

ISSN 2056-9890

Received 10 January 2023 Accepted 8 February 2023

Edited by J. Reibenspies, Texas A & M University, USA

Keywords: crystal structure; naringenin; hydrazone; flavanone; flavonoid.

CCDC references: 2240752; 2240751; 2240750

Supporting information: this article has supporting information at journals.iucr.org/e

 BY
 OPEN
 ACCESS

 Published under a CC BY 4.0 licence

Hemant P. Yennawar,^a Anna Sigmon^{b*} and Eleanora Margulis^b

^aDepartment of Biochemistry and Molecular Biology Pennsylvania State University, University Park, PA 16802, USA, and ^bPennsylvania State University, Brandywine Campus, 25 Yearsley Mill Road, Media, Pa 19063, USA. *Correspondence e-mail: ajs8621@psu.edu

The crystal structures of racemic mixtures of three new flavanone-hydrazones in the centrosymmetric space group ($P\overline{1}$), are reported. The structures of (\pm,E) -N'-[5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-ylidene]-2-(naphthalen-1-yl)acetohydrazide ethyl acetate monosolvate, $C_{27}H_{22}N_2O_5\cdot C_4H_8O_2$, and of (\pm,E) -N'-[5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-ylidene]-4-hydroxybenzohydrazide ethanol monosolvate, $C_{22}H_{18}N_2O_6\cdot C_2H_5OH$, both exhibit an intramolecular $O-H\cdots N$ and multiple intermolecular $O-H\cdots O$ and $C-H\cdots O$ type hydrogen bonds. The third structure, that of (\pm,E) -N'-(6-methoxy-2-phenylchroman-4-ylidene)-2-(naphthalen-1-yloxy)acetohydrazide, $C_{28}H_{24}N_2O_4$, has only one intermolecular $N-H\cdots O$ -type hydrogen bond. In each of the three cases, the crystal packings are stabilized by π - π stacking interactions between various aromatic components of symmetry-related molecules. The chiral carbon atom of the substituted chromane ring system in each case is puckered away from rest of the ring system.

1. Chemical context

Flavonoids encompass a family of organic, naturally occurring polyphenolic compounds with a general structure consisting of a 15-carbon skeleton containing two phenyl rings and a heterocyclic ring. Flavonoids include various subcategories chalcones, flavones, flavanones, flavanols, isoflavones, anthocyanins - all of which have demonstrated differential health benefits such as anti-oxidative, anti-inflammatory, anti-mutagenic, and anti-carcinogenic properties (Panche et al., 2016). As a result of their biologically privileged scaffold, flavonoids and their synthetic derivatives are of significant interest to the medicinal chemistry community as potential treatments of disease. We recently reported the first crystal structure of a hydrazone derivative of naringenin, (R/S,E)-2-(4-hydroxyphenyl)-4-(2-phenylhydrazineylidene)chromane-5,7-diol, а biologically active compound that has been reported to induce apoptosis in human cervical cancer cells (Yennawar & Sigmon, 2022; Kim et al., 2012). To further explore the medicinal potential of this class of compounds, three new flavonoid hydrazone compounds have been synthesized and structurally characterized. The three novel compounds are: (\pm, E) -N'-[5,7dihydroxy-2-(4-hydroxyphenyl)chroman-4-ylidene]-2-(naphthalen-1-yl)acetohydrazide ethyl acetate monosolvate (I), (\pm,E) -N'-(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-ylidene)-4-hydroxybenzohydrazide ethanol monosolvate (II) and. (\pm, E) -N'-(6-methoxy-2-phenylchroman-4-ylidene)-2-(naphthalen-1-yloxy)-acetohydrazide (III).

2. Structural commentary

Each of the three title compounds (Figs. 1, 2 and 3) has a carbon-nitrogen double bond [N1==C1: 1.291 (3), 1.294 (4) and 1.284 (5) Å] and all are in the *E* isomeric form. The pyran ring of the chromane ring system in each structure has an envelope pucker with values of the puckering amplitude *Q* of 0.423 (3), 0.397 (6), 0.331 (5) Å, and of $\theta = 57.9$ (4), 53.9 (6), 58.1 (7)°, respectively. The chiral carbon (C8) in each case is displaced between 0.454 and 0.580 Å from the chromane ring planes. The puckering is similar to that seen in the previously reported structure (Yennawar & Sigmon, 2022).

In compound **I**, the disordered fractions (65/35%) of the 4-hydroxyphenyl ring makes dihedral angles of 77.128 (5) and 83.872 (5)°, respectively, with the chromane ring system. An intramolecular $O-H \cdots N$ hydrogen bond exists between one of the hydroxy groups on the chromane ring and the nitrogen of the hydrazone group $[O-H \cdots N = 2.527 (2) \text{ Å}, 147^\circ]$. Another hydroxy group on the chromane ring participates in a hydrogen bond with the carbonyl group of the solvent ethyl acetate molecule $[O2-H2\cdots O6 = 2.720 (3) \text{ Å}, 173^\circ]$. The

Asymmetric unit of **II** with displacement ellipsoids drawn at the 50% probability level.

naphthalene ring system is close to perpendicular to the chromane ring system [dihedral angle $77.692(5)^{\circ}$].

In **II**, the 4-hydroxyphenyl ring of the hydrazone moiety is coplanar with the chromane ring [dihedral angle of 2.485 (3)° with the chromane ring system] whereas the other hydroxyphenyl ring is almost perpendicular [75.449 (5)°] to the chro-

Figure 1 Asymmetric unit of **I** with displacement ellipsoids drawn at the 50% probability level.

Figure 3

Asymmetric unit of **III** with displacement ellipsoids drawn at the 50% probability level.

research communications

Table 1	
Hydrogen-bond geometry $(Å, \circ)$ for I .	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3−H3···N1	0.82	1.80	2.527 (2)	147
$O2-H2\cdots O6$	0.82	1.91	2.720 (3)	173
$O4-H4\cdots O3^{i}$	0.82	1.93	2.730 (3)	166
$C9-H9B\cdots O4^{ii}$	0.97	2.57	3.461 (3)	153

Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y + 2, -z + 1.

mane ring system. The chiral carbon of chromane ring (C8_1) and the methyl carbon (C2_1) of the solvent molecule show positional disorder. An *intra*molecular $O-H \cdot \cdot \cdot N$ hydrogen bond exists between one of the hydroxy groups on the chromane ring and the nitrogen of the hydrazone group [O3-H3 $\cdot \cdot \cdot N1 = 2.542$ (3) Å, 147°].

In **III**, the phenyl ring makes a dihedral angle of 86.17 $(1)^{\circ}$ with the chromane ring system, while the naphthalene ring system is perpendicular to the chromane ring system [dihedral angle = 89.65 $(1)^{\circ}$].

3. Supramolecular features

The extended packing of both I and II (Figs. 4 and 5) exhibit intermolecular $O-H\cdots O$ and $C-H\cdots O$ -type interactions. Additionally II has $N-H\cdots O$ -type interactions (Tables 1 and 2). Both these packings have solvent molecules, namely ethyl acetate and ethanol, respectively, which interact with the parent molecules *via* $O-H\cdots O$ -type hydrogen bonds. In I, π - π interactions between the chromane rings of symmetryrelated neighbors in the [101] direction are observed. The

Table 2Hydrogen-bond geometry (Å, °) for II.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3−H3···N1	0.82	1.82	2.542 (3)	147
$O6-H6\cdots O2^i$	0.82	2.12	2.739 (4)	132
$O4_1-H4_1O3^{ii}$	0.82	1.87	2.52 (3)	136
$O4_2-H4_2O3^{ii}$	0.82	1.96	2.728 (15)	156
$O1_3-H1_3O5^{iii}$	0.82	1.92	2.62 (2)	144
$O1_4-H1_4O5^{iii}$	0.82	2.28	2.877 (17)	130

Symmetry codes: (i) x + 1, y + 1, z; (ii) x, y, z + 1; (iii) -x, -y + 2, -z + 1.

Table 3Hydrogen-bond geometry (Å, °) for III.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O3^{i}$	0.86	2.08	2.922 (4)	167

Symmetry code: (i) -x + 2, -y, -z + 1.

hydroxyphenyl rings also show similar stacking with their symmetry-related counterparts along the $[10\overline{1}]$ direction. Partial stacking $(\pi - \pi)$ interactions [centroid–centroid distance = 4.51 (1) Å] are observed between the chromane unit and the 4-hydroxyphenyl ring of the hydrazone moiety.

In **III** (Fig. 6) the hydrogen-bond interaction is limited to one $N-H\cdots O$ -type hydrogen bond between the hydrazone group and carbonyl oxygen of a symmetry-related neighbor $[N2-H2\cdots O3 = 2.922 (4) \text{ Å}, 167^{\circ}]$, in a parallel, mutual giveand-take fashion (Table 3). Parallel, partial stacking between symmetry-related naphthalene rings [centroid–centroid

Figure 4

Crystal packing diagram for **I** showing intramolecular $O-H\cdots N$ and intermolecular $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, as well as extensive $\pi-\pi$ stacking interactions between aromatic groups.

Figure 5

Crystal packing diagram for **II** showing intramolecular $O-H\cdots N$, intermolecular $O-H\cdots O$, $N-H\cdots O$, $C-H\cdots O$ hydrogen bonds, as well as $\pi-\pi$ stacking interactions.

Table 4Experimental details.

