

Received 2 November 2022 Accepted 29 December 2022

Edited by V. Jancik, Universidad Nacional Autónoma de México, México

Keywords: crystal structure; aryl-substituted thiourea; hydrogen bond.

CCDC references: 2233350; 2233349

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis, characterization, and crystal structures of *N*,*N*'-bis(2-dialkylaminophenyl)thioureas

Kyounghoon Lee*

Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea. *Correspondence e-mail: klee1@gnu.ac.kr

N,N'-Bis[2-(dimethylamino)phenyl]thiourea, $C_{17}H_{22}N_4S$ (1), and N,N'-bis[2-(diethylamino)phenyl]thiourea, $C_{21}H_{30}N_4S$ (2), were prepared by the treatment of 1,1'-thiocarbonyldiimidazole and 2 equivalents of 2-amino-N,N'-dialkyl-aniline. Both compounds exhibit intramolecular hydrogen bonds between the N-H(thiourea) and NR_2 (R = Me, Et) groups. The other N-H bonds face the sulfur atoms of S=C bonds in an adjacent molecule, which forms an intermolecular interaction in the packed structure. The structural details match the spectroscopic data acquired from NMR and IR spectroscopy.

1. Chemical context

Thioureas and their derivatives are found in numerous organic and biological molecules (Schroeder, 1955; Kožurková *et al.*, 2017; Khan *et al.*, 2021; Ronchetti *et al.*, 2021). Recent reviews pointed out that thioureas have been used in various research areas, such as catalysis (Doyle & Jacobsen, 2007; Zhang & Schreiner, 2009; Sun *et al.*, 2017; Parvin *et al.*, 2020), chemical sensing (Li *et al.*, 2010; Khan *et al.*, 2021; Al-Saidi & Khan, 2022), as ligands (Saeed *et al.*, 2014; Zahra *et al.*, 2022), *etc.* For example, strong hydrogen bonding in some thiourea compounds allows them to be using as organocatalysts in different chemical transformations. Furthermore, thioureas with chiral substituents are easily available and are used in asymmetric catalysis. Finally, thioureas substituted with functionalized aromatic rings can act as chemosensors.

Aryl-substituted thiourea compounds with amine groups in the *ortho* positions are expected to have versatile applications due to the unique hydrogen-bonding interactions, but so far, no such compounds have been reported. Diaryl thioureas with dimethylamine functional groups in the *meta* or *para* positions of the aryl substituents have been reported, but their crystal structures are unknown.

R = Me (1), Et (2)

This report describes the preparation and crystal structures of N,N'-bis(2-dimethylaminophenyl)thiourea (1) and N,N'-bis(2-diethylaminophenyl)thiourea (2). Compounds 1 and 2 were prepared by treating 1,1'-thiocarbonyldiimidazole and

two equivalents of 2-amino-N,N'-dialkylaniline in CH₂Cl₂. Methyl and NH resonances for **1** were observed at δ 2.64 and 8.82 ppm in the ¹H NMR spectrum, whereas singlets at δ 43.99 and 178.66 ppm in the ¹³C NMR spectrum match to methyl and C=S resonances (Figs. S1 and S2 in the supporting information). Ethyl and NH resonances for **2** were found at δ 0.89, 2.89, and 9.14 ppm in the ¹H NMR spectrum, while resonances at δ 12.47, 48.07, and 176.68 ppm in ¹³C NMR spectrum correspond to the ethyl and C=S groups (Figs. S3 and S4). In the IR spectra, the NH stretches were observed at 3165 and 3226 cm⁻¹ for **1** and **2**, respectively (Figs. S5 and S6). High-resolution ESI–MS data confirmed the formation of **1** and **2** with the desired isotopic patterns (Figs. S7 and S8).

2. Structural commentary

One of the most noticeable features in both 1 and 2 is the intramolecular hydrogen bonding between one of the thiourea NH moieties and the NR₂ group (R = Me and Et) in the ortho position of the aromatic rings (Figs. 1 and 2). The N2-H2 bond distance of 0.896 (15) Å in **1** is slightly shorter (within error ranges) than the N2-H2 bond distance of 0.905 (15) Å in 2, whereas the N3···H2 distance of 1.957 (17) Å for 1 is more elongated than the N3···H2 distance of 1.864 (15) Å for 2. Bond distance analysis suggests that the hydrogen bonding interaction is stronger in 2, due to the increased basicity of amine with longer chains. The increased hydrogen bonding was also observed in the solution, as demonstrated with the deshielded NH resonance of 2 at δ 9.14 ppm compared to that for **1** at δ 8.82 ppm. It is worth noting that, contrary to what is expected, there are no hydrogen bonds between N4 and H2 in both 1 and 2 even as the corresponding $N \cdots H$ distances are 2.707 (12) and 2.641 (14) Å for 1 and 2, respectively.

Slightly asymmetric C1-N1 and C1-N2 bond distances are observed for the trigonal planar thiourea backbones, presumably due to the intramolecular hydrogen-bonding

Figure 1

Molecular structure of 1 with displacement ellipsoids at the 50% probability level. Hydrogen atoms attached to carbon were omitted from the figure.

Figure 2

Molecular structure of 2 with displacement ellipsoids at the 50% probability level. Hydrogen atoms attached to carbon were omitted from the figure.

interactions. The C1–S1 bond distance of 1.6879 (11) Å in 1 is between the values for a double and a single bond, while the sum of bond angles around the thiourea carbon (C1) is 360.0° . In the thiourea backbone, the C1–N2 bond [1.3396 (14) Å]that is involved in intramolecular hydrogen bonding is slightly shorter than the C1-N1 bond [1.3621 (15) Å] without the intramolecular hydrogen bonding. The other C-N bond distances, such as C1-N1, C3-N3, C8-N2, and C9-N4 range from 1.41 to 1.43 Å. Similar bond distances and angles were observed for 2. The thiourea backbone contains the C1-S1 bond distance of 1.6921 (11) Å, and C1-N2 and C1-N1 bond distances of 1.3415 (14) and 1.3652 (14) Å, respectively, while the sum of the bond angles around C1 is 360.0°. Finally, the C1-N1, C3-N3, C8-N2, and C9-N4 bond distances range from 1.42 to 1.43 Å. Overall, a similar C1-S1 bond distance is observed within a variation of 0.01 Å between 1 and 2, while both structures exhibit a trigonal-planar geometry around the central carbon (C1). Furthermore, the C1-N2 bonds involved in intramolecular hydrogen bonds are 0.02 Å shorter than the C1-N1 bonds in 1 and 2 that do not participate in the hydrogen bonding.

