

Received 8 February 2023 Accepted 20 February 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: sulfone; 1,3-thiazin-4-one; screwboat pucker; *S*-oxidation; crystal structure.

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of the sulfones of 2,3-diphenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4-one and 2,3-diphenyl-2,3-dihydro-4*H*-pyrido[3,2-e][1,3]thiazin-4-one

Hemant P. Yennawar,^a Tapas K. Mal,^b Carlos N. Pacheco,^b Anthony F. Lagalante,^c Mark A. Olsen,^c Michael W. Russell,^d Grace C. Muench,^d Quentin J. Moyer^d and Lee J. Silverberg^d*

^aDepartment of Biochemistry and Molecular Biology Pennsylvania State University, University Park, PA 16802, USA, ^bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA, ^cMendel Science Center, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA, and ^dPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA. *Correspondence e-mail: ljs43@psu.edu

The title sulfones, 2,3-diphenyl-2,3-dihydro-4*H*-1,3-benzothiazine-1,1,4-trione, $C_{20}H_{15}NO_3S$, and 2,3-diphenyl-2,3-dihydro-4*H*-pyrido[3,2-*e*][1,3]thiazine-1,1,4-trione, $C_{19}H_{14}N_2O_3S$, crystallize in space group $P2_1/n$ with two molecules in each of the asymmetric units and have almost identical unit cells and extended structures. In both structures, the thiazine rings exhibit a screw-boat pucker. The intermolecular interactions observed are $C-H\cdots O$ -type hydrogen bonds and parallel partial π - π stacking between the fused aromatic rings (benzo- or pyrido-) of the core of the molecules within each asymmetric unit, and also connecting to molecules with translational periodicity in the *a*-axis direction in what can be described as columns (two per asymmetric unit) of stacked molecules with alternating chirality. The pendant phenyl groups of both molecules do not participate in aromatic ring interactions.

1. Chemical context

The 2,3-dihydro-4*H*-1,3-thiazin-4-ones are a group of sixmembered heterocycles with a wide range of biological activity (Ryabukhin *et al.*, 1996; Silverberg & Moyer, 2019). Surrey's research (Surrey *et al.*, 1958, Surrey, 1963*a*,*b*) resulted in the discovery of two drugs, the antianxiety and muscle relaxant chlormezanone, 2-(4-chlorophenyl)-3-methyl-2,3,5,6tetrahydro-4*H*-1,3-thiazin-4-one 1,1-dioxide (O'Neil, 2006; Tanaka & Hirayama, 2005) and the muscle relaxant dichlormezanone, 2-(3,4-dichlorophenyl)-3-methyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one 1,1-dioxide (Elks & Ganellin, 1990). These sulfones showed greater activity than the sulfides from which they were synthesized (Surrey *et al.*, 1958).

Compounds in this group with a fused benzene or pyridine ring are of particular interest because of their potential biological activity (Silverberg *et al.*, 2016, 2020, 2021; Malfara

Figure 1

The asymmetric unit of $\mathbf{1}$ with displacement ellipsoids drawn at 50% probability level.

et al., 2021). We have previously reported the preparation of the title sulfones 2,3-diphenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4-one 1,1-dioxide **1** and 2,3-diphenyl-2,3-dihydro-4*H*pyrido[3,2-*e*][1,3]thiazin-4-one 1,1-dioxide **2** (Silverberg, 2020). We have also described the X-ray crystal structures of the corresponding sulfides **3** and **4** and sulfoxides **5** and **6** (Yennawar, Bendinsky *et al.*, 2014; Yennawar, Singh *et al.*, 2014; Yennawar, Fox *et al.*, 2017; Yennawar, Noble *et al.*, 2017). Herein we report the crystal structures of **1** and **2**, along with a more complete characterization than previously reported (Silverberg, 2020).

2. Structural commentary

The two title compounds (Figs. 1 and 2) are structurally very similar with two molecules of each in the asymmetric units of

Figure 2

The asymmetric unit of $\mathbf{2}$ with displacement ellipsoids drawn at 50% probability level.

the respective crystals. Both of the crystal structures are in the monoclinic space group $P2_1/n$ with very similar unit-cell dimensions, and are fairly well superimposable (Fig. 3).

The structures of **1** and **2** both display a screw-boat (pucker) conformation for the four thiazine rings in the two asymmetric units [puckering amplitude Q ranging between 0.616 (4) and 0.6449 (16) Å, and the θ and φ values, after accounting for the absolute conformation transformations, are between 60.7 (4) and 63.02 (16)°, and 140.53 (18) and 142.9 (4)°, respectively]. The puckering observed is similar to that in the sulfoxides **5** and **6** (Yennawar, Fox *et al.* 2017; Yennawar, Noble *et al.* 2017), but is different from the envelope conformations seen in the sulfides **3** and **4** (Yennawar, Bendinsky *et al.*, 2014; Yennawar, Singh *et al.*, 2014). Each molecule contains one stereogenic center, which lies between the N atom and the SO₂ group of the heterocyclic ring: in the asymmetric unit of **1**, C8 has an *S* configuration and C28 an *R* configuration, thus generating a racemic pair. The situation is **2** is similar, with C8 *S* and C28 *R*.

In compound **1**, the dihedral angle between the substituent phenyl rings is 58.7 (2) and 57.4 (3)° in the two asymmetric molecules. Between the co-planar atoms of the fused benzene and the phenyl rings, the dihedral angle ranges between 83 and 100° . Compound **2** is again similar, showing a dihedral angle between the substituent phenyl rings of 53.04 (11) and 57.24 (13)°. Between the co-planar atoms of the pyridine ring and the phenyl rings of the respective structures, the dihedral angle ranges between 76 and 101° .

3. Supramolecular features

Both of the extended structures are consolidated by C– $H \cdots O$ hydrogen bonds (Tables 1 and 2). Assuming that the C– $H \cdots O$ angle should be greater than or equal to 130° as one of the qualifiers for such interactions, a very small variation in molecular positioning in the two structures results in

Overlay plot of **1** and **2** where atoms S1 and S2 of the two structures are matched. The atoms that differ in the two structures, namely C2 and C22 of **1** and N2 and N4 of **2**, are labeled.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for 1.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3\cdots O5^i$	0.95	2.65	3.353 (6)	131
C8−H8···O6 ⁱⁱ	1.00	2.29	3.070 (6)	134
$C16-H16\cdots O6^{ii}$	0.95	2.67	3.410 (6)	135
C20-H20···O6	0.95	2.61	3.422 (6)	144
C28-H28···O3	1.00	2.31	3.096 (5)	135
$C36-H36\cdots O3^{iii}$	0.95	2.62	3.412 (6)	141
C40−H40···O3	0.95	2.73	3.473 (7)	136

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.

two additional interactions for 2 as compared to that in 1. However, in both structures (starting from the interactions within the asymmetric units followed by translation periodicity along the *a* direction) intermolecular π - π stacking interactions between the fused aromatic rings, namely the benzene ring of the benzothiazine unit in 1 and the pyridine ring of the pyridothiazine unit in 2, can be seen (Figs. 4 and 5). The centroid-centroid separations in 1 are 3.522 (3) and 3.521 (3) Å with corresponding values of 3.5715 (15) and 3.5991 (15) Å in 2.

4. Database survey

Searches were undertaken using the American Chemical Society's Chemical Abstract Service (CAS) Scifinder platform. Only two crystal structures of other sulfones of 2,3-dihydro-4*H*-1,3-benzothiazin-4-ones have been reported (Elghamry *et al.* 2007). No other sulfone of a 2,3-dihydro-4*H*-pyrido[3,2-*e*][1,3]thiazin-4-one has been synthesized.

5. Synthesis and crystallization

TLC plates (silica gel GF, 250-micron, 10×20 cm, cat. No. 21521) were purchased from Analtech. TLCs were visualized under short-wave UV, and then with I₂, and then by spraying with ceric ammonium nitrate/sulfuric acid and heating.

Figure 4

Crystal packing diagram for **1** showing intermolecular pairs of $C-H\cdots O$ hydrogen bonds. Columns (four per unit cell) of molecules with alternating chirality, due to the translational periodicity down the *a* direction can be envisioned.

Table 2				
Hydrogen-bond geometry	(Å,	°)	for 2	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots O5^{i}$	0.93	2.56	3.234 (3)	130
C5−H5···O4 ⁱⁱ	0.93	2.69	3.388 (2)	132
C8−H8···O6 ⁱⁱ	0.98	2.31	3.089 (2)	136
$C16-H16\cdots O6^{ii}$	0.93	2.71	3.466 (3)	139
C20-H20···O6	0.93	2.70	3.496 (3)	145
C25-H25···O1	0.93	2.75	3.463 (3)	135
C28-H28···O3	0.98	2.37	3.126 (2)	134
C36−H36···O3 ⁱⁱⁱ	0.93	2.64	3.381 (3)	137
C40−H40···O3	0.93	2.68	3.439 (3)	140

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.

Infrared spectra were run on a Thermo-Fisher NICOLET iS50 FT-IR using a diamond-ATR attachment for direct powder analysis (Penn State Schuylkill). ¹H and ¹³C NMR experiments (Penn State's shared NMR facility, University Park) were carried out on a Bruker Advance-III-HD 500.20-MHz (¹H frequency) instrument using a 5 mm Prodigy (liquid nitrogen cooled) BBO BB-1H/19F/D Z-GRD cryoprobe. Samples were dissolved in CDCl3 and analyzed at room temperature. Typical conditions for ¹H acquisition were 2 s relaxation delay, acquisition time of 4.089 s, spectral width of 8 kHz, 16 scans. Spectra were zero-filled to 128k points, and multiplied by exponential multiplication (EM with LB = 0.3 Hz) prior to FT. For the ¹³C experiments, data were acquired with power-gated ¹H decoupling using a 2 s relaxation delay, with acquisition time of 1.1 s, spectral width of 29.8 kHz, and 256 scans. Spectra were zero-filled once, and multiplied by EM with LB = 2 Hz prior to FT. The exact masses of the synthesized compounds were determined using LC-MS (Villanova University). Exact mass was measured on a SCIEX Exion LC with a SCIEX 5600+ TripleTOF MS. Separation was achieved on an Agilent Infinity LabPoroshell 120 EC-C18 column maintained at 40°C with a gradient of 90/ 10 (water/acetonitrile with 0.1% formic acid) ramped from 5/ 95 over 6 min at a flowrate of 0.5 ml min⁻¹. The TOF–MS was scanned over 100-500 Da and calibrated with the SCIEX APCI positive calibrant solution prior to accurate mass analysis. Compound exact mass was measured in positive ESI

Figure 5 Crystal packing diagram for **2** showing strong similarity with that of **1**.

research communications

Table 3Experimental details.