	I	П	ш
Crystal data			
Chemical formula	$C_{27}H_{22}N_2O_5 \cdot C_4H_8O_2$	$C_{22}H_{18}N_2O_6 \cdot C_2H_6O$	$C_{28}H_{24}N_2O_4$
M_r	542.57	452.45	452.49
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	293	293	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.2210 (5), 12.1902 (8), 13.4982 (7)	10.0964 (9), 10.1570 (8), 12.3628 (10)	5.0681 (6), 13.4993 (15), 17.1144 (18)
α, β, γ (°)	94.413 (5), 95.172 (4), 111.561 (5)	84.557 (7), 68.169 (8), 82.529 (7)	74.392 (9), 86.34 (1), 88.416 (10)
$V(\dot{A}^3)$	1395.40 (15)	1165.39 (18)	1125.4 (2)
Z	2	2	2
Radiation type	Cu Ka	Cu Kα	Cu Ka
$\mu (\mathrm{mm}^{-1})$	0.76	0.80	0.73
Crystal size (mm)	$0.12\times0.1\times0.02$	$0.18 \times 0.16 \times 0.04$	$0.17 \times 0.04 \times 0.03$
Data collection			
Diffractometer	ROD, Synergy Custom system, HyPix-Arc 150	ROD, Synergy Custom system, HyPix-Arc 150	ROD, Synergy Custom system, HyPix-Arc 150
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.912, 1.000	0.660, 1.000	0.889, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15709, 5498, 3477	12522, 4585, 2642	11899, 4404, 1823
R _{int}	0.034	0.045	0.051
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.629	0.637	0.631
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.062, 0.212, 1.09	0.086, 0.301, 1.07	0.077, 0.285, 0.99
No. of reflections	5498	4585	4404
No. of parameters	404	405	309
No. of restraints	60	136	6
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.50, -0.25	0.45, -0.27	0.31, -0.24

Computer programs: CrysAlis PRO (Rigaku OD, 2022), OLEX2.solve (Bourhis et al., 2015), SHELXL2018/3 (Sheldrick, 2015), and OLEX2 (Dolomanov et al., 2009).

Figure 6

Crystal packing diagram for III showing intermolecular parallel N– $H \cdot \cdot \cdot O$ hydrogen bond pairs, and the π - π stacking interactions.

distance = 3.790 (2) Å], and also between the chromane ring system and the hydrazone group of neighboring molecules [centroid–centroid distance = 3.730 (3) Å] further stabilizes the packing.

4. Database survey

A structure search was performed in Scifinder and Reaxys, and no identical structures were found. A text search ('flavanone' and 'chroman-4-ylidene' and 'chromane-5,7-diol' and 'benzopyran-4-ylidene' and 'chromen-4-ylidene') was performed in the CCDC's free Access Structures online database (Groom et al., 2016; accessed January, 2023). Six structures were found of hydrazone derivatives of flavanones, including our previously reported naringenin derivative (Yennawar & Sigmon, 2022). No crystal structures were found of flavanone hydrazones containing a naphthalene moiety. Examples of other flavanone hydrazones for which crystal data have been reported include acyl hydrazone derivatives of 2-phenylchroman-4-one and hesperetin. In particular, crystal structures for 2'-[2-(4-fluorophenyl)chroman-4-ylidene]isonicotinohydrazide (Nie et al., 2006) and N-{(±)-[5,7-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)chroman-4-ylidene]amino}benzamide (Lodyga-Chruscinska et al., 2015) have been reported.

5. Synthesis and crystallization

For the preparation of I, naringenin (653 mg, 2.4 mmol) and 2-(naphthalen-1-yl)acetohydrazide (501 mg, 2.5 mmol) were dissolved in ethanol (10 mL). Acetic acid (2.4 mmol, 137 μ L) was added and the resultant solution was heated at reflux for 21 h. The precipitate was isolated *via* vacuum filtration and recrystallized from ethyl acetate *via* slow evaporation at room temperature to furnish clear, plate-shaped crystals suitable for X-ray analysis.

For the preparation of **II**, naringenin (3.000 g, 11.02 mmol) and 4-hydroxybenzohydrazine (2.011 g, 13.22 mmol) were dissolved in ethanol (20 mL). Acetic acid (17.5 mmol, 1.0 mL) was added and the resultant solution was heated at reflux for 48 h. The precipitate was isolated *via* filtration and recrystallized from ethanol *via* slow evaporation at room temperature to furnish transparent yellow, plate-shaped crystals suitable for X-ray analysis.

For the preparation of **III**, 6-methoxyflavanone (381 mg, 1.5 mmol), 2-(naphthalen-1-yl)acetohydrazide (356.8 mg, 1.1 eq, 1.65 mmol), and *p*-toluenesulfonic acid (29 mg, 0.10 eq, 0.15 mmol) were dissolved in toluene (15mL). The resultant mixture was heated at reflux for 12 h with a Dean–Stark apparatus. The solvent was removed and the crude product was purified on an automated flash chromatography system using a normal phase silica gel column with a gradient of hexane:ethyl acetate (70:30 to 0:100). Recrystallization of the purified compound from ethanol *via* slow evaporation at room temperature furnished yellow, needle-shaped crystals suitable for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details for all three structures are summarized in Table 4. The hydrogen atoms were placed in their geometrically calculated positions and their coordinates refined using the riding model with parent-atom—H lengths of 0.93 Å (CH), 0.98 Å (chiral-CH), 0.96 Å (CH₃), 0.97 Å (CH₂), 0.86 Å (NH) or 0.82 Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH₃, OH) times U_{eq} of the parent atom. In **II**, the positional disorder of the chiral carbon (C8) and phenoxy ring atoms (C10 through C15) refined to a percentage population ratio of 66/34, and that of the solvent (ethanol) molecule to 57/43, necessitating the use of a total of 136 restraints. The idealized Me of the ethanol molecule were refined as rotating group(s): C2_3 and C2_4 (H2A_3 through H2C_4).

Acknowledgements

Research reported here was conducted on instrumentation funded by SIG S10 grants of the National Institutes of Health under award Nos. 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar.

Funding information

Funding for this research was provided by: Pennsylvania State University (grant No. CCRCDP 150000005862 to Dr Anna Sigmon).

References

- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kim, J. H., Kang, J., Kim, M., Bak, Y., Park, Y., Jung, K. Y., Lim, Y. & Yoon, D. Y. (2012). *Toxicol. In Vitro*, 26, 67–73.
- Lodyga-Chruscinska, E., Symonowicz, M., Sykula, A., Bujacz, A., Garribba, E., Rowinska-Zyrek, M., Oldziej, S., Klewicka, E., Janicka, M., Krolewska, K., Cieslak, M., Brodowska, K. & Chruscinski, L. (2015). J. Inorg. Biochem. 143, 34–47.
- Nie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824-o1825.
- Panche, A. N., Diwan, A. D. & Chandra, S. R. (2016). J. Nutr. Sci. 5, e47.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Yennawar, H. P. & Sigmon, A. (2022). Acta Cryst. E78, 346-348.

Acta Cryst. (2023). E79, 236-240 [https://doi.org/10.1107/S2056989023001184]

Crystal structures of three newly synthesized flavanone hydrazones

Hemant P. Yennawar, Anna Sigmon and Eleanora Margulis

Computing details

For all structures, data collection: *CrysAlis PRO* 1.171.42.63a (Rigaku OD, 2022); cell refinement: *CrysAlis PRO* 1.171.42.63a (Rigaku OD, 2022); data reduction: *CrysAlis PRO* 1.171.42.63a (Rigaku OD, 2022). Program(s) used to solve structure: olex2.solve 1.3-ac4 (Bourhis *et al.*, 2015) for (I). For all structures, program(s) used to refine structure: *SHELXL* 2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.3-ac4 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov *et al.*, 2009).

(±,E)-N'-[5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-ylidene]-2-(naphthalen-1-yl)acetohydrazide ethyl acetate monosolvate (I)

Crystal data

 $C_{27}H_{22}N_{2}O_{5} \cdot C_{4}H_{8}O_{2}$ $M_{r} = 542.57$ Triclinic, *P*1 a = 9.2210 (5) Å b = 12.1902 (8) Å c = 13.4982 (7) Å $a = 94.413 (5)^{\circ}$ $\beta = 95.172 (4)^{\circ}$ $\gamma = 111.561 (5)^{\circ}$ $V = 1395.40 (15) \text{ Å}^{3}$

Data collection

ROD, Synergy Custom system, HyPix-Arc 150 diffractometer
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.0000 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.212$ S = 1.095498 reflections 404 parameters Z = 2 F(000) = 572 $D_x = 1.291 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 7321 reflections $\theta = 3.3-75.2^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$ T = 293 KPlate, clear colourless $0.12 \times 0.1 \times 0.02 \text{ mm}$

 $T_{\min} = 0.912, T_{\max} = 1.000$ 15709 measured reflections 5498 independent reflections 3477 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$ $\theta_{\max} = 75.9^{\circ}, \theta_{\min} = 3.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 14$ $l = -16 \rightarrow 12$

60 restraints Primary atom site location: iterative Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1145P)^2 + 0.0876P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm ma}$	x < 0.001
$\Delta \rho_{\rm max} =$	= 0.50 e Å ⁻³
$\Delta \rho_{\rm min} =$	-0.25 e Å ⁻³