3. Supramolecular features

Supramolecular features for 1 and 2 were investigated using Hirshfeld surface analysis with *CrystalExplorer 21.5* (Spackman *et al.*, 2021). Hirshfeld surfaces for 1 and 2 were mapped over d_{norm} in the range of -0.27 to 1.29 and -0.18 to 1.48 a.u. for 1 and 2, respectively (Figs. 3 and 4). The most intense red spots on the surface indicate the intermolecular H1...S1 interactions (Tables 1 and 2) with the graph-set descriptor $R_2^2(8)$ (Bernstein *et al.*, 1995). The corresponding intermolecular distances of H1...S1 were measured to be 2.506 (14) and 2.677 (16) Å for 1 and 2, respectively. In addition, the acquired N-H stretch from IR spectra red shifted for 1 (3165 cm⁻¹) when compared to that of 2 (3226 cm⁻¹).

research communications

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for 1 .	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N1 {-} H1 {\cdots} S1^{i} \\ N2 {-} H2 {\cdots} N3 \end{array}$	0.905 (15)	2.506 (14)	3.3814 (10)	163.4 (14)
	0.896 (15)	1.957 (17)	2.8018 (17)	156.8 (13)

Symmetry code: (i) -x, -y + 1, -z + 1.

This matches the elongated N1–H1 bond distance of 0.905 (15) Å and shorter H1···S1 interaction of 2.506 (14) Å for **1** when compared to those for **2** at 0.851 (16) and 2.677 (16) Å.

Some weaker interactions were observed as faint red spots on the Hirshfeld surface. The spots in **1** correspond to the short contacts of C15-H15A···H15A-C15 and C5-H5···C9-C10 (Fig. 3). In addition, the spots in **2** correspond to C20-H20A···C15-H15B, C4-H4···C11, and C20-H20B···C5-C6 interactions (Fig. 4). No appreciable π - π interactions or hydrogen bonding associated with N4 atoms

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$) for 2 .	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1\cdots S1^{i}$	0.851 (16)	2.677 (16)	3.5017 (10)	163.6 (13)
$N2-H2\cdots N3$	0.905 (15)	1.864 (15)	2.7366 (14)	161.4 (13)

Symmetry code: (i) -x, -y + 1, -z + 1.

are observed for either **1** or **2**. The Hirshfeld surface of **1** arises from $H \cdots H$ (64.8%), $C \cdots H/H \cdots C$ (22.9%), and $S \cdots H/H \cdots S$ (12.1%) contacts, whereas $H \cdots H$ (71.3%), $C \cdots H/H \cdots C$ (14.4%), and $S \cdots H/H \cdots S$ (11.4%) contacts contribute to the surface of **2**. The minor contributions include $N \cdots H/H \cdots N$ (0.2%) for **1** and $C \cdots C$ (2.0%) and $N \cdots H/H \cdots N$ (1.0%) for **2**.

4. Database survey

A search in the Cambridge Structural Database for structures 1 and 2 did not match any reported structures, including

Figure 3 (a) Hirshfeld surface mapped over d_{norm} in the range -0.27 to 1.29. (b) Partial packing plot of 1.

Figure 4 (a) Hirshfeld surface mapped over d_{norm} in the range -0.18 to 1.48. (b) Partial packing plot of 2.

Table 3Experimental details.

	1	2
Crystal data		
Chemical formula	C17H22N4S	$C_{21}H_{20}N_4S$
М.,	314.44	370.55
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	173	296
a, b, c (Å)	7.6486 (1), 10.8964 (2), 10.9266 (2)	9.6159 (7), 16.0524 (11), 12.9462 (8)
α, β, γ (°)	78.086 (1), 70.863 (1), 81.135 (1)	90, 96.724 (3), 90
$V(\dot{A}^3)$	838.10 (3)	1984.6 (2)
Z	2	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.20	0.18
Crystal size (mm)	$0.41 \times 0.33 \times 0.16$	$0.63 \times 0.46 \times 0.33$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, \hat{T}_{\max}	0.705, 0.746	0.671, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15212, 3820, 3496	19639, 4948, 4402
R _{int}	0.023	0.037
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.649	0.669
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.089, 1.04	0.037, 0.095, 1.04
No. of reflections	3820	4948
No. of parameters	209	245
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.24, -0.27	0.32, -0.26

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and OLEX2 (Dolomanov et al., 2009).

derivative searches. Similar compounds with dimethylamine at the *meta* or *para* position have been prepared, but the structures are unknown.

5. Synthesis and crystallization

Compounds **1** and **2** were prepared by treating 1,1'-thiocarbonyldiimidazole with two equivalents of 2-amino-N,N'dialkylaniline in CH₂Cl₂ (Fig. 5) following the reported procedures (Ren *et al.*, 2011; Thapa *et al.*, 2020). Detailed procedures are described below. Single crystals were grown by diffusion of pentane vapor into a solution of **1** in THF or **2** in Et₂O, respectively. The relative intensities of IR bands were described as *vw*, *w*, *m*, *s*, and *vs*, corresponding to very weak, weak, medium, strong, and very strong, respectively.

N,N-Bis(2-dimethylaminophenyl)thiourea (1). To a stirred solution of 1,1'-thiocarbonyldiimidazole (0.38 g, 2.2 mmol) in CH₂Cl₂ (5 mL) was added a solution of 2-amino-N,N'-dimethylaniline (0.58 g, 4.3 mmol) in CH₂Cl₂ (5 mL). The

Figure 5

Preparation of N,N'-bis(2-dimethylaminophenyl)thiourea (1) and N,N'-bis(2-diethylaminophenyl)thiourea (2).

resulting solution was heated at 323 K overnight. CH₂Cl₂ (50 mL) was added to the pale-yellow solution, and the solution was washed with deionized (DI) water (60 mL) three times. The organic layer was dried over Na₂SO₄ and evaporated to dryness under vacuum. The obtained solid was solubilized in a minimum amount of CH₂Cl₂ (ca 5 mL) and excess amount of Et₂O was added before the solution was stored at 253 K. The product was obtained as an off-white powder. Yield: 0.47 g (70%). ¹H NMR (CDCl₃, 300 MHz): δ 8.82 (br s, NH, 2H), 7.96 (s, Ar, 2H), 7.19-7.13 (m, Ar, 2H), 7.13-7.06 (m, Ar, 4H), 2.64 (s, NMe₂, 12H). ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 178.66 (s, C-S), 146.26 (s, Ar), 132.49 (s, Ar), 126.25 (s, Ar), 124.16 (s, Ar), 123.56 (s, Ar), 119.71 (s, Ar), 44.00 [s, N(CH₃)₂]. IR (ATR, cm⁻¹): 3165 s (N–H stretch), 3068 w (C-H stretch), 2984 w (C-H stretch), 2936 w (C-H stretch), 2834 m (C-H stretch), 2788 w (C-H stretch), 1596 s, 1583 s, 1552 s, 1525 s, 1489 vs, 1451 m, 1429 w, 1405 w, 1362 s, 1297 m, 1259 s, 1215 s, 1159 w, 1150 m, 1100 s, 1045 vs, 935 vs, 855 vw, 809 m, 751 vs, 735 m, 644 m, 623 vs, 566 m, 558 m, 531 m, 507 m, 493 s. ESI-MS m/z: calculated for C₁₇H₂₃N₄S 315.1643; found 315.1644.