	1	2
Crystal data		
Chemical formula	$C_{20}H_{15}NO_{3}S$	$C_{19}H_{14}N_{2}O_{3}S$
M_r	349.39	350.38
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$
Temperature (K)	173	298
a, b, c (Å)	6.8530 (6), 25.7472 (15), 19.0240 (12)	6.8584 (19), 25.487 (7), 19.008 (5)
β (°)	97.394 (7)	94.669 (7)
$V(Å^3)$	3328.8 (4)	3311.6 (16)
Z	8	8
Radiation type	Cu Ka	Μο Κα
$\mu (\text{mm}^{-1})$	1.89	0.22
Crystal size (mm)	$0.2 \times 0.06 \times 0.04$	$0.22 \times 0.04 \times 0.02$
Data collection		
Diffractometer	ROD, Synergy Custom system, HyPix-Arc 150	Bruker CCD area detector
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2022)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.649, 1.000	0.237, 0.9
No. of measured, independent and	21581, 6557, 4087	29524, 7909, 5509
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.074	0.040
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.628	0.668
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.092, 0.300, 1.10	0.051, 0.138, 1.04
No. of reflections	6557	7909
No. of parameters	452	451
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.66, -1.06	0.31, -0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SMART (Bruker, 2001), SAINT (Bruker, 2016), OLEX2.solve (Bourhis et al., 2015), SHELXS (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), OLEX2 and (Dolomanov et al., 2009).

mode with a DP = 100 V, CE = 10, GAS1 = GAS2 = 60 psi, CUR = 30 psi, ISV = 5500 V, and source temperature of 450° C. Melting points were performed on a Vernier Melt Station (Penn State Schuylkill).

General Oxidation Procedure (Surrey *et al.*, 1958; Silverberg, 2020; Cannon *et al.*, 2015): The heterocycle (0.267 mmol) was dissolved in glacial acetic acid (1.2 ml). An aqueous solution of KMnO₄ (0.535 mmol in 1.45 ml water) was added dropwise at room temperature with vigorous stirring. The reaction was followed by TLC. Solid sodium bisulfite (NaHSO₃/Na₂S₂O₅) was added until the solution remained colorless; 1.45 ml of water was added and stirred for 10 min. The mixture was extracted with CH₂Cl₂ (3 × 5 ml). The organics were combined and washed once with sat. NaCl. The solution was dried over Na₂SO₄ and filtered. The product was purified by chromatography in a silica gel micro-column with mixtures of ethyl acetate and hexanes. Crystals for X-ray were grown as detailed below.

2,3-Diphenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4-one 1,1dioxide, **1**: Crystals for X-ray analysis were grown by slow evaporation from 2-propanol solution. 0.050 g (54%). m.p. 436–438 K. ¹H NMR (CDCl₃): δ (ppm): 8.29 (*d*, 1H, *J* = 7.7 Hz), 7.70 (*m*, 2H), 7.60 (*t*, *J* = 7.6 Hz, 1H), 7.32 (*m*, 2H), 7.25 (*m*, 8H), 5.79 (*m*, 1H, C2-H). ¹³C NMR (CDCl₃) δ (ppm) 161.1 (C=O), 141.9, 135.0, 134.1, 133.4, 130.6, 130.0, 129.8, 129.1, 128.9, 128.6, 128.2, 126.6, 124.1, 82.6 (C2). HRMS (*m*/*z*): [*M* + H]+ of 350.0838 is consistent with calculated [*M* + H]+ of 350.0845. IR (neat, cm⁻¹): 1655 (C=O), 1313 (SO₂). *R*_f (50% EtOAc/hexanes) = 0.46. 2,3-Diphenyl-2,3-dihydro-4*H*-pyrido[3,2-*e*][1,3]thiazin-4one 1,1-dioxide, **2**: Crystals for X-ray were grown by slow evaporation from ethanol solution. 0.079 g (77%). m.p.: 483– 484 K (decomposition). ¹H NMR (CDCl₃): δ (ppm): 8.77 (*d*, *J* = 5.1 Hz, 1H), 8.62 (*d*, *J* = 8.0 Hz, 1H), 7.67 (*dd*, *J* = 8.1, 4.7 Hz, 1H), 7.31 (*m*, 9H), 5.88 (*s*, 1H, C2-H). ¹³C NMR (CDCl₃) δ (ppm): 160.5 (C=O), 153.9, 152.2, 141.3, 139.0, 130.2, 129.8, 129.1, 128.7, 128.4, 128.3, 126.4, 82.4 (C2). HRMS (*m*/*z*): [*M* + H]+ of 351.0790 is consistent with calculated [*M* + H]+ of 351.0797. IR (neat, cm⁻¹): 1655 (C=O), 1325 (SO₂). *R*_f (50% EtOAc/hexanes) = 0.37.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms were placed in their geometrically calculated positions and refined using the riding model with parent-atom—H lengths of 0.93–0.95 Å (aromatic CH) and 0.98–1.00 Å (methine CH). Isotropic displacement parameters for these atoms were set to 1.2 times U_{eq} of the parent atom.

Funding information

Research reported here was conducted on instrumentation funded by National Science Foundation: CHEM-0131112 for the Bruker AXS diffractometer, and SIG S10 grants of the National Institutes of Health under award numbers 1S10OD028589–01 and 1S10RR023439–01, for the Rigaku diffraction system to Dr Neela Yennawar.

References

- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). *Int. J. Chem.* **7**, 73–84.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Elghamry, I., Döpp, D. & Henkel, G. J. (2007). J. Heterocycl. Chem. 44, 849–852.
- Elks, J. & Ganellin, C. R. (1990). Editors. *Dictionary of Drugs*, p. 382. Cambridge, UK: Chapman and Hall.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Malfara, M. F., Silverberg, L. J., DiMaio, J., Lagalante, A. F., Olsen, M. A., Madison, E. & Povelones, M. L. (2021). *Mol. Biochem. Parasitol.* 245, 111396.
- O'Neil, M. J. (2006). Editor. *The Merck Index*, 14th ed., p. 349. Whitehouse Station, NJ: Merck & Co. Inc.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131–190.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Silverberg, L. J. (2020). WO2020231873 A1.

- Silverberg, L. J., Mal, T. K., Pacheco, C. N., Povelones, M. L., Malfara, M. F., Lagalante, A. F., Olsen, M. A., Yennawar, H. P., Sobhi, H. F., Baney, K. R., Bozeman, R. L., Eroh, C. S., Fleming, M. J., Garcia, T. L., Gregory, C. L., Hahn, J. E., Hatter, A. M., Johns, L., Klinger, T. L., Li, J., Menig, A. J., Muench, G. C., Ramirez, M. E., Reilly, J., Sacco, N., Sheidy, A., Stoner, M. M., Thompson, E. N. & Yazdani, S. (2021). *Molecules*, 26, 6099.
- Silverberg, L. J. & Moyer, Q. J. (2019). Arkivoc, (i), 139-227.
- Silverberg, L. J., Pacheco, C., Sahu, D., Scholl, P., Sobhi, H. F., Bachert, J. T., Bandholz, K., Bendinsky, R. V., Bradley, H. G., Colburn, B. K., Coyle, D. J., Dahl, J. R., Felty, M., Fox, R. F., Gonzalez, K. M., Islam, J. M., Koperna, S. E., Moyer, Q. J., Noble, D. J., Ramirez, M. E. & Yang, Z. (2020). J. Heterocycl. Chem. 57, 1797–1805.
- Silverberg, L. J., Tierney, J., Pacheco, C., Lagalante, A., Bachert, J. T., Bayliff, J. A., Bendinsky, R. V., Cali, A. S., Chen, L., Cooper, A. D., Minehan, M. J., Mroz, C. R., Noble, D. J., Weisbeck, A. K., Xie, Y. & Yang, Z. (2016). *Arkivoc*, (vi), 122–143.
- Surrey, A. R. (1963a). US Patent 3082209.
- Surrey, A. R. (1963b). US Patent 3093639.
- Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.
- Tanaka, R. & Hirayama, N. (2005). Anal. Sci. X, 21, X57-X58.
- Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, 465–465.
- Yennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73, 1189–1191.
- Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). *IUCrData*, 2, x171112.
- Yennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, 638–638.

Acta Cryst. (2023). E79, 221-225 [https://doi.org/10.1107/S2056989023001524]

Crystal structures of the sulfones of 2,3-diphenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4-one and 2,3-diphenyl-2,3-dihydro-4*H*-pyrido[3,2-e][1,3]thiazin-4-one

Hemant P. Yennawar, Tapas K. Mal, Carlos N. Pacheco, Anthony F. Lagalante, Mark A. Olsen, Michael W. Russell, Grace C. Muench, Quentin J. Moyer and Lee J. Silverberg

Computing details

Data collection: *CrysAlis PRO* 1.171.42.63a (Rigaku OD, 2022) for (1); *SMART* V5.634 (Bruker, 2001) for (2). Cell refinement: *CrysAlis PRO* 1.171.42.63a (Rigaku OD, 2022) for (1); *SAINT* V6.36A (Bruker, 2001) for (2). Data reduction: *CrysAlis PRO* 1.171.42.63a (Rigaku OD, 2022) for (1); *SAINT* V6.36A (Bruker, 2016) for (2). Program(s) used to solve structure: *olex2.solve* 1.3-ac4 (Bourhis *et al.*, 2015) for (1); *SHELXS* (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: Olex2 1.3-ac4 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov *et al.*, 2009).