Extinction correction: SHELXL-2018/3 (Sheldrick 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0043 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) х Ζ v 01 0.64906 (14) 0.0691 (5) 0.6529(2) 0.67088 (14) 02 0.0732 (6) 0.3755 (3) 0.32732 (16) 0.78886 (14) H2 0.357223 0.255910 0.784880 0.110* O3 0.6861(2)0.29835 (14) 0.53395 (12) 0.0587(5)H3 0.734294 0.337833 0.492432 0.088* 04 1.22094 (14) 0.0699(5)0.8931(2)0.63511 (15) H4 1.232642 0.820055 0.604745 0.105* 05 0.32740 (13) 0.0676 (5) 0.9167(2)0.35560(15) N1 0.8079(2)0.48109 (16) 0.44746 (14) 0.0523(5)N2 0.52798 (17) 0.0559(5)0.8883(2)0.37020 (14) H2A 0.907953 0.600522 0.359940 0.067* C1 0.7675(3)0.54747 (19) 0.50946 (17) 0.0504(5)C2 0.48816 (19) 0.58533 (16) 0.0495(5)0.6743(3)C3 0.6336(3) 0.36660 (19) 0.59418 (17) 0.0497(5)C4 0.5359(3)0.3116(2)0.66263 (17) 0.0556(6) H4A 0.510446 0.231204 0.667796 0.067* C5 0.3773(2)0.72333 (18) 0.0561 (6) 0.4763(3)C6 0.5177(3)0.4979(2) 0.71828 (19) 0.0616(7)0.074* H6 0.478794 0.541832 0.760104 C7 0.0547 (6) 0.6165 (3) 0.5524(2)0.65115 (18) C8 0.7937 (4) 0.7331(2)0.6102(2)0.0692 (8) H8 0.729332 0.083* 0.879916 0.656079 C9 0.50939 (17) 0.0562 (6) 0.8033(3)0.6775(2)H9A 0.729095 0.689158 0.459701 0.067* H9B 0.908012 0.716126 0.491192 0.067* C10 0.8150(4)0.8617(2)0.6144(2)0.0618(7)C11A 0.941(4)0.942(2)0.6829 (18) 0.057 (4) 0.29(3)H11A 0.29(3)1.009448 0.917739 0.721640 0.068* C11B 0.9501 (17) 0.9468 (11) 0.6569 (10) 0.075(3)0.71(3)H11B 1.029305 0.923893 0.684204 0.090* 0.71(3)C12A 0.957 (3) 1.061(2)0.6892 (16) 0.054(4)0.29(3)1.115939 0.065* 0.29(3)H12A 1.032911 0.737333 0.9790 (14) 1.0664 (10) 0.6628 (10) 0.073 (3) 0.71(3)C12B H12B 1.075991 1.122273 0.691794 0.088* 0.71(3)C13 0.8629(3)1.1015(2)0.62542 (18) 0.0552 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C14A	0.754 (3)	1.017 (2)	0.561 (2)	0.063 (6)	0.29 (3)
H14A	0.716016	1.036696	0.501339	0.076*	0.29 (3)
C14B	0.7203 (11)	1.0200 (8)	0.5770 (8)	0.0591 (17)	0.71 (3)
H14B	0.637252	1.042150	0.555969	0.071*	0.71 (3)
C15A	0.696 (4)	0.897 (3)	0.583 (2)	0.060 (5)	0.29 (3)
H15A	0.590208	0.848653	0.577167	0.072*	0.29 (3)
C15B	0.7098 (16)	0.8998 (12)	0.5617 (11)	0.074 (3)	0.71 (3)
H15B	0.630181	0.845746	0.515181	0.089*	0.71 (3)
C16	0.9357 (3)	0.4563 (2)	0.31054 (17)	0.0557 (6)	
C17	1.0111 (3)	0.5114 (2)	0.22271 (18)	0.0657 (7)	
H17A	1.113605	0.506219	0.223075	0.079*	
H17B	1.025891	0.594748	0.228703	0.079*	
C18	0.9101 (3)	0.4491 (2)	0.12479 (18)	0.0599 (6)	
C19	0.8009 (4)	0.4899 (3)	0.0847 (2)	0.0792 (9)	
H19	0.787197	0.554213	0.118333	0.095*	
C20	0.7074 (4)	0.4338 (4)	-0.0093 (3)	0.0987 (12)	
H20	0.632133	0.460805	-0.036553	0.118*	
C21	0.7296 (5)	0.3416 (4)	-0.0578 (3)	0.0965 (11)	
H21	0.669012	0.306306	-0.118958	0.116*	
C22	0.8380 (4)	0.2977 (3)	-0.0206 (2)	0.0786 (9)	
C23	0.9276 (3)	0.3499 (2)	0.07340 (18)	0.0619 (7)	
C24	1.0342 (4)	0.3000 (3)	0.1086 (2)	0.0826 (9)	
H24	1.094272	0.331436	0.170610	0.099*	
C25	1.0540 (6)	0.2075 (4)	0.0561 (3)	0.1191 (15)	
H25	1.125586	0.176640	0.082417	0.143*	
C26	0.9669 (7)	0.1600 (4)	-0.0366 (4)	0.1339 (18)	
H26	0.982094	0.098063	-0.073114	0.161*	
C27	0.8617 (5)	0.2017 (4)	-0.0744 (3)	0.1051 (13)	
H27	0.803198	0.167824	-0.136491	0.126*	
O6	0.3415 (3)	0.09561 (19)	0.78449 (17)	0.0915 (7)	
07	0.3890 (3)	-0.04819 (19)	0.85469 (17)	0.0935 (7)	
C28	0.3659 (5)	0.1020 (3)	0.9623 (3)	0.1020 (12)	
H28A	0.358033	0.178276	0.961757	0.153*	
H28B	0.462489	0.110491	1.001444	0.153*	
H28C	0.278770	0.049573	0.991100	0.153*	
C29	0.3634 (4)	0.0516 (2)	0.8580 (2)	0.0724 (8)	
C30	0.3861 (6)	-0.1082 (3)	0.7563 (3)	0.1097 (13)	
H30A	0.449610	-0.051887	0.715369	0.132*	
H30B	0.279194	-0.143361	0.722555	0.132*	
C31	0.4493 (5)	-0.2009 (4)	0.7716 (3)	0.1133 (13)	
H31A	0.432660	-0.250460	0.709538	0.170*	
H31B	0.396736	-0.248231	0.820839	0.170*	
H31C	0.559927	-0.164463	0.794426	0.170*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0919 (14)	0.0403 (9)	0.0881 (12)	0.0322 (9)	0.0401 (11)	0.0149 (8)

02	0.0844 (14)	0.0609 (11)	0.0837 (12)	0.0294 (11)	0.0366 (11)	0.0241 (10)
03	0.0746 (12)	0.0409 (8)	0.0697 (11)	0.0291 (8)	0.0206 (9)	0.0091 (7)
04	0.0734 (13)	0.0367 (9)	0.0982 (14)	0.0202 (9)	0.0059 (10)	0.0081 (8)
05	0.0899 (14)	0.0518 (10)	0.0704 (11)	0.0340 (10)	0.0232 (10)	0.0093 (8)
N1	0.0621 (13)	0.0438 (10)	0.0561 (11)	0.0235 (9)	0.0148 (9)	0.0089 (8)
N2	0.0724 (14)	0.0402 (10)	0.0598 (11)	0.0232 (10)	0.0201 (10)	0.0102 (8)
C1	0.0600 (15)	0.0398 (11)	0.0555 (12)	0.0230 (11)	0.0095 (11)	0.0074 (9)
C2	0.0575 (14)	0.0393 (11)	0.0571 (12)	0.0233 (10)	0.0106 (11)	0.0073 (9)
C3	0.0532 (14)	0.0405 (11)	0.0589 (13)	0.0220 (10)	0.0069 (11)	0.0057 (9)
C4	0.0626 (16)	0.0428 (12)	0.0643 (14)	0.0220 (11)	0.0094 (12)	0.0115 (10)
C5	0.0628 (16)	0.0511 (13)	0.0609 (14)	0.0257 (12)	0.0145 (12)	0.0146 (11)
C6	0.0747 (18)	0.0519 (14)	0.0676 (15)	0.0308 (13)	0.0239 (13)	0.0097 (11)
C7	0.0654 (16)	0.0417 (12)	0.0648 (14)	0.0272 (11)	0.0138 (12)	0.0102 (10)
C8	0.089 (2)	0.0471 (14)	0.0797 (17)	0.0298 (14)	0.0289 (15)	0.0120 (12)
C9	0.0717 (17)	0.0420 (12)	0.0617 (14)	0.0266 (12)	0.0160 (12)	0.0114 (10)
C10	0.0781 (19)	0.0458 (13)	0.0735 (16)	0.0326 (14)	0.0247 (14)	0.0125 (12)
C11A	0.076 (8)	0.048 (7)	0.049 (7)	0.029 (5)	-0.004 (6)	0.003 (5)
C11B	0.085 (4)	0.061 (3)	0.090 (6)	0.040 (3)	0.004 (5)	0.019 (4)
C12A	0.068 (8)	0.047 (6)	0.054 (7)	0.030 (6)	0.001 (6)	0.005 (5)
C12B	0.070 (4)	0.051 (3)	0.096 (6)	0.023 (3)	0.000 (4)	0.007 (4)
C13	0.0627 (16)	0.0356 (11)	0.0691 (15)	0.0194 (11)	0.0127 (12)	0.0069 (10)
C14A	0.063 (9)	0.064 (7)	0.075 (8)	0.040 (6)	0.002 (6)	0.006 (6)
C14B	0.051 (3)	0.043 (2)	0.087 (4)	0.023 (2)	0.011 (3)	0.001 (2)
C15A	0.055 (7)	0.049 (7)	0.062 (8)	0.004 (5)	0.009 (6)	-0.002 (6)
C15B	0.087 (5)	0.045 (3)	0.081 (6)	0.018 (3)	0.002 (4)	-0.003 (3)
C16	0.0619 (16)	0.0452 (12)	0.0579 (13)	0.0180 (11)	0.0104 (11)	0.0015 (10)
C17	0.0754 (19)	0.0553 (15)	0.0600 (15)	0.0158 (13)	0.0196 (13)	0.0017 (11)
C18	0.0638 (16)	0.0591 (15)	0.0588 (14)	0.0209 (13)	0.0206 (12)	0.0158 (11)
C19	0.081 (2)	0.082 (2)	0.087 (2)	0.0371 (17)	0.0281 (18)	0.0308 (16)
C20	0.064 (2)	0.127 (3)	0.108 (3)	0.031 (2)	0.009 (2)	0.055 (2)
C21	0.085 (3)	0.111 (3)	0.075 (2)	0.013 (2)	0.0124 (18)	0.019 (2)
C22	0.078 (2)	0.079 (2)	0.0632 (17)	0.0101 (17)	0.0154 (15)	0.0095 (15)
C23	0.0668 (17)	0.0615 (15)	0.0526 (13)	0.0161 (13)	0.0172 (12)	0.0093 (11)
C24	0.103 (3)	0.084 (2)	0.0773 (18)	0.050 (2)	0.0276 (17)	0.0138 (16)
C25	0.170 (4)	0.117 (3)	0.109 (3)	0.091 (3)	0.051 (3)	0.015 (3)
C26	0.189 (6)	0.103 (3)	0.118 (4)	0.060 (4)	0.056 (4)	-0.006 (3)
C27	0.127 (4)	0.089 (3)	0.071 (2)	0.011 (2)	0.023 (2)	-0.0125 (18)
06	0.1160 (19)	0.0635 (13)	0.1004 (15)	0.0374 (13)	0.0119 (13)	0.0261 (11)
O7	0.131 (2)	0.0734 (14)	0.0982 (15)	0.0582 (14)	0.0304 (14)	0.0243 (11)
C28	0.134 (3)	0.098 (3)	0.099 (2)	0.064 (3)	0.043 (2)	0.0249 (19)
C29	0.0725 (19)	0.0546 (15)	0.096 (2)	0.0243 (14)	0.0256 (16)	0.0242 (14)
C30	0.150 (4)	0.080 (2)	0.106 (3)	0.053 (3)	0.015 (3)	0.000 (2)
C31	0.131 (4)	0.100 (3)	0.129 (3)	0.065 (3)	0.035 (3)	0.004 (2)