N,N-Bis(2-diethylaminophenyl)thiourea (2). To a stirred solution of 1,1'-thiocarbonyldiimidazole (0.40 g, 2.2 mmol) in CH₂Cl₂ (5 mL) was added a solution of 2-amino-N,N'-dimethylaniline (0.74 g, 4.5 mmol) in CH₂Cl₂ (5 mL). The resulting solution was heated at 323 K overnight. CH₂Cl₂ (20 mL) was added to the pale-yellow solution, and the solution was washed with DI water (30 mL) three times. The

organic layer was dried over Na₂SO₄ and evaporated to drvness under vacuum. The obtained solid was solubilized in a minimum amount of CH₂Cl₂ (ca 5 mL) and excess amount of Et₂O was added before the solution was stored at 253 K. The product was obtained as an off-white powder. Yield: 0.51 g (61%). ¹H NMR (CDCl₃, 300 MHz): δ 9.14 (*br s*, NH, 2H), 8.27 (s, Ar, 2H), 7.20-7.10 (m, Ar, 6H), 2.89 (q, NCH₂, 8H), 0.89 (t, CH₃, 12H). ¹³C{¹H} NMR (CDCl₃, 126 MHz): δ 176.68 (s, C-S), 141.93 (s, Ar), 135.14 (s, Ar), 125.03 (s, Ar), 124.59 (s, Ar), 123.19 (s, Ar), 121.78 (s, Ar), 48.07 [s, N(CH₂CH₃)₂], 12.47 [s, N(CH₂CH₃)₂]. IR (ATR, cm⁻¹): 3226 s (N-H stretch), 2977 s (C-H stretch), 2958 w (C-H stretch), 2936 w (C-H stretch), 2866 m (C-H stretch), 1600 s, 1577 m, 1556 s, 1523 s, 1485 vs, 1442 s, 1370 vs, 1347 m, 1336 w, 1302 m, 1285 m, 1275 m, 1257 m, 1236 s, 1203 s, 1162 s, 1088 s, 1066 m, 1015 s, 942 w, 901 w, 861 w, 828 m, 799 m, 766 w, 755 vs, 735 m, 692 m, 646 s, 623 s, 586 m, 555 m, 523 m, 506 s, 470 m, 463 m, 435 w. ESI-MS m/z: calculated for C₂₁H₃₁N₄S 371.2269; found 371.2273.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3. Upon scrutiny, no appreciable disorder was observed in either structure. The positions of hydrogen on nitrogen atoms were refined, whereas the other hydrogen atoms were optimized using riding models $[C-H = 0.93-0.98 \text{ Å}; U_{iso}(H) = 1.2-1.5U_{eq}(C)].$

Acknowledgements

Dr Ji-Eun Lee (Gyeongsang National University) is gratefully acknowledged for collecting the single-crystal XRD data.

Funding information

Funding for this research was provided by: National Research Foundation of Korea (NRF) grant funded by the Korean

government (MSIT) (2021R1G1A1093332 and 2022R1F1A1064158).

References

- Al-Saidi, H. M. & Khan, S. (2022). Crit. Rev. Anal. Chem. pp. 1-17.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713-5743.
- Khan, E., Khan, S., Gul, Z. & Muhammad, M. (2021). *Crit. Rev. Anal. Chem.* **51**, 812–834.
- Kožurková, M., Sabolová, D. & Kristian, P. (2017). J. Appl. Toxicol. 37, 1132–1139.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Li, A.-F., Wang, J.-H., Wang, F. & Jiang, Y.-B. (2010). Chem. Soc. Rev. 39, 3729–3745.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Parvin, T., Yadav, R. & Choudhury, L. H. (2020). Org. Biomol. Chem. 18, 5513–5532.
- Ren, P., Vechorkin, O., Csok, Z., Salihu, I., Scopelliti, R. & Hu, X. (2011). Dalton Trans. 40, 8906–8911.
- Ronchetti, R., Moroni, G., Carotti, A., Gioiello, A. & Camaioni, E. (2021). *RSC Med. Chem.* **12**, 1046–1064.
- Saeed, A., Flörke, U. & Erben, M. F. (2014). J. Sulfur Chem. 35, 318–355.
- Schroeder, D. C. (1955). Chem. Rev. 55, 181-228.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Sun, Y.-L., Wei, Y. & Shi, M. (2017). ChemCatChem, 9, 718-727.
- Thapa, P., Palacios, P. M., Tran, T., Pierce, B. S. & Foss, F. W. (2020). J. Org. Chem. 85, 1991–2009.
- Zahra, U., Saeed, A., Abdul Fattah, T., Flörke, U. & Erben, M. F. (2022). *RSC Adv.* **12**, 12710–12745.
- Zhang, Z. & Schreiner, P. R. (2009). Chem. Soc. Rev. 38, 1187-1198.

Acta Cryst. (2023). E79, 60-64 [https://doi.org/10.1107/S2056989022012245]

Synthesis, characterization, and crystal structures of *N*,*N*'-bis(2-dialkylamino-phenyl)thioureas

Kyounghoon Lee

Computing details

For both structures, data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009).

