

ISSN 2056-9890

Received 5 January 2023
Accepted 13 January 2023

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; sulfosalt; selenide; disorder.

CCDC reference: 2236460

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

The crystal structure of the selenide-based synthetic sulfosalt $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$

Paul Sicher and Berthold Stöger*

X-Ray Centre, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria. *Correspondence e-mail: bstoeger@mail.tuwien.ac.at

Single crystals of copper lead triantimony hexaselenide, $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$, were obtained as a minor phase during systematic studies of the formation conditions of selenide-based sulfosalts. The crystal structure is an unusual representative of the family of sulfosalts. Instead of the expected galena-like slabs with octahedral coordination, it features mono and double-capped trigonal-prismatic (Pb), square-pyramidal (Sb) and trigonal-bipyramidal (Cu) coordination. All metal positions are occupationally and/or positionally disordered.

1. Chemical context

Sulfosalts (Moëlo et al., 2008) are promising candidates as thermoelectric materials owing to their high electrical conductivity paired with a low thermal conductivity. Inspired by natural sulfur-based sulfosalts, we attempted to further increase the electrical conductivity by substituting Se for S . During systematic studies of the formation conditions of sulfosalts of the andorite structure type (Moëlo et al., 2008), we obtained crystals of the title compound, $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$, as a minor phase, by heating the precursor selenides $\mathrm{Cu}_{2} \mathrm{Se}, \mathrm{PbSe}$ and $\mathrm{Sb}_{2} \mathrm{Se}_{3}$ in evacuated fused silica ampules. Surprisingly, the title compound does not follow the expected crystal chemistry of the structural family. In fact, crystals of the andorite family are modular structures, which are composed of galena-like slabs, with octahedral coordination of the metal atoms. This coordination is not observed for $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$. Nevertheless, certain structural relationships can be established, as will be shown below. These structural relationships are reflected by andorite-like compounds of the $\mathrm{Sn}_{3} \mathrm{Bi}_{2} \mathrm{Se}_{6}$ structure type (Chen \& Lee, 2010) with very similar cell parameters yet a different space-group symmetry. The structure with the closest matching cell parameters is $\mathrm{SnPb}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{6}(\mathrm{Li}$ et al., 2019) with a $=20.5458$ (12) $\AA, b=4.0925$ (4) \AA and $c=13.3219$ (10) \AA, whereby the axes have been cyclically permuted with respect to the cell of $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$ presented here. $\mathrm{SnPb}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{6}$ crystallizes in a lillianite-type ${ }^{4} \mathrm{~L}$ (Moëlo et al., 2008) structure and was investigated by the authors for its thermoelectric performance, sporting a figure of merit $Z T$ of 0.3 . Since $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$ shows strongly disordered positions, it is possible that it exhibits similar thermoelectric properties.

It should be noted that from a structural point of view, lillianites and andorites are interchangeable terms. However, in a mineralogical context, they define distinct sulfosalt mineral groups because the Sb that replaces Bi from the lillianite structure in andorite forms electron-pair micelles that distort the structure (Makovicky \& Topa, 2014).

2. Structural commentary

Crystals of the title compound crystallize in the Pnnm space group. All atoms are located on or disordered about (in the case of $\mathrm{Sb} 4 A$) the reflection plane parallel to (001), which corresponds to the Wyckoff position $4 g$. The crystal structure is comprised of three mixed $\mathrm{Pb} / \mathrm{Sb}$ positions, one Sb and one Cu position (Fig. 1). There are three different kinds of coordination polyhedra, with the interatomic distances compiled in Table 1. The predominantly $\mathrm{Pb} \mathrm{Pb} 1 / \mathrm{Sb} 1$ position is coordinated by Se atoms, forming a double-capped trigonal prism. The predominantly $\mathrm{Sb} \mathrm{Sb} 2 / \mathrm{Pb} 2$ and $\mathrm{Sb} 3 / \mathrm{Pb} 3$ positions and the disordered $\mathrm{Sb} 4 / \mathrm{Sb} 4 A$ are quadratic pyramids in the case of Sb and mono-capped trigonal prisms in the case of Pb . Finally, the disordered $\mathrm{Cu} 1 / \mathrm{Cu} 1 A$ position features trigonalbipyramidal coordination. Whereas the $\left[\mathrm{PbSe}_{8}\right]$ doublecapped trigonal prisms of the $\mathrm{Pb} 1 / \mathrm{Sb} 1$ position are a defining feature of lillianite-type structures and form where the galenalike slabs meet, the remaining two coordinations are unexpected in this structural family.

It has to be noted that the description of the coordination polyhedra of the $\mathrm{Sb} 2 / \mathrm{Pb} 2, \mathrm{Sb} 3 / \mathrm{Pb} 3$ and $\mathrm{Sb} 4 / \mathrm{Sb} 4 A$ positions as quadratic pyramids and capped trigonal prisms is not completely unambiguous. Both variants based on the central atom are shown in Fig. 2 for Sb 3 and Pb 3 . Since the distance from Sb 3 to the two farther Se6 atoms is 3.7015 (19) \AA and the

Figure 1
$\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$ viewed down [001]. Pb and $\mathrm{Pb} / \mathrm{Sb}$ are represented by grey, Sb by dark blue, Cu by cyan spheres of arbitrary radius.

Table 1
Selected bond lengths (\AA).

Pb1-Se1	3.0553 (15)	$\mathrm{Pb} 2-\mathrm{Se} 4^{\text {i }}$	2.900 (7)
$\mathrm{Pb} 1-\mathrm{Se} 1^{\text {i }}$	3.0553 (15)	$\mathrm{Pb} 2-\mathrm{Se}^{6}{ }^{\text {i }}$	3.283 (8)
$\mathrm{Pb} 1-\mathrm{Se} 2$	2.9124 (17)	$\mathrm{Pb} 2-\mathrm{Se}^{\text {vii }}$	3.283 (8)
$\mathrm{Pb} 1-\mathrm{Se} 3^{\text {ii }}$	3.5754 (15)	Sb3-Se1	2.587 (2)
$\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {iii }}$	3.5754 (15)	Sb3-Se2 ${ }^{\text {vi }}$	2.9293 (15)
$\mathrm{Pb} 1-\mathrm{Se} 4^{\text {ii }}$	3.4061 (16)	Sb3-Se2	2.9293 (15)
$\mathrm{Pb} 1-\mathrm{Se} 5^{\text {iv }}$	3.1205 (17)	Sb3-Se3	2.8835 (14)
$\mathrm{Pb} 1-\mathrm{Se} 5^{\text {v }}$	3.1205 (17)	$\mathrm{Sb} 3-\mathrm{Se} 3^{\text {i }}$	2.8835 (14)
Sb1-Se1	2.95 (2)	Sb3-Se6 ${ }^{\text {viii }}$	3.7015 (19)
$\mathrm{Sb} 1-\mathrm{Se} 1^{\text {i }}$	2.95 (2)	Sb3-Se6 ${ }^{\text {ix }}$	3.7015 (19)
Sb1-Se2	2.68 (3)	Pb3-Se1	3.02 (4)
$\mathrm{Sb} 1-\mathrm{Se} 3^{\text {ii }}$	3.75 (2)	$\mathrm{Pb} 3-\mathrm{Se} 2^{\text {vi }}$	3.05 (3)
$\mathrm{Sb} 1-\mathrm{Se} 3^{\text {iii }}$	3.75 (2)	$\mathrm{Pb} 3-\mathrm{Se} 2$	3.05 (3)
$\mathrm{Sb} 1-\mathrm{Se} 4^{\text {ii }}$	3.65 (2)	Pb3-Se3	2.86 (3)
$\mathrm{Sb} 1-\mathrm{Se} 5^{\mathrm{iv}}$	3.16 (3)	$\mathrm{Pb} 3-\mathrm{Se} 3^{\text {i }}$	2.86 (3)
$\mathrm{Sb} 1-\mathrm{Se} 5^{\text {v }}$	3.16 (3)	$\mathrm{Pb} 3-\mathrm{Se}^{\text {viii }}$	3.35 (3)
$\mathrm{Sb} 1-\mathrm{Cu} 1^{\text {v }}$	3.54 (3)	Pb3-Se6 ${ }^{\text {ix }}$	3.35 (3)
$\mathrm{Sb} 2-\mathrm{Se} 1^{\text {vi }}$	3.1563 (14)	$\mathrm{Sb} 4-\mathrm{Se} 2^{\mathrm{x}}$	3.166 (3)
Sb2-Se1	3.1563 (14)	Sb4-Se2 ${ }^{\text {xi }}$	3.166 (3)
Sb2-Se3	2.6135 (19)	Sb4-Se5	2.595 (3)
Sb2-Se4	2.7090 (12)	Sb4-Se6	2.723 (2)
$\mathrm{Sb} 2-\mathrm{Se} 4{ }^{\text {i }}$	2.7090 (12)	$\mathrm{Sb} 4-\mathrm{Se}{ }^{\text {i }}$	2.723 (2)
Sb2-Se $6^{\text {i }}$	3.6962 (17)	$\mathrm{Sb} 4 a-\mathrm{Se} 2^{\mathrm{x}}$	3.30 (3)
$\mathrm{Sb} 2-\mathrm{Se}^{\text {vii }}$	3.6962 (17)	$\mathrm{Sb} 4 a-\mathrm{Se} 2^{\text {xi }}$	2.77 (3)
$\mathrm{Pb} 2-\mathrm{Se} 1^{\text {vi }}$	3.114 (7)	$\mathrm{Sb} 4 a-\mathrm{Se} 2^{\text {ii }}$	3.66 (2)
$\mathrm{Pb} 2-\mathrm{Se} 1$	3.114 (7)	Sb4a-Se5	2.633 (19)
$\mathrm{Pb} 2-\mathrm{Se} 3$	3.094 (10)	Sb4a-Se6	3.15 (3)
$\mathrm{Pb} 2-\mathrm{Se} 4$	2.900 (7)	Sb4a-Se6 ${ }^{\text {i }}$	2.59 (3)