Geometric parameters (Å, °)

01	1.361 (3)	C14A—H14A	0.9300
O1—C8	1.413 (3)	C14A—C15A	1.43 (3)

O2—H2	0.8200	C14B—H14B	0.9300
O2—C5	1.353 (3)	C14B—C15B	1.430 (14)
O3—H3	0.8200	C15A—H15A	0.9300
O3—C3	1.361 (3)	C15B—H15B	0.9300
O4—H4	0.8200	C16—C17	1.506 (3)
O4—C13	1.371 (3)	C17—H17A	0.9700
O5—C16	1.217 (3)	C17—H17B	0.9700
N1—N2	1.372 (3)	C17—C18	1.515 (4)
N1—C1	1.291 (3)	C18—C19	1.367 (4)
N2—H2A	0.8600	C18—C23	1.415 (4)
N2—C16	1.356 (3)	С19—Н19	0.9300
C1—C2	1.458 (3)	C19—C20	1.434 (5)
C1—C9	1.496 (3)	C20—H20	0.9300
C2—C3	1.406 (3)	C20—C21	1.346 (5)
C2—C7	1.404 (3)	C21—H21	0.9300
C3—C4	1.384 (3)	C21—C22	1.372 (5)
C4—H4A	0.9300	C22—C23	1.413 (4)
C4—C5	1.385 (3)	C22—C27	1.426 (5)
C5—C6	1.386 (3)	C23—C24	1.400 (4)
С6—Н6	0.9300	C24—H24	0.9300
C6—C7	1.374 (3)	C24—C25	1.363 (4)
С8—Н8	0.9800	C25—H25	0.9300
C8—C9	1.497 (3)	C25—C26	1.383 (7)
C8—C10	1.502 (3)	C26—H26	0.9300
С9—Н9А	0.9700	C26—C27	1.331 (6)
С9—Н9В	0.9700	C27—H27	0.9300
C10—C11A	1.41 (3)	O6—C29	1.199 (3)
C10—C11B	1.337 (13)	O7—C29	1.320 (3)
C10—C15A	1.36 (3)	O7—C30	1.459 (4)
C10—C15B	1.386 (13)	C28—H28A	0.9600
C11A—H11A	0.9300	C28—H28B	0.9600
C11A—C12A	1.40 (3)	C28—H28C	0.9600
C11B—H11B	0.9300	C28—C29	1.487 (5)
C11B—C12B	1.377 (14)	С30—Н30А	0.9700
C12A—H12A	0.9300	C30—H30B	0.9700
C12A—C13	1.41 (2)	C30—C31	1.469 (5)
C12B—H12B	0.9300	C31—H31A	0.9600
C12B—C13	1.362 (12)	C31—H31B	0.9600
C13—C14A	1.33 (2)	C31—H31C	0.9600
C13—C14B	1.388 (9)		
С7—О1—С8	115.96 (18)	C13—C14B—C15B	115.5 (9)
С5—О2—Н2	109.5	C15B—C14B—H14B	122.2
С3—О3—Н3	109.5	C10-C15A-C14A	112 (2)
C13—O4—H4	109.5	C10—C15A—H15A	124.1
C1—N1—N2	120.20 (19)	C14A—C15A—H15A	124.1
N1—N2—H2A	121.1	C10—C15B—C14B	121.7 (11)
C16—N2—N1	117.90 (19)	C10—C15B—H15B	119.1

C16—N2—H2A	121.1	C14B—C15B—H15B	119.1
N1—C1—C2	116.19 (19)	O5—C16—N2	121.9 (2)
N1—C1—C9	126.6 (2)	O5-C16-C17	123.7 (2)
C2—C1—C9	117.23 (18)	N2-C16-C17	114.5 (2)
C3—C2—C1	122.97 (18)	C16—C17—H17A	109.4
C7—C2—C1	119.7 (2)	C16—C17—H17B	109.4
C7—C2—C3	117.3 (2)	C16—C17—C18	111.0 (2)
03—C3—C2	121.0 (2)	H17A—C17—H17B	108.0
03-C3-C4	117.68 (19)	C18—C17—H17A	109.4
C4-C3-C2	121.30 (19)	C18—C17—H17B	109.4
C3—C4—H4A	120.3	C19 - C18 - C17	1194(3)
$C_3 - C_4 - C_5$	119 5 (2)	C19 - C18 - C23	119.1 (3)
C5-C4-H4A	120.3	C_{23} C_{18} C_{17}	121.2(3)
02-C5-C4	120.3 122.1(2)	C_{18} C_{19} H_{19}	121.5 (2)
02 - 05 - 04	1174(2)	C18 - C19 - C20	120.0 120.1(3)
C_{4} C_{5} C_{6}	117.4(2) 120.6(2)	$C_{10} - C_{10} - H_{10}$	120.1 (5)
C5 C6 H6	120.0 (2)	$C_{10} = C_{10} = H_{10}$	120.0
C_{3}	120.2 110.7(2)	$C_{19} = C_{20} = C_{10}$	120.3 110.2(2)
C^{-}	119.7 (2)	$C_{21} = C_{20} = C_{19}$	119.5 (5)
C = C = H O	120.2	$C_{21} = C_{20} = H_{20}$	120.5
01 - 07 - 02	121.2(2)	$C_{20} = C_{21} = H_{21}$	118.0 122.7(2)
01 - 07 - 03	117.2(2)	$C_{20} = C_{21} = C_{22}$	122.7 (3)
$C_{0} - C_{1} - C_{2}$	121.6 (2)	C22—C21—H21	118.6
01—C8—H8	106.8	$C_{21} = C_{22} = C_{23}$	118.5 (3)
01	113.1 (2)	C21—C22—C27	121.6 (3)
01	108.5 (2)	C23—C22—C27	119.9 (3)
С9—С8—Н8	106.8	C22—C23—C18	120.0 (3)
C9—C8—C10	114.5 (2)	C24—C23—C18	123.8 (3)
С10—С8—Н8	106.8	C24—C23—C22	116.1 (3)
C1—C9—C8	111.10 (19)	C23—C24—H24	118.5
С1—С9—Н9А	109.4	C25—C24—C23	123.0 (3)
С1—С9—Н9В	109.4	C25—C24—H24	118.5
С8—С9—Н9А	109.4	С24—С25—Н25	120.2
С8—С9—Н9В	109.4	C24—C25—C26	119.5 (4)
H9A—C9—H9B	108.0	С26—С25—Н25	120.2
C11A—C10—C8	116.4 (14)	С25—С26—Н26	119.5
C11B—C10—C8	120.6 (7)	C27—C26—C25	120.9 (4)
C11B—C10—C15B	116.0 (9)	С27—С26—Н26	119.5
C15A—C10—C8	122.4 (14)	С22—С27—Н27	119.7
C15A—C10—C11A	118 (2)	C26—C27—C22	120.6 (4)
C15B—C10—C8	122.7 (6)	С26—С27—Н27	119.7
C10—C11A—H11A	121.9	C29—O7—C30	117.7 (3)
C12A—C11A—C10	116 (3)	H28A—C28—H28B	109.5
C12A—C11A—H11A	121.9	H28A—C28—H28C	109.5
C10—C11B—H11B	118.0	H28B—C28—H28C	109.5
C10—C11B—C12B	124.0 (12)	C29—C28—H28A	109.5
C12B—C11B—H11B	118.0	C29—C28—H28B	109.5
C11A—C12A—H12A	118.7	C29—C28—H28C	109.5
C11A—C12A—C13	123 (2)	O6—C29—O7	123.1 (3)