N,N'-Bis[2-(dimethylamino)phenyl]thiourea (1)

Crystal data $C_{17}H_{22}N_4S$ $M_r = 314.44$ Triclinic, $P\overline{1}$ a = 7.6486 (1) Å b = 10.8964 (2) Å c = 10.9266 (2) Å a = 78.086 (1)° $\beta = 70.863$ (1)° $\gamma = 81.135$ (1)° V = 838.10 (3) Å³

Data collection

Bruker APEXII CCD diffractometer Multilayer monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.705$, $T_{\max} = 0.746$ 15212 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.089$ S = 1.043820 reflections 209 parameters 0 restraints Z = 2 F(000) = 336 $D_x = 1.246 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8859 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 173 K BLOCK, colourless $0.41 \times 0.33 \times 0.16 \text{ mm}$

3820 independent reflections 3496 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 14$ $l = -13 \rightarrow 14$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0424P)^2 + 0.2821P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.11704 (4)	0.46317 (3)	0.30114 (3)	0.02635 (10)	
N2	0.38096 (14)	0.27534 (9)	0.32181 (9)	0.0225 (2)	
H2	0.466 (2)	0.2452 (13)	0.3632 (14)	0.027*	
N1	0.20935 (15)	0.34773 (9)	0.51263 (9)	0.0246 (2)	
H1	0.115 (2)	0.4039 (14)	0.5467 (14)	0.030*	
N4	0.71659 (14)	0.34986 (9)	0.14163 (10)	0.0256 (2)	
N3	0.57747 (15)	0.21641 (10)	0.50554 (11)	0.0288 (2)	
C9	0.59665 (16)	0.29364 (10)	0.09912 (11)	0.0216 (2)	
C2	0.23764 (17)	0.23641 (10)	0.60252 (11)	0.0231 (2)	
C3	0.41291 (17)	0.17201 (10)	0.60109 (11)	0.0241 (2)	
C1	0.24274 (15)	0.35521 (10)	0.38108 (11)	0.0207 (2)	
C8	0.42590 (15)	0.25953 (10)	0.18851 (11)	0.0206 (2)	
C13	0.30914 (17)	0.19843 (11)	0.15256 (12)	0.0270 (3)	
H13	0.193140	0.176791	0.214054	0.032*	
C10	0.64498 (18)	0.26354 (11)	-0.02667 (12)	0.0280 (3)	
H10	0.759573	0.286296	-0.089404	0.034*	
C7	0.07808 (19)	0.19426 (12)	0.69835 (12)	0.0302 (3)	
H7	-0.039053	0.239647	0.700428	0.036*	
C4	0.4167 (2)	0.06285 (11)	0.69360 (12)	0.0319 (3)	
H4	0.532617	0.015914	0.692284	0.038*	
C12	0.36034 (19)	0.16861 (12)	0.02749 (13)	0.0329 (3)	
H12	0.280371	0.126205	0.003170	0.039*	
C11	0.5286 (2)	0.20110 (13)	-0.06139 (13)	0.0334 (3)	
H11	0.564805	0.180434	-0.147111	0.040*	
C17	0.65604 (19)	0.48128 (12)	0.15808 (15)	0.0360 (3)	
H17A	0.677991	0.534802	0.071569	0.054*	
H17B	0.726455	0.507818	0.207029	0.054*	
H17C	0.523152	0.489167	0.206665	0.054*	
C5	0.2567 (2)	0.02127 (12)	0.78690 (13)	0.0386 (3)	
Н5	0.263790	-0.053267	0.848686	0.046*	
C16	0.91227 (18)	0.33728 (14)	0.06450 (15)	0.0385 (3)	
H16A	0.951293	0.248938	0.054645	0.058*	
H16B	0.987224	0.364986	0.109466	0.058*	
H16C	0.929808	0.389445	-0.022427	0.058*	
C6	0.0869 (2)	0.08720 (13)	0.79092 (13)	0.0385 (3)	
H6	-0.023033	0.059693	0.856327	0.046*	
C14	0.7454 (2)	0.12829 (15)	0.48739 (17)	0.0428 (3)	
H14A	0.786992	0.115000	0.565347	0.064*	
H14B	0.843493	0.163155	0.410108	0.064*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H14C	0.718103	0.047721	0.474562	0.064*
C15	0.6169 (2)	0.33902 (13)	0.52041 (17)	0.0435 (4)
H15A	0.504137	0.397587	0.530400	0.065*
H15B	0.715220	0.372392	0.442398	0.065*
H15C	0.657686	0.329057	0.598368	0.065*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.02772 (17)	0.02673 (16)	0.02053 (15)	0.00853 (11)	-0.00787 (12)	-0.00237 (11)
N2	0.0221 (5)	0.0251 (5)	0.0180 (5)	0.0051 (4)	-0.0064 (4)	-0.0037 (4)
N1	0.0283 (5)	0.0220 (5)	0.0182 (5)	0.0087 (4)	-0.0052 (4)	-0.0030 (4)
N4	0.0226 (5)	0.0245 (5)	0.0292 (5)	-0.0008 (4)	-0.0079 (4)	-0.0042 (4)
N3	0.0261 (5)	0.0299 (5)	0.0324 (6)	0.0031 (4)	-0.0124 (4)	-0.0081 (4)
C9	0.0227 (6)	0.0182 (5)	0.0218 (5)	0.0038 (4)	-0.0080(4)	-0.0014 (4)
C2	0.0313 (6)	0.0199 (5)	0.0174 (5)	0.0030 (4)	-0.0088 (5)	-0.0036 (4)
C3	0.0321 (6)	0.0209 (5)	0.0227 (5)	0.0027 (4)	-0.0127 (5)	-0.0074 (4)
C1	0.0203 (5)	0.0193 (5)	0.0199 (5)	-0.0006 (4)	-0.0044 (4)	-0.0015 (4)
C8	0.0218 (5)	0.0189 (5)	0.0191 (5)	0.0052 (4)	-0.0064 (4)	-0.0035 (4)
C13	0.0231 (6)	0.0274 (6)	0.0298 (6)	0.0005 (4)	-0.0080 (5)	-0.0055 (5)
C10	0.0283 (6)	0.0300 (6)	0.0201 (6)	0.0034 (5)	-0.0036 (5)	-0.0030 (5)
C7	0.0342 (7)	0.0288 (6)	0.0232 (6)	0.0025 (5)	-0.0053 (5)	-0.0041 (5)
C4	0.0462 (8)	0.0232 (6)	0.0307 (6)	0.0080 (5)	-0.0214 (6)	-0.0064 (5)
C12	0.0351 (7)	0.0337 (7)	0.0368 (7)	0.0016 (5)	-0.0179 (6)	-0.0134 (5)
C11	0.0409 (7)	0.0369 (7)	0.0237 (6)	0.0073 (6)	-0.0121 (5)	-0.0123 (5)
C17	0.0326 (7)	0.0269 (6)	0.0475 (8)	-0.0036 (5)	-0.0078 (6)	-0.0105 (6)
C5	0.0628 (10)	0.0221 (6)	0.0276 (7)	0.0026 (6)	-0.0155 (6)	0.0013 (5)
C16	0.0230 (6)	0.0416 (7)	0.0498 (8)	-0.0017 (5)	-0.0086 (6)	-0.0106 (6)
C6	0.0506 (9)	0.0308 (7)	0.0252 (6)	-0.0046 (6)	-0.0020 (6)	0.0001 (5)
C14	0.0306 (7)	0.0474 (8)	0.0546 (9)	0.0098 (6)	-0.0180 (7)	-0.0195 (7)
C15	0.0392 (8)	0.0329 (7)	0.0593 (10)	-0.0069 (6)	-0.0154 (7)	-0.0069 (7)