2,3-Diphenyl-2,3-dihydro-4H-1,3-benzothiazine-1,1,4-trione (1)

Crystal data

C₂₀H₁₅NO₃S $M_r = 349.39$ Monoclinic, P2₁/n a = 6.8530 (6) Å b = 25.7472 (15) Å c = 19.0240 (12) Å $\beta = 97.394$ (7)° V = 3328.8 (4) Å³ Z = 8

Data collection

ROD, Synergy Custom system, HyPix-Arc 150 diffractometer
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.092$ $wR(F^2) = 0.300$ F(000) = 1456 $D_x = 1.394 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 6963 reflections $\theta = 2.9-70.6^{\circ}$ $\mu = 1.89 \text{ mm}^{-1}$ T = 173 KBlock, clear colourless $0.2 \times 0.06 \times 0.04 \text{ mm}$

 $T_{\min} = 0.649, T_{\max} = 1.000$ 21581 measured reflections 6557 independent reflections 4087 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.074$ $\theta_{\text{max}} = 75.7^{\circ}, \theta_{\text{min}} = 2.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -31 \rightarrow 31$ $l = -23 \rightarrow 18$

S = 1.106557 reflections 452 parameters 0 restraints Primary atom site location: iterative Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1722P)^2 + 1.2363P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

$$\begin{split} &\Delta\rho_{max}=0.66\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-1.06\ e\ \text{\AA}^{-3}\\ &\text{Extinction correction: SHELXL2018/3}\\ &\text{(Sheldrick 2015),}\\ &\text{Fc}^*=&kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}\\ &\text{Extinction coefficient: } 0.0038\ (5) \end{split}$$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotro	pic or equiva	lent isotropic displ	'acement parameters (Å	2)
--	---------------	----------------------	------------------------	----

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.62556 (19)	0.74906 (4)	0.62956 (6)	0.0454 (4)	
01	0.4248 (5)	0.76270 (12)	0.63479 (18)	0.0532 (9)	
O2	0.7399 (6)	0.78342 (13)	0.59272 (17)	0.0608 (10)	
03	0.5497 (5)	0.61116 (11)	0.74902 (16)	0.0456 (8)	
N1	0.6484 (5)	0.69574 (13)	0.74977 (18)	0.0390 (8)	
C1	0.6386 (7)	0.68627 (17)	0.5944 (2)	0.0407 (10)	
C2	0.6537 (7)	0.6796 (2)	0.5231 (3)	0.0501 (12)	
H2	0.654648	0.708677	0.492500	0.060*	
C3	0.6673 (8)	0.6295 (2)	0.4972 (3)	0.0544 (13)	
Н3	0.680789	0.624314	0.448640	0.065*	
C4	0.6615 (7)	0.58719 (19)	0.5413 (3)	0.0517 (12)	
H4	0.668259	0.553102	0.522656	0.062*	
C5	0.6457 (7)	0.59407 (18)	0.6128 (3)	0.0489 (12)	
Н5	0.643583	0.564708	0.642941	0.059*	
C6	0.6330 (7)	0.64378 (17)	0.6404 (2)	0.0419 (10)	
C7	0.6090 (7)	0.64872 (16)	0.7171 (2)	0.0424 (10)	
C8	0.7557 (7)	0.73578 (16)	0.7164 (2)	0.0428 (10)	
H8	0.887282	0.721153	0.709704	0.051*	
C9	0.7905 (7)	0.78609 (15)	0.7569 (2)	0.0399 (10)	
C10	0.6351 (7)	0.81491 (17)	0.7762 (2)	0.0464 (11)	
H10	0.504192	0.802207	0.766774	0.056*	
C11	0.6728 (9)	0.86284 (18)	0.8097 (2)	0.0537 (13)	
H11	0.566833	0.883072	0.822377	0.064*	
C12	0.8631 (8)	0.88091 (18)	0.8244 (3)	0.0515 (12)	
H12	0.888316	0.913247	0.847853	0.062*	
C13	1.0162 (8)	0.85202 (19)	0.8050 (3)	0.0533 (13)	
H13	1.147062	0.864694	0.814852	0.064*	
C14	0.9815 (8)	0.80463 (18)	0.7713 (2)	0.0490 (12)	
H14	1.088108	0.784884	0.758093	0.059*	
C15	0.6318 (7)	0.69896 (16)	0.8253 (2)	0.0429 (11)	
C16	0.7980 (8)	0.69680 (18)	0.8737 (2)	0.0516 (12)	
H16	0.923333	0.691947	0.858343	0.062*	

C17	0.7812 (10)	0.7018 (2)	0.9453 (3)	0.0638 (16)
H17	0.895753	0.700715	0.979190	0.077*
C18	0.6001 (11)	0.7083 (2)	0.9673 (3)	0.0691 (18)
H18	0.589298	0.712069	1.016297	0.083*
C19	0.4346 (10)	0.7092 (2)	0.9185 (3)	0.0669 (16)
H19	0.309207	0.713126	0.934068	0.080*
C20	0.4482(8)	0 70451 (19)	0.8461 (3)	0.0537(12)
H20	0 333554	0 705118	0.812218	0.064*
S2	0.13252 (18)	0.49892 (4)	0.65164 (6)	0.001
04	-0.0701(5)	0.19892(1) 0.48580(12)	0.65590(18)	0.0139(1)
05	0.0701(5)	0.46120(12)	0.03370(13) 0.62200(17)	0.0540(9)
05	0.2510(0)	0.40129(12)	0.02200(17) 0.74688(16)	0.0303(10)
00 N2	0.0340(3)	0.04719(11) 0.56260(12)	0.74000(10) 0.76149(19)	0.0407(8)
N2 C21	0.1453(0) 0.1452(7)	0.30200(13)	0.70148(18)	0.0408(9)
C21	0.1453(7)	0.55851(17)	0.6066(2)	0.0413(10)
C22	0.15/9(/)	0.55769(18)	0.5345 (2)	0.0481 (11)
H22	0.161209	0.525749	0.509/11	0.058*
C23	0.1655 (8)	0.6047 (2)	0.4994 (2)	0.0506 (12)
H23	0.174775	0.605013	0.449995	0.061*
C24	0.1596 (7)	0.65089 (18)	0.5357 (3)	0.0506 (12)
H24	0.164357	0.682885	0.511127	0.061*
C25	0.1468 (7)	0.65103 (18)	0.6081 (2)	0.0461 (11)
H25	0.145517	0.683064	0.632868	0.055*
C26	0.1357 (7)	0.60427 (17)	0.6446 (2)	0.0403 (10)
C27	0.1111 (7)	0.60690 (16)	0.7219 (2)	0.0420 (10)
C28	0.2553 (7)	0.51938 (16)	0.7368 (2)	0.0419 (10)
H28	0.387925	0.532827	0.729278	0.050*
C29	0.2872 (8)	0.47302 (16)	0.7859 (2)	0.0454 (11)
C30	0.1322 (9)	0.44441 (18)	0.8061 (2)	0.0556 (14)
H30	0.000299	0.454607	0.790836	0.067*
C31	0.1698 (11)	0.4010(2)	0.8486 (3)	0.0698 (17)
H31	0.063439	0.381662	0.862724	0.084*
C32	0.3619(12)	0.3856 (2)	0.8706 (3)	0.078(2)
H32	0.386987	0.355338	0.898849	0.093*
C33	0 5153 (11)	0 4141 (2)	0.8514 (3)	0.0766 (19)
H33	0.646738	0.404008	0.867541	0.092*
C34	0 4806 (9)	0 4575 (2)	0.8087(3)	0.0590(14)
H34	0 587839	0.476665	0 794842	0.071*
C35	0.1235(7)	0.56603 (16)	0.8364(2)	0.071
C36	-0.0597(8)	0.5610(2)	0.0304(2) 0.8570(3)	0.0454(11) 0.0567(13)
U36	-0.172083	0.556851	0.822632	0.0507 (15)
П30 С27	-0.1/2003	0.550851	0.022032	0.008°
C37	-0.0791(10)	0.3020(2)	0.9288 (3)	0.0099 (10)
H3/	-0.2051/4	0.558450	0.944078	0.084*
C38	0.0863 (11)	0.5680 (3)	0.9778 (3)	0.0791 (19)
H38	0.0/3055	0.568055	1.026936	0.095*
039	0.2698 (11)	0.5741 (3)	0.9570 (3)	0.0789 (19)
H39	0.381975	0.578891	0.991238	0.095*
C40	0.2890 (9)	0.5731 (2)	0.8853 (2)	0.0570 (13)
H40	0.414579	0.577332	0.869928	0.068*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0655 (9)	0.0296 (6)	0.0391 (6)	-0.0001 (5)	-0.0002 (5)	0.0001 (4)
01	0.061 (2)	0.0395 (17)	0.057 (2)	0.0105 (16)	-0.0017 (16)	-0.0030 (15)
O2	0.097 (3)	0.0413 (19)	0.0443 (18)	-0.0202 (18)	0.0095 (18)	0.0079 (15)
O3	0.058 (2)	0.0301 (15)	0.0467 (17)	-0.0032 (14)	0.0004 (14)	-0.0002 (13)
N1	0.053 (2)	0.0259 (17)	0.0377 (19)	-0.0017 (15)	0.0038 (16)	-0.0035 (14)
C1	0.050 (3)	0.033 (2)	0.039 (2)	0.0015 (19)	0.0021 (18)	-0.0064 (18)
C2	0.057 (3)	0.048 (3)	0.042 (3)	-0.005 (2)	-0.003 (2)	0.000 (2)
C3	0.059 (3)	0.057 (3)	0.046 (3)	0.000 (3)	0.001 (2)	-0.013 (2)
C4	0.060 (3)	0.044 (3)	0.050 (3)	0.000 (2)	0.002 (2)	-0.021 (2)
C5	0.056 (3)	0.035 (2)	0.053 (3)	0.003 (2)	-0.004 (2)	-0.008 (2)
C6	0.055 (3)	0.032 (2)	0.038 (2)	0.0004 (19)	0.0021 (19)	-0.0066 (18)
C7	0.054 (3)	0.024 (2)	0.048 (3)	0.0027 (19)	0.002 (2)	-0.0033 (18)
C8	0.060 (3)	0.025 (2)	0.043 (2)	-0.0033 (19)	0.007 (2)	-0.0053 (18)
C9	0.056 (3)	0.0244 (19)	0.039 (2)	0.0002 (18)	0.0016 (19)	-0.0020 (17)
C10	0.059 (3)	0.032 (2)	0.046 (3)	0.001 (2)	-0.003 (2)	-0.003 (2)
C11	0.080 (4)	0.035 (2)	0.044 (3)	0.005 (2)	0.000 (2)	-0.001 (2)
C12	0.075 (4)	0.030 (2)	0.048 (3)	-0.010 (2)	0.001 (2)	-0.005 (2)
C13	0.061 (3)	0.042 (3)	0.055 (3)	-0.013 (2)	0.001 (2)	-0.004 (2)
C14	0.061 (3)	0.038 (2)	0.047 (3)	-0.007 (2)	0.002 (2)	-0.001 (2)
C15	0.062 (3)	0.027 (2)	0.039 (2)	-0.003 (2)	0.006 (2)	-0.0033 (18)
C16	0.069 (3)	0.043 (3)	0.039 (2)	-0.005 (2)	-0.007 (2)	0.005 (2)
C17	0.102 (5)	0.047 (3)	0.038 (3)	-0.004 (3)	-0.006 (3)	0.001 (2)
C18	0.128 (6)	0.038 (3)	0.043 (3)	-0.012 (3)	0.020 (3)	-0.003 (2)
C19	0.097 (5)	0.047 (3)	0.063 (3)	-0.009 (3)	0.033 (3)	-0.014 (3)
C20	0.067 (3)	0.042 (3)	0.055 (3)	0.000 (2)	0.017 (2)	-0.009 (2)
S2	0.0639 (8)	0.0257 (5)	0.0396 (6)	0.0007 (5)	-0.0026 (5)	-0.0015 (4)
O4	0.063 (2)	0.0390 (17)	0.057 (2)	-0.0106 (16)	-0.0041 (16)	0.0020 (15)
05	0.087 (3)	0.0370 (17)	0.0442 (18)	0.0210 (17)	0.0040 (17)	-0.0065 (14)
06	0.060 (2)	0.0281 (15)	0.0503 (18)	0.0065 (14)	0.0026 (15)	-0.0040 (14)
N2	0.056 (2)	0.0279 (17)	0.0372 (19)	-0.0005 (16)	0.0035 (16)	0.0005 (15)
C21	0.051 (3)	0.031 (2)	0.039 (2)	0.0002 (19)	-0.0025 (19)	0.0034 (18)
C22	0.059 (3)	0.041 (2)	0.043 (2)	0.006 (2)	0.001 (2)	-0.006(2)
C23	0.061 (3)	0.052 (3)	0.038 (2)	0.005 (2)	0.004 (2)	0.008 (2)
C24	0.058 (3)	0.037 (2)	0.056 (3)	0.001 (2)	0.004 (2)	0.016 (2)
C25	0.053 (3)	0.034 (2)	0.050 (3)	0.000(2)	0.000 (2)	0.004 (2)
C26	0.050 (3)	0.032 (2)	0.038 (2)	0.0057 (18)	-0.0014 (18)	0.0016 (18)
C27	0.052 (3)	0.029 (2)	0.043 (2)	-0.0015 (19)	-0.0007 (19)	0.0006 (19)
C28	0.060 (3)	0.030 (2)	0.035 (2)	0.001 (2)	0.0034 (19)	-0.0011 (18)
C29	0.071 (3)	0.028 (2)	0.035 (2)	0.003 (2)	-0.002(2)	-0.0009 (18)
C30	0.091 (4)	0.035 (2)	0.041 (3)	-0.004 (2)	0.007 (2)	0.002 (2)
C31	0.125 (6)	0.038 (3)	0.046 (3)	-0.002(3)	0.012 (3)	0.003 (2)
C32	0.142 (7)	0.042 (3)	0.045 (3)	0.018 (4)	-0.004 (4)	0.009 (2)
C33	0.109 (5)	0.057 (3)	0.057 (3)	0.023 (4)	-0.018 (3)	0.004 (3)
C34	0.079 (4)	0.043 (3)	0.049 (3)	0.011 (3)	-0.013 (3)	0.000 (2)
C35	0.062 (3)	0.030 (2)	0.039 (2)	0.003 (2)	0.008 (2)	0.0006 (18)