C13—C12A—H12A	118.7	O6—C29—C28	124.7 (3)
C11B—C12B—H12B	120.6	O7—C29—C28	112.2 (3)
C13—C12B—C11B	118.8 (11)	O7—C30—H30A	110.2
C13—C12B—H12B	120.6	O7—C30—H30B	110.2
04-C13-C12A	117.7 (11)	07 - C30 - C31	107.6 (3)
04-C13-C14B	120 9 (5)	H30A-C30-H30B	108.5
C12B-C13-O4	117.6 (5)	C31-C30-H30A	110.2
C12B $C13$ $C14B$	121 5 (7)	C_{31} C_{30} H_{30B}	110.2
C12D = C13 = C14D C14A = C13 = O4	127.3(1)	C_{30} C_{31} H_{31A}	109.5
$C_{14} - C_{13} - C_{12}$	115.0(16)	C_{30} C_{31} H_{31B}	109.5
C_{13} C_{14A} H_{14A}	120.1	C_{30} C_{31} H_{31C}	109.5
$C_{13} = C_{14}A = C_{15}A$	120.1	$H_{31A} = C_{31} = H_{31B}$	109.5
C15A C14A H14A	120 (2)	$H_{21A} = C_{21} = H_{21C}$	109.5
C13 C14R H14R	120.1	$H_{21}R = C_{21} = H_{21}C$	109.5
С13—С14В—п14В	122.2	HSIB-CSI-HSIC	109.5
01	-50.2(3)	C9-C8-C10-C11B	-1044(7)
01 - C8 - C10 - C11A	111.6(14)	C9-C8-C10-C15A	81.1 (15)
01 - C8 - C10 - C11B	128 3 (7)	C9-C8-C10-C15B	65.0 (8)
01 - C8 - C10 - C154	-46.3(16)	$C_{10} - C_{8} - C_{9} - C_{1}$	-1752(2)
O1 C8 C10 C15R	-624(8)	C_{10} C_{11} C_{12} C_{13}	-5(3)
$0^{2}-0^{5}-0^{6}-0^{7}$	-1783(2)	C10-C11B-C12B-C13	16(14)
02 - 03 - 00 - 07	-178.2(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0(1+)
03 - 03 - 04 - 05	-156(2)	$C_{11A} = C_{10} = C_{13A} = C_{14A}$	-177.2(10)
04 - C13 - C14R - C15R	130(2) 172 1 (0)	$C_{11A} = C_{12A} = C_{13} = C_{14A}$	177.2(19)
04 - 013 - 014 - 013 - 019	1/3.1(9)	$C_{11} = C_{12} = C_{13} = C_{14} = C_{14}$	2(3)
05-016-017-018	00.2(4)	C11B - C10 - C13B - C14B	-19(2)
N1 - N2 - C16 - C17	-4.2(4)	C11D - C12D - C13 - O4	1/8.0(7)
NI = N2 = CI0 = CI7	1/5.2(2)	C12B - C12B - C13 - C14B	-3.6(11)
NI = CI = C2 = C3	2.0 (4)	C12A - C13 - C14A - C15A	25 (3)
NI-CI-C2-C7	-175.6(2)	C12B— $C13$ — $C14B$ — $C15B$	-5.3 (12)
NI-CI-C9-C8	-158.5 (3)	C13— $C14A$ — $C15A$ — $C10$	-48 (4)
N2—N1—C1—C2	176.4 (2)	C13—C14B—C15B—C10	17 (2)
N2—N1—C1—C9	-2.0 (4)	C15A—C10—C11A—C12A	-19 (3)
N2—C16—C17—C18	-113.2 (3)	C15B—C10—C11B—C12B	9.3 (15)
C1—N1—N2—C16	176.4 (2)	C16—C17—C18—C19	91.2 (3)
C1—C2—C3—O3	3.0 (4)	C16—C17—C18—C23	-89.4 (3)
C1—C2—C3—C4	-175.5 (2)	C17—C18—C19—C20	178.3 (3)
C1—C2—C7—O1	-3.5 (4)	C17—C18—C23—C22	-176.4 (2)
C1—C2—C7—C6	174.6 (2)	C17—C18—C23—C24	1.5 (4)
C2-C1-C9-C8	23.1 (3)	C18—C19—C20—C21	-0.7(5)
C2—C3—C4—C5	0.3 (4)	C18—C23—C24—C25	-177.2 (3)
C3—C2—C7—O1	178.6 (2)	C19—C18—C23—C22	3.0 (4)
C3—C2—C7—C6	-3.2 (4)	C19—C18—C23—C24	-179.1 (3)
C3—C4—C5—O2	177.4 (2)	C19—C20—C21—C22	0.6 (5)
C3—C4—C5—C6	-2.1 (4)	C20—C21—C22—C23	1.3 (5)
C4—C5—C6—C7	1.2 (4)	C20—C21—C22—C27	-178.6 (3)
C5—C6—C7—O1	179.8 (2)	C21—C22—C23—C18	-3.1 (4)
C5—C6—C7—C2	1.5 (4)	C21—C22—C23—C24	178.8 (3)
C7—O1—C8—C9	52.2 (3)	C21—C22—C27—C26	-179.6 (4)

~ ~ ~ ~ ~ ~ ~ ~		~~~ ~~	
C7—O1—C8—C10	-179.6 (2)	C22—C23—C24—C25	0.8 (5)
C7—C2—C3—O3	-179.3 (2)	C23-C18-C19-C20	-1.1 (4)
C7—C2—C3—C4	2.3 (4)	C23—C22—C27—C26	0.5 (6)
C8—O1—C7—C2	-24.6 (4)	C23—C24—C25—C26	0.5 (6)
C8—O1—C7—C6	157.2 (2)	C24—C25—C26—C27	-1.4 (7)
C8—C10—C11A—C12A	-177.8 (16)	C25—C26—C27—C22	0.9 (7)
C8—C10—C11B—C12B	179.4 (7)	C27—C22—C23—C18	176.8 (3)
C8—C10—C15A—C14A	-159.4 (18)	C27—C22—C23—C24	-1.3 (4)
C8—C10—C15B—C14B	171.4 (10)	C29—O7—C30—C31	168.3 (3)
C9—C1—C2—C3	-179.4 (2)	C30—O7—C29—O6	-1.6 (5)
C9—C1—C2—C7	2.9 (3)	C30—O7—C29—C28	178.6 (3)
C9—C8—C10—C11A	-121.0 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O3—H3…N1	0.82	1.80	2.527 (2)	147
O2—H2…O6	0.82	1.91	2.720 (3)	173
O4—H4···O3 ⁱ	0.82	1.93	2.730 (3)	166
C9—H9 <i>B</i> ····O4 ⁱⁱ	0.97	2.57	3.461 (3)	153

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+2, –*y*+2, –*z*+1.

(±,E)-*N*'-[5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-ylidene]-4-hydroxybenzohydrazide ethanol monosolvate (II)

Crystal data

$C_{22}H_{18}N_2O_6 \cdot C_2H_6O$	Z = 2
$M_r = 452.45$	F(000) = 476
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.289 { m Mg} { m m}^{-3}$
a = 10.0964 (9) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
b = 10.1570 (8) Å	Cell parameters from 5399 reflections
c = 12.3628 (10) Å	$\theta = 3.9-76.0^{\circ}$
$\alpha = 84.557 \ (7)^{\circ}$	$\mu=0.80~\mathrm{mm^{-1}}$
$\beta = 68.169 \ (8)^{\circ}$	T = 293 K
$y = 82.529 \ (7)^{\circ}$	Plate, yellow
$V = 1165.39 (18) Å^3$	$0.18\times0.16\times0.04~mm$
Data collection	
ROD, Synergy Custom system, HyPix-Arc 150	$T_{\min} = 0.660, \ T_{\max} = 1.000$
diffractometer	12522 measured reflections

diffractometer	12522 measured reflections
Radiation source: Rotating-anode X-ray tube,	4585 independent reflections
Rigaku (Cu) X-ray Source	2642 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.045$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\rm max} = 79.0^\circ, \ \theta_{\rm min} = 3.9^\circ$
ω scans	$h = -12 \rightarrow 11$
Absorption correction: multi-scan	$k = -11 \rightarrow 12$
(CrysAlisPro; Rigaku OD, 2022)	$l = -15 \rightarrow 14$
Refinement	
Refinement on F^2	$R[F^2 > 2\sigma(F^2)] = 0.086$
Least-squares matrix: full	$wR(F^2) = 0.301$

S = 1.074585 reflections
405 parameters
136 restraints
Hydrogen site location: mixed
H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1916P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Special details

