

Received 5 September 2022 Accepted 24 January 2023

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

**Keywords:** crystal structure; Hirshfeld surface analysis;  $\pi$ – $\pi$  stacking; biquinoline; copper complex.

CCDC reference: 2237760

Supporting information: this article has supporting information at journals.iucr.org/e





Synthesis, crystal structure and Hirshfeld surface analysis of di- $\mu_2$ -iodido-bis[(2,2'-biquinoline- $\kappa^2 N, N'$ )copper(I)]

# Ayalew W. Temesgen,<sup>a\*</sup> Anton P. Novikov,<sup>b,c</sup> Alexander G. Tskhovrebov,<sup>b</sup> Ekaterina K. Kultyshkina<sup>b</sup> and Tuan Anh Le<sup>d</sup>

<sup>a</sup>Department of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar 196, Ethiopia, <sup>b</sup>Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, St, 117198, Moscow, Russian Federation, <sup>c</sup>Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospekt bldg 4, 119071 Moscow, Russian Federation, and <sup>d</sup>University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, 100000, Hanoi, Vietnam. \*Correspondence e-mail: wodajo.ayalew@uog.edu.et

The molecular and crystal structures of the title compound,  $[Cu_2I_2(C_{18}H_{12}N_2)_2]$ , were examined by single-crystal X-ray diffraction and Hirshfeld surface analysis. The Cu atom is coordinated in a distorted tetrahedral geometry by two N atoms from the 2,2'-biquinoline ligands and the two  $\mu_2$ -bridging iodide ligands. The molecules are in contact *via*  $\pi$ - $\pi$ -stacking interactions. Hirshfeld surface analysis showed that the most important contributions to the intermolecular interactions are H···H (39.7%), H···I/I···H (17.8%), C···H/H···C (17.5%), C···C (16.5%), N···C/C···N (3.9%) and N···H/H···N (3.5%).

## 1. Chemical context

Metal complexes with N-heterocyclic ligands find wide applications in various fields such as catalysis and medicine, among others (Delgado-Rebollo et al., 2019; Novikov et al., 2021; Fong, 2016; Artemjev et al., 2022). Copper(I) bypiridine complexes are of interest because of their structural peculiarities, cuprophilic interactions, and important photochemical properties. Therefore, bypyridine-type systems are often the ligands of choice to explore new metal complexes with potentially useful properties (Ferraro et al., 2022; Starosta et al., 2012; Vatsadze et al., 2010). 2,2'-Biquinoline is an important and widely employed diimine ligand. The geometry of the resulting metal derivatives depends on the ligand and counterion, the metal:ligand ratio and the solvent and synthetic conditions. Here we report the preparation and structural characterization of a copper iodide complex with 2,2'-biquinoline. We used Hirshfeld surface analysis to estimate the contribution of non-covalent interactions to the crystal structure.



| Selected geometric parameters (A, $^{\circ}$ ). |            |                        |             |  |  |  |
|-------------------------------------------------|------------|------------------------|-------------|--|--|--|
| I1-Cu1                                          | 2.5734 (2) | Cu1-N2                 | 2.0900 (14) |  |  |  |
| I1-Cu1 <sup>i</sup>                             | 2.6487 (2) | Cu1-N1                 | 2.0930 (13) |  |  |  |
| Cu1-I1-Cu1 <sup>i</sup>                         | 68.829 (8) | N2-Cu1-I1 <sup>i</sup> | 110.91 (4)  |  |  |  |
| N2-Cu1-N1                                       | 79.28 (5)  | N1-Cu1-I1 <sup>i</sup> | 106.99 (4)  |  |  |  |
| N2-Cu1-I1                                       | 122.14 (4) | $I1-Cu1-I1^{i}$        | 111.171 (8) |  |  |  |
| N1-Cu1-I1                                       | 122.34 (4) |                        |             |  |  |  |

Symmetry code: (i) -x + 1, -y, -z + 1.

Table 1

#### 2. Structural commentary

The title compound crystallizes in the centrosymmetric space group  $P\overline{1}$  with one crystallographically independent molecule in the unit cell. The molecular structure is illustrated in Fig. 1. The Cu atom is coordinated in a distorted tetrahedral geometry (Table 1) by two nitrogen atoms from the 2,2'-biquinoline ligands and the two  $\mu_2$ -bridged iodide ligands. The Cu1—I1 and Cu1<sup>i</sup>—I1 distances [symmetry code: (i) -x + 1, -y, -z + 1] are 2.5734 (2) and 2.6487 (2) Å, which are close to the distances in similar compounds (Sun *et al.*, 2013; Starosta *et al.*, 2012) with a substituted quinoline ligand. The Cu—N distances of 2.0930 (13) and 2.0900 (14) Å are almost equal within standard uncertainty.