C36	0.064 (3)	0.053 (3)	0.054 (3)	0.003 (3)	0.011 (2)	0.009 (2)
C37	0.087 (5)	0.069 (4)	0.057 (3)	0.013 (3)	0.022 (3)	0.008 (3)
C38	0.114 (6)	0.076 (4)	0.050 (3)	0.006 (4)	0.021 (4)	-0.005 (3)
C39	0.106 (5)	0.088 (5)	0.040 (3)	-0.006 (4)	-0.003 (3)	-0.007 (3)
C40	0.074 (4)	0.055 (3)	0.039 (3)	-0.005 (3)	-0.004 (2)	-0.005 (2)

Geometric parameters (Å, °)

S1—01	1.436 (4)	S2—O4	1.442 (4)
S1—O2	1.425 (3)	S2—O5	1.429 (3)
S1—C1	1.756 (4)	S2—C21	1.760 (4)
S1—C8	1.806 (5)	S2C28	1.805 (4)
O3—C7	1.239 (5)	O6—C27	1.224 (5)
N1C7	1.372 (5)	N2—C27	1.370 (5)
N1—C8	1.459 (5)	N2—C28	1.455 (5)
N1-C15	1.458 (5)	N2—C35	1.454 (5)
C1—C2	1.383 (6)	C21—C22	1.385 (6)
C1—C6	1.405 (6)	C21—C26	1.393 (6)
С2—Н2	0.9500	C22—H22	0.9500
C2—C3	1.387 (7)	C22—C23	1.386 (6)
С3—Н3	0.9500	C23—H23	0.9500
C3—C4	1.378 (7)	C23—C24	1.380 (7)
C4—H4	0.9500	C24—H24	0.9500
C4—C5	1.390 (6)	C24—C25	1.392 (6)
С5—Н5	0.9500	C25—H25	0.9500
C5—C6	1.390 (6)	C25—C26	1.397 (6)
C6—C7	1.494 (6)	C26—C27	1.502 (6)
C8—H8	1.0000	C28—H28	1.0000
С8—С9	1.510 (5)	C28—C29	1.514 (6)
C9—C10	1.386 (6)	C29—C30	1.387 (7)
C9—C14	1.387 (7)	C29—C34	1.399 (7)
C10—H10	0.9500	C30—H30	0.9500
C10-C11	1.398 (6)	C30—C31	1.383 (7)
C11—H11	0.9500	C31—H31	0.9500
C11—C12	1.379 (7)	C31—C32	1.387 (9)
C12—H12	0.9500	C32—H32	0.9500
C12—C13	1.375 (7)	C32—C33	1.370 (9)
С13—Н13	0.9500	С33—Н33	0.9500
C13—C14	1.385 (6)	C33—C34	1.383 (7)
C14—H14	0.9500	C34—H34	0.9500
C15—C16	1.370 (6)	C35—C36	1.369 (7)
C15—C20	1.375 (7)	C35—C40	1.383 (6)
C16—H16	0.9500	C36—H36	0.9500
C16—C17	1.388 (7)	C36—C37	1.391 (7)
C17—H17	0.9500	С37—Н37	0.9500
C17—C18	1.370 (9)	C37—C38	1.381 (9)
C18—H18	0.9500	C38—H38	0.9500
C18—C19	1.370 (9)	C38—C39	1.375 (9)

С19—Н19	0.9500	С39—Н39	0.9500
C19—C20	1.397 (7)	C39—C40	1.387 (7)
C20—H20	0.9500	C40—H40	0.9500
O1—S1—C1	110.4 (2)	O4—S2—C21	109.8 (2)
O1—S1—C8	110.4 (2)	O4—S2—C28	111.0 (2)
O2—S1—O1	118.4 (2)	O5—S2—O4	117.8 (2)
O2—S1—C1	109.0 (2)	O5—S2—C21	109.3 (2)
O2—S1—C8	109.2 (2)	O5—S2—C28	109.2 (2)
C1—S1—C8	97.5 (2)	C21—S2—C28	97.9 (2)
C7—N1—C8	120.4 (4)	C27—N2—C28	121.2 (4)
C7—N1—C15	117.5 (4)	C27 - N2 - C35	117.1 (4)
C15—N1—C8	119.8 (3)	C_{35} N2-C28	119.0 (3)
C_{2} C_{1} S_{1}	120.2 (4)	C_{22} C_{21} S_{2}	119.0 (3)
C_{2} — C_{1} — C_{6}	121.6 (4)	C_{22} C_{21} C_{26}	122.5 (4)
C6-C1-S1	118.2 (3)	C_{26} C_{21} S_{2}	118.5 (3)
C1-C2-H2	120.6	$C_{21} - C_{22} - H_{22}$	120.7
C1 - C2 - C3	118 7 (5)	$C_{21} = C_{22} = C_{23}$	118.6(4)
C_{3} C_{2} H_{2}	120.6	C23—C22—H22	120.7
C2—C3—H3	119.7	$C_{22} = C_{23} = H_{23}$	119.8
C4-C3-C2	120.6 (4)	C_{24} C_{23} C_{22} C_{23} C_{22}	1204(4)
C4—C3—H3	119.7	C_{24} C_{23} H_{23}	119.8
C3 - C4 - H4	119.7	C_{23} C_{24} H_{24}	119.0
$C_3 - C_4 - C_5$	120 5 (4)	C_{23} C_{24} C_{25}	120.5(4)
C5-C4-H4	119.8	$C_{25} = C_{24} = H_{24}$	119.7
C4-C5-H5	119.0	$C_{25} = C_{25} = H_{25}$	119.7
C4-C5-C6	120.2 (5)	$C_{24} = C_{25} = C_{26}$	120.3 (4)
С6—С5—Н5	119.9	$C_{26} = C_{25} = H_{25}$	119.9
$C_{1} - C_{6} - C_{7}$	123 9 (4)	$C_{20} = C_{20} = C_{20}$	117.7(4)
C_{5} C_{6} C_{1}	123.9(4) 1183(4)	$C_{21} = C_{26} = C_{27}$	117.7(4) 1244(4)
C_{5} C_{6} C_{7}	110.5(1) 117.8(4)	$C_{25} = C_{26} = C_{27}$	127.1(1) 1179(4)
03-07-N1	121.6(4)	06-C27-N2	1221(4)
03 - 07 - 06	1198(4)	06-C27-C26	122.1(4) 1199(4)
N1 - C7 - C6	119.6 (4)	N_{2} C_{27} C_{26}	117.9(4)
S1—C8—H8	107.6	S2-C28-H28	107.4
N1-C8-S1	108.3(3)	N2-C28-S2	107.1 108.2(3)
N1-C8-H8	107.6	N2-C28-H28	107.4
N1 - C8 - C9	116.0 (4)	N_{2} C_{28} C_{29}	107.1 1163(4)
C9-C8-S1	100.0(4) 109.3(3)	$C_{29} = C_{28} = S_{2}^{29}$	10.3(4) 109.7(3)
C9-C8-H8	107.6	$C_{29} = C_{28} = H_{28}$	107.4
C10-C9-C8	121 2 (4)	C_{30} C_{29} C_{28}	127.3(5)
C10 - C9 - C14	121.2(4) 1201(4)	C_{30} C_{29} C_{20} C_{34}	122.3(3) 1194(5)
$C_{14} - C_{9} - C_{8}$	120.1(4) 1186(4)	C_{34} C_{29} C_{34}	119.4(3) 118.2(5)
C9-C10-H10	120.3	C29—C30—H30	120.0
C9-C10-C11	119 4 (5)	$C_{31} - C_{30} - C_{29}$	1199(6)
C11—C10—H10	120.3	C31—C30—H30	120.0
C10-C11-H11	119.8	C30—C31—H31	119.8
C_{12} C_{11} C_{10}	120 3 (5)	C_{30} C_{31} C_{32}	1204(6)
		000 001 002	