 $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.015 (3)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	-0.1351 (2)	0.6849 (2)	0.79739 (19)	0.0754 (7)	
02	-0.3070 (2)	0.4492 (2)	0.5747 (2)	0.0785 (7)	
H2	-0.342557	0.411258	0.638824	0.118*	
O3	0.0348 (2)	0.7463 (2)	0.37844 (18)	0.0724 (6)	
Н3	0.085010	0.796329	0.390234	0.109*	
05	0.3098 (3)	0.9705 (2)	0.3030(2)	0.0837 (7)	
06	0.6730 (3)	1.3952 (3)	0.3686 (2)	0.0925 (8)	
H6	0.640291	1.442748	0.424580	0.139*	
N1	0.1291 (3)	0.8729 (2)	0.4979(2)	0.0644 (7)	
N2	0.2153 (3)	0.9675 (2)	0.4986 (2)	0.0654 (7)	
H2A	0.211270	0.997485	0.562629	0.079*	
C1	0.0487 (3)	0.8194 (3)	0.5956 (3)	0.0607 (7)	
C2	-0.0431 (3)	0.7220 (3)	0.5882 (3)	0.0610(7)	
C3	-0.0481 (3)	0.6899 (3)	0.4820 (3)	0.0609 (8)	
C4	-0.1388 (3)	0.6004 (3)	0.4786 (3)	0.0639 (8)	
H4	-0.144130	0.582551	0.407948	0.077*	
C5	-0.2211 (3)	0.5383 (3)	0.5811 (3)	0.0654 (8)	
C6	-0.2188 (3)	0.5665 (3)	0.6873 (3)	0.0682 (8)	
H6A	-0.275641	0.524598	0.756009	0.082*	
C7	-0.1302 (3)	0.6585 (3)	0.6892 (3)	0.0643 (8)	
C9	0.0375 (4)	0.8466 (4)	0.7136 (3)	0.0741 (9)	
H9AA	0.045689	0.940341	0.715850	0.089*	0.340 (11)
H9AB	0.117221	0.796585	0.729797	0.089*	0.340 (11)
H9BC	0.130296	0.866285	0.710629	0.089*	0.660 (11)
H9BD	-0.029867	0.924754	0.739493	0.089*	0.660 (11)
O4_1	-0.106 (5)	0.864 (3)	1.260 (2)	0.073 (5)	0.340 (11)
H4_1	-0.030662	0.825179	1.262161	0.110*	0.340 (11)
C8_1	-0.0995 (14)	0.8119 (11)	0.8069 (7)	0.066 (3)	0.340 (11)
H8_1	-0.176753	0.877540	0.800365	0.079*	0.340 (11)
C10_1	-0.097 (2)	0.8167 (15)	0.9282 (10)	0.061 (3)	0.340 (11)
C11 1	-0.175 (2)	0.9296 (17)	0.9914 (13)	0.070 (3)	0.340 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11_1	-0.225729	0.993774	0.958569	0.084*	0.340 (11)
C12_1	-0.176 (3)	0.943 (2)	1.1033 (17)	0.077 (4)	0.340 (11)
H12_1	-0.209873	1.023414	1.139562	0.092*	0.340 (11)
C13_1	-0.1256 (16)	0.8330 (19)	1.1593 (13)	0.056 (3)	0.340 (11)
C14_1	-0.039 (2)	0.730 (2)	1.0937 (16)	0.080 (5)	0.340 (11)
H14_1	0.009772	0.665175	1.126783	0.096*	0.340 (11)
C15 1	-0.026 (2)	0.7250 (18)	0.9820 (14)	0.076 (4)	0.340 (11)
H15 1	0.034812	0.655947	0.939016	0.092*	0.340 (11)
$O4\overline{2}$	-0.135(2)	0.8700 (16)	1.2634 (11)	0.077 (3)	0.660 (11)
H4 2	-0.096223	0.813666	1.297414	0.115*	0.660 (11)
C8 2	-0.0097(7)	0.7352 (7)	0.7987 (4)	0.0706 (19)	0.660 (11)
H8 2	0.068019	0.662710	0.777363	0.085*	0.660 (11)
C10 2	-0.0381(10)	0.7645 (10)	0.9230 (6)	0.071 (2)	0.660 (11)
C11_2	-0.1351(10)	0 8742 (10)	0.9700(7)	0.076(2)	0.660(11)
H11 2	-0 178298	0.925612	0.923456	0.092*	0.660(11)
C12 2	-0.1690(17)	0.923012 0.9089 (12)	1 0835 (10)	0.092	0.660(11)
H12 2	-0.243121	0.974346	1 116940	0.009 (5)	0.660(11)
$C_{13}^{1112}_{2}$	-0.0882(10)	0.974340 0.8423(11)	1.110740	0.055	0.000(11)
$C13_2$	0.0882(10)	0.0423(11) 0.7302(12)	1.1437(8) 1 1015(0)	0.004(2)	0.000(11)
U14_2	0.0007 (13)	0.7302(12)	1.1013 (9)	0.078 (2)	0.000(11)
П14_2 С15_2	0.045577	0.077755	1.147700	0.094	0.000(11)
U15_2	0.0274 (9)	0.0940 (9)	0.9912(7)	0.078 (2)	0.000(11)
H15_2	0.091550	0.619884	0.962366	0.093*	0.660 (11)
C16_2	0.3063 (3)	1.0107 (3)	0.3936 (3)	0.0636 (8)	
C17_2	0.4023 (3)	1.1118 (3)	0.3940 (3)	0.0608 (7)	
C18_2	0.4883 (3)	1.1626 (3)	0.2872 (3)	0.0723 (9)	
H18_2	0.485608	1.132852	0.219239	0.087*	
C19_2	0.5787 (4)	1.2575 (4)	0.2797 (3)	0.0819 (10)	
H19_2	0.636572	1.291323	0.207324	0.098*	
C20_2	0.5820 (3)	1.3016 (3)	0.3814 (3)	0.0707 (9)	
C21_2	0.4985 (3)	1.2513 (3)	0.4867 (3)	0.0693 (8)	
H21_2	0.501184	1.281219	0.554621	0.083*	
C22_2	0.4093 (3)	1.1559 (3)	0.4939 (3)	0.0659 (8)	
H22_2	0.353493	1.121001	0.566623	0.079*	
O1 3	-0.388 (2)	1.274 (2)	0.7634 (16)	0.091 (4)	0.433 (11)
H1 3	-0.340646	1.201827	0.758789	0.136*	0.433 (11)
C1 3	-0.5178 (19)	1.2716 (16)	0.8636 (15)	0.098 (4)	0.433 (11)
HIA 3	-0.494641	1.243379	0.932237	0.117*	0.433 (11)
H1B 3	-0.575177	1.207245	0.853981	0.117*	0.433 (11)
$C2\overline{3}$	-0.6057(13)	1.4090 (11)	0.8819 (13)	0.143 (6)	0.433 (11)
H2A 3	-0.596826	1.450423	0.806772	0.214*	0.433 (11)
H2B 3	-0 577666	1 466963	0 924742	0.214*	0.433(11)
H2C_3	-0.703526	1 391903	0.924062	0.214*	0.433(11)
01.4	-0.412(2)	1 3022 (18)	0.924002 0.7513 (12)	0.214 0.106 (4)	0.455(11) 0.567(11)
H1 4	-0.350775	1 242391	0.755089	0.159*	0.567(11)
$\Gamma \Gamma_{-1}$	-0.527(2)	1 313 (2)	0.8644 (15)	0.163 (8)	0.567(11)
U_1_4	-0.600/27	1.313 (2)	0.862817	0.105 (0)	0.307(11) 0.567(11)
111A_4	0.00943/	1.2/3314	0.002017	0.190*	0.307(11)
ПІ Б_ 4	-0.334448	1.4001/3	0.001139	0.190	0.307(11)
C2_4	-0.4/98 (13)	1.2400 (19)	0.9615 (9)	0.206 (8)	0.567 (11)

H2A_4	-0.447910	1.148451	0.944346	0.310*	0.567 (11)	
H2B_4	-0.556780	1.244951	1.036036	0.310*	0.567 (11)	
H2C_4	-0.401730	1.283391	0.963206	0.310*	0.567 (11)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0832 (14)	0.0856 (15)	0.0645 (14)	-0.0407 (12)	-0.0238 (10)	-0.0078 (11)
O2	0.0804 (14)	0.0765 (14)	0.0888 (16)	-0.0392 (11)	-0.0314 (13)	-0.0090 (12)
03	0.0789 (14)	0.0811 (15)	0.0653 (13)	-0.0354 (11)	-0.0278 (10)	0.0010(11)
05	0.1085 (17)	0.0820 (15)	0.0691 (15)	-0.0476 (13)	-0.0290 (12)	-0.0070 (11)
06	0.0878 (16)	0.0978 (19)	0.099 (2)	-0.0569 (14)	-0.0259 (13)	-0.0063 (14)
N1	0.0650 (14)	0.0629 (15)	0.0726 (17)	-0.0284 (11)	-0.0269 (12)	0.0000 (12)
N2	0.0682 (15)	0.0660 (15)	0.0703 (16)	-0.0289 (12)	-0.0270 (12)	-0.0056 (12)
C1	0.0607 (16)	0.0604 (17)	0.0678 (18)	-0.0188 (13)	-0.0266 (13)	-0.0051 (13)
C2	0.0598 (16)	0.0607 (17)	0.0676 (19)	-0.0216 (13)	-0.0239 (13)	-0.0037 (14)
C3	0.0626 (16)	0.0604 (17)	0.0646 (18)	-0.0175 (13)	-0.0252 (13)	-0.0030 (13)
C4	0.0621 (16)	0.0664 (18)	0.0709 (19)	-0.0189 (14)	-0.0282 (14)	-0.0068 (15)
C5	0.0598 (16)	0.0637 (18)	0.080 (2)	-0.0207 (13)	-0.0266 (14)	-0.0121 (15)
C6	0.0642 (17)	0.0693 (19)	0.072 (2)	-0.0276 (14)	-0.0191 (14)	-0.0037 (15)
C7	0.0594 (16)	0.0702 (19)	0.0664 (19)	-0.0203 (13)	-0.0202 (13)	-0.0109 (14)
C9	0.079 (2)	0.081 (2)	0.072 (2)	-0.0358 (16)	-0.0279 (16)	-0.0060 (16)
O4_1	0.073 (11)	0.091 (9)	0.065 (7)	-0.011 (6)	-0.029 (6)	-0.029 (6)
C8 1	0.078 (7)	0.060 (6)	0.066 (5)	-0.025 (5)	-0.029(5)	-0.002 (4)
C10_1	0.093 (11)	0.047 (8)	0.057 (6)	-0.028 (6)	-0.032 (7)	-0.012 (4)
C11_1	0.088 (10)	0.068 (9)	0.060 (7)	-0.012 (6)	-0.032 (6)	-0.012 (5)
C12_1	0.100 (10)	0.090 (9)	0.062 (8)	-0.035 (8)	-0.043 (8)	-0.017 (6)
C13_1	0.040 (7)	0.090 (6)	0.041 (5)	-0.050 (5)	-0.004(4)	0.001 (4)
C14_1	0.096 (14)	0.094 (8)	0.066 (7)	-0.026 (8)	-0.039 (7)	-0.016 (5)
C15_1	0.094 (12)	0.080 (9)	0.068 (7)	-0.002 (7)	-0.044 (8)	-0.014 (6)
O4_2	0.086 (9)	0.086 (4)	0.061 (3)	-0.022 (4)	-0.027 (3)	-0.003 (3)
C8_2	0.067 (3)	0.078 (4)	0.074 (3)	-0.024 (3)	-0.026 (2)	-0.011 (2)
C10_2	0.076 (5)	0.071 (6)	0.073 (4)	-0.019 (3)	-0.028 (3)	-0.009 (3)
C11_2	0.089 (6)	0.074 (7)	0.075 (5)	-0.015 (4)	-0.037 (5)	-0.012 (4)
C12_2	0.090 (4)	0.096 (6)	0.074 (5)	-0.020 (5)	-0.037 (4)	-0.020 (4)
C13_2	0.047 (4)	0.083 (4)	0.062 (4)	-0.039 (3)	-0.009 (3)	-0.008 (3)
C14_2	0.080 (6)	0.091 (4)	0.072 (4)	-0.024 (4)	-0.030 (3)	-0.015 (3)
C15_2	0.078 (5)	0.085 (5)	0.075 (4)	-0.013 (3)	-0.030 (3)	-0.014 (3)
C16_2	0.0712 (18)	0.0588 (17)	0.0642 (19)	-0.0208 (14)	-0.0236 (14)	-0.0042 (14)
C17_2	0.0573 (15)	0.0597 (17)	0.0670 (19)	-0.0153 (13)	-0.0208 (13)	-0.0053 (13)
C18_2	0.0748 (19)	0.077 (2)	0.067 (2)	-0.0291 (16)	-0.0208 (15)	-0.0048 (15)
C19_2	0.076 (2)	0.096 (2)	0.074 (2)	-0.0429 (18)	-0.0173 (16)	-0.0016 (18)
C20_2	0.0616 (17)	0.073 (2)	0.084 (2)	-0.0257 (14)	-0.0270 (15)	-0.0075 (16)
C21_2	0.0640 (17)	0.073 (2)	0.075 (2)	-0.0218 (15)	-0.0238 (15)	-0.0100 (16)
C22_2	0.0654 (17)	0.0676 (18)	0.0684 (19)	-0.0223 (14)	-0.0228 (14)	-0.0071 (14)
01_3	0.096 (7)	0.060 (8)	0.086 (6)	-0.019 (4)	0.001 (5)	0.009 (4)
C1_3	0.100 (8)	0.083 (8)	0.091 (9)	-0.023 (6)	-0.006 (5)	-0.012 (6)
C2_3	0.100 (8)	0.080(7)	0.189 (14)	0.002 (6)	0.017 (7)	-0.022 (8)