Geometric parameters (Å, °)

S1—C1	1.6879 (11)	С7—Н7	0.9500	
N2—H2	0.896 (15)	С7—С6	1.3862 (17)	
N2-C1	1.3396 (14)	C4—H4	0.9500	
N2—C8	1.4235 (14)	C4—C5	1.380 (2)	
N1—H1	0.905 (15)	C12—H12	0.9500	
N1-C2	1.4316 (14)	C12—C11	1.380 (2)	
N1-C1	1.3621 (15)	C11—H11	0.9500	
N4—C9	1.4152 (15)	C17—H17A	0.9800	
N4—C17	1.4645 (16)	C17—H17B	0.9800	
N4—C16	1.4583 (17)	C17—H17C	0.9800	
N3—C3	1.4233 (16)	С5—Н5	0.9500	
N3—C14	1.4636 (17)	C5—C6	1.376 (2)	
N3—C15	1.4657 (17)	C16—H16A	0.9800	
С9—С8	1.4004 (16)	C16—H16B	0.9800	

C9—C10	1.3960 (16)	C16—H16C	0.9800
C2—C3	1.4109 (16)	С6—Н6	0.9500
C2—C7	1.3903 (17)	C14—H14A	0.9800
C3—C4	1.3963 (16)	C14—H14B	0.9800
C8—C13	1.3843 (17)	C14—H14C	0.9800
С13—Н13	0.9500	С15—Н15А	0.9800
C13—C12	1.3855 (18)	C15—H15B	0.9800
С10—Н10	0.9500	C15—H15C	0.9800
C10—C11	1.3835 (19)		
C1—N2—H2	115.8 (9)	C5—C4—H4	119.1
C1—N2—C8	124.84 (10)	С13—С12—Н12	120.3
C8—N2—H2	117.6 (9)	C11—C12—C13	119.35 (12)
C2—N1—H1	115.3 (9)	C11—C12—H12	120.3
C1—N1—H1	111.8 (9)	C10—C11—H11	119.7
C1-N1-C2	125.90 (10)	C12-C11-C10	120.53 (12)
C9—N4—C17	113.86 (10)	C12—C11—H11	119.7
C9-N4-C16	115.07 (10)	N4—C17—H17A	109.5
C16 - N4 - C17	110.25 (10)	N4—C17—H17B	109.5
C3-N3-C14	116 65 (11)	N4—C17—H17C	109.5
$C_3 - N_3 - C_{15}$	113 45 (10)	H17A—C17—H17B	109.5
C14 - N3 - C15	110 35 (11)	H17A - C17 - H17C	109.5
C8-C9-N4	119 15 (10)	H17B-C17-H17C	109.5
C10-C9-N4	122.93 (11)	C4-C5-H5	119.8
C10-C9-C8	117.82 (11)	C6-C5-C4	120.36(12)
C_{3} C_{2} N_{1}	124 50 (11)	С6—С5—Н5	119.8
C7-C2-N1	115.61 (11)	N4-C16-H16A	109.5
C7-C2-C3	119.87 (11)	N4—C16—H16B	109.5
$C_{2} - C_{3} - N_{3}$	120.27(10)	N4—C16—H16C	109.5
C4-C3-N3	122.17(11)	H16A—C16—H16B	109.5
C4-C3-C2	11753(12)	H16A - C16 - H16C	109.5
N_{2} C_{1} S_{1}	123 65 (9)	H16B—C16—H16C	109.5
N2-C1-N1	116.15 (10)	C7—C6—H6	120.4
N1-C1-S1	120 19 (8)	$C_{5} - C_{6} - C_{7}$	119 19 (13)
C9—C8—N2	119.51 (10)	C5—C6—H6	120.4
C13 - C8 - N2	119.31 (10)	N3—C14—H14A	109.5
C13—C8—C9	120.82 (10)	N3—C14—H14B	109.5
C8—C13—H13	119.8	N3—C14—H14C	109.5
C8—C13—C12	120.45 (12)	H14A—C14—H14B	109.5
С12—С13—Н13	119.8	H14A—C14—H14C	109.5
C9—C10—H10	119.5	H14B—C14—H14C	109.5
C11—C10—C9	121.03 (12)	N3—C15—H15A	109.5
C11—C10—H10	119.5	N3—C15—H15B	109.5
C2-C7-H7	119.4	N3—C15—H15C	109.5
C6—C7—C2	121.18 (12)	H15A—C15—H15B	109.5
С6—С7—Н7	119.4	H15A - C15 - H15C	109.5
C3—C4—H4	119.1	H15B-C15-H15C	109.5
$C_{5} - C_{4} - C_{3}$	121 79 (12)		107.0
	121.17 (12)		

N2-C8-C13-C12 N1-C2-C3-N3 N1-C2-C3-C4 N1-C2-C7-C6	-172.36 (10) -0.24 (17) -178.48 (11) 179.76 (12) -2.56 (15)	C1—N1—C2—C7 C8—N2—C1—S1 C8—N2—C1—N1 C8—C9—C10—C11	-115.29 (13) -8.08 (16) 173.53 (10) -0.54 (17) -0.30 (10)
N4-C9-C8-C13	-176.63 (10)	C13-C12-C11-C10	$\begin{array}{c} -0.39 (19) \\ -0.40 (19) \\ 172.81 (10) \\ -0.25 (16) \\ -178.31 (11) \\ 3.45 (17) \end{array}$
N4-C9-C10-C11	175.69 (11)	C10-C9-C8-N2	
N3-C3-C4-C5	179.22 (11)	C10-C9-C8-C13	
C9-C8-C13-C12	0.72 (17)	C7-C2-C3-N3	
C9-C10-C11-C12	0.88 (19)	C7-C2-C3-C4	
C2—N1—C1—S1	150.72 (10)	C4—C5—C6—C7	1.4 (2)
C2—N1—C1—N2	-30.83 (17)	C17—N4—C9—C8	-74.41 (13)
C2—C3—C4—C5	-2.57 (18)	C17—N4—C9—C10	109.41 (13)
C2—C7—C6—C5	-0.5 (2)	C16—N4—C9—C8	156.94 (11)
C3—C2—C7—C6	-2.01 (19)	C16—N4—C9—C10	-19.25 (16)
C3-C4-C5-C6	0.2 (2)	C14—N3—C3—C2	-164.03 (11)
C1-N2-C8-C9	114.58 (13)	C14—N3—C3—C4	14.13 (17)
C1-N2-C8-C13	-72.26 (15)	C15—N3—C3—C2	66.05 (15)
C1-N1-C2-C3	66.56 (17)	C15—N3—C3—C4	-115.79 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···S1 ⁱ	0.905 (15)	2.506 (14)	3.3814 (10)	163.4 (14)
N2—H2…N3	0.896 (15)	1.957 (17)	2.8018 (17)	156.8 (13)

