $0.668, 1.000$ $0.656, 0.900$ No. of measured, independent and $7437, 2856, 2139$ $13301, 4037, 3460$ 0.035 $(sin \theta \lambda)_{max} (\dot{A}^{-1}) 0.652 0.052, 0.150, 1.10 No. of reflections Rife^{2} > 2\sigma(F^{2})], wR(F^{2}), S 0.052, 0.150, 1.10 No. of reflections 2856 4037 No. of parameters 191 H-atom parameters constrained H atoms treated by a mixture of independent A \phi_{max}, \Delta \phi_{min} (e \dot{A}^{-3}) 0.32, -0.34 0.24, -0.14 Flack x determined using 1213 quotients [(T) - (T)]/[(T) + (T)] (Parson et al., 2013) Absolute structure parameter - 0.07 (4)$	α, β, γ (°)	90, 107,179 (4), 90	90, 90, 90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$V(A^3)$	1478.13 (11)	1677.8 (2)
Radiation typeCu $K\alpha$ Mo $K\alpha$ μ (mm ⁻¹)2.030.22Crystal size (mm)0.2 × 0.18 × 0.090.22 × 0.06 × 0.06Data collectionDiffractometerRigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150Bruker SMART CCD area detectorAbsorption correctionMulti-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015)0.668, 1.0000.656, 0.9000.656, 0.900No. of measured, independent and observed [$I > 2\sigma(I)$] reflections7437, 2856, 213913301, 4037, 3460 R_{int} 0.0560.0350.667Refinement0.0520.150, 1.100.042, 0.103, 1.04No. of parameters1912314037H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ ($e^{\tilde{\Lambda}^{-3}$)0.32, -0.340.24, -0.14Absolute structure parameter-Flack x determined using 1213 quotients $[(I')-(I')]/[(I'+(I'))]$ (Parsons <i>et al.</i> , 2013)Absolute structure parameter-0.07 (4)	Z	4	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Radiation type	Cu Kα	Μο Κα
Crystal size (mm) $0.2 \times 0.18 \times 0.09$ $0.22 \times 0.06 \times 0.06$ Data collectionDiffractometerRigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150Bruker SMART CCD area detectorAbsorption correctionMulti-scan (CrysAlis PRO; Rigaku OD, 2022)Multi-scan (SADABS; Krause et al., 2015) 0.656, 0.9000.656, 0.900No. of measured, independent and observed [I > 2σ(I)] reflections7437, 2856, 213913301, 4037, 3460Rint (sin θλλ)max (Å^{-1})0.0560.035 0.6670.035Refinement R[F² > 2σ(F²)], wR(F²), S0.052, 0.150, 1.100.042, 0.103, 1.04No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementΔρ _{max} , Δρ _{min} (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients [(I')-((Γ)]/[(I')+(Γ)] (Parsons et al., 2013)Absolute structure parameter-0.07 (4)	$\mu (\mathrm{mm}^{-1})^{31}$	2.03	0.22
Data collection DiffractometerRigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150Bruker SMART CCD area detectorAbsorption correction T_{min}, T_{max} Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015) 0.656, 0.900No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections7437, 2856, 213913301, 4037, 3460 R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹)0.0560.035 0.6680.035Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure parameter-107 (4)Absolute structure parameter-0.07 (4)	Crystal size (mm)	$0.2 \times 0.18 \times 0.09$	$0.22 \times 0.06 \times 0.06$
DiffractometerRigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150Bruker SMART CCD area detectorAbsorption correctionMulti-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)Multi-scan (<i>SADABS</i> ; Krause et al., 2015) T_{min}, T_{max} 0.668, 1.0000.656, 0.900No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections7437, 2856, 213913301, 4037, 3460 R_{int} 0.0560.0250.035 $(sin \ heta A)_{max}$ (Å ⁻¹)0.6520.0560.035Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients $[(T) - (T)]/[(T') + (T)]$ (Parsons et al., 2013)Absolute structure parameter-0.07(4)	Data collection		
Absorption correctionMulti-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)Multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015) T_{min}, T_{max} 0.668, 1.0000.656, 0.900No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections7437, 2856, 213913301, 4037, 3460 R_{int} 0.0560.035 $(sin \theta/\lambda)_{max}$ (Å ⁻¹)0.6680.056Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients $[(T^*)-(T)]/[(T^*)+(T^*)]$ (Parsons <i>et al.</i> , 2013)	Diffractometer	Rigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150	Bruker SMART CCD area detector
T_{\min}, \hat{T}_{\max} 0.668, 1.0000.656, 0.900No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections7437, 2856, 213913301, 4037, 3460 R_{int} 0.0560.035 $(\sin \theta/\lambda)_{\max}$ (Å ⁻¹)0.6280.667Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\max}, \Delta \rho_{\min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients $[(T^*) - (T^-)]/[(T^*) + (T^-)]$ (Parsons <i>et al.</i> , 2013)	Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2022)	Multi-scan (SADABS; Krause et al., 2015)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections7437, 2856, 213913301, 4037, 3460 R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹)0.0560.035Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatment $A\rho_{max}$, $\Delta\rho_{min}$ (e Å ⁻³)0.32, -0.340.32, -0.34Absolute structure parameter-Flack x determined using 1213 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)	T_{\min}, \hat{T}_{\max}	0.668, 1.000	0.656, 0.900
R_{int} 0.0560.035 $(sin \theta/\lambda)_{max}$ (Å ⁻¹)0.6280.667Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients $[(t^+)-(t^-)]/[(t^+)+(t^-)]$ (Parsons <i>et al.</i> , 2013)Absolute structure parameter-0.07 (4)	No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7437, 2856, 2139	13301, 4037, 3460
(sin $\theta/\lambda)_{max}$ (Å ⁻¹)0.6280.667Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients $[(t^+)-(t^-)]/[(t^+)+(t^-)]$ (Parsons <i>et al.</i> , 2013)Absolute structure parameter-0.07 (4)	R _{int}	0.056	0.035
Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients [(t ⁺)-(t ⁻)]/[(t ⁺)+(t ⁻)] (Parsons <i>et al.</i> , 2013)Absolute structure parameter-0.07 (4)	$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.628	0.667
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.052, 0.150, 1.100.042, 0.103, 1.04No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)Absolute structure parameter-0.07 (4)	Refinement		
No. of reflections28564037No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure- $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)Absolute structure parameter-0.07 (4)	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.150, 1.10	0.042, 0.103, 1.04
No. of parameters191231H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)Absolute structure parameter-0.07 (4)	No. of reflections	2856	4037
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.32, -0.340.24, -0.14Absolute structure-Flack x determined using 1213 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)Absolute structure parameter-0.07 (4)	No. of parameters	191	231
$\begin{array}{ll} \Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \ \text{\AA}^{-3}) & 0.32, -0.34 & 0.24, -0.14 \\ \text{Absolute structure} & - & Flack x \text{ determined using 1213 quotients} \\ & [(I^+)-(I^-)]/[(I^+)+(I^-)] \ (Parsons \ et \ al., 2013) \\ \text{Absolute structure parameter} & - & 0.07 \ (4) \end{array}$	H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
Absolute structure - Flack x determined using 1213 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) 0.07 (4)	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.32, -0.34	0.24, -0.14
Absolute structure parameter $ [(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013) 0.07 (4)	Absolute structure	_	Flack x determined using 1213 quotients
Absolute structure parameter – 0.07 (4)			$[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
	Absolute structure parameter	-	0.07 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SMART and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXS (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