01.4	0 134 (8)	0.069 (8)	0 102 (5)	-0.032(5)	-0.019(5)	-0.009 (5)
C1 4	0.179 (15)	0.154 (18)	0.132 (10)	-0.079(13)	-0.014(7)	0.018 (10)
C2_4	0.174 (11)	0.36 (2)	0.077 (6)	-0.065 (12)	-0.031 (6)	0.000 (9)

Geometric p	parameters	(Å,	9
-------------	------------	-----	---

01—C7	1.370 (4)	C15 1—H15 1	0.9300
O1—C8 1	1.410 (9)	O4 2—H4 2	0.8200
01	1.433 (5)	O4_2—C13_2	1.397 (10)
O2—H2	0.8200	C8 ² —H8 ²	0.9800
O2—C5	1.359 (3)	C8 2-C10 2	1.506 (8)
O3—H3	0.8200	$C10^{-}2-C11^{-}2$	1.398 (10)
O3—C3	1.363 (3)	C10 ² —C15 ²	1.356 (9)
O5—C16 2	1.215 (3)	C11 ² —H11 ²	0.9300
O6—H6	0.8200	C11_2_C12_2	1.383 (9)
O6—C20_2	1.366 (3)	C12_2—H12_2	0.9300
N1—N2	1.380 (3)	C12_2—C13_2	1.393 (10)
N1-C1	1.294 (4)	C13_2—C14_2	1.375 (9)
N2—H2A	0.8600	C14_2—H14_2	0.9300
N2-C16_2	1.354 (4)	C14_2C15_2	1.365 (9)
C1—C2	1.471 (3)	C15_2—H15_2	0.9300
C1—C9	1.471 (4)	C16_2C17_2	1.502 (4)
C2—C3	1.403 (4)	C17_2—C18_2	1.378 (4)
C2—C7	1.388 (4)	C17_2—C22_2	1.382 (4)
C3—C4	1.385 (4)	C18_2—H18_2	0.9300
C4—H4	0.9300	C18 2—C19 2	1.386 (4)
C4—C5	1.377 (4)	C19_2—H19_2	0.9300
C5—C6	1.378 (4)	C19_2—C20_2	1.387 (5)
С6—Н6А	0.9300	C20_2—C21_2	1.355 (5)
С6—С7	1.383 (4)	C21_2—H21_2	0.9300
С9—Н9АА	0.9700	C21_2_C22_2	1.382 (4)
С9—Н9АВ	0.9700	C22 2—H22 2	0.9300
C9—H9BC	0.9700	O1_3—H1_3	0.8200
C9—H9BD	0.9700	O1 3—C1 3	1.431 (11)
C9—C8 1	1.494 (11)	C1 3—H1A 3	0.9700
C9—C8_2	1.469 (7)	C1_3—H1B_3	0.9700
O4 1—H4 1	0.8200	C1_3—C2_3	1.541 (12)
O4 1—C13 1	1.405 (15)	C2_3—H2A_3	0.9601
C8_1—H8_1	0.9800	C2_3—H2B_3	0.9599
C8_1—C10_1	1.515 (11)	C2_3—H2C_3	0.9600
C10 1—C11 1	1.424 (14)	O1 4—H1 4	0.8200
C10_1—C15_1	1.375 (14)	O1_4—C1_4	1.448 (12)
C11_1—H11_1	0.9300	C1_4—H1A_4	0.9700
C11 1—C12 1	1.399 (13)	C1 4—H1B 4	0.9700
C12_1—H12_1	0.9300	C1_4_C2_4	1.542 (14)
C12_1—C13_1	1.401 (14)	C2_4—H2A_4	0.9600
C13_1—C14_1	1.379 (14)	C2_4—H2B_4	0.9601
C14_1—H14_1	0.9300	C2_4—H2C_4	0.9600

C14_1—C15_1	1.341 (14)		
C7—O1—C8_1	115.5 (4)	O1-C8_2-C10_2	107.3 (4)
C7—O1—C8_2	115.1 (3)	С9—С8_2—Н8_2	107.0
С5—О2—Н2	109.5	C9—C8_2—C10_2	114.6 (5)
С3—О3—Н3	109.5	C10 2—C8 2—H8 2	107.0
С20 2—О6—Н6	109.5	C11 ² —C10 ² —C8 ²	117.9 (8)
C1—N1—N2	119.6 (3)	C15 2—C10 2—C8 2	124.3 (8)
N1—N2—H2A	121.7	C15 ² —C10 ² —C11 ²	117.8 (6)
C16 2—N2—N1	116.7 (3)	C10 ² —C11 ² —H11 ²	118.9
C16 ² —N2—H2A	121.7	C12 ² —C11 ² —C10 ²	122.3 (7)
N1—C1—C2	116.6 (3)	C12 ² —C11 ² —H11 ²	118.9
N1—C1—C9	127.1 (3)	C11 ² —C12 ² —H12 ²	121.2
C9—C1—C2	116.3 (3)	C11 ² —C12 ² —C13 ²	117.6 (9)
C3—C2—C1	122.7 (3)	C13 ² —C12 ² —H12 ²	121.2
C7—C2—C1	119.9 (3)	C12 ² —C13 ² —O4 ²	116.0 (9)
C7—C2—C3	117.4 (3)	C14 ² —C13 ² —O4 ²	122.3 (9)
O3—C3—C2	121.4 (2)	C14 2—C13 2—C12 2	118.9 (8)
O3—C3—C4	117.4 (3)	C13 ² —C14 ² —H14 ²	119.3
C4—C3—C2	121.2 (3)	C15 ² —C14 ² —C13 ²	121.5 (8)
C3—C4—H4	120.4	C15 ² —C14 ² —H14 ²	119.3
C5—C4—C3	119.1 (3)	C10 2—C15 2—C14 2	121.0 (8)
C5—C4—H4	120.4	C10 2—C15 2—H15 2	119.5
O2—C5—C4	117.7 (3)	C14 2—C15 2—H15 2	119.5
O2—C5—C6	120.7 (3)	O5—C16 2—N2	121.7 (3)
C4—C5—C6	121.5 (3)	O5—C16 ² —C17 ²	121.4 (3)
С5—С6—Н6А	120.7	N2—C16_2—C17_2	116.9 (3)
C5—C6—C7	118.5 (3)	C18 2—C17 2—C16 2	117.1 (3)
С7—С6—Н6А	120.7	C18 ² —C17 ² —C22 ²	118.7 (3)
O1—C7—C2	121.9 (2)	C22 ² —C17 ² —C16 ²	124.2 (3)
O1—C7—C6	115.9 (3)	C17 ² —C18 ² —H18 ²	119.6
C6—C7—C2	122.2 (3)	C17 ² —C18 ² —C19 ²	120.9 (3)
С1—С9—Н9АА	108.8	C19 2—C18 2—H18 2	119.6
С1—С9—Н9АВ	108.8	C18 2—C19 2—H19 2	120.4
C1—C9—H9BC	109.0	C18 ² —C19 ² —C20 ²	119.2 (3)
C1—C9—H9BD	109.0	C20 2—C19 2—H19 2	120.4
C1—C9—C8 1	113.6 (4)	O6-C20 2-C19 2	116.6 (3)
H9AA—C9—H9AB	107.7	C21 2—C20 2—O6	123.2 (3)
H9BC—C9—H9BD	107.8	C21 ² —C20 ² —C19 2	120.2 (3)
С8 1—С9—Н9АА	108.8	C20 2—C21 2—H21 2	119.8
C8_1—C9—H9AB	108.8	C20 2—C21 2—C22 2	120.4 (3)
C8 ² -C9-C1	113.0 (3)	C22 ² —C21 ² —H21 ²	119.8
С8 2—С9—Н9ВС	109.0	C17 ² —C22 ² —H22 ²	119.7
C8 ² —C9—H9BD	109.0	C21 ² —C22 ² —C17 ²	120.5 (3)
C13 1—O4 1—H4 1	109.4	C21 2—C22 2—H22 2	119.7
01-C8 1-C9	113.3 (8)	C1 3-01 3-H1 3	109.5
O1—C8_1—H8_1	107.8	01 ³ —C1 ³ —H1A 3	109.3
O1—C8 ⁻ 1—C1 ⁰ 1	107.5 (7)	O1_3_C1_3_H1B_3	109.3