C12—C11—H11	119.8	С32—С31—Н31	119.8
C11—C12—H12	120.1	С31—С32—Н32	120.1
C13—C12—C11	119.8 (5)	C33—C32—C31	119.8 (5)
C13—C12—H12	120.1	С33—С32—Н32	120.1
C12—C13—H13	119.7	С32—С33—Н33	119.7
C12—C13—C14	120.6 (5)	C32—C33—C34	120.6 (6)
C14—C13—H13	119.7	С34—С33—Н33	119.7
C9—C14—H14	120.1	С29—С34—Н34	120.1
C13—C14—C9	119.7 (5)	C33—C34—C29	119.8 (6)
C13—C14—H14	120.1	С33—С34—Н34	120.1
C16—C15—N1	119.7 (4)	C36—C35—N2	119.2 (4)
C16—C15—C20	121.6 (5)	C36—C35—C40	121.5 (5)
C20-C15-N1	118.7 (4)	C40-C35-N2	119.3 (4)
C15—C16—H16	120.4	С35—С36—Н36	120.4
C15—C16—C17	119.3 (5)	C35—C36—C37	119.2 (5)
C17—C16—H16	120.4	С37—С36—Н36	120.4
С16—С17—Н17	119.9	С36—С37—Н37	120.3
C18 - C17 - C16	120.3 (5)	C_{38} — C_{37} — C_{36}	119.4 (6)
C18—C17—H17	119.9	С38—С37—Н37	120.3
C17—C18—H18	120.0	C37—C38—H38	119.3
C17—C18—C19	119.9 (5)	C39—C38—C37	121.3 (6)
C19—C18—H18	120.0	С39—С38—Н38	119.3
С18—С19—Н19	119.6	С38—С39—Н39	120.4
C18—C19—C20	120.8 (6)	C38—C39—C40	119.2 (6)
С20—С19—Н19	119.6	С40—С39—Н39	120.4
C15—C20—C19	118.2 (5)	C35—C40—C39	119.4 (6)
С15—С20—Н20	120.9	С35—С40—Н40	120.3
C19—C20—H20	120.9	C39—C40—H40	120.3
S1—C1—C2—C3	178.8 (4)	S2—C21—C22—C23	179.2 (4)
S1—C1—C6—C5	-179.3 (4)	S2—C21—C26—C25	179.8 (3)
S1—C1—C6—C7	2.4 (6)	S2—C21—C26—C27	-1.2 (7)
S1C8C9C10	65.3 (5)	S2-C28-C29-C30	-62.1 (5)
S1—C8—C9—C14	-111.2 (4)	S2-C28-C29-C34	114.8 (4)
O1—S1—C1—C2	98.3 (4)	O4—S2—C21—C22	-95.0 (4)
O1—S1—C1—C6	-81.6 (4)	O4—S2—C21—C26	82.9 (4)
O1—S1—C8—N1	55.2 (3)	O4—S2—C28—N2	-56.2 (3)
O1—S1—C8—C9	-72.2 (4)	O4—S2—C28—C29	71.6 (4)
O2—S1—C1—C2	-33.3 (5)	O5—S2—C21—C22	35.7 (4)
O2—S1—C1—C6	146.8 (4)	O5—S2—C21—C26	-146.4 (4)
O2—S1—C8—N1	-173.1 (3)	O5—S2—C28—N2	172.3 (3)
O2—S1—C8—C9	59.6 (4)	O5—S2—C28—C29	-59.9 (4)
N1-C8-C9-C10	-57.5 (6)	N2-C28-C29-C30	61.0 (6)
N1-C8-C9-C14	125.9 (5)	N2-C28-C29-C34	-122.0 (5)
N1-C15-C16-C17	177.7 (4)	N2-C35-C36-C37	177.2 (5)
N1-C15-C20-C19	-178.0 (4)	N2-C35-C40-C39	-177.1 (5)
C1—S1—C8—N1	-59.9 (3)	C21—S2—C28—N2	58.7 (3)
C1—S1—C8—C9	172.8 (3)	C21—S2—C28—C29	-173.5 (4)

C1—C2—C3—C4	1.5 (8)	C21—C22—C23—C24	-0.3 (8)
C1—C6—C7—O3	159.3 (4)	C21—C26—C27—O6	-161.4 (4)
C1—C6—C7—N1	-18.8 (7)	C21—C26—C27—N2	15.7 (7)
C2-C1-C6-C5	0.8 (7)	C22—C21—C26—C25	-2.4 (7)
C2-C1-C6-C7	-177.5 (4)	C22—C21—C26—C27	176.6 (4)
C2—C3—C4—C5	-1.3 (8)	C22—C23—C24—C25	0.3 (8)
C3—C4—C5—C6	0.9 (8)	C23—C24—C25—C26	-1.3 (7)
C4—C5—C6—C1	-0.6 (7)	C24—C25—C26—C21	2.3 (7)
C4—C5—C6—C7	177.8 (4)	C24—C25—C26—C27	-176.8 (4)
C5—C6—C7—O3	-19.0 (7)	C25—C26—C27—O6	17.6 (7)
C5—C6—C7—N1	162.8 (4)	C25—C26—C27—N2	-165.3 (4)
C6—C1—C2—C3	-1.3 (7)	C26—C21—C22—C23	1.4 (8)
C7—N1—C8—S1	56.4 (5)	C27—N2—C28—S2	-57.3 (5)
C7—N1—C8—C9	179.8 (4)	C27—N2—C28—C29	178.8 (4)
C7—N1—C15—C16	100.3 (5)	C27—N2—C35—C36	83.8 (5)
C7—N1—C15—C20	-80.1 (5)	C27—N2—C35—C40	-97.7 (5)
C8—S1—C1—C2	-146.7 (4)	C28—S2—C21—C22	149.2 (4)
C8—S1—C1—C6	33.4 (4)	C28—S2—C21—C26	-32.9 (4)
C8—N1—C7—O3	167.2 (4)	C28—N2—C27—O6	-165.2 (4)
C8—N1—C7—C6	-14.7 (6)	C28—N2—C27—C26	17.7 (6)
C8—N1—C15—C16	-62.6 (5)	C28—N2—C35—C36	-114.4 (5)
C8—N1—C15—C20	117.0 (5)	C28—N2—C35—C40	64.1 (6)
C8—C9—C10—C11	-176.0 (4)	C28—C29—C30—C31	177.1 (4)
C8—C9—C14—C13	176.6 (4)	C28—C29—C34—C33	-177.5 (5)
C9—C10—C11—C12	-1.0 (7)	C29—C30—C31—C32	-0.6 (8)
C10—C9—C14—C13	0.0 (7)	C30—C29—C34—C33	-0.5 (7)
C10-C11-C12-C13	1.0 (7)	C30—C31—C32—C33	1.4 (9)
C11—C12—C13—C14	-0.5 (7)	C31—C32—C33—C34	-1.7 (9)
C12—C13—C14—C9	0.0 (7)	C32—C33—C34—C29	1.2 (8)
C14—C9—C10—C11	0.5 (7)	C34—C29—C30—C31	0.2 (7)
C15—N1—C7—O3	4.4 (7)	C35—N2—C27—O6	-3.8 (7)
C15—N1—C7—C6	-177.5 (4)	C35—N2—C27—C26	179.1 (4)
C15—N1—C8—S1	-141.2 (3)	C35—N2—C28—S2	141.6 (3)
C15—N1—C8—C9	-17.8 (6)	C35—N2—C28—C29	17.7 (6)
C15—C16—C17—C18	0.7 (8)	C35—C36—C37—C38	0.1 (8)
C16—C15—C20—C19	1.5 (7)	C36—C35—C40—C39	1.4 (8)
C16—C17—C18—C19	0.7 (8)	C36—C37—C38—C39	1.2 (10)
C17—C18—C19—C20	-1.0 (8)	C37—C38—C39—C40	-1.1 (10)
C18—C19—C20—C15	-0.1 (7)	C38—C39—C40—C35	-0.1 (9)
C20-C15-C16-C17	-1.8 (7)	C40—C35—C36—C37	-1.3 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C3—H3…O5 ⁱ	0.95	2.65	3.353 (6)	131
C8—H8···O6 ⁱⁱ	1.00	2.29	3.070 (6)	134
C16—H16…O6 ⁱⁱ	0.95	2.67	3.410 (6)	135
С20—Н20…Об	0.95	2.61	3.422 (6)	144

			supporting	gintornation
С28—Н28…ОЗ	1.00	2.31	3.096 (5)	135
C36—H36…O3 ⁱⁱⁱ	0.95	2.62	3.412 (6)	141
C40—H40…O3	0.95	2.73	3.473 (7)	136

F(000) = 1456

 $\theta = 2.3 - 26.1^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$

Needle, colorless $0.22 \times 0.04 \times 0.02 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.406 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5480 reflections

cupporting information

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.