in their geometrically calculated positions and their coordinates refined using the riding model with parent-atom—H lengths of 0.93 Å (CH), 0.98 Å (chiral-CH), 0.96 Å (CH₃), 0.97 Å (CH₂). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH₃) times $U_{\rm eq}$ of the parent atom.

Funding information

Research reported here was conducted on instrumentation funded by NSF (for Bruker AXS system) CHEM-0131112, and SIG S10 grants of the National Institutes of Health (for the Rigaku rotating anode system) under award numbers 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar.

References

- Bruker (2016). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). *Intl. J. Chem.* **7**, 73–84.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Elks, J. & Ganellin, C. R. (1990). Editors. *Dictionary of Drugs*, p. 382. Cambridge: Chapman and Hall.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- O'Neil, M. J. (2006). Editor. *The Merck Index*, 14th ed., p. 349. Whitehouse Station, NJ: Merck & Co. Inc.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. *Heterocycl. Chem.* 66, 131–190.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Silverberg, L. J. (2020). World patent WO2020231873 A1.
- Silverberg, L. J. & Moyer, Q. J. (2019). Arkivoc, (i), 139-227.
- Surrey, A. R. (1963a). US Patent 3082209.
- Surrey, A. R. (1963b). US Patent 3093639.
- Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.
- Tanaka, R. & Horayama, N. (2005). Anal. Sci. X, 21, X57-X58.
- Yennawar, H. P., Noble, D. J. & Silverberg, L. J. (2017). Acta Cryst. E73, 1417–1420.
- Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.
- Yennawar, H. P. & Silverberg, L. J. (2015). Acta Cryst. E71, e5.
- Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62–64.
- Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543.

Acta Cryst. (2023). E79, 120-123 [https://doi.org/10.1107/S2056989023000695]

Crystal structures of *rac*-2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazine-1,1,4-trione and *N*-[(2*S*,5*R*)-1,1,4-trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide

Hemant P. Yennawar, Saige L. Lowe, Matthew M. Mammen, Connor R. Verhagen and Lee J. Silverberg

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2022) for (1); *SMART* (Bruker, 2016) for (2). Cell refinement: *CrysAlis PRO* (Rigaku OD, 2022) for (1); *SAINT* (Bruker, 2016) for (2). Data reduction: *CrysAlis PRO* (Rigaku OD, 2022) for (1); *SAINT* (Bruker, 2016) for (2). Program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a) for (1); *SHELXS* (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

rac-2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazine-1,1,4-trione (1)