The quinoline fragments in the biquinoline ligand adopt, as expected, a planar geometry. The maximum and minimum deviations of the atoms from these planes are between -0.018 (2) and 0.026 (2) Å. The angle between the quinolines described by rings 1/2 (as defined in Fig. 1) is 5.08 (9)° and between 3/4 is 0.59 (8)°. Then, the quinoline formed by rings 1 and 2 (ring 5) makes an angle of 7.56 (5)° with the quinoline described by rings 3/4 (ring 6).

#### 3. Supramolecular features

The crystal packing is shown in Fig. 2, viewed down the c axis. Molecules both within the layers and between them are



Figure 1

Molecular structure of the title compound, including atom and ring labelling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x + 1, -y, -z + 1.]

connected by  $\pi$ - $\pi$ -stacking interactions between sixmembered rings of the quinoline rings. The  $\pi$ - $\pi$ -stacking interaction parameters are presented in Table 2. Ring 4, defined by N2/C18/C10-C13 in Fig. 1, participates in the shortest interactions. The contact with another ring 4, related by the symmetry operation -x, -y + 1, -z + 1, is perhaps the most efficient, based on the distance, the angle between the planes, and the shift between ring centroids.

#### 4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of 2022; Groom *et al.*, 2016) showed only a few hits for bis[( $\mu_2$ -halogen)-2,2'-biquinoline-di-copper(I)]. We only found data for compounds with substituted quinoline rings in position-4 with carboxylate fragments. All compounds crystallize in the triclinic space group *P*1. In IRIVIP (Vatsadze *et al.*, 2010), *n*-hexyl carboxylate groups are attached to the quinoline rings at position 4. In YIJFAA, YIJFEE, and YIJFII (Sun *et al.*, 2013), ethyl carboxylate fragments are attached, and in PAYKIL (Starosta *et al.*, 2012), there are methyl carboxylate fragments. In IRIVIP and YIJFAA, instead of the iodine atom, as in the title structure, there are chlorine atoms; in YIJFEE, there are bromine atoms. In other structures, the copper atoms are bonded through iodine atoms.

#### 5. Hirshfeld surface analysis

*Crystal Explorer21* was used to calculate the Hirshfeld surfaces and two-dimensional fingerprint plots (Spackman *et al.*, 2021). The donor–acceptor groups are visualized using a standard (high) surface resolution and  $d_{\text{norm}}$  surfaces are mapped over a fixed colour scale from -0.0579 (red) to 1.3919 (blue) a.u., as illustrated in Fig. 3(*a*). Red spots on the surface



Figure 2

View along the c axis of the crystal packing of the title compound, showing the stacking of layers formed by the Cu complex.

# research communications

| Ring 1         | Ring No. | Ring 2                                 | Ring No. | Angle | Centroid–centroid<br>distance | Shift distance<br>between ring centroids |
|----------------|----------|----------------------------------------|----------|-------|-------------------------------|------------------------------------------|
| C1-C6          | 1        | C1-C6(-x+1, -y, -z+2)                  | 1        | 0.000 | 3.874                         | 1.459                                    |
| C13-C18        | 3        | N1/C1/C6-C9(-x + 1, -y + 1, -z + 1)    | 2        | 4.772 | 3.711                         | 1.480                                    |
|                |          | N2/C18/C10-C13(-x, -y + 1, -z + 1)     | 4        | 0.590 | 3.665                         | 1.602                                    |
| N1/C1/C6-C9    | 2        | N2/C18/C10-C13(-x + 1, -y + 1, -z + 1) | 4        | 5.301 | 3.564                         | 1.139                                    |
|                |          | C13-C18(-x+1, -y+1, -z+1)              | 3        | 4.772 | 3.711                         | 1.283                                    |
| N2/C18/C10-C13 | 4        | N2/C18/C10-C13(-x, -y + 1, -z + 1)     | 4        | 0.000 | 3.652                         | 1.555                                    |
|                |          | C13-C18(-x, -y + 1, -z + 1)            | 3        | 0.590 | 3.665                         | 1.579                                    |
|                |          | N1/C1/C6-C9(-x + 1, -y + 1, -z + 1)    | 2        | 5.301 | 3.564                         | 1.068                                    |

**Table 2**  $\pi$ - $\pi$ -stacking interaction parameters (Å, °).

correspond to C···C and I···H interactions. The presence of  $\pi$ -stacking interactions is confirmed by the characteristic red and blue triangles on the shape-index surface [Fig. 3(*b*)]. Fingerprint plots of the most important non-covalent interactions for the title compound are shown in Fig. 4. The largest contribution to the crystal packing is made by contacts of the H···H type (39.7%). Then contacts of the H···I/I···H and C···H/H···C types make approximately equal contributions (17.8 and 17.5%, respectively). C···C interactions responsible for  $\pi$ -stacking contribute 16.5%. Contacts that contribute less than 1% are not shown in Fig. 4.