2,3-Diphenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazine-1,1,4-trione (2)

Crystal data

 $C_{19}H_{14}N_2O_3S$ $M_r = 350.38$ Monoclinic, $P2_1/n$ a = 6.8584 (19) Å b = 25.487 (7) Å c = 19.008 (5) Å $\beta = 94.669 (7)^{\circ}$ $V = 3311.6 (16) Å^3$ Z = 8

Data collection

Bruker CCD area detector	7909 independent reflections
diffractometer	5509 reflections with $I > 2\sigma(I)$
phi and ω scans	$R_{\rm int} = 0.040$
Absorption correction: multi-scan	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
(SADABS; Krause et al., 2015)	$h = -9 \rightarrow 9$
$T_{\min} = 0.237, \ T_{\max} = 0.9$	$k = -32 \rightarrow 32$
29524 measured reflections	$l = -23 \rightarrow 24$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.138$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
7909 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0689P)^2 + 0.239P]$
451 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω . The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.63430 (8)	0.74816 (2)	0.62562 (3)	0.04230 (15)
01	0.4325 (2)	0.75929 (6)	0.63311 (8)	0.0578 (4)

O2	0.7474 (3)	0.78399 (6)	0.58785 (8)	0.0681 (5)
O3	0.5672 (2)	0.60846 (5)	0.74613 (7)	0.0460 (3)
N1	0.6591 (2)	0.69392 (5)	0.74620 (8)	0.0339 (3)
C1	0.6539 (3)	0.68391 (7)	0.59048 (10)	0.0372 (4)
N2	0.6667 (3)	0.68078 (7)	0.52113 (9)	0.0485 (4)
C3	0.6840 (3)	0.63236 (9)	0.49538 (11)	0.0536 (6)
H3	0.693463	0.628667	0.447104	0.064*
C4	0.6885 (3)	0.58773 (8)	0.53596 (11)	0.0484 (5)
H4	0.702610	0.554955	0.515465	0.058*
C5	0.6718 (3)	0.59221 (7)	0.60787 (11)	0.0409 (5)
Н5	0.672293	0.562470	0.636234	0.049*
C6	0.6543 (3)	0.64206 (7)	0.63705 (10)	0.0342 (4)
C7	0.6251 (3)	0.64642 (7)	0.71450 (10)	0.0348 (4)
C8	0.7641 (3)	0.73481 (6)	0.71038 (9)	0.0329 (4)
H8	0.892706	0.720657	0.701537	0.039*
C9	0.7973 (3)	0.78510(6)	0.75095 (9)	0.0349 (4)
C10	0.6433 (3)	0.81482 (7)	0.77271 (11)	0.0434 (5)
H10	0.515080	0.803440	0.763175	0.052*
C11	0.6813 (4)	0.86115 (8)	0.80844 (11)	0.0521 (6)
H11	0.578441	0.880859	0.823488	0.062*
C12	0.8701 (4)	0.87842 (8)	0.82198 (12)	0.0566 (6)
H12	0.894905	0.909751	0.846138	0.068*
C13	1.0224 (4)	0.84948 (9)	0.79988 (12)	0.0586 (6)
H13	1.150197	0.861340	0.808938	0.070*
C14	0.9866 (3)	0.80271 (8)	0.76418 (11)	0.0465 (5)
H14	1.090055	0.783227	0.749150	0.056*
C15	0.6365 (3)	0.69882 (7)	0.82159 (10)	0.0386 (4)
C16	0.7981 (4)	0.69689 (8)	0.86865 (11)	0.0536 (6)
H16	0.920527	0.689583	0.853283	0.064*
C17	0.7772 (5)	0.70596 (10)	0.93957 (13)	0.0721 (7)
H17	0.886765	0.705311	0.971784	0.087*
C18	0.5986 (5)	0.71578 (10)	0.96239 (14)	0.0763 (9)
H18	0.586778	0.722023	1.010056	0.092*
C19	0.4354 (5)	0.71657 (10)	0.91580 (16)	0.0763 (8)
H19	0.313012	0.722843	0.931876	0.092*
C20	0.4533 (3)	0.70791 (9)	0.84404 (13)	0.0576 (6)
H20	0.343538	0.708267	0.811932	0.069*
S2	0.13994 (8)	0.49436 (2)	0.65360 (2)	0.03987 (15)
O4	-0.0638 (2)	0.48498 (5)	0.66084 (8)	0.0538 (4)
05	0.2549 (3)	0.45389 (5)	0.62563 (8)	0.0642 (5)
O6	0.0749 (2)	0.64799 (5)	0.73881 (7)	0.0468 (4)
N3	0.1540 (2)	0.56289 (5)	0.75909 (8)	0.0356 (4)
C21	0.1620(3)	0.55275 (6)	0.60387 (10)	0.0348 (4)
N4	0.1748 (2)	0.54607 (6)	0.53518 (8)	0.0432 (4)
C23	0.1843 (3)	0.58965 (8)	0.49718 (11)	0.0485 (5)
H23	0.191493	0.586542	0.448712	0.058*
C24	0.1841 (3)	0.63940 (8)	0.52628 (11)	0.0469 (5)
H24	0.192899	0.668864	0.497855	0.056*

C25	0.1706 (3)	0.64482 (7)	0.59793 (11)	0.0410 (5)
H25	0.169557	0.677987	0.618283	0.049*
C26	0.1587 (2)	0.60021 (6)	0.63938 (9)	0.0327 (4)
C27	0.1291 (3)	0.60600 (7)	0.71683 (10)	0.0354 (4)
C28	0.2623 (3)	0.51705 (6)	0.73556 (9)	0.0340 (4)
H28	0.392932	0.529097	0.725573	0.041*
C29	0.2885 (3)	0.47234 (7)	0.78757 (10)	0.0416 (5)
C30	0.1352 (4)	0.44247 (8)	0.80797 (11)	0.0533 (6)
H30	0.007471	0.450892	0.791761	0.064*
C31	0.1710 (5)	0.40003 (9)	0.85245 (13)	0.0733 (8)
H31	0.067265	0.379812	0.865727	0.088*
C32	0.3580 (6)	0.38766 (11)	0.87699 (14)	0.0930 (11)
H32	0.381106	0.359142	0.907028	0.112*
C33	0.5112 (5)	0.41710 (12)	0.85749 (15)	0.0914 (10)
Н33	0.638235	0.408655	0.874614	0.110*
C34	0.4785 (4)	0.45936 (9)	0.81249 (13)	0.0633 (6)
H34	0.583346	0.479040	0.798928	0.076*
C35	0.1232 (3)	0.56794 (7)	0.83321 (10)	0.0422 (5)
C36	-0.0608 (4)	0.55993 (9)	0.85463 (13)	0.0618 (6)
H36	-0.165756	0.553010	0.821831	0.074*
C37	-0.0874 (5)	0.56238 (12)	0.92666 (17)	0.0913 (10)
H37	-0.210699	0.556903	0.942374	0.110*
C38	0.0697 (7)	0.57292 (14)	0.97419 (16)	0.1078 (12)
H38	0.052867	0.573858	1.022227	0.129*
C39	0.2486 (6)	0.58194 (15)	0.95149 (15)	0.1071 (12)
H39	0.353065	0.589783	0.984069	0.129*
C40	0.2778 (4)	0.57965 (10)	0.88050 (12)	0.0692 (7)
H40	0.400987	0.585986	0.865134	0.083*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0610 (4)	0.0304 (2)	0.0346 (3)	0.0002 (2)	-0.0017 (2)	-0.00136 (19)
O1	0.0600 (10)	0.0494 (8)	0.0608 (10)	0.0194 (7)	-0.0144 (8)	-0.0116 (7)
O2	0.1144 (14)	0.0454 (9)	0.0452 (9)	-0.0225 (9)	0.0100 (9)	0.0039 (7)
O3	0.0600 (9)	0.0318 (7)	0.0461 (8)	-0.0101 (6)	0.0053 (7)	-0.0014 (6)
N1	0.0438 (9)	0.0268 (7)	0.0309 (8)	-0.0005 (6)	0.0024 (7)	-0.0046 (6)
C1	0.0402 (11)	0.0361 (9)	0.0349 (10)	0.0008 (8)	0.0009 (8)	-0.0062 (8)
N2	0.0591 (11)	0.0516 (10)	0.0347 (9)	-0.0033 (8)	0.0032 (8)	-0.0088(8)
C3	0.0576 (14)	0.0645 (14)	0.0385 (12)	-0.0032 (11)	0.0019 (10)	-0.0208 (11)
C4	0.0447 (12)	0.0473 (11)	0.0531 (13)	-0.0001 (9)	0.0036 (10)	-0.0232 (10)
C5	0.0395 (11)	0.0353 (10)	0.0473 (12)	0.0008 (8)	-0.0003 (9)	-0.0110 (8)
C6	0.0326 (10)	0.0308 (9)	0.0389 (10)	-0.0009 (7)	0.0012 (8)	-0.0095 (7)
C7	0.0355 (10)	0.0298 (9)	0.0385 (10)	0.0002 (7)	-0.0008 (8)	-0.0051 (8)
C8	0.0362 (10)	0.0277 (8)	0.0344 (10)	0.0000 (7)	0.0011 (8)	-0.0026 (7)
C9	0.0458 (11)	0.0249 (8)	0.0334 (10)	-0.0018 (7)	0.0002 (8)	-0.0012 (7)
C10	0.0490 (12)	0.0327 (9)	0.0477 (12)	0.0019 (8)	-0.0012 (9)	-0.0064 (8)
C11	0.0706 (16)	0.0340 (10)	0.0513 (13)	0.0069 (10)	0.0034 (11)	-0.0091 (9)