Crystal data

C₁₆H₁₅NO₃S $M_r = 301.35$ Monoclinic, $P2_1/c$ a = 14.4485 (6) Å b = 10.2031 (5) Å c = 10.4950 (4) Å $\beta = 107.179$ (4)° V = 1478.13 (11) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction Synergy Custom system, HyPix-Arc 150 diffractometer Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ F(000) = 632 $D_x = 1.354 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3416 reflections $\theta = 3.2-73.3^{\circ}$ $\mu = 2.03 \text{ mm}^{-1}$ T = 173 KBlock, clear colourless $0.2 \times 0.18 \times 0.09 \text{ mm}$

 $T_{\min} = 0.668, T_{\max} = 1.000$ 7437 measured reflections
2856 independent reflections
2139 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{\max} = 75.6^{\circ}, \theta_{\min} = 3.2^{\circ}$ $h = -15 \rightarrow 17$ $k = -11 \rightarrow 12$ $l = -12 \rightarrow 13$

 $wR(F^2) = 0.150$ S = 1.10 2856 reflections

191 parameters
0 restraints
Primary atom site location: dual
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0712P)^2 + 0.268P]$
where $P = (F_o^2 + 2F_c^2)/3$

Special details

 $\begin{aligned} (\Delta/\sigma)_{\text{max}} &< 0.001 \\ \Delta\rho_{\text{max}} &= 0.32 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.34 \text{ e } \text{ Å}^{-3} \\ \text{Extinction correction: } SHELXL2018/3 \\ & (\text{Sheldrick } 2015b), \\ & \text{Fc}^* = \text{kFc}[1 + 0.001 \text{ xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ \text{Extinction coefficient: } 0.0023 (5) \end{aligned}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional	atomic	coordinates	and isotro	nic or a	auivalant	isotronic	disnl	acomont	naramotors	1 12)
Fractional	aiomic	coorainales	unu isoiro	pic or e	quivaieni	isotropic	uispii	ucemeni	purumeters	(A)	/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.45082 (4)	0.66477 (7)	0.66401 (5)	0.0380 (2)	
01	0.52700 (12)	0.5704 (2)	0.67907 (19)	0.0514 (6)	
O2	0.41925 (14)	0.6961 (2)	0.77812 (16)	0.0519 (6)	
O3	0.22170 (13)	0.91599 (19)	0.44575 (18)	0.0455 (5)	
N1	0.27444 (13)	0.7076 (2)	0.48536 (18)	0.0306 (5)	
C1	0.35000 (16)	0.6063 (3)	0.5290 (2)	0.0310 (5)	
H1	0.374440	0.583984	0.451921	0.037*	
C4	0.47674 (18)	0.8100 (3)	0.5937 (2)	0.0396 (6)	
H4A	0.532525	0.854461	0.656910	0.048*	
H4B	0.493981	0.790381	0.511127	0.048*	
C3	0.38813 (19)	0.8988 (3)	0.5617 (3)	0.0425 (6)	
H3A	0.399282	0.971486	0.505438	0.051*	
H3B	0.384838	0.938047	0.646531	0.051*	
C2	0.28912 (18)	0.8402 (3)	0.4920 (2)	0.0348 (6)	
C5	0.18322 (17)	0.6594 (3)	0.3978 (2)	0.0333 (6)	
C6	0.17961 (19)	0.6182 (3)	0.2711 (2)	0.0440 (7)	
H6	0.235336	0.625452	0.241121	0.053*	
C7	0.0947 (2)	0.5664 (4)	0.1879 (3)	0.0559 (9)	
H7	0.091908	0.537900	0.100655	0.067*	
C8	0.0141 (2)	0.5563 (4)	0.2324 (3)	0.0633 (10)	
H8	-0.044126	0.519958	0.175939	0.076*	
C9	0.0179 (2)	0.5990 (4)	0.3588 (3)	0.0682 (11)	
H9	-0.038042	0.592964	0.388363	0.082*	
C10	0.10296 (19)	0.6506 (3)	0.4427 (3)	0.0496 (8)	
H10	0.105807	0.679455	0.529797	0.060*	
C11	0.31292 (16)	0.4818 (3)	0.5756 (2)	0.0334 (6)	
C12	0.3255 (2)	0.3631 (3)	0.5188 (3)	0.0437 (7)	
H12	0.356067	0.360439	0.450153	0.052*	
C13	0.2933 (2)	0.2481 (3)	0.5624 (3)	0.0550 (8)	
H13	0.301505	0.166705	0.523015	0.066*	
C14	0.2495 (2)	0.2515 (3)	0.6624 (3)	0.0541 (8)	
H14	0.227909	0.172599	0.692365	0.065*	