Symmetry code: (i) -x, -y+1, -z+1.

N,*N*'-Bis[2-(diethylamino)phenyl]thiourea (2)

Crystal data

$C_{21}H_{30}N_4S$ $M_r = 370.55$ Monoclinic, $P2_1/n$ $a = 9.6159 (7) Å$ $b = 16.0524 (11) Å$ $c = 12.9462 (8) Å$ $\beta = 96.724 (3)^{\circ}$ $V = 1984.6 (2) Å^3$ $Z = 4$	F(000) = 800 $D_x = 1.240 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8945 reflections $\theta = 2.5-28.4^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.63 \times 0.46 \times 0.33 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause <i>et al.</i> , 2015) $T_{\min} = 0.671, T_{\max} = 0.746$ 19639 measured reflections	4948 independent reflections 4402 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 2.0^\circ$ $h = -12 \rightarrow 12$ $k = -21 \rightarrow 21$ $l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.037$	and constrained refinement
$wR(F^2) = 0.095$	$w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.8116P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4948 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
245 parameters	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.02729 (3)	0.62006 (2)	0.58639(3)	0.02352 (9)	
N2	0.24439 (10)	0.69094 (6)	0.50659 (7)	0.01290 (18)	
H2	0.2836 (15)	0.6950 (9)	0.4466 (11)	0.015*	
N3	0.33323 (10)	0.67098 (6)	0.31488 (7)	0.01359 (19)	
N1	0.17251 (10)	0.56268 (6)	0.44080 (7)	0.01455 (19)	
H1	0.1150 (15)	0.5228 (10)	0.4448 (11)	0.017*	
N4	0.20893 (10)	0.85320 (6)	0.42949 (7)	0.01425 (19)	
C3	0.37577 (11)	0.58724 (7)	0.33846 (8)	0.0127 (2)	
C9	0.25294 (11)	0.84099 (7)	0.53724 (8)	0.0131 (2)	
C2	0.29696 (11)	0.53669 (7)	0.39875 (8)	0.0127 (2)	
C8	0.25996 (11)	0.75917 (7)	0.57688 (8)	0.0129 (2)	
C4	0.49907 (12)	0.55411 (7)	0.30729 (8)	0.0157 (2)	
H4	0.554145	0.587217	0.269367	0.019*	
C7	0.33721 (12)	0.45419 (7)	0.41875 (8)	0.0156 (2)	
H7	0.281572	0.420032	0.454924	0.019*	
C5	0.54073 (12)	0.47335 (8)	0.33161 (9)	0.0172 (2)	
Н5	0.624257	0.453287	0.311572	0.021*	
C16	0.44184 (12)	0.72933 (7)	0.28857 (9)	0.0176 (2)	
H16A	0.398226	0.781294	0.264119	0.021*	
H16B	0.488678	0.706059	0.232742	0.021*	
C10	0.29015 (12)	0.90660 (7)	0.60646 (9)	0.0164 (2)	
H10	0.289327	0.960906	0.581382	0.020*	
C12	0.32860 (12)	0.81178 (8)	0.75043 (9)	0.0168 (2)	
H12	0.350995	0.802119	0.821254	0.020*	
C13	0.29531 (11)	0.74547 (7)	0.68286 (8)	0.0152 (2)	
H13	0.296695	0.691408	0.708783	0.018*	
C1	0.15685 (11)	0.62606 (7)	0.50880 (8)	0.0142 (2)	
C6	0.45841 (12)	0.42208 (7)	0.38581 (9)	0.0177 (2)	
H6	0.484168	0.367023	0.399816	0.021*	
C18	0.05902 (12)	0.83248 (7)	0.40160 (9)	0.0165 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18A	0.042289	0.777080	0.427390	0.020*
H18B	0.039633	0.830878	0.326388	0.020*
C14	0.20097 (12)	0.67896 (8)	0.24495 (9)	0.0177 (2)
H14A	0.161228	0.733438	0.255343	0.021*
H14B	0.135428	0.637633	0.264764	0.021*
C11	0.32826 (12)	0.89210 (8)	0.71185 (9)	0.0174 (2)
H11	0.353513	0.936423	0.756383	0.021*
C20	0.24384 (12)	0.93418 (7)	0.38573 (9)	0.0180 (2)
H20A	0.210396	0.978289	0.427696	0.022*
H20B	0.195027	0.939178	0.316070	0.022*
C17	0.54904 (13)	0.74644 (8)	0.38189 (10)	0.0211 (2)
H17A	0.614692	0.787422	0.363685	0.032*
H17B	0.597900	0.695884	0.402564	0.032*
H17C	0.502305	0.766842	0.438405	0.032*
C21	0.39972 (13)	0.94621 (8)	0.38091 (10)	0.0213 (2)
H21A	0.430684	0.908551	0.330719	0.032*
H21B	0.449937	0.935165	0.448033	0.032*
H21C	0.416989	1.002519	0.360919	0.032*
C15	0.21500 (15)	0.66843 (8)	0.13015 (9)	0.0251 (3)
H15A	0.123605	0.667487	0.091349	0.038*
H15B	0.262470	0.617064	0.119600	0.038*
H15C	0.267808	0.714092	0.106882	0.038*
C19	-0.04336 (13)	0.89250 (8)	0.44342 (10)	0.0229 (3)
H19A	-0.036737	0.946001	0.411224	0.034*
H19B	-0.020992	0.897916	0.517347	0.034*
H19C	-0.136942	0.871446	0.428077	0.034*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.02364 (16)	0.01920 (16)	0.03137 (18)	-0.00753 (12)	0.01852 (13)	-0.00934 (12)
N2	0.0141 (4)	0.0115 (4)	0.0137 (4)	-0.0010 (3)	0.0045 (3)	-0.0009 (3)
N3	0.0141 (4)	0.0124 (5)	0.0147 (4)	-0.0004 (3)	0.0032 (3)	0.0012 (3)
N1	0.0136 (4)	0.0124 (5)	0.0188 (5)	-0.0030 (4)	0.0068 (3)	-0.0025 (4)
N4	0.0146 (4)	0.0123 (4)	0.0155 (4)	-0.0017 (4)	0.0001 (3)	0.0017 (3)
C3	0.0131 (5)	0.0134 (5)	0.0115 (5)	0.0001 (4)	0.0011 (4)	-0.0020 (4)
С9	0.0108 (5)	0.0131 (5)	0.0156 (5)	0.0000 (4)	0.0020 (4)	-0.0006 (4)
C2	0.0124 (5)	0.0142 (5)	0.0116 (5)	0.0002 (4)	0.0018 (4)	-0.0025 (4)
C8	0.0106 (5)	0.0122 (5)	0.0162 (5)	-0.0003 (4)	0.0034 (4)	-0.0022 (4)
C4	0.0143 (5)	0.0182 (6)	0.0150 (5)	-0.0018 (4)	0.0035 (4)	-0.0024 (4)
C7	0.0184 (5)	0.0141 (5)	0.0144 (5)	-0.0014 (4)	0.0021 (4)	-0.0007 (4)
C5	0.0137 (5)	0.0194 (6)	0.0183 (5)	0.0032 (4)	0.0015 (4)	-0.0043 (4)
C16	0.0204 (6)	0.0149 (5)	0.0187 (5)	-0.0030 (4)	0.0070 (4)	0.0004 (4)
C10	0.0157 (5)	0.0125 (5)	0.0210 (5)	-0.0008 (4)	0.0027 (4)	-0.0014 (4)
C12	0.0132 (5)	0.0230 (6)	0.0141 (5)	0.0026 (4)	0.0013 (4)	-0.0020 (4)
C13	0.0143 (5)	0.0151 (5)	0.0168 (5)	0.0021 (4)	0.0038 (4)	0.0013 (4)
C1	0.0134 (5)	0.0138 (5)	0.0159 (5)	0.0006 (4)	0.0038 (4)	0.0001 (4)
C6	0.0192 (6)	0.0148 (5)	0.0184 (5)	0.0039 (4)	-0.0008(4)	-0.0020 (4)