C12	0.0846 (18)	0.0377 (11)	0.0478 (13)	-0.0140 (11)	0.0078 (12)	-0.0137 (10)
C13	0.0616 (15)	0.0550 (13)	0.0587 (15)	-0.0228 (11)	0.0017 (12)	-0.0157 (11)
C14	0.0502 (13)	0.0427 (11)	0.0466 (12)	-0.0043 (9)	0.0038 (10)	-0.0091 (9)
C15	0.0544 (12)	0.0278 (9)	0.0342 (10)	-0.0031 (8)	0.0074 (9)	-0.0057 (7)
C16	0.0689 (15)	0.0515 (12)	0.0396 (12)	0.0056 (11)	-0.0005 (11)	-0.0025 (10)
C17	0.110 (2)	0.0658 (16)	0.0388 (13)	0.0026 (15)	-0.0039 (14)	-0.0051 (12)
C18	0.135 (3)	0.0554 (15)	0.0415 (14)	-0.0112 (16)	0.0260 (17)	-0.0101 (11)
C19	0.098 (2)	0.0676 (17)	0.0699 (19)	-0.0138 (15)	0.0470 (17)	-0.0170 (14)
C20	0.0604 (15)	0.0546 (13)	0.0598 (15)	-0.0074 (11)	0.0178 (12)	-0.0099 (11)
S2	0.0619 (3)	0.0239 (2)	0.0325 (3)	0.0015 (2)	-0.0038 (2)	-0.00153 (18)
O4	0.0589 (10)	0.0428 (8)	0.0571 (9)	-0.0192 (7)	-0.0116 (7)	0.0086 (7)
05	0.1104 (14)	0.0397 (8)	0.0414 (9)	0.0282 (8)	-0.0011 (8)	-0.0074 (6)
06	0.0610 (9)	0.0305 (7)	0.0485 (8)	0.0107 (6)	0.0025 (7)	-0.0063 (6)
N3	0.0479 (10)	0.0271 (7)	0.0316 (8)	0.0024 (6)	0.0031 (7)	-0.0017 (6)
C21	0.0401 (11)	0.0308 (9)	0.0330 (10)	0.0023 (7)	-0.0005 (8)	0.0036 (7)
N4	0.0545 (11)	0.0441 (9)	0.0307 (9)	0.0005 (7)	0.0023 (7)	0.0013 (7)
C23	0.0561 (13)	0.0559 (13)	0.0332 (11)	0.0003 (10)	0.0026 (9)	0.0088 (9)
C24	0.0473 (12)	0.0451 (11)	0.0479 (12)	-0.0036 (9)	0.0014 (10)	0.0175 (9)
C25	0.0416 (11)	0.0301 (9)	0.0503 (12)	-0.0004 (8)	-0.0018 (9)	0.0051 (8)
C26	0.0316 (10)	0.0288 (8)	0.0373 (10)	0.0006 (7)	-0.0002 (8)	0.0001 (7)
C27	0.0369 (10)	0.0291 (9)	0.0392 (10)	-0.0010 (7)	-0.0019 (8)	-0.0042 (7)
C28	0.0424 (10)	0.0265 (8)	0.0324 (9)	0.0014 (7)	-0.0010 (8)	-0.0018 (7)
C29	0.0632 (13)	0.0293 (9)	0.0310 (10)	0.0043 (9)	-0.0030 (9)	0.0000 (8)
C30	0.0805 (17)	0.0383 (11)	0.0418 (12)	-0.0025 (10)	0.0081 (11)	0.0017 (9)
C31	0.133 (3)	0.0419 (12)	0.0476 (14)	-0.0040 (14)	0.0228 (16)	0.0059 (11)
C32	0.170 (4)	0.0582 (17)	0.0487 (16)	0.028 (2)	-0.001 (2)	0.0197 (13)
C33	0.119 (3)	0.086 (2)	0.0635 (18)	0.035 (2)	-0.0273 (18)	0.0165 (16)
C34	0.0714 (17)	0.0604 (14)	0.0548 (14)	0.0069 (12)	-0.0152 (12)	0.0078 (11)
C35	0.0615 (14)	0.0312 (9)	0.0346 (10)	0.0008 (9)	0.0086 (9)	-0.0022 (8)
C36	0.0666 (16)	0.0621 (14)	0.0587 (15)	0.0074 (12)	0.0179 (12)	0.0076 (12)
C37	0.111 (3)	0.093 (2)	0.077 (2)	0.0220 (19)	0.053 (2)	0.0210 (18)
C38	0.171 (4)	0.116 (3)	0.0408 (17)	0.009 (3)	0.033 (2)	0.0017 (17)
C39	0.144 (3)	0.137 (3)	0.0400 (16)	-0.025 (3)	0.0044 (18)	-0.0144 (18)
C40	0.0865 (19)	0.0826 (18)	0.0381 (13)	-0.0191 (15)	0.0032 (12)	-0.0114 (12)

Geometric parameters (Å, °)

S1—01	1.4309 (16)	S2—O4	1.4349 (16)
S1—O2	1.4289 (16)	S2—O5	1.4268 (15)
S1—C1	1.7776 (18)	S2—C21	1.7762 (18)
S1—C8	1.8085 (19)	S2—C28	1.8037 (18)
O3—C7	1.222 (2)	O6—C27	1.218 (2)
N1—C7	1.364 (2)	N3—C27	1.364 (2)
N1-C8	1.466 (2)	N3—C28	1.473 (2)
N1-C15	1.459 (2)	N3—C35	1.447 (2)
C1—N2	1.331 (2)	C21—N4	1.327 (2)
C1—C6	1.386 (3)	C21—C26	1.386 (2)
N2—C3	1.336 (3)	N4—C23	1.329 (2)

С3—Н3	0.9300	C23—H23	0.9300
C3—C4	1.373 (3)	C23—C24	1.383 (3)
C4—H4	0.9300	C24—H24	0.9300
C4—C5	1.386 (3)	C24—C25	1.379 (3)
С5—Н5	0.9300	C25—H25	0.9300
C5—C6	1.395 (2)	C25—C26	1.389 (2)
C6—C7	1.506 (3)	C26—C27	1.510 (3)
С8—Н8	0.9800	C28—H28	0.9800
C8—C9	1.503 (2)	C28—C29	1.510 (2)
C9—C10	1.390 (3)	C29—C30	1.379 (3)
C9—C14	1.377 (3)	C29—C34	1.390 (3)
C10—H10	0.9300	C30—H30	0.9300
C10—C11	1 376 (3)	C30-C31	1 383 (3)
C11—H11	0.9300	C31—H31	0.9300
C11-C12	1,372(3)	$C_{31} - C_{32}$	1 365 (4)
C12—H12	0.9300	C32—H32	0.9300
C12 C13	1.372(3)	C_{32} C_{33}	1.367(4)
C12 U13	0.0300	C32 H33	0.0300
C13 - C14	1.282(2)	$C_{33} = C_{34}$	0.9300
C13 - C14	1.363 (3)	C_{24} U24	1.562 (5)
$C14 - \Pi14$	0.9300	C_{34} = H_{34}	0.9300
C15-C10	1.307(3)	C35 - C30	1.372(3)
C15 - C20	1.379(3)	C35-C40	1.300 (3)
C16—H16	0.9300	C36—H36	0.9300
C16—C17	1.387 (3)	C36—C37	1.397 (4)
С17—Н17	0.9300	C37—H37	0.9300
C17—C18	1.356 (4)	037-038	1.375 (5)
C18—H18	0.9300	C38—H38	0.9300
C18—C19	1.370 (4)	C38—C39	1.353 (5)
C19—H19	0.9300	С39—Н39	0.9300
C19—C20	1.397 (3)	C39—C40	1.382 (4)
C20—H20	0.9300	C40—H40	0.9300
01—S1—C1	108.86 (9)	O4—S2—C21	108.44 (8)
01—S1—C8	111.01 (9)	O4—S2—C28	111.03 (9)
02—S1—01	119.48 (10)	O5—S2—O4	119.14 (10)
02—S1—C1	109.82 (9)	O5—S2—C21	109.50 (9)
O2—S1—C8	108.66 (9)	O5—S2—C28	108.74 (9)
C1—S1—C8	96.59 (8)	C21—S2—C28	97.89 (8)
C7—N1—C8	119.92 (15)	C27 - N3 - C28	120.15 (15)
C7—N1—C15	118.80 (14)	C27—N3—C35	118.72 (14)
C15—N1—C8	119.39 (13)	C_{35} N3 $-C_{28}$	118.90 (14)
N2-C1-S1	116.15 (14)	N4-C21-S2	115.57 (13)
N2-C1-C6	126.13 (17)	N4—C21—C26	126 60 (16)
C6-C1-S1	117.72(14)	C_{26} C_{21} S_{2}	117 81 (14)
C1-N2-C3	115 68 (18)	$C_{21} - N_{4} - C_{23}$	115 95 (16)
N2-C3-H3	118.0	N4—C23—H23	118.4
N2-C3-C4	123 90 (19)	N4—C23—C24	123 15 (19)
C4—C3—H3	118.0	C24—C23—H23	118.4

C3—C4—H4	120.5	C23—C24—H24	120.4
C3—C4—C5	119.07 (18)	C25—C24—C23	119.26 (17)
C5—C4—H4	120.5	C25—C24—H24	120.4
С4—С5—Н5	120.5	С24—С25—Н25	120.3
C4—C5—C6	118.94 (19)	C24—C25—C26	119.32 (17)
С6—С5—Н5	120.5	C26—C25—H25	120.3
C1—C6—C5	116.27 (17)	$C_{21} - C_{26} - C_{25}$	115.71 (17)
C1 - C6 - C7	125.04(15)	$C_{21} = C_{26} = C_{27}$	124.67(15)
C_{5} C_{6} C_{7}	118 58 (16)	$C_{25} = C_{26} = C_{27}$	119 46 (16)
03 - C7 - N1	122 41 (17)	06-C27-N3	122 22 (17)
03-07-06	122.11(17) 119.79(15)	$06-C^{27}-C^{26}$	122.22(17) 119.29(16)
N1 - C7 - C6	117.77 (15)	N_{3} C_{27} C_{26}	119.29 (10)
S1 C8 H8	107.5	S2 C28 H28	107.6
S1 - C0 - 110	107.3 108.82(12)	N2 C28 S2	107.0 107.80(12)
N1 C9 H9	107.5	$N_{2} = C_{20} = S_{2}$	107.60 (12)
$N1 = C_0 = H_0$	107.3 115 21 (14)	$N_{2} = C_{28} = C_{20}$	107.0 115.94(15)
$N1 - C_{0} - C_{9}$	113.31(14) 100.85(12)	$N_{3} = C_{28} = C_{29}$	113.64 (13)
$C_9 = C_8 = S_1$	109.85 (12)	$C_{29} = C_{28} = S_2$	110.23 (12)
C9—C8—H8	107.5	C29—C28—H28	107.6
C10-C9-C8	122.03 (16)	C30—C29—C28	123.24 (19)
C14—C9—C8	118.21 (16)	C30—C29—C34	119.20 (19)
C14—C9—C10	119.72 (17)	C34—C29—C28	117.46 (19)
C9—C10—H10	120.1	С29—С30—Н30	119.9
C11—C10—C9	119.8 (2)	C29—C30—C31	120.2 (2)
C11—C10—H10	120.1	С31—С30—Н30	119.9
C10-C11-H11	119.8	С30—С31—Н31	119.8
C12—C11—C10	120.4 (2)	C32—C31—C30	120.3 (3)
C12—C11—H11	119.8	С32—С31—Н31	119.8
C11—C12—H12	120.0	С31—С32—Н32	119.9
C11—C12—C13	120.03 (19)	C31—C32—C33	120.1 (3)
C13—C12—H12	120.0	С33—С32—Н32	119.9
C12—C13—H13	119.9	С32—С33—Н33	119.8
C12—C13—C14	120.3 (2)	C32—C33—C34	120.4 (3)
C14—C13—H13	119.9	С34—С33—Н33	119.8
C9—C14—C13	119.8 (2)	С29—С34—Н34	120.1
C9—C14—H14	120.1	C33—C34—C29	119.8 (3)
C13—C14—H14	120.1	С33—С34—Н34	120.1
C16—C15—N1	119.61 (18)	C36—C35—N3	119.09 (19)
$C_{16} - C_{15} - C_{20}$	120.9(2)	C40-C35-N3	119 53 (19)
C_{20} C_{15} C_{20} C_{15} C	119 38 (18)	C40 - C35 - C36	1214(2)
C_{15} C_{16} H_{16}	120.4	C35—C36—H36	120.6
C_{15} C_{16} C_{17}	119.2 (2)	$C_{35} = C_{36} = C_{37}$	120.0 118.7(3)
C_{17} C_{16} H_{16}	120.4	$C_{37} = C_{36} = H_{36}$	120.6
C_{16} C_{17} H_{17}	110 7	C_{36} C_{37} H_{37}	120.0
C18 - C17 - C16	120.6 (3)	C_{38} C_{37} C_{36}	119.6 (3)
C18_C17_H17	110 7	C_{38} C_{37} H_{37}	120.2
C17_C18_H18	110.7	C_{37} C_{38} H_{38}	120.2
$C_{17} = C_{10} = 110$	120.5 (2)	$C_{30} C_{38} C_{37}$	120 A (2)
$C_{17} - C_{10} - C_{17}$	120.5 (2)	$C_{30} = C_{30} = C_{37}$	120.7 (3)
-17110 - 1110	117./	UJJ-UJ0-11J0	117.0