C15	0.2371 (2)	0.3693 (3)	0.7189(3)	0.0468 (7)	
H15	0.207209	0.371115	0.788272	0.056*	
C16	0.26749 (17)	0.4849 (3)	0.6758 (2)	0.0391 (6)	
H16	0.257539	0.566039	0.714104	0.047*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0329 (4)	0.0492 (5)	0.0252 (3)	-0.0062 (3)	-0.0018 (2)	0.0054 (3)
01	0.0332 (10)	0.0563 (14)	0.0540 (11)	0.0048 (9)	-0.0038 (8)	0.0172 (10)
O2	0.0568 (12)	0.0699 (15)	0.0249 (9)	-0.0242 (11)	0.0060 (8)	-0.0045 (9)
03	0.0431 (11)	0.0385 (11)	0.0531 (11)	0.0069 (9)	0.0117 (8)	0.0068 (9)
N1	0.0264 (10)	0.0339 (12)	0.0271 (9)	0.0014 (9)	0.0010 (7)	0.0010 (9)
C1	0.0288 (12)	0.0369 (14)	0.0242 (11)	0.0019 (11)	0.0029 (8)	0.0001 (10)
C4	0.0332 (13)	0.0488 (18)	0.0306 (12)	-0.0078 (12)	-0.0002 (9)	-0.0007 (12)
C3	0.0429 (15)	0.0410 (16)	0.0409 (13)	-0.0035 (13)	0.0085 (11)	-0.0046 (12)
C2	0.0387 (13)	0.0361 (15)	0.0287 (12)	0.0004 (12)	0.0088 (9)	0.0008 (11)
C5	0.0266 (12)	0.0412 (16)	0.0273 (11)	0.0008 (11)	0.0006 (9)	0.0025 (11)
C6	0.0344 (13)	0.061 (2)	0.0318 (13)	0.0004 (13)	0.0024 (10)	-0.0038 (13)
C7	0.0457 (16)	0.075 (2)	0.0375 (14)	-0.0016 (16)	-0.0020 (11)	-0.0111 (15)
C8	0.0393 (16)	0.083 (3)	0.0542 (18)	-0.0118 (17)	-0.0070 (13)	-0.0056 (18)
C9	0.0319 (15)	0.118 (3)	0.0511 (18)	-0.0105 (19)	0.0072 (12)	0.003 (2)
C10	0.0347 (14)	0.079 (2)	0.0340 (13)	-0.0036 (15)	0.0083 (10)	-0.0019 (14)
C11	0.0284 (12)	0.0365 (15)	0.0299 (11)	0.0023 (11)	0.0005 (9)	0.0008 (11)
C12	0.0441 (15)	0.0421 (17)	0.0402 (14)	0.0065 (13)	0.0051 (11)	-0.0036 (13)
C13	0.063 (2)	0.0324 (17)	0.0579 (18)	0.0028 (15)	0.0007 (15)	0.0000 (14)
C14	0.0525 (17)	0.0420 (19)	0.0573 (18)	-0.0064 (15)	-0.0001 (14)	0.0102 (15)
C15	0.0428 (15)	0.0516 (19)	0.0431 (15)	-0.0038 (14)	0.0083 (11)	0.0098 (14)
C16	0.0398 (14)	0.0400 (16)	0.0360 (13)	-0.0006 (12)	0.0089 (10)	0.0013 (12)

Geometric parameters (Å, °)

<u>S1—01</u>	1.435 (2)	C6—C7	1.383 (4)
S1—O2	1.438 (2)	C7—H7	0.9500
S1—C1	1.807 (2)	C7—C8	1.381 (4)
S1—C4	1.744 (3)	C8—H8	0.9500
O3—C2	1.226 (3)	C8—C9	1.382 (5)
N1-C1	1.475 (3)	С9—Н9	0.9500
N1—C2	1.368 (3)	C9—C10	1.387 (4)
N1C5	1.451 (3)	C10—H10	0.9500
С1—Н1	1.0000	C11—C12	1.385 (4)
C1-C11	1.514 (4)	C11—C16	1.394 (3)
C4—H4A	0.9900	C12—H12	0.9500
C4—H4B	0.9900	C12—C13	1.389 (4)
C4—C3	1.523 (4)	C13—H13	0.9500
С3—НЗА	0.9900	C13—C14	1.377 (5)
С3—Н3В	0.9900	C14—H14	0.9500
C3—C2	1.524 (4)	C14—C15	1.375 (4)