Symmetry codes: (i) $x, y, z+1$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $x-\frac{1}{2},-y+\frac{1}{2},-z+\frac{5}{2}$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (vi) $x, y, z-1$; (vii) $x, y, z+2$; (viii)
 $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.
corresponding calculated bond valence, using the parameters $R_{0}=2.60 \AA$ and $b=0.37$, is only 0.05 , they are considered not to coordinate with Sb 3 . In contrast, the Se 2 and Se 3 atoms at the base of the pyramid are located at 2.9293 (15) \AA and 2.8835 (14) \AA, respectively. The Se 1 atom at the apex of the pyramid is located at 2.587 (2) \AA from the Sb 3 atom. This is different for Pb 3 , where the two distant Se 6 atoms are much closer, with the atomic distances changed to 3.35 (3) A. The other Se atoms are further away with 3.05 (3) \AA for Se 2 , 2.86 (2) \AA for Se 3 and 3.02 (4) \AA for Se1. Note that the large standard uncertainties (s.u.s) of the $\mathrm{Pb}-\mathrm{Se}$ distances here are due to Pb 3 being a minor position in close proximity to Se 3 . Thus, in the case of the Pb3 atoms, the coordination is clearly a

Figure 2
Graphical comparison of the two different coordination polyhedra of Sb3 and Pb 3 . Colours as in Fig. 1.

Figure 3
The coordination polyhedron of $\mathrm{Pb} 1 / \mathrm{Sb} 1$. Colours as in Fig. 1
capped trigonal prism, whereas for Sb 3 it is better described as quadratic pyramidal. When considering the electron lone-pair of the $\mathrm{Sb}^{\mathrm{III}}$ atoms, the coordination might also be seen as ψ^{1} octahedral.

For the $\mathrm{Sb} 2 / \mathrm{Pb} 2$ position, the same observation is made with slightly changed distances. The extended coordination environment of Sb 2 possesses two far Se6 atoms at $3.6962(17) \AA$, Se1 and Se4 atoms at the square base at 3.1563 (14) \AA and 2.7090 (12) \AA and an apex Se 3 atom at 2.6135 (19) \AA. For Pb 2 these distances change to 3.283 (6) $\AA, 3.114$ (7) $\AA, 2.900$ (7) \AA and 3.094 (10) Å, respectively.

On the $\mathrm{Sb} 4 / \mathrm{Sb} 4 A$ position, the Sb atom is sometimes located on the ..m position [$\mathrm{Sb4} 4,83(3) \%$] and sometimes to both sides of the reflection plane [$\mathrm{Sb} 4 A, 2 \times 8.4(15) \%$]. The
coordination of Sb 4 is similar to those of Sb 2 and Sb 3 . The coordination polyhedron can be considered as a quadratic pyramid with the bond lengths being 2×2.723 (2) \AA (Se6), 2×3.166 (3) $\AA(\mathrm{Se} 2)$ and 2.595 (3) \AA (Se5, located at the apex). The next Se atom is Se 2 located 3.875 (2) \AA from Sb 4 , which can be considered as non-coordinating. The coordination of $\operatorname{Sb} 4 A$ is very similar, as it is located only 0.44 (3) \AA from Sb 4 .

As for the other discussed coordination polyhedra, one might also see the double-capped trigonal prisms that surround the $\mathrm{Pb} 1 / \mathrm{Sb} 1$ position (Fig. 3) as quadratic pyramids in the case of Sb because the metal atoms do not lie in the centre of the polyhedron. If the Sb 1 atom is realized, one might rather think of a fivefold instead of an eightfold coordination, again with the atoms forming a quadratic pyramid. Here, the bond distances involving the Pb 1 atom are 3.0553 (15) \AA and 3.1205 (17) \AA for the quadratic base (Se1 and Se5) and 2.9124 (14) \AA to the apex (Se2). The two Se3 atoms are located at 3.5754 (15) \AA from the Pb 1 atom and the last Se4 atom, which forms the second cap of the prism at a distance of 3.4061 (16) \AA. The coordination of Sb1 is very similar [distance to $\mathrm{Pb} 1=0.26$ (2) \AA], with a slightly more pronounced quadratic pyramidal coordination.

The (double-)capped trigonal prism is, as stated above, a defining structural element of the lillianite family. It is interesting to note that whereas the 90° angles of all the prisms are perfectly realized owing to the .. m reflection plane, the triangular bases deviate significantly from an ideal trigonal symmetry. The prism around $\mathrm{Pb} 1 / \mathrm{Sb} 1$ is formed from a triangle with 48.31 (2), 66.60 (3) and 65.09 (3) ${ }^{\circ}$ angles. The

Figure 4
Comparison of four-polyhedra-long chains delimited by the $\mathrm{Pb} 1 / \mathrm{Sb} 1$ position in (top) $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$ and (bottom) the lillianite ${ }^{4} \mathrm{~L}$-type structure of $\mathrm{SnPb}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{6}$. Colour codes: Bi red, Pb grey, $\mathrm{Bi} / \mathrm{Sn}$ pink, S yellow.
other prisms are closer to regular, with the angles deviating the most from 60° being $54.53(3)^{\circ}$ for Pb 2 and $65.57(3)^{\circ}$ for Pb 3 .

Finally, the trigonal-bipyramidal coordination of Cu is unusual as Cu is usually encountered as coordinated tetrahedrally or in a planar square. This is still somewhat true for $\mathrm{Cu} 1 / \mathrm{Cu} 1 A$, as the disordering takes place over the trigonal base of the pyramids, placing them both in their own tetrahedron. However, the position closer to the base (Cu1), i.e. with the more trigonal-bipyramidal-like coordination, has a higher occupancy [59.5 (17) \%] than the position further removed from the centre of the trigonal bipyramid $(\mathrm{Cu} 1 A)$.

Despite the clearly different coordination polyhedra, $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$ can nevertheless be described as a distorted ${ }^{4} \mathrm{~L}$ andorite-type structure, since there are four polyhedra between two double-capped trigonal prisms as shown in Fig. 4. However, the spatial distribution of the Se / S atoms is fundamentally different, leading not only to different coordination polyhedra, as described above, but also an altered connectivity of the polyhedra.