## 6. Synthesis and crystallization

The title compound was prepared by refluxing CuI with one equivalent of 2,2'-biquinoline in ethanol for 24 h. The compound precipitates as a purple solid in 87% yield. Found (%): C, 48.39; H, 2.71; N, 6.27. for  $C_{36}H_{24}Cu_2I_2N_4$ . Calculated (%): C, 48.61; H, 2.64; N, 6.19.

## 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were placed at calculated positions (C-H = 0.95 Å) and refined using a riding model with  $[U_{iso}(H) = 1.2U_{eq}(C)]$ .

#### **Acknowledgements**

Authors contributions are as follows: Conceptualization, AWT, AGT and TAL; methodology, APN, AGT; validation: AWT, AGT; formal analysis: APN, AGT, TAL; investigation: AWT, AGT and TAL; resources, AGT, TAL; data curation, APN, EKK; writing (original draft), AWT; writing (review and



#### Figure 3

Hirshfeld surface mapped over (a)  $d_{\text{norm}}$  and (b) shape-index to visualize the interactions in the title compound.

editing), APN, AGT, TAL; visualization, AWT, TAL; supervision, AWT, AGT; project administration, AGT; funding acquisition, AGT, TAL.

#### **Funding information**

Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (subject No. 122011300061-3). This work was supported by the RUDN



#### Figure 4

Two-dimensional fingerprint plots for the title compound divided into  $H \cdots H$  (39.7%),  $H \cdots I/I \cdots H$  (17.8%),  $C \cdots H/H \cdots C$  (17.5%),  $C \cdots C$  (16.5%),  $N \cdots C/C \cdots N$  (3.9%) and  $N \cdots H/H \cdots N$  (3.5%) interactions.

Experimental details. Crystal data  $\begin{array}{l} [Cu_2I_2(C_{18}H_{12}N_2)_2] \\ 893.49 \end{array}$ Chemical formula  $M_r$ Triclinic,  $P\overline{1}$ Crystal system, space group Temperature (K) 100 8.2032 (2), 9.4084 (3), 10.8312 (3) a, b, c (Å)  $\alpha, \beta, \gamma$  (°) 70.9328 (8), 76.1237 (9), 74.2486 (9)  $V(Å^3)$ 749.84 (4) Ζ Radiation type Μο Κα  $\mu \,({\rm mm}^{-1})$ 3.51 Crystal size (mm)  $0.12 \times 0.10 \times 0.06$ Data collection Bruker D8 QUEST PHOTON-III Diffractometer CCD Absorption correction Multi-scan (SADABS; Krause et al., 2015) 0.656, 0.798  $T_{\min}, T_{\max}$ No. of measured, independent and 22231, 5464, 4875 observed  $[I > 2\sigma(I)]$  reflections  $R_{\rm int}$ 0.030  $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.759 Refinement  $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections 0.021, 0.050, 1.07 5464 200 No. of parameters H-atom treatment H-atom parameters constrained  $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.93, -1.00

Table 3

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

University Strategic Academic Leadership Program: Russian Foundation for Basic Research (grant No. 21-53-54001).

| Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A.,<br>Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V.,<br>Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. &<br>Tskhovrebov, A. G. (2022). <i>Int. J. Mol. Sci.</i> 23, 6372. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.                                                                                                                                                                                                                  |
| Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.                                                                                                                                                                                                                  |
| Delgado-Rebollo, M., García-Morales, C., Maya, C., Prieto, A.,<br>Echavarren, A. M. & Pérez, P. J. (2019). J. Organomet. Chem. 898,<br>120856.                                                                                                                                   |
| Ferraro, V., Castro, J., Trave, E. & Bortoluzzi, M. (2022). J. Organomet. Chem. 957, 122171.                                                                                                                                                                                     |
| Fong, C. W. (2016). Free Radical Biol. Med. 95, 216-229.                                                                                                                                                                                                                         |
| Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). <i>Acta Cryst.</i> B72, 171–179.                                                                                                                                                                              |
| Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J.<br>Appl. Cryst. 48, 3–10.                                                                                                                                                                                 |
| Novikov, A. P., Volkov, M. A., Safonov, A. V., Grigoriev, M. S. & Abkhalimov, E. V. (2021). <i>Crystals</i> , <b>11</b> , 1417.                                                                                                                                                  |
| Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.                                                                                                                                                                                                                               |
| Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.                                                                                                                                                                                                                                  |
| Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.                                                                                                                                                                                                                                  |
| Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). <i>J. Appl. Cryst.</i> <b>54</b> , 1006–1011.                                                                                                           |
| Starosta, R., Komarnicka, U. K., Nagaj, J., Stokowa-Sołtys, K. & Bykowska, A. (2012). <i>Acta Cryst.</i> E68, m756–m757.                                                                                                                                                         |
| Sun, X. M., Ning, W. H., Liu, J. L., Liu, S. X., Guo, P. C. & Ren, X. M.<br>(2013). Chin. J. Inorg. Chem. 29, 2176–2182.                                                                                                                                                         |

Vatsadze, S. Z., Dolganov, A. V., Yakimanskii, A. V., Goikhman, M. Y., Podeshvo, I. V., Lyssenko, K. A., Maksimov, A. L. & Magdesieva, T. V. (2010). *Russ. Chem. Bull.* 59, 724–732.

# supporting information

Acta Cryst. (2023). E79, 132-135 [https://doi.org/10.1107/S2056989023000634]

Synthesis, crystal structure and Hirshfeld surface analysis of di- $\mu_2$ -iodido-bis-[(2,2'-biquinoline- $\kappa^2 N, N'$ )copper(I)]

# Ayalew W. Temesgen, Anton P. Novikov, Alexander G. Tskhovrebov, Ekaterina K. Kultyshkina and Tuan Anh Le

# **Computing details**

Data collection: *APEX3* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015*b*); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

 $\text{Di-}\mu_2\text{-iodido-bis}[(2,2'\text{-biquinoline-}\kappa^2N,N')\text{copper}(I)]$ 

Crystal data

 $\begin{bmatrix} Cu_2I_2(C_{18}H_{12}N_2)_2 \end{bmatrix} \\ M_r = 893.49 \\ \text{Triclinic, } PI \\ a = 8.2032 (2) \text{ Å} \\ b = 9.4084 (3) \text{ Å} \\ c = 10.8312 (3) \text{ Å} \\ a = 70.9328 (8)^{\circ} \\ \beta = 76.1237 (9)^{\circ} \\ \gamma = 74.2486 (9)^{\circ} \\ V = 749.84 (4) \text{ Å}^3 \end{bmatrix}$ 

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)  $T_{\min} = 0.656, T_{\max} = 0.798$ 22231 measured reflections

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.021$  $wR(F^2) = 0.050$ S = 1.075464 reflections 200 parameters 0 restraints Z = 1 F(000) = 432  $D_x = 1.979 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9951 reflections  $\theta = 2.3-32.6^{\circ}$   $\mu = 3.51 \text{ mm}^{-1}$  T = 100 KPlate, red  $0.12 \times 0.10 \times 0.06 \text{ mm}$ 

5464 independent reflections 4875 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.030$  $\theta_{max} = 32.6^\circ, \ \theta_{min} = 2.3^\circ$  $h = -12 \rightarrow 12$  $k = -14 \rightarrow 14$  $l = -16 \rightarrow 16$ 

Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0241P)^2 + 0.2045P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} = 0.001$  $\Delta\rho_{\text{max}} = 0.93 \text{ e} \text{ Å}^{-3}$   $\Delta \rho_{\min} = -1.00 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL, Fc\*=kFc[1+0.001xFc<sup>2</sup> \lambda^3/sin(2\theta)]<sup>-1/4</sup> Extinction coefficient: 0.00061 (6)

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

| Fractional atomic | coordinates and | isotropic or | equivalent isotrop | pic displaceme | nt parameters | $(Å^2)$ |
|-------------------|-----------------|--------------|--------------------|----------------|---------------|---------|
|                   |                 |              |                    |                |               | 1 /     |