C5—C6	1.381 (3)	C15—H15	0.9500
C5—C10	1.377 (4)	C15—C16	1.381 (4)
С6—Н6	0.9500	C16—H16	0.9500
O1—S1—O2	118.62 (12)	С5—С6—Н6	120.0
O1—S1—C1	106.20 (12)	C5—C6—C7	119.9 (3)
O1—S1—C4	111.28 (13)	С7—С6—Н6	120.0
O2—S1—C1	110.23 (11)	С6—С7—Н7	120.2
O2—S1—C4	108.92 (14)	C8—C7—C6	119.6 (3)
C4—S1—C1	99.96 (11)	С8—С7—Н7	120.2
C2—N1—C1	126.0 (2)	С7—С8—Н8	119.9
C2—N1—C5	117.7 (2)	C7—C8—C9	120.2 (3)
C5—N1—C1	114.2 (2)	С9—С8—Н8	119.9
S1—C1—H1	108.3	C8—C9—H9	119.8
N1-C1-S1	111 31 (17)	C8-C9-C10	120 4 (3)
N1—C1—H1	108.3	C10—C9—H9	119.8
N1-C1-C11	112 84 (19)	C_{5}	119.1 (3)
	107.70(15)	C_{5} C_{10} H_{10}	120.5
$C_{11} = C_{1} = C_{11}$	107.70 (15)	C_{0} C_{10} H_{10}	120.5
S1 C4 H4A	100.0	C_{12} C_{11} C_{1}	120.3
S1 = C4 = H4R	109.9	C_{12} C_{11} C_{14}	119.3(2)
	109.9		119.7 (3)
H4A - C4 - H4B	108.3		121.0 (2)
	109.11 (19)	CII—CI2—HI2	120.1
C3—C4—H4A	109.9	C11—C12—C13	119.8 (3)
C3—C4—H4B	109.9	С13—С12—Н12	120.1
С4—С3—НЗА	107.6	С12—С13—Н13	119.9
С4—С3—Н3В	107.6	C14—C13—C12	120.2 (3)
C4—C3—C2	118.7 (2)	C14—C13—H13	119.9
НЗА—СЗ—НЗВ	107.1	C13—C14—H14	120.0
С2—С3—НЗА	107.6	C15—C14—C13	119.9 (3)
С2—С3—Н3В	107.6	C15—C14—H14	120.0
O3—C2—N1	120.7 (2)	C14—C15—H15	119.7
O3—C2—C3	117.7 (2)	C14—C15—C16	120.7 (3)
N1—C2—C3	121.5 (2)	C16—C15—H15	119.7
C6—C5—N1	118.8 (2)	C11—C16—H16	120.2
C10—C5—N1	120.3 (2)	C15—C16—C11	119.6 (3)
C10—C5—C6	120.9 (2)	C15—C16—H16	120.2
S1—C1—C11—C12	-111.1 (2)	C4—C3—C2—O3	-167.2 (2)
S1—C1—C11—C16	68.1 (2)	C4—C3—C2—N1	15.3 (4)
S1—C4—C3—C2	-45.9 (3)	C2—N1—C1—S1	29.3 (3)
01—S1—C1—N1	-168.32 (16)	C2—N1—C1—C11	150.5 (2)
01—\$1—C1—C11	67.50 (19)	C2—N1—C5—C6	96.5 (3)
01 - 81 - C4 - C3	172.01 (17)	$C_{2} = N_{1} = C_{5} = C_{10}$	-86.0(3)
02 - 81 - C1 - N1	62.00 (19)	$C_{5}-N_{1}-C_{1}-S_{1}$	-167.57 (16)
02 - 81 - C1 - C11	-62.2(2)	C_{5} N1-C1-C11	-463(3)
02 - 81 - C4 - C3	-554(2)	C_{5} N1- C_{2} O3	13.2(3)
$N_1 = C_1 = C_1 = C_1^2$	125 6 (2)	$C_{5} = N_{1} = C_{2} = C_{5}$	-1604(2)
$\mathbb{N}_{1} = \mathbb{C}_{1} = \mathbb{C}_{11} = \mathbb{C}_{12}$	123.0 (2)	C_{3} — N_{1} — C_{2} — C_{3}	109.4 (2)

N1-C1-C11-C16	-55.2 (3)	C5—C6—C7—C8	0.0 (5)
N1—C5—C6—C7	177.1 (3)	C6-C5-C10-C9	0.3 (5)
N1C5C10C9	-177.2 (3)	C6—C7—C8—C9	0.7 (6)
C1—S1—C4—C3	60.16 (19)	C7—C8—C9—C10	-0.9 (6)
C1—N1—C2—O3	175.8 (2)	C8—C9—C10—C5	0.4 (6)
C1—N1—C2—C3	-6.8 (3)	C10—C5—C6—C7	-0.5 (4)
C1—N1—C5—C6	-68.1 (3)	C11—C12—C13—C14	-0.4 (4)
C1—N1—C5—C10	109.4 (3)	C12-C11-C16-C15	1.1 (4)
C1-C11-C12-C13	178.9 (2)	C12-C13-C14-C15	0.4 (4)
C1-C11-C16-C15	-178.1 (2)	C13-C14-C15-C16	0.4 (4)
C4—S1—C1—N1	-52.56 (18)	C14-C15-C16-C11	-1.2 (4)
C4—S1—C1—C11	-176.73 (18)	C16—C11—C12—C13	-0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12…O1 ⁱ	0.95	2.56	3.454 (4)	157

Symmetry code: (i) -x+1, -y+1, -z+1.

N-[(2S,5R)-1,1,4-Trioxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (2)

Crystal data

$C_{18}H_{18}N_{2}O_{4}S$ $M_{r} = 358.40$ Orthorhombic, $P2_{1}2_{1}2_{1}$ $a = 5.5230 (4) Å$ $b = 10.6857 (9) Å$ $c = 28.430 (2) Å$ $V = 1677.8 (2) Å^{3}$ $Z = 4$ $F(000) = 752$	$D_x = 1.419 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4224 reflections $\theta = 2.4-25.0^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 298 K Rod, colorless $0.22 \times 0.06 \times 0.06 \text{ mm}$
Data collection	
Bruker SMART CCD area detector diffractometer phi and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.656, T_{\max} = 0.900$ 13301 measured reflections	4037 independent reflections 3460 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 1.4^{\circ}$ $h = -7 \rightarrow 5$ $k = -12 \rightarrow 14$ $l = -36 \rightarrow 37$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.103$ S = 1.04 4037 reflections 231 parameters 0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0564P)^2 + 0.035P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³ $\Delta\rho_{min} = -0.14$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 1213 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i> <i>al.</i> , 2013) Absolute structure parameter: 0.07 (4)