3. Database survey

No compounds containing only copper, lead, antimony and selenium have been deposited in the Inorganic Crystal Structure Database (ICSD; Bergerhoff \& Brown, 1987) as of Fall 2022.

4. Synthesis and crystallization

40.0 mg of $\mathrm{Cu}_{2} \mathrm{Se}, 47.6 \mathrm{mg}$ of PbSe and 125 mg of $\mathrm{Sb}_{2} \mathrm{Se}$ were mixed thoroughly and transferred into a fused silica ampoule, which was sealed under vacuum. The ampoule was heated at 1223 K for 2 h , cooled to 873 K over 7 h and held at that temperature for 149 h . After cooling to 473 K over 5 h and quenching in air, the ampoule was opened and the obtained ingot crushed. Among other phases in the andorite family, single crystals of the title compound $\mathrm{CuPbSbSe}_{3}$ were isolated.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All atoms were refined with anisotropic atomic displacement parameters (ADPs). It was necessary to model the Cu -atom position as positionally disordered to avoid non-positive definite (NPD) ADP tensors. Modelling the positions of $\mathrm{Pb} 1, \mathrm{Sb} 2$ and Sb 3 as mixed $\mathrm{Pb} / \mathrm{Sb}$ positions as well as the position of Sb 4 as positionally disordered improved the residuals significantly. The pairs $\mathrm{Pb} 1 / \mathrm{Sb} 1$, $\mathrm{Sb} 2 / \mathrm{Pb} 2, \mathrm{Sb} 3 / \mathrm{Pb} 3$ and $\mathrm{Sb} 4 / \mathrm{Sb} 4 A$ were refined with identical ADP tensor elements, though distinct coordinates. Furthermore, the site occupancies were constrained to full occupancy and the Pb occupancies were restrained to fit the sum formula $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$, corresponding to an electroneutral structure.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $[I>3 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R[F>3 \sigma(F)], w R(F), S \quad 0.042,0.110,1.40$
No. of reflections
No. of parameters
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$
1109.7

Orthorhombic, Pnnm
300
13.7217 (5), 20.5149 (8), 4.0716 (2)
1146.15 (8)

4
Mo $K \alpha$
42.44
$0.08 \times 0.06 \times 0.04 \times 0.03$ (radius)

Stoe Stadivari
Multi-scan [absorption correction by scaling of reflection intensities followed by a spherical
absorption correction (LANA; Koziskova et al., 2016)]
0.428, 0.654

15049, 2534, 1472
0.079
0.792

2534
86
2.96, -2.68

Computer programs: X-AREA Pilatus3_SV, Recipe, Integrate and LANA (Stoe \& Cie, 2021), SHELXT (Sheldrick, 2015), JANA2006 (Petříček et al., 2014), DIAMOND (Putz \& Brandenburg, 2021) and publCIF (Westrip, 2010).

Funding information

The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

Bergerhoff, G. \& Brown, I. D. (1987). In Crystallographic Databases, edited by F. H. Allen, G. Bergerhoff and R. Sievers, pp. 77-95. Chester: International Union of Crystallography.
Chen, K. B. \& Lee, C. S. (2010). J. Solid State Chem. 183, 807-813.
Koziskova, J., Hahn, F., Richter, J. \& Kožǐšek, J. (2016). Acta Chim. Slov. 9, 136-140.
Li, J., Zhou, Y., Hao, S., Zhang, T., Wolverton, C., Zhao, J. \& Zhao, L. D. (2019). Inorg. Chem. 58, 1339-1348.

Makovicky, E. \& Topa, D. (2014). Miner. Mag. 78, 387-414.
Moëlo, Y., Makovicky, E., Mozgova, N. N., Jambor, J. L., Cook, N., Pring, A., Paar, W., Nickel, E. H., Graeser, S., Karup-Møller, S., Balic-Žunic, T., Mumme, W. G., Vurro, F. \& Topa, D. (2008). Eur. J. Mineral. 20, 7-62.
Petříček, V., Dušek, M. \& Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.
Putz, H. \& Brandenburg, K. (2021). DIAMOND. Crystal Impact, Bonn, Germany.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Stoe \& Cie (2021). X-AREA. Stoe \& Cie GmbH. Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2023). E79, 112-115 [https://doi.org/10.1107/S2056989023000361]

The crystal structure of the selenide-based synthetic sulfosalt $\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$

Paul Sicher and Berthold Stöger

Computing details

Data collection: X-AREA Pilatus3_SV 1.31.175.0 (Stoe \& Cie, 2021); cell refinement: X-AREA Recipe 1.37.0.0 (Stoe \& Cie, 2021); data reduction: X - $A R E A$ Integrate 2.5.1.0 (Stoe \& Cie, 2021) X - $A R E A$ LANA 2.6.2.0 (Stoe \& Cie, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Putz \& Brandenburg, 2021); software used to prepare material for publication: publCIF (Westrip, 2010).

Copper lead triantimony hexaselenide

Crystal data

$\mathrm{CuPbSb}_{3} \mathrm{Se}_{6}$
$M_{r}=1109.7$
Orthorhombic, Pnnm
Hall symbol: -P -2xabc;-2yabc;-2z
$a=13.7217$ (5) \AA
$b=20.5149(8) \AA$
$c=4.0716$ (2) \AA
$V=1146.15(8) \AA^{3}$
$Z=4$

Data collection

Stoe Stadivari diffractometer
Radiation source: Axo_Mo
Graded multilayer mirror monochromator
Detector resolution: 13.33 pixels mm^{-1}
rotation method, ω scans
Absorption correction: multi-scan
[absorption correction by scaling of reflection
intensities followed by a spherical absorption
correction (LANA; Koziskova et al., 2016)]

Refinement

Refinement on F^{2}
$R[F>3 \sigma(F)]=0.042$
$w R(F)=0.110$
$S=1.40$
2534 reflections
86 parameters
0 restraints
$F(000)=1872$
$D_{\mathrm{x}}=6.431 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 17463 reflections
$\theta=2.5-33.5^{\circ}$
$\mu=42.44 \mathrm{~mm}^{-1}$
$T=300 \mathrm{~K}$
Fragment, black
$0.08 \times 0.06 \times 0.04 \times 0.03$ (radius) mm
$T_{\text {min }}=0.428, T_{\text {max }}=0.654$
15049 measured reflections
2534 independent reflections
1472 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.079$
$\theta_{\text {max }}=34.3^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-21 \rightarrow 19$
$k=-32 \rightarrow 17$
$l=-6 \rightarrow 4$