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| I1  | 0.72676 (2)  | 0.05497 (2)  | 0.36228 (2)  | 0.01463 (4)                 |  |
| Cu1 | 0.47151 (3)  | 0.14895 (2)  | 0.52815 (2)  | 0.01482 (5)                 |  |
| N1  | 0.50362 (17) | 0.22489 (16) | 0.68043 (14) | 0.0137 (2)                  |  |
| N2  | 0.32363 (17) | 0.37275 (15) | 0.48351 (13) | 0.0126 (2)                  |  |
| C1  | 0.5986 (2)   | 0.14322 (19) | 0.77875 (16) | 0.0149 (3)                  |  |
| C2  | 0.7206 (2)   | 0.0086 (2)   | 0.76410 (18) | 0.0188 (3)                  |  |
| H2  | 0.7335       | -0.0253      | 0.6881       | 0.023*                      |  |
| C3  | 0.8205 (2)   | -0.0730 (2)  | 0.86007 (19) | 0.0225 (3)                  |  |
| H3  | 0.9050       | -0.1616      | 0.8486       | 0.027*                      |  |
| C4  | 0.7991 (3)   | -0.0268 (2)  | 0.97589 (19) | 0.0235 (4)                  |  |
| H4  | 0.8658       | -0.0869      | 1.0430       | 0.028*                      |  |
| C5  | 0.6831 (2)   | 0.1034 (2)   | 0.99178 (18) | 0.0221 (3)                  |  |
| Н5  | 0.6688       | 0.1333       | 1.0701       | 0.027*                      |  |
| C6  | 0.5837 (2)   | 0.1942 (2)   | 0.89164 (16) | 0.0168 (3)                  |  |
| C7  | 0.4734 (2)   | 0.3365 (2)   | 0.89624 (17) | 0.0204 (3)                  |  |
| H7  | 0.4603       | 0.3741       | 0.9702       | 0.024*                      |  |
| C8  | 0.3849 (2)   | 0.4209 (2)   | 0.79434 (17) | 0.0186 (3)                  |  |
| H8  | 0.3134       | 0.5187       | 0.7954       | 0.022*                      |  |
| C9  | 0.4017 (2)   | 0.35984 (18) | 0.68682 (16) | 0.0134 (3)                  |  |
| C10 | 0.30656 (19) | 0.44564 (18) | 0.57445 (16) | 0.0130 (3)                  |  |
| C11 | 0.2064 (2)   | 0.59515 (18) | 0.56565 (17) | 0.0151 (3)                  |  |
| H11 | 0.1989       | 0.6436       | 0.6318       | 0.018*                      |  |
| C12 | 0.1199 (2)   | 0.67017 (18) | 0.46130 (17) | 0.0161 (3)                  |  |
| H12 | 0.0505       | 0.7703       | 0.4552       | 0.019*                      |  |
| C13 | 0.1348 (2)   | 0.59756 (18) | 0.36296 (16) | 0.0135 (3)                  |  |
| C14 | 0.0488 (2)   | 0.6683 (2)   | 0.25249 (17) | 0.0171 (3)                  |  |
| H14 | -0.0225      | 0.7681       | 0.2431       | 0.021*                      |  |
| C15 | 0.0680 (2)   | 0.5933 (2)   | 0.15911 (17) | 0.0183 (3)                  |  |
| H15 | 0.0103       | 0.6413       | 0.0850       | 0.022*                      |  |
| C16 | 0.1738 (2)   | 0.4440 (2)   | 0.17292 (17) | 0.0181 (3)                  |  |
| H16 | 0.1868       | 0.3931       | 0.1074       | 0.022*                      |  |
| C17 | 0.2579 (2)   | 0.37192 (19) | 0.27946 (17) | 0.0162 (3)                  |  |
| H17 | 0.3279       | 0.2717       | 0.2876       | 0.019*                      |  |
| C18 | 0.23990 (19) | 0.44731 (18) | 0.37738 (16) | 0.0129 (3)                  |  |