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω . The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.29097 (13)	0.61561 (6)	0.04750 (2)	0.04039 (18)
01	0.2013 (5)	0.5960 (2)	0.00084 (6)	0.0665 (7)
O2	0.5430 (4)	0.5943 (2)	0.05600 (8)	0.0655 (6)
03	0.0948 (4)	0.72050 (18)	0.18769 (6)	0.0575 (6)
O4	-0.3983 (4)	0.8940 (2)	0.13514 (8)	0.0659 (6)
N1	0.1594 (4)	0.56459 (18)	0.13538 (6)	0.0394 (5)
N2	0.0062 (5)	0.8977 (2)	0.12438 (9)	0.0485 (6)
C1	0.1124 (4)	0.5198 (2)	0.08754 (7)	0.0333 (5)
H1	-0.058432	0.536713	0.080716	0.040*
C2	0.0930 (5)	0.6841 (2)	0.14753 (8)	0.0409 (6)
C3	0.0251 (5)	0.7713 (2)	0.10656 (8)	0.0398 (6)
H3	-0.132274	0.745690	0.093867	0.048*
C4	0.2134 (6)	0.7692 (2)	0.06686 (8)	0.0424 (6)
H4A	0.359008	0.811013	0.077660	0.051*
H4B	0.150687	0.816206	0.040330	0.051*
C11	0.1560 (4)	0.3832 (2)	0.07738 (7)	0.0350 (5)
C16	0.3688 (5)	0.3203 (3)	0.08898 (9)	0.0448 (6)
H16	0.493371	0.362002	0.104412	0.054*
C15	0.3932 (6)	0.1953 (3)	0.07738 (10)	0.0559 (8)
H15	0.533040	0.152566	0.085968	0.067*
C14	0.2132 (7)	0.1331 (3)	0.05326 (10)	0.0596 (9)
H14	0.232717	0.049213	0.045356	0.072*
C13	0.0065 (7)	0.1949 (3)	0.04104 (10)	0.0565 (8)
H13	-0.114479	0.153289	0.024516	0.068*
C12	-0.0235 (5)	0.3194 (2)	0.05317 (8)	0.0434 (6)
H12	-0.165681	0.360621	0.044990	0.052*
C5	0.2702 (5)	0.4889 (2)	0.17177 (7)	0.0393 (6)
C6	0.1536 (6)	0.3843 (3)	0.18873 (9)	0.0535 (8)
H6	0.004073	0.360301	0.176670	0.064*
C7	0.2639 (10)	0.3152 (3)	0.22429 (10)	0.0815 (13)
H7	0.188747	0.243530	0.235747	0.098*
C8	0.4806 (12)	0.3516 (5)	0.24243 (12)	0.0976 (17)
H8	0.553113	0.304469	0.266063	0.117*
C9	0.5929 (8)	0.4575 (5)	0.22597 (12)	0.0839 (13)
H9	0.738587	0.483351	0.239181	0.101*
C10	0.4902 (6)	0.5261 (3)	0.18983 (10)	0.0560 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10	0.568552	0.596319	0.177902	0.067*
C17	-0.2027 (7)	0.9434 (3)	0.14185 (9)	0.0490 (7)
C18	-0.1753 (8)	1.0631 (3)	0.16996 (11)	0.0678 (10)
H18A	-0.330040	1.103268	0.172852	0.102*
H18B	-0.064566	1.118103	0.154150	0.102*
H18C	-0.113853	1.043699	0.200700	0.102*
H2	0.139 (5)	0.924 (3)	0.1348 (9)	0.042 (8)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0452 (4)	0.0358 (3)	0.0402 (3)	0.0022 (3)	0.0046 (3)	0.0016 (2)
01	0.1092 (19)	0.0556 (12)	0.0347 (9)	-0.0001 (14)	0.0030 (11)	-0.0010 (8)
O2	0.0404 (11)	0.0512 (13)	0.1048 (17)	0.0035 (10)	0.0137 (12)	0.0130 (11)
03	0.0835 (16)	0.0502 (12)	0.0387 (9)	0.0055 (11)	0.0013 (10)	-0.0095 (8)
04	0.0562 (14)	0.0671 (15)	0.0742 (14)	0.0093 (13)	-0.0051 (11)	-0.0223 (12)
N1	0.0536 (15)	0.0329 (10)	0.0317 (9)	0.0008 (10)	-0.0029 (9)	-0.0018 (8)
N2	0.0530 (16)	0.0315 (12)	0.0611 (14)	-0.0018 (12)	-0.0034 (12)	-0.0078 (10)
C1	0.0321 (12)	0.0353 (12)	0.0324 (10)	0.0017 (10)	-0.0035 (9)	-0.0027 (9)
C2	0.0461 (16)	0.0349 (13)	0.0415 (12)	-0.0033 (12)	0.0008 (12)	-0.0033 (10)
C3	0.0431 (15)	0.0303 (12)	0.0460 (13)	-0.0002(11)	-0.0029 (11)	-0.0054 (10)
C4	0.0506 (15)	0.0347 (12)	0.0419 (12)	-0.0013 (13)	-0.0016 (12)	0.0019 (9)
C11	0.0406 (14)	0.0327 (11)	0.0317 (10)	-0.0004 (11)	0.0015 (9)	-0.0009 (9)
C16	0.0480 (16)	0.0434 (14)	0.0431 (13)	0.0080 (13)	-0.0010 (11)	0.0002 (11)
C15	0.072 (2)	0.0458 (16)	0.0498 (15)	0.0223 (16)	0.0092 (15)	0.0110 (12)
C14	0.095 (3)	0.0319 (13)	0.0516 (15)	-0.0005 (17)	0.0225 (18)	0.0014 (11)
C13	0.072 (2)	0.0451 (16)	0.0521 (15)	-0.0183 (17)	0.0068 (15)	-0.0108 (12)
C12	0.0463 (15)	0.0445 (15)	0.0394 (12)	-0.0049 (13)	0.0010 (12)	-0.0051 (11)
C5	0.0445 (15)	0.0420 (13)	0.0315 (10)	0.0043 (12)	-0.0011 (11)	-0.0019 (9)
C6	0.071 (2)	0.0473 (15)	0.0422 (13)	-0.0011 (16)	0.0077 (13)	0.0033 (12)
C7	0.138 (4)	0.060 (2)	0.0462 (16)	0.015 (3)	0.012 (2)	0.0154 (14)
C8	0.147 (5)	0.100 (4)	0.0458 (18)	0.058 (3)	-0.020(2)	0.0019 (19)
C9	0.073 (3)	0.118 (4)	0.060 (2)	0.039 (3)	-0.0289 (19)	-0.029 (2)
C10	0.0483 (18)	0.071 (2)	0.0483 (14)	0.0058 (16)	-0.0050 (13)	-0.0119 (14)
C17	0.065 (2)	0.0384 (14)	0.0435 (13)	0.0077 (15)	-0.0061 (15)	-0.0038 (10)
C18	0.095 (3)	0.0437 (16)	0.0649 (18)	0.0125 (19)	-0.0055 (19)	-0.0156 (13)