24 constraints
Weighting scheme based on measured s.u.'s $w=$ $1 /\left(\sigma^{2}(I)+0.0016 I^{2}\right)$
$(\Delta / \sigma)_{\max }=0.028$
$\Delta \rho_{\text {max }}=2.96$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-2.68$ e \AA^{-3}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
Pb 1	$0.22598(7)$	$0.14687(9)$	1.5	$0.0286(2)$	$0.897(4)$
Sb 1	$0.2448(17)$	$0.1462(17)$	1.5	$0.0286(2)$	$0.103(4)$
Sb 2	$0.40745(12)$	$0.33892(6)$	0.5	$0.0247(3)$	$0.923(3)$
Pb 2	$0.3710(7)$	$0.3449(5)$	0.5	$0.0247(3)$	$0.077(3)$
$\mathrm{Sb3}$	$0.49573(14)$	$0.17280(7)$	1	$0.0411(4)$	$0.974(5)$
Pb 3	$0.527(3)$	$0.1673(19)$	1	$0.0411(4)$	$0.026(5)$
$\mathrm{Sb4}$	$0.14104(17)$	$0.47308(17)$	-0.5	$0.0307(11)$	$0.83(3)$
$\mathrm{Sb4a}$	$0.1341(12)$	$0.4816(13)$	$-0.402(6)$	$0.0307(11)$	$0.084(15)$
Se 1	$0.33027(8)$	$0.23328(6)$	1	$0.0199(3)$	
Se 2	$0.41682(9)$	$0.08474(6)$	1.5	$0.0228(4)$	
$\mathrm{Se3}$	$0.55995(8)$	$0.26260(6)$	0.5	$0.0209(3)$	
Se 4	$0.49064(9)$	$0.40595(6)$	0	$0.0214(4)$	
$\mathrm{Se5}$	$0.30698(8)$	$0.53372(6)$	-0.5	$0.0208(3)$	
$\mathrm{Se6}$	$0.19799(9)$	$0.39357(7)$	-1	$0.0297(4)$	$0.405(17)$
Cu 1 a	$0.3449(8)$	$0.4703(6)$	0	$0.050(3)$	$0.595(17)$
Cu 1	$0.3896(5)$	$0.4990(3)$	0	$0.0341(14)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb 1	$0.0292(5)$	$0.0306(3)$	$0.0260(3)$	$-0.0027(5)$	0	0
Sb 1	$0.0292(5)$	$0.0306(3)$	$0.0260(3)$	$-0.0027(5)$	0	0
Sb 2	$0.0228(6)$	$0.0241(5)$	$0.0272(5)$	$0.0007(5)$	0	0
Pb 2	$0.0228(6)$	$0.0241(5)$	$0.0272(5)$	$0.0007(5)$	0	0
$\mathrm{Sb3}$	$0.0267(6)$	$0.0335(7)$	$0.0632(8)$	$0.0089(6)$	0	0
Pb 3	$0.0267(6)$	$0.0335(7)$	$0.0632(8)$	$0.0089(6)$	0	0
$\mathrm{Sb4}$	$0.0212(5)$	$0.0344(9)$	$0.037(3)$	$-0.0042(5)$	0	0
$\mathrm{Sb4a}$	$0.0212(5)$	$0.0344(9)$	$0.037(3)$	$-0.0042(5)$	0	0
Se 1	$0.0185(5)$	$0.0209(6)$	$0.0205(6)$	$-0.0003(5)$	0	0
Se 2	$0.0183(5)$	$0.0262(7)$	$0.0241(6)$	$-0.0016(5)$	0	0
Se 3	$0.0196(5)$	$0.0208(7)$	$0.0223(6)$	$0.0003(5)$	0	0
Se 4	$0.0182(5)$	$0.0220(7)$	$0.0239(6)$	$-0.0016(4)$	0	0
Se 5	$0.0197(5)$	$0.0225(7)$	$0.0200(6)$	$-0.0012(5)$	0	0
Se 6	$0.0221(6)$	$0.0257(7)$	$0.0415(8)$	$0.0009(5)$	0	0
Cu 1 a	$0.044(5)$	$0.057(6)$	$0.048(3)$	$0.025(5)$	0	0
Cu 1	$0.034(3)$	$0.036(3)$	$0.0331(17)$	$0.009(2)$	0	0
						0

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{Pb} 1-\mathrm{Sb} 1$	0.26 (2)	$\mathrm{Pb} 3-\mathrm{Sb4} \mathrm{a}^{\text {viii }}$	3.41 (5)
$\mathrm{Pb} 1-\mathrm{Se} 1$	3.0553 (15)	$\mathrm{Pb} 3-\mathrm{Sb} 4 \mathrm{a}^{\text {ix }}$	3.41 (5)
$\mathrm{Pb} 1-\mathrm{Sel}^{1}$	3.0553 (15)	$\mathrm{Pb} 3-\mathrm{Se} 1$	3.02 (4)
$\mathrm{Pb} 1-\mathrm{Se} 2$	2.9124 (17)	$\mathrm{Pb} 3-\mathrm{Se} 2^{\text {vi }}$	3.05 (3)
$\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {ii }}$	3.5754 (15)	$\mathrm{Pb} 3-\mathrm{Se} 2$	3.05 (3)
$\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {iii }}$	3.5754 (15)	$\mathrm{Pb} 3-\mathrm{Se} 3$	2.86 (3)

$\mathrm{Pb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	3.4061 (16)
$\mathrm{Pb} 1-\mathrm{Se} 5{ }^{\text {iv }}$	3.1205 (17)
$\mathrm{Pb} 1-\mathrm{Se} 5{ }^{\text {v }}$	3.1205 (17)
$\mathrm{Pb} 1-\mathrm{Cu} 1 \mathrm{a}^{\text {v }}$	3.751 (13)
$\mathrm{Pb} 1-\mathrm{Cu} 1^{\text {v }}$	3.423 (6)
$\mathrm{Sb} 1-\mathrm{Se} 1$	2.95 (2)
$\mathrm{Sb} 1-\mathrm{Sel}{ }^{1}$	2.95 (2)
$\mathrm{Sb} 1-\mathrm{Se} 2$	2.68 (3)
$\mathrm{Sb} 1-\mathrm{Se} 3{ }^{\text {ii }}$	3.75 (2)
Sb1—Se3 ${ }^{\text {iii }}$	3.75 (2)
$\mathrm{Sb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	3.65 (2)
$\mathrm{Sb} 1-\mathrm{Se} 5{ }^{\text {iv }}$	3.16 (3)
$\mathrm{Sb} 1-\mathrm{Se} 5^{\text {v }}$	3.16 (3)
$\mathrm{Sb} 1-\mathrm{Cu} 1^{\text {v }}$	3.54 (3)
$\mathrm{Sb} 2-\mathrm{Pb} 2$	0.515 (10)
$\mathrm{Sb} 2-\mathrm{Se} 1^{\text {vi }}$	3.1563 (14)
Sb2-Se1	3.1563 (14)
Sb 2 -Se3	2.6135 (19)
Sb2-Se4	2.7090 (12)
$\mathrm{Sb} 2-\mathrm{Se} 4^{\text {i }}$	2.7090 (12)
Sb 2 - $\mathrm{Se}^{6}{ }^{\text {i }}$	3.6962 (17)
Sb 2 - $\mathrm{Se}^{\text {vii }}$	3.6962 (17)
Sb2-Cu1a	3.485 (10)
$\mathrm{Sb} 2-\mathrm{Cu} 1 \mathrm{a}^{\text {i }}$	3.485 (10)
Pb 2 - $\mathrm{Se}^{\text {vi }}{ }^{\text {vi }}$	3.114 (7)
Pb 2 - Se 1	3.114 (7)
Pb 2 - Se 3	3.094 (10)
Pb 2 -Se4	2.900 (7)
$\mathrm{Pb} 2-\mathrm{Se} 4^{\text {i }}$	2.900 (7)
$\mathrm{Pb} 2-\mathrm{Se}^{6}{ }^{\mathrm{i}}$	3.283 (8)
Pb 2 - $\mathrm{Se}^{\text {vii }}$	3.283 (8)
$\mathrm{Pb} 2-\mathrm{Cu} 1 \mathrm{a}$	3.300 (12)
$\mathrm{Pb} 2-\mathrm{Cu} 1 \mathrm{a}^{\text {i }}$	3.300 (12)
$\mathrm{Pb} 2-\mathrm{Cu} 1$	3.770 (9)
$\mathrm{Pb} 2-\mathrm{Cu} 1^{\text {i }}$	3.770 (9)
$\mathrm{Sb} 3-\mathrm{Pb} 3$	0.44 (4)
Sb3-Sb4 ${ }^{\text {viii }}$	3.596 (4)
Sb3-Sb4a ${ }^{\text {viii }}$	3.71 (2)
Sb3-Sb4a ${ }^{\text {ix }}$	3.71 (2)
Sb3-Se1	2.587 (2)
Sb3-Se2 ${ }^{\text {vi }}$	2.9293 (15)
Sb3-Se2	2.9293 (15)
Sb3-Se3	2.8835 (14)
Sb3-Se3 ${ }^{\text {i }}$	2.8835 (14)
Sb3-Se6 ${ }^{\text {x }}$	3.7015 (19)
Sb3-Se6 ${ }^{\text {viii }}$	3.7015 (19)
$\mathrm{Pb} 3-\mathrm{Sb4} 4^{\text {viii }}$	3.28 (4)