C18	0.0152 (5)	0.0153 (5)	0.0184 (5)	-0.0009 (4)	-0.0011 (4)	-0.0011 (4)
C14	0.0168 (5)	0.0172 (6)	0.0186 (5)	0.0030 (4)	0.0003 (4)	0.0005 (4)
C11	0.0138 (5)	0.0182 (6)	0.0203 (5)	-0.0014 (4)	0.0016 (4)	-0.0064 (4)
C20	0.0203 (6)	0.0132 (5)	0.0202 (5)	-0.0014 (4)	0.0017 (4)	0.0035 (4)
C17	0.0195 (6)	0.0189 (6)	0.0255 (6)	-0.0044 (5)	0.0047 (5)	-0.0030 (5)
C21	0.0227 (6)	0.0164 (6)	0.0255 (6)	-0.0032 (5)	0.0061 (5)	0.0010 (5)
C15	0.0354 (7)	0.0219 (6)	0.0169 (6)	-0.0012 (5)	-0.0016 (5)	0.0007 (5)
C19	0.0163 (6)	0.0243 (7)	0.0281 (6)	0.0005 (5)	0.0031 (5)	-0.0038 (5)

Geometric parameters (Å, °)

S1—C1	1.6921 (11)	C10-C11	1.3903 (16)
N2—H2	0.905 (15)	C12—H12	0.9300
N2—C8	1.4206 (14)	C12—C13	1.3910 (16)
N2—C1	1.3415 (14)	C12—C11	1.3826 (17)
N3—C3	1.4277 (14)	С13—Н13	0.9300
N3—C16	1.4722 (14)	С6—Н6	0.9300
N3—C14	1.4779 (14)	C18—H18A	0.9700
N1—H1	0.851 (16)	C18—H18B	0.9700
N1—C2	1.4335 (14)	C18—C19	1.5217 (17)
N1—C1	1.3652 (14)	C14—H14A	0.9700
N4—C9	1.4231 (14)	C14—H14B	0.9700
N4—C18	1.4822 (14)	C14—C15	1.5174 (17)
N4—C20	1.4724 (14)	C11—H11	0.9300
C3—C2	1.4072 (15)	C20—H20A	0.9700
C3—C4	1.4013 (15)	C20—H20B	0.9700
C9—C8	1.4089 (15)	C20—C21	1.5198 (17)
C9—C10	1.4018 (15)	C17—H17A	0.9600
C2—C7	1.3955 (16)	C17—H17B	0.9600
C8—C13	1.3919 (15)	C17—H17C	0.9600
C4—H4	0.9300	C21—H21A	0.9600
C4—C5	1.3822 (17)	C21—H21B	0.9600
С7—Н7	0.9300	C21—H21C	0.9600
C7—C6	1.3865 (16)	C15—H15A	0.9600
С5—Н5	0.9300	C15—H15B	0.9600
C5—C6	1.3879 (17)	C15—H15C	0.9600
C16—H16A	0.9700	C19—H19A	0.9600
C16—H16B	0.9700	C19—H19B	0.9600
C16—C17	1.5186 (17)	С19—Н19С	0.9600
C10—H10	0.9300		
C8—N2—H2	118.1 (9)	N1—C1—S1	119.00 (8)
C1—N2—H2	113.5 (9)	C7—C6—C5	119.00 (11)
C1—N2—C8	127.18 (9)	С7—С6—Н6	120.5
C3—N3—C16	117.08 (9)	С5—С6—Н6	120.5
C3—N3—C14	114.65 (9)	N4	108.5
C16—N3—C14	112.71 (9)	N4	108.5
C2—N1—H1	112.4 (10)	N4-C18-C19	114.99 (10)