Geometric parameters (Å, °)

<u>81—01</u>	1.431 (2)	С15—Н15	0.9300	_
S1—O2	1.431 (2)	C15—C14	1.378 (5)	
S1—C1	1.821 (2)	C14—H14	0.9300	
S1—C4	1.783 (3)	C14—C13	1.364 (5)	
O3—C2	1.206 (3)	C13—H13	0.9300	
O4—C17	1.218 (4)	C13—C12	1.384 (4)	
N1-C1	1.465 (3)	C12—H12	0.9300	
N1—C2	1.373 (3)	C5—C6	1.377 (4)	
N1—C5	1.449 (3)	C5—C10	1.378 (4)	

N2 C2	1 446 (2)	С6 Ц6	0.0200
N2	1.440 (3)		0.9300
	1.348 (4)		1.393 (5)
N2—H2	0.84 (3)	C/—H/	0.9300
C1—H1	0.9800	С7—С8	1.360 (7)
C1—C11	1.507 (3)	С8—Н8	0.9300
C2—C3	1.538 (3)	C8—C9	1.373 (6)
С3—Н3	0.9800	С9—Н9	0.9300
C3—C4	1.535 (4)	C9—C10	1.384 (5)
C4—H4A	0.9700	C10—H10	0.9300
C4—H4B	0.9700	C17—C18	1.515 (4)
C11—C16	1.394 (4)	C18—H18A	0.9600
C11—C12	1.386 (3)	C18—H18B	0.9600
C16—H16	0.9300	C18—H18C	0.9600
C16 C15	1.382(4)		0.9000
010-015	1.362 (4)		
01 81 61	10902(12)	C16 C15 U15	110 5
	100.03(13)		119.5
01-51-04	109.74 (13)		121.0 (3)
02—\$1—01	118.01 (15)	С14—С15—Н15	119.5
02—S1—C1	109.38 (12)	C15—C14—H14	120.1
O2—S1—C4	109.15 (14)	C13—C14—C15	119.8 (3)
C4—S1—C1	101.20 (11)	C13—C14—H14	120.1
C2—N1—C1	119.34 (19)	C14—C13—H13	119.9
C2—N1—C5	116.91 (18)	C14—C13—C12	120.2 (3)
C5—N1—C1	123.75 (19)	С12—С13—Н13	119.9
C3—N2—H2	112 (2)	C11—C12—H12	119.6
C17—N2—C3	122.0 (3)	C13—C12—C11	120.7 (3)
C17—N2—H2	120 (2)	C13—C12—H12	119.6
S1—C1—H1	107.1	C6—C5—N1	120.4 (2)
N1-C1-S1	107.50 (16)	C10—C5—N1	118.5 (3)
N1-C1-H1	107.1	C10—C5—C6	121.1 (3)
N1-C1-C11	117 76 (19)	С5—С6—Н6	120.7
$C_{11} - C_{1} - S_{1}$	109 76 (16)	$C_{5}-C_{6}-C_{7}$	1187(3)
C_{11} C_{1} H_{1}	107.1	C7—C6—H6	120.7
$O_3 C_2 N_1$	107.1 122.4(2)	C6 C7 H7	110.7
03 - 02 - 03	122.4(2) 121.6(2)	C_{0} C_{7} C_{6}	119.7 120.6(4)
03-02-03 N1 02 03	121.0(2)	C^{8} C^{7} U^{7}	120.0 (4)
N1 - C2 - C3	113.99(19) 109.5(2)	C_{0}	119.7
$N_2 - C_3 - C_2$	108.5 (2)	C/C8H8	119.9
N2—C3—H3	109.0	C/C8C9	120.2 (4)
N2—C3—C4	108.7 (2)	С9—С8—Н8	119.9
С2—С3—Н3	109.0	С8—С9—Н9	119.8
C4—C3—C2	112.5 (2)	C8—C9—C10	120.3 (4)
С4—С3—Н3	109.0	С10—С9—Н9	119.8
S1—C4—H4A	108.8	C5—C10—C9	119.0 (4)
S1—C4—H4B	108.8	C5-C10-H10	120.5
C3—C4—S1	113.79 (17)	C9—C10—H10	120.5
C3—C4—H4A	108.8	O4—C17—N2	123.0 (2)
C3—C4—H4B	108.8	O4—C17—C18	122.5 (3)
H4A—C4—H4B	107.7	N2—C17—C18	114.5 (3)