Pb3-Se3 ${ }^{\text {i }}$	2.86 (3)
$\mathrm{Pb} 3-\mathrm{Se}{ }^{\text {x }}$	3.35 (3)
$\mathrm{Pb} 3-\mathrm{Se}^{\text {viii }}$	3.35 (3)
Sb4-Sb4a ${ }^{\text {vi }}$	3.68 (3)
Sb4-Sb4a	0.44 (3)
Sb4-Sb4a ${ }^{\text {xi }}$	0.44 (3)
$\mathrm{Sb} 4-\mathrm{Sb} 4 \mathrm{a}^{\text {xii }}$	3.68 (3)
$\mathrm{Sb} 4-\mathrm{Se} 2^{\text {xiii }}$	3.166 (3)
Sb4-Se2 ${ }^{\text {xiv }}$	3.166 (3)
Sb4—Se5	2.595 (3)
Sb4—Se6	2.723 (2)
Sb4-Se6 ${ }^{\text {i }}$	2.723 (2)
Sb4-Cu1a ${ }^{\text {vi }}$	3.461 (9)
Sb4-Cu1a	3.461 (9)
Sb4a-Sb4a ${ }^{\text {xv }}$	3.76 (2)
$\mathrm{Sb} 4 \mathrm{a}-\mathrm{Sb} 4 \mathrm{a}^{\text {xi }}$	0.79 (4)
$\mathrm{Sb} 4 \mathrm{a}-\mathrm{Sb} 4 \mathrm{a}^{\text {xii }}$	3.28 (4)
$\mathrm{Sb} 4 \mathrm{a}-\mathrm{Se} 2^{\text {xiii }}$	3.30 (3)
$\mathrm{Sb} 4 \mathrm{a}-\mathrm{Se} 2^{\text {xiv }}$	2.77 (3)
$\mathrm{Sb} 4 \mathrm{a}-\mathrm{Se} 2{ }^{\text {ii }}$	3.66 (2)
Sb4a-Se5	2.633 (19)
Sb4a-Se6	3.15 (3)
Sb4a-Se6 ${ }^{\text {i }}$	2.59 (3)
Sb4a-Cu1a ${ }^{\text {vi }}$	3.79 (2)
Sb4a-Cu1a	3.33 (2)
$\mathrm{Se} 1-\mathrm{Se} 3$	3.7999 (14)
$\mathrm{Se} 1-\mathrm{Se} 3{ }^{\text {i }}$	3.7999 (14)
$\mathrm{Se} 1-\mathrm{Se} 3{ }^{\text {ii }}$	3.7101 (16)
Se1-Se6 ${ }^{\text {vii }}$	3.7560 (19)
$\mathrm{Se} 3-\mathrm{Se} 4$	3.7009 (15)
Se3-Se4 ${ }^{\text {i }}$	3.7009 (15)
Se3-Se6 ${ }^{\text {a }}$	3.7219 (19)
Se4-Se5 ${ }^{\text {xvi }}$	3.6590 (14)
Se4-Se5 ${ }^{\text {xvii }}$	3.6590 (14)
Se4-Cu1a	2.395 (12)
Se4-Cu1a ${ }^{\text {xvi }}$	3.397 (12)
Se4-Cu1	2.360 (6)
$\mathrm{Se} 4-\mathrm{Cu}{ }^{\text {xvi }}$	2.550 (6)
Se5-Cu1a ${ }^{\text {vi }}$	2.472 (7)
Se5-Cu1a	2.472 (7)
Se5-Cu1 ${ }^{\text {vi }}$	2.436 (4)
Se5-Cu1	2.436 (4)
Se6-Cu1a ${ }^{\text {vi }}$	2.558 (12)
Se6-Cu1 ${ }^{\text {vi }}$	3.405 (6)
$\mathrm{Cu} 1 \mathrm{C}-\mathrm{Cu} 1$	0.851 (13)
$\mathrm{Cu} 1 \mathrm{C}-\mathrm{Cu} 1^{\text {xvi }}$	3.696 (13)
$\mathrm{Cu} 1-\mathrm{Cu}{ }^{\text {xvi }}$	3.030 (9)

$\mathrm{Se} 1-\mathrm{Pb} 1-\mathrm{Sel}^{\text {i }}$	83.57 (5)
$\mathrm{Se} 1-\mathrm{Pb} 1-\mathrm{Se} 2$	80.37 (4)
$\mathrm{Se} 1-\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {ii }}$	67.52 (4)
$\mathrm{Se} 1-\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {iii }}$	112.11 (6)
$\mathrm{Se} 1-\mathrm{Pb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	128.95 (3)
$\mathrm{Se} 1-\mathrm{Pb} 1-\mathrm{Se}^{\text {iv }}$	93.71 (3)
$\mathrm{Se} 1-\mathrm{Pb} 1-\mathrm{Se} 5^{\text {v }}$	159.10 (5)
Se1 ${ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{Se} 2$	80.37 (4)
$\mathrm{Se} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {ii }}$	112.11 (6)
Se1 ${ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {iii }}$	67.52 (4)
$\mathrm{Se} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	128.95 (3)
Se1 ${ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{Se} 5{ }^{\text {iv }}$	159.10 (5)
$\mathrm{Se} 1^{\mathrm{i}}$ - $\mathrm{Pb} 1-\mathrm{Se} 5^{\text {v }}$	93.71 (3)
$\mathrm{Se} 2-\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {ii }}$	143.15 (2)
$\mathrm{Se} 2-\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {iii }}$	143.15 (2)
$\mathrm{Se} 2-\mathrm{Pb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	135.50 (7)
$\mathrm{Se} 2-\mathrm{Pb} 1-\mathrm{Se} 5{ }^{\text {iv }}$	78.74 (5)
$\mathrm{Se} 2-\mathrm{Pb} 1-\mathrm{Se}^{\text {v }}$	78.74 (5)
$\mathrm{Se} 3{ }^{3 i}-\mathrm{Pb} 1-\mathrm{Se} 3{ }^{\text {iii }}$	69.42 (3)
$\mathrm{Se} 3^{3 i}-\mathrm{Pb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	63.97 (3)
$\mathrm{Se} 3{ }^{\text {ii }}-\mathrm{Pb} 1-\mathrm{Se} 5{ }^{\text {iv }}$	85.56 (3)
$\mathrm{Se}^{3 i}-\mathrm{Pb} 1-\mathrm{Se} 5^{\text {v }}$	131.72 (4)
$\mathrm{Se} 3{ }^{\text {iii }}$ - $\mathrm{Pb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	63.97 (3)
$\mathrm{Se} 3{ }^{\text {iii }}$ - $\mathrm{Pb} 1-\mathrm{Se}^{5}{ }^{\text {iv }}$	131.72 (4)
$\mathrm{Se}^{\text {iiii }}$ - $\mathrm{Pb} 1-\mathrm{Se}^{\text {v }}$	85.56 (3)
$\mathrm{Se} 4{ }^{\text {ii }}-\mathrm{Pb} 1-\mathrm{Se} 5{ }^{\text {iv }}$	68.04 (4)
$\mathrm{Se} 4^{\text {ii }}$ - $\mathrm{Pb} 1-\mathrm{Se} 5^{\text {v }}$	68.04 (4)
$\mathrm{Se}^{5}{ }^{\text {iv}}-\mathrm{Pb} 1-\mathrm{Se}^{\text {v }}$	81.45 (5)
Se1-Sb1-Se1 ${ }^{\text {i }}$	87.2 (8)
Se1—Sb1—Se2	86.2 (6)
$\mathrm{Se} 1-\mathrm{Sb} 1-\mathrm{Se} 3{ }^{\text {ii }}$	66.0 (4)
$\mathrm{Se} 1-\mathrm{Sb} 1-\mathrm{Se} 3{ }^{\text {iii }}$	110.0 (9)
$\mathrm{Se} 1-\mathrm{Sb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	123.9 (6)
$\mathrm{Se} 1-\mathrm{Sb} 1-\mathrm{Se} 5^{\text {iv }}$	94.99 (14)
Se1-Sb1-Se5 ${ }^{\text {v }}$	167.5 (10)
Se1 ${ }^{\text {i }}$-Sb1—Se2	86.2 (6)
$\mathrm{Se} 1^{\mathrm{i}}$-Sb1—Se3 ${ }^{\text {ii }}$	110.0 (9)
Sel ${ }^{\text {i }}$-Sb1-Se3 ${ }^{\text {iii }}$	66.0 (4)
Se1 ${ }^{\text {i }}$ - $\mathrm{Sb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	123.9 (6)
Se1 ${ }^{\text {i }}$ - $\mathrm{Sb} 1-\mathrm{Se} 5^{\text {iv }}$	167.5 (10)
Se1 ${ }^{\text {i }}$-Sb1—Se5 ${ }^{\text {v }}$	94.99 (14)
$\mathrm{Se} 2-\mathrm{Sb} 1-\mathrm{Se} 3{ }^{\text {ii }}$	146.2 (3)
$\mathrm{Se} 2-\mathrm{Sb} 1-\mathrm{Se} 3{ }^{\text {iii }}$	146.2 (3)
$\mathrm{Se} 2-\mathrm{Sb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	134.8 (12)
$\mathrm{Se} 2-\mathrm{Sb} 1-\mathrm{Se} 5^{\text {iv }}$	81.6 (7)
$\mathrm{Se} 2-\mathrm{Sb} 1-\mathrm{Se} 5^{\text {v }}$	81.6 (7)
Se3 ${ }^{\text {ii }}$-Sb1—Se3 ${ }^{\text {iii }}$	65.7 (5)
Se3 ${ }^{\text {ii }}-\mathrm{Sb} 1-\mathrm{Se} 4{ }^{\text {ii }}$	60.0 (3)