# supporting information

|     | $U^{11}$    | $U^{22}$    | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|--------------|--------------|--------------|--------------|
| I1  | 0.01422 (5) | 0.01364 (5) | 0.01633 (6)  | -0.00129 (3) | -0.00081 (3) | -0.00714 (4) |
| Cu1 | 0.01437 (9) | 0.01477 (9) | 0.01559 (10) | 0.00062 (7)  | -0.00375 (7) | -0.00671 (7) |
| N1  | 0.0120 (6)  | 0.0154 (6)  | 0.0140 (6)   | -0.0033 (5)  | -0.0023 (5)  | -0.0041 (5)  |
| N2  | 0.0117 (5)  | 0.0134 (6)  | 0.0131 (6)   | -0.0013 (5)  | -0.0023 (4)  | -0.0049 (5)  |
| C1  | 0.0130 (7)  | 0.0179 (7)  | 0.0145 (7)   | -0.0057 (6)  | -0.0020 (5)  | -0.0035 (6)  |
| C2  | 0.0187 (8)  | 0.0184 (7)  | 0.0188 (8)   | -0.0028 (6)  | -0.0069 (6)  | -0.0028 (6)  |
| C3  | 0.0211 (8)  | 0.0196 (8)  | 0.0249 (9)   | -0.0041 (7)  | -0.0097 (7)  | 0.0003 (7)   |
| C4  | 0.0250 (9)  | 0.0243 (9)  | 0.0207 (8)   | -0.0102 (7)  | -0.0117 (7)  | 0.0042 (7)   |
| C5  | 0.0252 (9)  | 0.0282 (9)  | 0.0150 (7)   | -0.0111 (7)  | -0.0076 (6)  | -0.0013 (7)  |
| C6  | 0.0149 (7)  | 0.0234 (8)  | 0.0133 (7)   | -0.0081 (6)  | -0.0018 (5)  | -0.0036 (6)  |
| C7  | 0.0183 (8)  | 0.0309 (9)  | 0.0160 (8)   | -0.0060 (7)  | -0.0015 (6)  | -0.0121 (7)  |
| C8  | 0.0170 (7)  | 0.0244 (8)  | 0.0175 (8)   | -0.0024 (6)  | -0.0030 (6)  | -0.0113 (7)  |
| C9  | 0.0113 (6)  | 0.0162 (7)  | 0.0138 (7)   | -0.0027 (5)  | -0.0015 (5)  | -0.0059 (6)  |
| C10 | 0.0103 (6)  | 0.0148 (6)  | 0.0145 (7)   | -0.0032 (5)  | -0.0009(5)   | -0.0053 (5)  |
| C11 | 0.0147 (7)  | 0.0140 (6)  | 0.0186 (7)   | -0.0033 (5)  | -0.0016 (5)  | -0.0077 (6)  |
| C12 | 0.0152 (7)  | 0.0118 (6)  | 0.0206 (8)   | -0.0023 (5)  | -0.0009 (6)  | -0.0055 (6)  |
| C13 | 0.0116 (6)  | 0.0118 (6)  | 0.0159 (7)   | -0.0019 (5)  | -0.0022 (5)  | -0.0026 (5)  |
| C14 | 0.0137 (7)  | 0.0162 (7)  | 0.0181 (8)   | -0.0016 (6)  | -0.0033 (6)  | -0.0012 (6)  |
| C15 | 0.0175 (7)  | 0.0188 (7)  | 0.0166 (7)   | -0.0013 (6)  | -0.0058 (6)  | -0.0023 (6)  |
| C16 | 0.0175 (7)  | 0.0212 (8)  | 0.0164 (7)   | -0.0011 (6)  | -0.0043 (6)  | -0.0077 (6)  |
| C17 | 0.0152 (7)  | 0.0162 (7)  | 0.0180 (7)   | -0.0006 (6)  | -0.0036 (6)  | -0.0072 (6)  |
| C18 | 0.0104 (6)  | 0.0135 (6)  | 0.0145 (7)   | -0.0021 (5)  | -0.0016 (5)  | -0.0041 (5)  |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| I1—Cu1               | 2.5734 (2)  | С7—С8   | 1.369 (3) |
|----------------------|-------------|---------|-----------|
| I1—Cu1 <sup>i</sup>  | 2.6487 (2)  | С7—Н7   | 0.9500    |
| Cu1—N2               | 2.0900 (14) | C8—C9   | 1.422 (2) |
| Cu1—N1               | 2.0930 (13) | C8—H8   | 0.9500    |
| Cu1—I1 <sup>i</sup>  | 2.6487 (2)  | C9—C10  | 1.488 (2) |
| Cu1—Cu1 <sup>i</sup> | 2.9520 (4)  | C10—C11 | 1.409 (2) |
| N1—C9                | 1.330 (2)   | C11—C12 | 1.367 (2) |
| N1—C1                | 1.367 (2)   | C11—H11 | 0.9500    |
| N2—C10               | 1.3354 (19) | C12—C13 | 1.409 (2) |
| N2—C18               | 1.369 (2)   | C12—H12 | 0.9500    |
| C1—C2                | 1.414 (2)   | C13—C14 | 1.415 (2) |
| C1—C6                | 1.421 (2)   | C13—C18 | 1.423 (2) |
| C2—C3                | 1.374 (2)   | C14—C15 | 1.369 (2) |
| С2—Н2                | 0.9500      | C14—H14 | 0.9500    |
| C3—C4                | 1.415 (3)   | C15—C16 | 1.418 (2) |
| С3—Н3                | 0.9500      | C15—H15 | 0.9500    |
| C4—C5                | 1.365 (3)   | C16—C17 | 1.372 (2) |
| C4—H4                | 0.9500      | C16—H16 | 0.9500    |
| C5—C6                | 1.418 (2)   | C17—C18 | 1.418 (2) |
| С5—Н5                | 0.9500      | C17—H17 | 0.9500    |
|                      |             |         |           |