C16—C11—C1 C12—C11—C1 C12—C11—C16 C11—C16—H16 C15—C16—C11 C15—C16—H16	123.8 (2) 117.2 (2) 118.9 (2) 120.3 119.5 (3) 120.3	C17—C18—H18A C17—C18—H18B C17—C18—H18C H18A—C18—H18B H18A—C18—H18C H18B—C18—H18C	109.5 109.5 109.5 109.5 109.5 109.5
S1—C1—C11—C16	73.2 (2)	C2—N1—C5—C6	114.0 (3)
S1—C1—C11—C12	-103.8(2)	C2—N1—C5—C10	-64.0 (3)
01—S1—C1—N1	-165.13 (17)	C2—C3—C4—S1	50.6 (3)
01—S1—C1—C11	65.65 (19)	C3—N2—C17—O4	-15.9 (4)
O1—S1—C4—C3	111.3 (2)	C3—N2—C17—C18	165.1 (2)
O2—S1—C1—N1	65.22 (19)	C4—S1—C1—N1	-49.88 (19)
O2—S1—C1—C11	-64.00 (19)	C4—S1—C1—C11	-179.10 (17)
O2—S1—C4—C3	-117.9 (2)	C11—C16—C15—C14	2.0 (4)
O3—C2—C3—N2	8.7 (4)	C16—C11—C12—C13	0.6 (4)
O3—C2—C3—C4	129.0 (3)	C16—C15—C14—C13	-0.7 (4)
N1—C1—C11—C16	-50.2 (3)	C15—C14—C13—C12	-0.6 (4)
N1-C1-C11-C12	132.9 (2)	C14—C13—C12—C11	0.7 (4)
N1—C2—C3—N2	-169.1 (2)	C12-C11-C16-C15	-1.9 (4)
N1—C2—C3—C4	-48.8 (3)	C5—N1—C1—S1	-117.4 (2)
N1—C5—C6—C7	-178.9 (3)	C5—N1—C1—C11	7.2 (3)
N1—C5—C10—C9	177.3 (3)	C5—N1—C2—O3	-9.9 (4)
N2—C3—C4—S1	170.82 (19)	C5—N1—C2—C3	167.9 (2)
C1—S1—C4—C3	-2.7 (2)	C5—C6—C7—C8	1.1 (5)
C1—N1—C2—O3	169.2 (3)	C6—C5—C10—C9	-0.8 (4)
C1—N1—C2—C3	-13.1 (4)	C6—C7—C8—C9	0.3 (6)
C1—N1—C5—C6	-64.9 (3)	C7—C8—C9—C10	-2.0 (6)
C1—N1—C5—C10	117.0 (3)	C8—C9—C10—C5	2.2 (5)
C1-C11-C16-C15	-178.8 (2)	C10—C5—C6—C7	-0.9 (4)
C1-C11-C12-C13	177.7 (2)	C17—N2—C3—C2	-88.7 (3)
C2—N1—C1—S1	63.7 (3)	C17—N2—C3—C4	148.7 (3)
C2—N1—C1—C11	-171.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1···O2 ⁱ	0.98	2.39	3.365 (3)	173
C4—H4A····O4 ⁱⁱ	0.97	2.29	3.185 (4)	153
C8—H8····O3 ⁱⁱⁱ	0.93	2.51	3.378 (5)	155

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x+1, y-1/2, -z+1/2.