83.57 (5)
80.37 (4)
67.52 (4)
112.11 (6)
128.95 (3)
93.71 (3)
159.10 (5)
80.37 (4)
112.11 (6)
67.52 (4)
128.95 (3)
159.10 (5)
93.71 (3)
143.15 (2)
135.50 (7)
78.74 (5)
78.74 (5)
69.42 (3)
63.97 (3)
85.56 (3)
131.72 (4)
63.97 (3)
131.72 (4)
85.56 (3)
68.04 (4)
68.04 (4)
81.45 (5)
87.2 (8)
86.2 (6)
66.0 (4)
110.0 (9)
123.9 (6)
94.99 (14)
167.5 (10)
86.2 (6)
110.0 (9)
66.0 (4)
123.9 (6)
167.5 (10)
94.99 (14)
146.2 (3)
146.2 (3)
134.8 (12)
81.6 (7)
81.6 (7)
65.7 (5)
60.0 (3)

Se2 ${ }^{\text {vi }}$-Sb3—Se6 ${ }^{\text {x }}$	70.61 (4)
Se2 ${ }^{\text {vi }}$-Sb3-Se6 ${ }^{\text {viii }}$	115.63 (6)
Se2-Sb3—Se3	176.06 (8)
$\mathrm{Se} 2-\mathrm{Sb} 3-\mathrm{Se} 3{ }^{\text {i }}$	90.93 (3)
Se 2 -Sb3-Se6 ${ }^{\text {x }}$	115.63 (6)
Se2—Sb3—Se6 ${ }^{\text {viii }}$	70.61 (4)
Se3-Sb3-Se3 ${ }^{\text {i }}$	89.82 (5)
$\mathrm{Se} 3-\mathrm{Sb} 3-\mathrm{Se}^{\text {x }}$	67.52 (4)
Se3-Sb3—Se6 ${ }^{\text {viii }}$	113.22 (6)
Se3 ${ }^{\text {i }}$-Sb3- $\mathrm{Se}^{\text {x }}$	113.22 (6)
Se3 ${ }^{\text {i }}$-Sb3- $\mathrm{Se}^{\text {viii }}$	67.52 (4)
Se6 ${ }^{\text {- }}$-Sb3-Se6 ${ }^{\text {viii }}$	66.73 (4)
$\mathrm{Se} 1-\mathrm{Pb} 3-\mathrm{Se}^{\text {vi }}$	78.8 (8)
$\mathrm{Se} 1-\mathrm{Pb} 3-\mathrm{Se} 2$	78.8 (8)
$\mathrm{Se} 1-\mathrm{Pb} 3-\mathrm{Se} 3$	80.5 (8)
$\mathrm{Se} 1-\mathrm{Pb} 3-\mathrm{Se} 3{ }^{\text {i }}$	80.5 (8)
$\mathrm{Se} 1-\mathrm{Pb} 3-\mathrm{Se}^{\text {x }}$	142.5 (4)
Se 1 -Pb3—Se6 ${ }^{\text {viii }}$	142.5 (4)
$\mathrm{Se} 2{ }^{\text {vi }}$ - $\mathrm{Pb} 3-\mathrm{Se} 2$	83.8 (9)
$\mathrm{Se} 2{ }^{\text {vi}}-\mathrm{Pb} 3-\mathrm{Se} 3$	89.0 (2)
$\mathrm{Se} 2^{\text {vi }}-\mathrm{Pb} 3-\mathrm{Se} 3^{\text {i }}$	159.1 (13)
$\mathrm{Se} 2^{\text {vi }}$ —Pb3- $\mathrm{Se}^{\text {6 }}$	74.6 (5)
$\mathrm{Se} 2^{\text {vi }}$ —Pb3- $\mathrm{Se}^{\text {viii }}$	123.1 (12)
$\mathrm{Se} 2-\mathrm{Pb} 3-\mathrm{Se} 3$	159.1 (13)
$\mathrm{Se} 2-\mathrm{Pb} 3-\mathrm{Se} 3{ }^{\text {i }}$	89.0 (2)
Se 2 - $\mathrm{Pb} 3-\mathrm{Se}^{\text {x }}$	123.1 (12)
Se 2 -Pb3—Se6 ${ }^{\text {viii }}$	74.6 (5)
$\mathrm{Se} 3-\mathrm{Pb} 3-\mathrm{Se} 3{ }^{\text {i }}$	90.8 (11)
$\mathrm{Se} 3-\mathrm{Pb} 3-\mathrm{Se}^{\text {x }}$	73.2 (5)
$\mathrm{Se} 3-\mathrm{Pb} 3-\mathrm{Se}^{\text {viii }}$	125.2 (12)
$\mathrm{Se} 3{ }^{\text {i }}$-Pb3- $\mathrm{Se}^{\text {x }}$	125.2 (12)
Se3 ${ }^{\text {i }}$ - $\mathrm{Pb} 3-\mathrm{Se}^{\text {viii }}$	73.2 (5)
$\mathrm{Se}^{\text {² - }} \mathrm{Pb} 3-\mathrm{Se}^{\text {viii }}$	74.9 (7)
$\mathrm{Se} 2^{\text {xiii }}$-Sb4—Se2 ${ }^{\text {xiv }}$	80.04 (8)
$\mathrm{Se} 2^{\text {xiii-Sb4-Se5 }}$	82.71 (8)
Se2 ${ }^{\text {xiii-Sb4—Se6 }}$	91.41 (3)
Se2 ${ }^{\text {xiii }}$-Sb4—-Se6 ${ }^{\text {i }}$	170.44 (11)
Se2 ${ }^{\text {xiv }}$-Sb4——Se5	82.71 (8)
Se2 ${ }^{\text {xiv }}$ —Sb4—Se6	170.44 (11)
Se2 ${ }^{\text {xiv }}$-Sb4-Se6 ${ }^{\text {i }}$	91.41 (3)
Se5-Sb4—Se6	92.03 (7)
Se5-Sb4-Se6 ${ }^{\text {i }}$	92.03 (7)
Se6-Sb4-Se6 ${ }^{\text {i }}$	96.76 (11)
$\mathrm{Se} 2^{\text {xiii }}$-Sb4a-Se2 ${ }^{\text {xiv }}$	83.9 (7)
$\mathrm{Se} 2^{2 \mathrm{iii}}-\mathrm{Sb} 4 \mathrm{a}-\mathrm{Se} 2^{\text {ii }}$	113.3 (5)
Se2 ${ }^{\text {xiii }}$-Sb4a-Se5	79.6 (6)
Se2 ${ }^{\text {xiii —Sb4a-Se6 }}$	81.8 (6)
$\mathrm{Se} 2^{\text {xiii }}-\mathrm{Sb} 4 \mathrm{a}-\mathrm{Se}^{\text {i }}$	170.0 (9)