| C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.406 (3)                 |                                                                                                         |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                         |                           |
| Cu1—I1—Cu1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68.829 (8)                | С8—С7—Н7                                                                                                | 119.9                     |
| N2—Cu1—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.28 (5)                 | С6—С7—Н7                                                                                                | 119.9                     |
| N2—Cu1—I1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.14 (4)                | C7—C8—C9                                                                                                | 118.99 (16)               |
| N1—Cu1—I1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.34 (4)                | С7—С8—Н8                                                                                                | 120.5                     |
| N2—Cu1—I1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.91 (4)                | С9—С8—Н8                                                                                                | 120.5                     |
| N1—Cu1—I1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106.99 (4)                | N1—C9—C8                                                                                                | 122.17 (15)               |
| I1—Cu1—I1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.171 (8)               | N1                                                                                                      | 116.58 (13)               |
| N2—Cu1—Cu1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 141.62 (4)                | C8—C9—C10                                                                                               | 121.24 (15)               |
| N1—Cu1—Cu1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 136.76 (4)                | N2-C10-C11                                                                                              | 122.82 (15)               |
| I1—Cu1—Cu1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.791 (7)                | N2-C10-C9                                                                                               | 115.92 (14)               |
| I1 <sup>i</sup> —Cu1—Cu1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.380 (7)                | C11—C10—C9                                                                                              | 121.26 (14)               |
| C9—N1—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.18 (14)               | C12—C11—C10                                                                                             | 119.63 (14)               |
| C9—N1—Cu1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.35 (11)               | C12—C11—H11                                                                                             | 120.2                     |
| C1—N1—Cu1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126.92 (11)               | C10-C11-H11                                                                                             | 120.2                     |
| C10—N2—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.23 (14)               | C11—C12—C13                                                                                             | 119.38 (15)               |
| C10—N2—Cu1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113.89 (11)               | С11—С12—Н12                                                                                             | 120.3                     |
| C18—N2—Cu1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 127.82 (10)               | C13—C12—H12                                                                                             | 120.3                     |
| N1-C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.85 (15)               | C12-C13-C14                                                                                             | 122.40 (15)               |
| N1 - C1 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.75 (15)               | C12-C13-C18                                                                                             | 117.93 (15)               |
| C2-C1-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.33 (16)               | C14-C13-C18                                                                                             | 119.67 (14)               |
| $C_{3}$ $C_{2}$ $C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.82 (17)               | $C_{15}$ $-C_{14}$ $-C_{13}$                                                                            | 120.22 (16)               |
| $C_3 - C_2 - H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1                     | $C_{15}$ $C_{14}$ $H_{14}$                                                                              | 119.9                     |
| C1 - C2 - H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.1                     | $C_{13}$ $-C_{14}$ $-H_{14}$                                                                            | 119.9                     |
| $C_2 - C_3 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.1                     | C14-C15-C16                                                                                             | 120 11 (16)               |
| C2—C3—H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.6                     | C14-C15-H15                                                                                             | 119.9                     |
| C4—C3—H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.6                     | $C_{16}$ $-C_{15}$ $-H_{15}$                                                                            | 119.9                     |
| $C_{5}$ $C_{4}$ $C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120 43 (17)               | $C_{17}$ $-C_{16}$ $-C_{15}$                                                                            | 121.04 (15)               |
| C5-C4-H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.8                     | $C_{17}$ $-C_{16}$ $-H_{16}$                                                                            | 1195                      |
| $C_3 - C_4 - H_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.8                     | $C_{15}$ $C_{16}$ $H_{16}$                                                                              | 119.5                     |
| C4-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.13 (17)               | $C_{16}$ $C_{17}$ $C_{18}$                                                                              | 119.85 (15)               |
| C4 - C5 - H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.0                     | $C_{16}$ $C_{17}$ $H_{17}$                                                                              | 120.1                     |
| C6 C5 H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.0                     | $C_{10} = C_{17} = H_{17}$                                                                              | 120.1                     |
| $C_{7}$ $C_{6}$ $C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.9                     | $N_2 = C_{18} = C_{17}$                                                                                 | 120.1<br>118 00 (14)      |
| C7 - C6 - C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122.99(10)<br>117.63(16)  | $N_2 = C_{18} = C_{17}$                                                                                 | 113.90(14)                |
| $C_{-}^{-}C_{-}^{-}C_{1}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117.03(10)<br>110.34(17)  | $N_2 - C_{10} - C_{13}$                                                                                 | 122.00(14)                |
| $C^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.34(17)<br>120.15(15)  | 01/013                                                                                                  | 119.10 (13)               |
| 0-0-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.13 (13)               |                                                                                                         |                           |
| $C_{0}$ N1 $C_{1}$ $C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -173.05(15)               | $C_{18}$ N2 $C_{10}$ $C_{0}$                                                                            | -170 42 (13)              |
| $C_{2}$ $C_{2$ | -1/5.03(15)               | $C_{10} = N_2 = C_{10} = C_9$                                                                           | -1/9.42(13)               |
| $C_{\text{III}} = N_{\text{III}} = C_{\text{III}} = C_{\text{III}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1(2)                   | Cu1 - N2 - C10 - C9                                                                                     | 3.07(17)                  |
| $C_{2} = N_{1} = C_{1} = C_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0(2)                    | N1 - C9 - C10 - N2                                                                                      | 4.0(2)                    |
| $\begin{array}{c} \text{Cu} - \text{INI} - \text{CI} - \text{CO} \\ \text{NI} - \text{CI} - \text{CO} - \text{CO} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -100.98(11)<br>178.25(16) | $V_0 - V_2 - V_1 - N_2$                                                                                 | -1/3.83(14)<br>-17464(14) |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/0.33(10)<br>1/4(2)      | NI = CY = CIU = CII                                                                                     | -1/4.04(14)               |
| $C_{1} = C_{2} = C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4(3)                    | $ \begin{array}{c} C_{0} - C_{9} - C_{10} - C_{11} \\ N_{2} - C_{10} - C_{11} - C_{12} \\ \end{array} $ | 4.7 (2)                   |
| $C_1 - C_2 - C_3 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0(3)                    | $N_2 - C_{10} - C_{11} - C_{12}$                                                                        | 0.9 (2)                   |
| 12 - 13 - 14 - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.0(3)                   |                                                                                                         | -1/9.63 (15)              |
| C3-C4-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.4 (3)                  | C10—C11—C12—C13                                                                                         | -1.0 (2)                  |