С18—С19—Н19	120.1	С38—С39—Н39	119.6
C18 - C19 - C20	119.8 (3)	C_{38} C_{39} C_{40}	120.8 (3)
C20-C19-H19	120.1	C40—C39—H39	119.6
C_{15} C_{20} C_{19}	118.9 (2)	C_{35} — C_{40} — C_{39}	119.0 (3)
C15—C20—H20	120.5	C35—C40—H40	120.5
C19 - C20 - H20	120.5	C39—C40—H40	120.5
	120.0		120.5
S1 - C1 - N2 - C3	179 14 (15)	S2-C21-N4-C23	177 70 (14)
S1-C1-C6-C5	-179.38(14)	S2-C21-C26-C25	-178.19(14)
S1-C1-C6-C7	46(3)	S2-C21-C26-C27	-2.7(2)
S1	64 1 (2)	$S_{2}^{2} = C_{28}^{2} = C_{29}^{2} = C_{30}^{2}$	-563(2)
S1-C8-C9-C14	-11340(17)	$S_{2}^{2} = C_{28}^{2} = C_{29}^{2} = C_{34}^{2}$	119.99(18)
01 - S1 - C1 - N2	97 46 (17)	04 - 82 - C21 - N4	-95.33(16)
01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-8247(16)	04 - 82 - C21 - C26	82.93 (16)
01 - S1 - C8 - N1	52 60 (14)	$04 - S^2 - C^{28} - N^3$	-53.75(14)
01 - 51 - C8 - C9	-7451(14)	04 - 82 - C28 - C29	73 56 (15)
02 = 12 = 12 = 12	-35.07(19)	05-S2-C21-N4	36.17 (18)
02 - 51 - C1 - C6	145.00 (15)	05 - 52 - C21 - C26	-14557(15)
02 - 51 - C8 - N1	-17407(12)	05 - 52 - C28 - N3	173 30 (12)
02 - 51 - 60 - 101	58 82 (15)	05 - 52 - C28 - C29	-59.39(16)
N1 - C8 - C9 - C10	-593(2)	N_{3} C_{28} C_{29} C_{30}	66 4 (2)
N1 - C8 - C9 - C14	123 22 (18)	$N_3 - C_{28} - C_{29} - C_{34}$	-1173(2)
N1-C15-C16-C17	174 64 (19)	$N_3 - C_{35} - C_{36} - C_{37}$	1769(2)
N1 - C15 - C20 - C19	-175 11 (19)	N_{3} C_{35} C_{40} C_{39}	-177.0(2)
C1 = S1 = C8 = N1	-60.54(13)	C_{21} S_{2} C_{28} N3	59 54 (13)
C1 = S1 = C8 = C9	$172\ 35\ (13)$	C_{21} S_{2} C_{23} C_{3} C_{23} $C_{$	-173 14 (14)
C1 - N2 - C3 - C4	0.1(3)	$C_{21} = S_{22} = C_{23} = C_{24}$	1/5.14(14)
C1 - C6 - C7 - O3	157.04(18)	$C_{21} = C_{26} = C_{27} = C_{24}$	-15973(18)
C1 - C6 - C7 - N1	-208(3)	$C_{21} = C_{20} = C_{27} = 00$	167(3)
$N_{2}-C_{1}-C_{6}-C_{5}$	0.7(3)	N4-C21-C26-C25	-0.1(3)
$N_2 - C_1 - C_6 - C_7$	-175 37 (18)	N4 - C21 - C26 - C23	175 31 (18)
$N_2 = C_1 = C_0 = C_7$ $N_2 = C_3 = C_4 = C_5$	1/3.37(10)	N4 C23 C24 C25	-0.9(3)
$C_{3} = C_{4} = C_{5}$	-11(3)	114 - 023 - 024 - 025	0.9(3)
$C_{3} - C_{4} - C_{5} - C_{6}$	1.1(3)	$C_{23} = C_{24} = C_{23} = C_{20}$	0.4(3)
$C_{4} = C_{5} = C_{6} = C_{1}$	0.4(3) 176.70(17)	$C_{24} = C_{25} = C_{20} = C_{21}$	-17555(17)
$C_{1} = C_{2} = C_{1} = C_{1}$	-180(3)	$C_{24} = C_{23} = C_{20} = C_{27}$	175.55(17) 15.6(3)
$C_{5} = C_{6} = C_{7} = 0.5$	163.18(16)	$C_{25} = C_{20} = C_{27} = 00$	-167.08(16)
$C_{5} = C_{0} = C_{7} = N_{1}$	-0.0(3)	$C_{25} = C_{20} = C_{27} = N_3$	-0.4(3)
$C_{0} - C_{1} - N_{2} - C_{3}$	57.44(18)	$C_{20} = C_{21} = N_4 = C_{23}$	-58.41(10)
C7 N1 C8 C0	-178.62(15)	$C_27 = N_3 = C_{28} = C_{29}$	36.41(19)
C7 N1 C15 C16	-1/8.03(13)	$C_{27} = N_{3} = C_{26} = C_{29}$	177.00(10)
C7 N1 C15 C20	-94.2(2)	$C_{27} = N_{3} = C_{35} = C_{30}$	-02.1(2)
$C^{2} = NI - CI_{3} - C_{20}$	-64.2(2) -147.65(16)	$C_{27} = N_{3} = C_{33} = C_{40}$	-92.1(2)
C_{0} C_{1} C_{1} C_{2}	-147.03(10)	$C_{28} = S_2 = C_{21} = N_4$	-32.42(15)
$C_{0} = C_{1} = C_{1} = C_{0}$	52.72(10) 167.03(17)	$C_{20} = S_2 = C_{21} = C_{20}$	52.42(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10/.93(1/) -14.3(2)	$C_{20} = N_3 = C_{27} = C_{26}$	-103.03(17)
$C_{0} = N_{1} = C_{1} = C_{1}$	-14.3(2)	$C_{20} = N_{3} = C_{21} = C_{20}$	10.0(2)
$C_{0} = N_{1} = C_{15} = C_{20}$	-03.4(2)	$C_{20} = N_{3} = C_{30} = C_{30}$	-107.9(2)
Co-NI-CIO-C20	111.5 (2)	C28—N3—C35—C40	/0.9 (2)

$\begin{array}{c} C8-C9-C10-C11\\ C8-C9-C14-C13\\ C9-C10-C11-C12\\ C10-C9-C14-C13\\ C10-C11-C12-C13\\ C11-C12-C13-C14\\ C12-C13-C14-C9\\ C14-C9-C10-C11\\ C15-N1-C7-O3\\ C15-N1-C7-C6\\ C15-N1-C8-S1\\ C15-N1-C8-C9\\ C15-C16-C17-C18\\ \end{array}$	$\begin{array}{c} -178.63 \ (18) \\ 178.46 \ (19) \\ 0.7 \ (3) \\ 0.9 \ (3) \\ 0.0 \ (3) \\ -0.3 \ (4) \\ -0.2 \ (3) \\ -1.2 \ (3) \\ 3.7 \ (3) \\ -178.52 \ (15) \\ -138.38 \ (14) \\ -14.5 \ (2) \\ 1.1 \ (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$175.96 (19) \\ -176.8 (2) \\ 0.6 (4) \\ -0.4 (3) \\ -0.2 (4) \\ -0.4 (5) \\ 0.7 (4) \\ -0.3 (3) \\ -2.8 (3) \\ -179.13 (16) \\ 138.78 (14) \\ 14.8 (2) \\ 0.3 (4) $
C15—N1—C8—S1 C15—N1—C8—C9 C15—C16—C17—C18 C16—C15—C20—C19 C16—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C15 C20—C15—C16—C17	$\begin{array}{c} -138.38(14) \\ -14.5(2) \\ 1.1(4) \\ 1.7(3) \\ 0.4(4) \\ -0.9(4) \\ -0.2(3) \\ -2.2(3) \end{array}$	C35—N3—C28—S2 C35—N3—C28—C29 C35—C36—C37—C38 C36—C35—C40—C39 C36—C37—C38—C39 C37—C38—C39—C40 C38—C39—C40—C35 C40—C35—C36—C37	138.78 (14) $14.8 (2)$ $0.3 (4)$ $1.9 (4)$ $1.3 (5)$ $-1.4 (6)$ $-0.2 (5)$ $-1.9 (3)$

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
C3—H3…O5 ⁱ	0.93	2.56	3.234 (3)	130
C5—H5…O4 ⁱⁱ	0.93	2.69	3.388 (2)	132
C8—H8····O6 ⁱⁱ	0.98	2.31	3.089 (2)	136
C16—H16…O6 ⁱⁱ	0.93	2.71	3.466 (3)	139
C20—H20…O6	0.93	2.70	3.496 (3)	145
C25—H25…O1	0.93	2.75	3.463 (3)	135
C28—H28…O3	0.98	2.37	3.126 (2)	134
C36—H36…O3 ⁱⁱⁱ	0.93	2.64	3.381 (3)	137
C40—H40…O3	0.93	2.68	3.439 (3)	140

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.