Se3 ${ }^{3 i}-\mathrm{Sb} 1 — \mathrm{Se}^{\mathrm{iv}}{ }^{\mathrm{iv}}$
Se3 ${ }^{3 i}-\mathrm{Sb} 1-\mathrm{Se}^{\text { }}{ }^{\text { }}$
$\mathrm{Se} 3^{3 i i}-\mathrm{Sb} 1 — \mathrm{Se} 4^{\text {ii }}$
$\mathrm{Se} 3^{\text {iii }}-\mathrm{Sb} 1 — \mathrm{Se} 5^{\text {iv }}$
Se3 ${ }^{\text {iii }}-\mathrm{Sb} 1 — \mathrm{Se}^{\text {v }}$
$\mathrm{Se} 4^{\mathrm{ii}}-\mathrm{Sb} 1-\mathrm{Se} 5^{\mathrm{iv}}$
$\mathrm{Se} 4^{\mathrm{ii}}-\mathrm{Sb} 1 — \mathrm{Se} 5^{\text {v }}$
$\mathrm{Se}^{5}{ }^{\mathrm{iv}}-\mathrm{Sb} 1-\mathrm{Se}^{\mathrm{v}}$
Se1 ${ }^{\text {vi_ }}$-Sb2——Se1
$\mathrm{Se} 1^{\text {vi_ }} \mathrm{Sb} 2 — \mathrm{Se} 3$
$\mathrm{Se} 1^{\text {vi_ }} \mathrm{Sb} 2-\mathrm{Se} 4$
$\mathrm{Se} 1^{\text {vi }}-\mathrm{Sb} 2 — \mathrm{Se} 4^{\mathrm{i}}$
Se ${ }^{\text {vi }}$ —Sb2——Se6 ${ }^{\text {i }}$
$\mathrm{Sel}^{\text {vi}}-\mathrm{Sb} 2 — \mathrm{Se}^{\text {vii }}$
Se1—Sb2—Se3
Se1—Sb2—Se4
Se1—Sb2—Se4 ${ }^{\text {i }}$
$\mathrm{Se} 1-\mathrm{Sb} 2-\mathrm{Se}^{\mathrm{i}}{ }^{\mathrm{i}}$
$\mathrm{Se} 1 — \mathrm{Sb} 2 — \mathrm{Se}^{\text {vii }}$
Se3—Sb2—Se4
Se3-Sb2-Se4 ${ }^{i}$
Se3—Sb2—Se6 ${ }^{\text {i }}$
Se3—Sb2—-Se6 ${ }^{\text {vii }}$
$\mathrm{Se} 4-\mathrm{Sb} 2-\mathrm{Se} 4{ }^{i}$
$\mathrm{Se} 4-\mathrm{Sb} 2-\mathrm{Se}^{\text {i }}$
$\mathrm{Se} 4 — \mathrm{Sb} 2-\mathrm{Se}^{\text {vii }}$
Se4 ${ }^{i}$-Sb2——Se6 ${ }^{i}$
$\mathrm{Se} 4{ }^{\text {i }}-\mathrm{Sb} 2 — \mathrm{Se}^{\text {vii }}$
Se6 ${ }^{\text {i }}$-Sb2——Se6 ${ }^{\text {vii }}$
$\mathrm{Se} 1^{\text {vi_ }} \mathrm{Pb} 2 — \mathrm{Se} 1$
$\mathrm{Se}^{\text {vi }}-\mathrm{Pb} 2 — \mathrm{Se} 3$
$\mathrm{Se} 1^{\text {vi_ }} \mathrm{Pb} 2 — \mathrm{Se} 4$
$\mathrm{Se} 1^{\text {vi}}-\mathrm{Pb} 2 — \mathrm{Se} 4{ }^{\mathrm{i}}$
$\mathrm{Se} 1^{\text {vi }}-\mathrm{Pb} 2 — \mathrm{Se}{ }^{\mathrm{i}}$
$\mathrm{Se}^{\text {vi }}$ - $\mathrm{Pb} 2 — \mathrm{Se}^{\text {vii }}$
$\mathrm{Se} 1 — \mathrm{~Pb} 2-\mathrm{Se} 3$
$\mathrm{Se} 1 — \mathrm{~Pb} 2-\mathrm{Se} 4$
$\mathrm{Se} 1-\mathrm{Pb} 2-\mathrm{Se} 4{ }^{\text {i }}$
$\mathrm{Se} 1-\mathrm{Pb} 2-\mathrm{Se}^{\mathrm{i}}{ }^{\mathrm{i}}$
$\mathrm{Se} 1 — \mathrm{~Pb} 2-\mathrm{Se}^{\text {vii }}$
$\mathrm{Se} 3-\mathrm{Pb} 2-\mathrm{Se} 4$
$\mathrm{Se} 3-\mathrm{Pb} 2-\mathrm{Se} 4{ }^{\mathrm{i}}$
$\mathrm{Se} 3-\mathrm{Pb} 2-\mathrm{Se} 6^{\text {i }}$
$\mathrm{Se} 3 — \mathrm{~Pb} 2-\mathrm{Se}^{\text {vii }}$
$\mathrm{Se} 4-\mathrm{Pb} 2-\mathrm{Se} 4{ }^{\mathrm{i}}$
$\mathrm{Se} 4-\mathrm{Pb} 2-\mathrm{Se}^{\mathrm{i}}$
$\mathrm{Se} 4-\mathrm{Pb} 2-\mathrm{Se}^{\text {vii }}$
$\mathrm{Se} 4^{\mathrm{i}}-\mathrm{Pb} 2 — \mathrm{Se}^{\mathrm{i}}$
82.1 (3)
124.2 (7)
60.0 (3)
124.2 (7)
82.1 (3)
64.6 (5)
64.6 (5)
80.3 (8)
80.33 (4)
81.80 (4)
90.30 (3)
167.07 (5)
65.93 (4)
107.62 (5)
81.80 (4)
167.07 (5)
90.30 (3)
107.62 (5)
65.93 (4)
88.09 (5)
88.09 (5)
143.55 (3)
143.55 (3)
97.44 (5)
76.10 (3)
125.99 (5)
125.99 (5)
76.10 (3)
66.84 (3)
81.7 (2)
75.5 (2)
87.72 (9)
151.4 (4)
71.86 (13)
120.0 (3)
75.5 (2)
151.4 (4)
87.72 (9)
120.0 (3)
71.86 (13)
76.2 (2)
76.2 (2)
140.54 (13)
140.54 (13)
89.2 (3)
80.94 (12)
135.5 (3)
135.5 (3)