| C4—C5—C6—C7    | -174.13 (17) | C11—C12—C13—C14 | 179.90 (16)  |
|----------------|--------------|-----------------|--------------|
| C4—C5—C6—C1    | 3.8 (3)      | C11—C12—C13—C18 | 0.2 (2)      |
| N1—C1—C6—C7    | -3.1 (2)     | C12—C13—C14—C15 | 179.67 (15)  |
| C2-C1-C6-C7    | 173.76 (16)  | C18—C13—C14—C15 | -0.7 (2)     |
| N1-C1-C6-C5    | 178.82 (15)  | C13—C14—C15—C16 | 0.2 (3)      |
| C2-C1-C6-C5    | -4.3 (2)     | C14—C15—C16—C17 | 0.3 (3)      |
| C5—C6—C7—C8    | 177.99 (17)  | C15—C16—C17—C18 | -0.3 (3)     |
| C1—C6—C7—C8    | 0.0 (2)      | C10—N2—C18—C17  | 179.51 (14)  |
| C6—C7—C8—C9    | 2.2 (3)      | Cu1—N2—C18—C17  | -3.4 (2)     |
| C1—N1—C9—C8    | -1.5 (2)     | C10—N2—C18—C13  | -0.9 (2)     |
| Cu1—N1—C9—C8   | 170.55 (12)  | Cu1—N2—C18—C13  | 176.23 (11)  |
| C1—N1—C9—C10   | 177.85 (13)  | C16—C17—C18—N2  | 179.42 (15)  |
| Cu1—N1—C9—C10  | -10.14 (17)  | C16—C17—C18—C13 | -0.2 (2)     |
| C7—C8—C9—N1    | -1.6 (3)     | C12-C13-C18-N2  | 0.7 (2)      |
| C7—C8—C9—C10   | 179.14 (15)  | C14—C13—C18—N2  | -178.92 (15) |
| C18—N2—C10—C11 | 0.1 (2)      | C12—C13—C18—C17 | -179.65 (15) |
| Cu1—N2—C10—C11 | -177.45 (12) | C14—C13—C18—C17 | 0.7 (2)      |
|                |              |                 |              |

Symmetry code: (i) -x+1, -y, -z+1.