C1—N1—H1	113.5 (10)	H18A—C18—H18B	107.5
C1—N1—C2	128.45 (10)	C19—C18—H18A	108.5
C9—N4—C18	112.15 (9)	C19—C18—H18B	108.5
C9—N4—C20	116 34 (9)	N3—C14—H14A	108.5
$C_{20} = N_{4} = C_{18}$	111 31 (9)	N3—C14—H14B	108.5
C_2 C_3 N_3	120.14(10)	N3	114.93 (10)
C4 - C3 - N3	120.14 (10)	$H_{14} - C_{14} - H_{14}B$	107.5
$C_4 C_3 C_2$	121.70(10) 118.01(10)	C15 C14 H14A	107.5
$C_{1} = C_{2} = C_{2}$	118.01(10) 118.78(10)	C15 $C14$ $H14B$	108.5
C_{3} C_{3} N_{4}	118.78(10) 123.20(10)	C_{10} C_{11} H_{11}	100.5
C_{10} C_{20} C_{8}	123.20(10) 118.02(10)	C_{10} C_{11} C_{10}	120.0
$C_{10} - C_{9} - C_{8}$	116.02(10) 124.70(10)	C12 $C11$ $U11$	119.99 (11)
C_{3}	124.79(10)		120.0
$C/-C_2-N_1$	115.56 (10)	N4	108.9
$C/-C_2-C_3$	119.63 (10)	N4—C20—H20B	108.9
C9—C8—N2	119.24 (9)	N4—C20—C21	113.48 (10)
C13—C8—N2	120.32 (10)	H20A—C20—H20B	107.7
C13—C8—C9	120.14 (10)	C21—C20—H20A	108.9
C3—C4—H4	119.2	С21—С20—Н20В	108.9
C5—C4—C3	121.52 (11)	C16—C17—H17A	109.5
C5—C4—H4	119.2	C16—C17—H17B	109.5
С2—С7—Н7	119.3	C16—C17—H17C	109.5
C6—C7—C2	121.37 (11)	H17A—C17—H17B	109.5
С6—С7—Н7	119.3	H17A—C17—H17C	109.5
C4—C5—H5	119.9	H17B—C17—H17C	109.5
C4—C5—C6	120.27 (11)	C20—C21—H21A	109.5
С6—С5—Н5	119.9	C20—C21—H21B	109.5
N3—C16—H16A	109.3	C20—C21—H21C	109.5
N3—C16—H16B	109.3	H21A—C21—H21B	109.5
N3—C16—C17	111.40 (9)	H21A—C21—H21C	109.5
H16A—C16—H16B	108.0	H21B—C21—H21C	109.5
C17—C16—H16A	109.3	C14—C15—H15A	109.5
C17—C16—H16B	109.3	C14—C15—H15B	109.5
C9—C10—H10	119.3	C14—C15—H15C	109.5
C11—C10—C9	121.32 (11)	H15A—C15—H15B	109.5
C11—C10—H10	119.3	H15A—C15—H15C	109.5
C13—C12—H12	120.1	H15B—C15—H15C	109.5
C11—C12—H12	120.1	C18—C19—H19A	109.5
$C_{11} - C_{12} - C_{13}$	119.72 (10)	C18—C19—H19B	109.5
C8-C13-H13	119.6	C18 - C19 - H19C	109.5
C12-C13-C8	120 71 (11)	H19A - C19 - H19B	109.5
$C_{12} = C_{13} = H_{13}$	119.6	H19A - C19 - H19C	109.5
$N_2 = C_1 = S_1$	124 35 (0)	H10B C10 H10C	109.5
$N_2 = C_1 = S_1$	124.55(0)		109.5
N2-C1-N1	110.01 (10)		
N2-C8-C13-C12	171.57 (10)	C4—C3—C2—N1	176.86 (10)
N3—C3—C2—N1	-0.16 (16)	C4—C3—C2—C7	-4.85 (15)
N3—C3—C2—C7	178.13 (9)	C4—C5—C6—C7	-2.64 (17)
N3—C3—C4—C5	179.08 (10)	C16—N3—C3—C2	157.09 (10)

$\begin{array}{c} N1 - C2 - C7 - C6 \\ N4 - C9 - C8 - N2 \\ N4 - C9 - C8 - C13 \\ N4 - C9 - C10 - C11 \\ C3 - N3 - C16 - C17 \\ C3 - N3 - C14 - C15 \\ C3 - C2 - C7 - C6 \\ C3 - C4 - C5 - C6 \\ C9 - N4 - C18 - C19 \\ C9 - N4 - C20 - C21 \\ C9 - C8 - C13 - C12 \\ C9 - C10 - C11 - C12 \\ C2 - N1 - C1 - S1 \\ C2 - N1 - C1 - N2 \\ \end{array}$	-177.58 (10) 9.69 (15) -176.53 (10) 177.90 (10) -67.54 (12) -81.12 (12) 3.98 (16) 1.66 (17) 69.76 (13) 68.56 (13) -2.13 (16) -0.65 (17) -153.44 (9) 28.65 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-19.82 (14) 56.20 (13) -170.21 (10) 3.57 (16) 2.17 (17) -128.51 (12) 57.73 (15) -60.21 (16) 121.44 (12) 68.45 (13) -111.66 (12) -161.30 (10) -67.53 (13) 115.56 (11)
$C_{9}-C_{10}-C_{11}-C_{12}$ $C_{2}-N_{1}-C_{1}-S_{1}$ $C_{2}-N_{1}-C_{1}-N_{2}$ $C_{2}-C_{3}-C_{4}-C_{5}$ $C_{2}-C_{7}-C_{6}-C_{5}$ $C_{8}-N_{2}-C_{1}-S_{1}$ $C_{8}-N_{2}-C_{1}-N_{1}$ $C_{8}-C_{9}-C_{10}-C_{11}$	$\begin{array}{c} -2.13 (10) \\ -0.65 (17) \\ -153.44 (9) \\ 28.65 (17) \\ 2.11 (16) \\ -0.18 (17) \\ 10.13 (16) \\ -172.09 (10) \\ -2.20 (16) \end{array}$	C18—N4—C9—C10 C18—N4—C20—C21 C14—N3—C3—C2 C14—N3—C3—C4 C14—N3—C16—C17 C11—C12—C13—C8 C20—N4—C9—C8 C20—N4—C9—C10 C20—N4—C18—C19	$\begin{array}{c} -111.00\ (12)\\ -161.30\ (10)\\ -67.53\ (13)\\ 115.56\ (11)\\ 156.26\ (10)\\ -0.78\ (17)\\ -161.81\ (10)\\ 18.08\ (15)\\ -62.54\ (13) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1…S1 ⁱ	0.851 (16)	2.677 (16)	3.5017 (10)	163.6 (13)
N2—H2…N3	0.905 (15)	1.864 (15)	2.7366 (14)	161.4 (13)

Symmetry code: (i) -x, -y+1, -z+1.