$\mathrm{Se} 2^{\text {xiv }}-\mathrm{Sb} 4 \mathrm{a}-\mathrm{Se} 2^{\text {ii }}$	79.3 (5)
Se2 ${ }^{\text {xiv }}$-Sb4a-Se5	90.4 (8)
Se2 ${ }^{\text {xiv }}$-Sb4a-Se6	164.8 (10)
Se2 ${ }^{\text {xiv }}$-Sb4a-Se6 ${ }^{\text {i }}$	104.1 (9)
$\mathrm{Se} 2^{2 i}$-Sb4a-Se5	162.1 (9)
Se2 ${ }^{\text {ii- }}$ Sb4a-Se6	111.0 (7)
Se2 ${ }^{\text {iii }}$-Sb4a-Se6 ${ }^{\text {i }}$	74.6 (6)
Se5-Sb4a-Se6	82.3 (6)
Se5-Sb4a-Se6 ${ }^{\text {i }}$	94.2 (6)
Se6-Sb4a-Se6 ${ }^{\text {i }}$	89.7 (7)
Se3-Se1—Se3 ${ }^{\text {i }}$	64.79 (2)
$\mathrm{Se} 3-\mathrm{Se} 1-\mathrm{Se} 3{ }^{\text {ii }}$	145.65 (2)
Se3-Se1—Se6 ${ }^{\text {vii }}$	105.20 (4)
Se3 ${ }^{\text {i }}$-Se1—Se3 ${ }^{\text {ii }}$	145.65 (2)
Se3 ${ }^{\text {i }}$-Se1— ${ }^{\text {Se6 }}{ }^{\text {vii }}$	105.20 (4)
Se3 ${ }^{\text {ii }}$-Se1—-Se6 ${ }^{\text {vii }}$	59.80 (3)
Se1 ${ }^{\text {vi}}$-Se3-Se1	64.79 (2)
Se1 ${ }^{\text {vi}}$-Se3-Se1 ${ }^{\text {xviii }}$	146.387 (17)
Se1 ${ }^{\text {vi}}$-Se3-Se4	67.54 (3)
Se1 ${ }^{\text {vi}}-\mathrm{Se} 3-\mathrm{Se} 4{ }^{\text {i }}$	101.97 (4)
Se1 ${ }^{\text {vi }}$-Se3-Se6 ${ }^{\text {x }}$	106.61 (4)
Se1—Se3-Se1 ${ }^{\text {xviii }}$	146.387 (17)
Se1—Se3-Se4	101.97 (4)
$\mathrm{Se} 1-\mathrm{Se} 3-\mathrm{Se} 4{ }^{\text {i }}$	67.54 (3)
$\mathrm{Se} 1-\mathrm{Se} 3-\mathrm{Se}{ }^{\text {}}$	106.61 (4)
Se1 ${ }^{\text {xviii- }}$ Se3-Se4	103.82 (4)
Se1 ${ }^{\text {xviii }}$-Se3-Se4 ${ }^{\text {i }}$	103.82 (4)
Se1 ${ }^{\text {xviii }}$-Se3- $\mathrm{Se}^{\text {x }}$	60.71 (3)
Se4-Se3-Se4 ${ }^{\text {i }}$	66.75 (3)
$\mathrm{Se} 4-\mathrm{Se} 3-\mathrm{Se}^{\text {x }}$	144.56 (2)
$\mathrm{Se} 4^{\mathrm{i}}$-Se3-Se6 ${ }^{\text {x }}$	144.56 (2)
Se3 ${ }^{\text {vi}}-\mathrm{Se} 4-\mathrm{Se} 3$	66.75 (3)
Se3 ${ }^{\text {vi }}$-Se4——Se5 ${ }^{\text {xvi }}$	76.57 (3)
Se3 ${ }^{\text {vi}}$-Se4—Se5*xii	112.32 (4)
Se3-Se4-Se5 ${ }^{\text {xvi }}$	112.32 (4)
Se3-Se4-Se5 ${ }^{\text {xvii }}$	76.57 (3)
Se5 ${ }^{\text {xvi }}$-Se4-Se5 ${ }^{\text {xvii }}$	67.61 (3)
Se4 ${ }^{\text {xix }}$-Se5-Se4 ${ }^{\text {xvi }}$	67.61 (3)
Se1 ${ }^{\text {xx }}$-Se6-Se3 ${ }^{\text {xxi }}$	59.49 (3)
Se4-Cu1a-Se4 ${ }^{\text {xvi }}$	81.8 (3)
Se4-Cu1a-Se5	117.8 (3)
Se4-Cu1a-Se5 ${ }^{\text {i }}$	117.8 (3)
Se4-Cu1a-Se6 ${ }^{\text {i }}$	108.6 (5)
Se4 ${ }^{\text {xvi }}$-Cu1a-Se5	75.3 (3)
Se4 $4^{\text {xvi }}$-Cu1a-Se5 ${ }^{\text {i }}$	75.3 (3)
Se4 $4^{\text {xvi }}$-Cu1a-Se6 ${ }^{\text {i }}$	169.6 (5)
Se5-Cu1a-Se5 ${ }^{\text {i }}$	110.9 (5)
Se5-Cu1a-Se6 ${ }^{\text {i }}$	99.1 (3)

supporting information

$\mathrm{Se} 4^{\text {i }}$ - $\mathrm{Pb} 2-\mathrm{Se}^{\text {vii }}$	80.94 (12)	Se5 ${ }^{\text {i }}$ - $\mathrm{Cu} 1 \mathrm{a}-\mathrm{Se}^{\text {i }}$	99.1 (3)
Se6 ${ }^{\text {i }}$-Pb2——Se6 ${ }^{\text {vii }}$	76.7 (2)	$\mathrm{Se} 4-\mathrm{Cu} 1-\mathrm{Se} 4^{\text {xvi }}$	103.9 (2)
$\mathrm{Se} 1-\mathrm{Sb} 3-\mathrm{Se} 2^{\text {vi }}$	88.36 (6)	$\mathrm{Se} 4-\mathrm{Cu}-\mathrm{Se} 5$	120.65 (13)
$\mathrm{Se} 1-\mathrm{Sb} 3-\mathrm{Se} 2$	88.36 (6)	$\mathrm{Se} 4-\mathrm{Cu} 1-\mathrm{Se} 5{ }^{\text {i }}$	120.65 (13)
Se1—Sb3—Se3	87.81 (5)	$\mathrm{Se} 4-\mathrm{Cu} 1-\mathrm{Se} 6^{\text {i }}$	86.53 (17)
Se1—Sb3-Se3 ${ }^{\text {i }}$	87.81 (5)	Se4 ${ }^{\text {xvi }}$-Cu1—Se5	94.39 (16)
Se1—Sb3-Se6 ${ }^{\text {x }}$	146.549 (19)	Se4 ${ }^{\text {xvi }}-\mathrm{Cu} 1-\mathrm{Se} 5{ }^{\text {i }}$	94.39 (16)
Se1—Sb3—Se6 ${ }^{\text {viii }}$	146.549 (19)	Se4 ${ }^{\text {xvi }}$ - $\mathrm{Cu} 1-\mathrm{Se}^{\text {i }}$	169.6 (2)
Se2 ${ }^{\text {vi}}$ - $\mathrm{Sb} 3-\mathrm{Se} 2$	88.05 (5)	$\mathrm{Se} 5-\mathrm{Cu} 1-\mathrm{Se} 5{ }^{\text {i }}$	113.3 (2)
Se2 ${ }^{\text {vi}}$-Sb3-Se3	90.93 (3)	Se5-Cu1-Se6 ${ }^{\text {i }}$	79.99 (16)
Se2 ${ }^{\text {vi}}-\mathrm{Sb} 3-\mathrm{Se}{ }^{\text {i }}$	176.06 (8)	Se5 ${ }^{\text {- }} \mathrm{Cu} 1-\mathrm{Se}^{\text {6 }}$	79.99 (16)

Symmetry codes: (i) $x, y, z+1$; (ii) $x-1 / 2,-y+1 / 2,-z+3 / 2$; (iii) $x-1 / 2,-y+1 / 2,-z+5 / 2$; (iv) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (v) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (vi) x, y, $z-1$; (vii) $x, y, z+2$; (viii) $x+1 / 2,-y+1 / 2,-z+1 / 2$; (ix) $x+1 / 2,-y+1 / 2, z+3 / 2$; (x) $x+1 / 2,-y+1 / 2,-z-1 / 2$; (xi) $x, y,-z-1$; (xii) $x, y,-z$; (xiii) $-x+1 / 2, y+1 / 2$, $-z+1 / 2$; (xiv) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (xv) $-x,-y+1, z$; (xvi) $-x+1,-y+1, z$; (xvii) $-x+1,-y+1, z+1$; (xviii) $x+1 / 2,-y+1 / 2,-z+3 / 2$; (xix) $-x+1,-y+1, z-1$; (xx) $x, y, z-2$; (xxi) $x-1 / 2,-y+1 / 2,-z-1 / 2$.