C9—C8_1—H8_1	107.8	O1_3—C1_3—C2_3	111.6 (12)
C9—C8_1—C10_1	112.3 (8)	H1A_3—C1_3—H1B_3	108.0
C10_1-C8_1-H8_1	107.8	C2_3—C1_3—H1A_3	109.3
C11_1—C10_1—C8_1	115.7 (13)	C2_3—C1_3—H1B_3	109.3
C15_1—C10_1—C8_1	127.0 (13)	C1_3—C2_3—H2A_3	108.3
C15_1—C10_1—C11_1	117.3 (10)	C1_3—C2_3—H2B_3	114.2
C10_1—C11_1—H11_1	120.3	C1_3_C2_3_H2C_3	105.8
C12_1—C11_1—C10_1	119.5 (12)	H2A_3—C2_3—H2B_3	109.5
C12_1—C11_1—H11_1	120.3	H2A_3—C2_3—H2C_3	109.5
C11_1—C12_1—H12_1	120.8	H2B_3—C2_3—H2C_3	109.5
C11_1—C12_1—C13_1	118.4 (13)	C1_4O1_4H1_4	109.5
C13_1—C12_1—H12_1	120.8	O1_4C1_4H1A_4	109.4
C12_1—C13_1—O4_1	113.3 (16)	O1_4—C1_4—H1B_4	109.4
C14_1—C13_1—O4_1	119.9 (16)	O1_4C1_4C2_4	111.3 (13)
C14_1—C13_1—C12_1	119.2 (13)	H1A_4—C1_4—H1B_4	108.0
C13_1—C14_1—H14_1	120.0	C2_4—C1_4—H1A_4	109.4
C15_1—C14_1—C13_1	119.9 (15)	C2_4—C1_4—H1B_4	109.4
C15_1—C14_1—H14_1	120.0	C1_4_C2_4_H2A_4	110.4
C10_1—C15_1—H15_1	118.4	C1_4_C2_4_H2B_4	111.2
C14_1—C15_1—C10_1	123.1 (13)	C1_4_C2_4_H2C_4	106.7
C14_1—C15_1—H15_1	118.4	H2A_4—C2_4—H2B_4	109.5
C13_2_O4_2_H4_2	109.7	H2A_4_C2_4_H2C_4	109.5
01-C8_2-C9	113.5 (5)	H2B_4_C2_4_H2C_4	109.5
O1—C8_2—H8_2	107.0		
			/ _ /
O1—C8_1—C10_1—C11_1	-130.6 (15)	C7—C2—C3—O3	-179.2 (3)
O1—C8_1—C10_1—C15_1	50.2 (19)	C7—C2—C3—C4	1.4 (5)
O1—C8_2—C10_2—C11_2	-72.0 (8)	C9—C1—C2—C3	177.4 (3)
O1—C8_2—C10_2—C15_2	110.1 (9)	C9—C1—C2—C7	-2.1 (4)
O2—C5—C6—C7	-179.6 (3)	C9—C8_1—C10_1—C11_1	104.1 (16)
O3—C3—C4—C5	178.0 (3)	C9—C8_1—C10_1—C15_1	-75.1 (17)
O5-C16_2-C17_2-C18_2	3.7 (5)	C9—C8_2—C10_2—C11_2	55.1 (9)
O5—C16_2—C17_2—C22_2	-176.2 (3)	C9—C8_2—C10_2—C15_2	-122.8 (8)
O6—C20_2—C21_2—C22_2	-179.5 (3)	O4_1—C13_1—C14_1—C15_1	-160(3)
N1—N2—C16_2—O5	1.6 (5)	C8_1	25.8 (7)
N1—N2—C16_2—C17_2	-178.9(2)	C8_1—O1—C7—C6	-153.2 (7)
N1—C1—C2—C3	-1.8 (5)	C8_1—C10_1—C11_1—C12_1	-178.8 (19)
N1—C1—C2—C7	178.7 (3)	C8_1—C10_1—C15_1—C14_1	-173.7 (18)
N1—C1—C9—C8_1	157.7 (6)	C10_1—C11_1—C12_1—C13_1	-13 (4)
N1—C1—C9—C8_2	-154.8 (4)	C11_1—C10_1—C15_1—C14_1	7 (3)
N2—N1—C1—C2	178.4 (2)	C11_1—C12_1—C13_1—O4_1	169 (3)
N2—N1—C1—C9	-0.7 (5)	C11_1—C12_1—C13_1—C14_1	19 (4)
N2-C16_2-C17_2-C18_2	-175.8 (3)	C12_1—C13_1—C14_1—C15_1	-12 (3)
N2-C16_2-C17_2-C22_2	4.3 (5)	C13_1—C14_1—C15_1—C10_1	-1 (3)
C1—N1—N2—C16_2	174.2 (3)	C15_1—C10_1—C11_1—C12_1	0(3)
C1—C2—C3—O3	1 0 (5)	04.2 012.2 014.2 015.2	160.8(14)
	1.2 (5)	$04_2 - 013_2 - 014_2 - 015_2$	109.8 (14)
C1—C2—C3—C4	1.2(5) -178.2(3)	C8_2	-24.7(5)

C1—C2—C7—C6	179.8 (3)	C8_2-C10_2-C11_2-C12_2	179.6 (10)
C1—C9—C8_1—O1	47.3 (10)	C8_2-C10_2-C15_2-C14_2	177.1 (9)
C1-C9-C8_1-C10_1	169.4 (8)	C10_2-C11_2-C12_2-C13_2	9.0 (19)
C1—C9—C8_2—O1	-49.8 (6)	C11_2—C10_2—C15_2—C14_2	-0.8 (14)
C1-C9-C8_2-C10_2	-173.6 (5)	C11_2—C12_2—C13_2—O4_2	-173.6 (14)
C2-C1-C9-C8_1	-21.4 (7)	C11_2—C12_2—C13_2—C14_2	-12.4 (19)
C2-C1-C9-C8_2	26.1 (5)	C12_2—C13_2—C14_2—C15_2	9.7 (18)
C2—C3—C4—C5	-2.6 (5)	C13_2-C14_2-C15_2-C10_2	-3.0 (17)
C3—C2—C7—O1	-178.7 (3)	C15_2—C10_2—C11_2—C12_2	-2.4 (15)
C3—C2—C7—C6	0.2 (5)	C16_2-C17_2-C18_2-C19_2	179.2 (3)
C3—C4—C5—O2	-178.8 (3)	C16_2-C17_2-C22_2-C21_2	-178.7 (3)
C3—C4—C5—C6	2.3 (5)	C17_2—C18_2—C19_2—C20_2	-0.1 (6)
C4—C5—C6—C7	-0.7 (5)	C18_2—C17_2—C22_2—C21_2	1.5 (5)
C5—C6—C7—O1	178.4 (3)	C18_2-C19_2-C20_2-O6	-179.9 (3)
C5—C6—C7—C2	-0.5 (5)	C18_2—C19_2—C20_2—C21_2	0.6 (6)
C7—O1—C8_1—C9	-49.7 (10)	C19_2—C20_2—C21_2—C22_2	0.0 (5)
C7—O1—C8_1—C10_1	-174.4 (8)	C20_2—C21_2—C22_2—C17_2	-1.0 (5)
C7—O1—C8_2—C9	49.4 (6)	C22_2—C17_2—C18_2—C19_2	-0.9 (5)
C7—O1—C8_2—C10_2	177.2 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H3…N1	0.82	1.82	2.542 (3)	147
O6—H6···O2 ⁱ	0.82	2.12	2.739 (4)	132
O4_1—H4_1···O3 ⁱⁱ	0.82	1.87	2.52 (3)	136
O4_2—H4_2···O3 ⁱⁱ	0.82	1.96	2.728 (15)	156
O1_3—H1_3···O5 ⁱⁱⁱ	0.82	1.92	2.62 (2)	144
01_4H1_4···O5 ⁱⁱⁱ	0.82	2.28	2.877 (17)	130
O4_2—H4_2···O3 ⁱⁱ O1_3—H1_3···O5 ⁱⁱⁱ O1_4—H1_4···O5 ⁱⁱⁱ	0.82 0.82 0.82	1.96 1.92 2.28	2.728 (15) 2.62 (2) 2.877 (17)	156 144 130

Symmetry codes: (i) *x*+1, *y*+1, *z*; (ii) *x*, *y*, *z*+1; (iii) –*x*, –*y*+2, –*z*+1.

(±,E)-N'-(6-Methoxy-2-phenylchroman-4-ylidene)-2-(naphthalen-1-yloxy)-acetohydrazide (III)

Crystal data $C_{28}H_{24}N_2O_4$ $M_r = 452.49$ Triclinic, $P\overline{1}$ a = 5.0681 (6) Å b = 13.4993 (15) Å c = 17.1144 (18) Å a = 74.392 (9)° $\beta = 86.34$ (1)° u = 88.416 (10)°

 $\gamma = 88.416 (10)^{\circ}$ V = 1125.4 (2) Å³ Z = 2 F(000) = 476 $D_x = 1.335 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3831 reflections $\theta = 3.7-73.1^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 293 KNeedle, clear yellow $0.17 \times 0.04 \times 0.03 \text{ mm}$ Data collection

ROD, Synergy Custom system, HyPix-Arc 150 diffractometer	$T_{\min} = 0.889, T_{\max} = 1.000$ 11899 measured reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source	4404 independent reflections 1823 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.051$
Detector resolution: 10.0000 pixels mm ⁻¹	$\theta_{\text{max}} = 76.5^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
ω scans	$h = -5 \rightarrow 6$
Absorption correction: multi-scan	$k = -16 \rightarrow 16$
(CrysAlisPro; Rigaku OD, 2022)	$l = -21 \rightarrow 20$
Refinement	
Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.1489P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.077$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.285$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 0.99	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
4404 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
309 parameters	Extinction correction: SHELXL-2018/3
6 restraints	(Sheldrick 2015),
Hydrogen site location: inferred from	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
neighbouring sites	Extinction coefficient: 0.0075 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1662 (5)	0.3408 (2)	0.51160 (17)	0.0808 (9)	
O2	0.3870 (6)	0.5290 (2)	0.18760 (17)	0.0873 (10)	
03	1.2146 (6)	0.0164 (2)	0.41472 (17)	0.0801 (9)	
04	0.9806 (6)	0.1395 (2)	0.24739 (15)	0.0734 (9)	
N1	0.7481 (6)	0.2143 (2)	0.38761 (19)	0.0665 (9)	
N2	0.8829 (6)	0.1260 (3)	0.42458 (19)	0.0676 (9)	
H2	0.836029	0.091524	0.473277	0.081*	
C1	0.5738 (8)	0.2504 (3)	0.4307 (2)	0.0640 (10)	
C9	0.4980 (9)	0.2062 (3)	0.5185 (2)	0.0783 (13)	
H9A	0.388021	0.146606	0.524494	0.094*	
H9B	0.656544	0.183096	0.547337	0.094*	
C8	0.3562 (11)	0.2788 (4)	0.5551 (3)	0.1022 (18)	
H8	0.493593	0.327843	0.556598	0.123*	
C2	0.4336 (7)	0.3430 (3)	0.3891 (2)	0.0628 (10)	
C7	0.2328 (8)	0.3834 (3)	0.4300 (2)	0.0690 (11)	
C6	0.0890 (8)	0.4682 (3)	0.3908 (3)	0.0789 (13)	
H6	-0.046360	0.494164	0.419216	0.095*	
C5	0.1448 (9)	0.5139 (4)	0.3106 (3)	0.0803 (13)	
Н5	0.046166	0.570841	0.284228	0.096*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C4	0.3478 (8)	0.4764 (3)	0.2679 (3)	0.0709 (12)
C3	0.4898 (8)	0.3925 (3)	0.3065 (2)	0.0669 (11)
Н3	0.626100	0.367444	0.277822	0.080*
C10	0.2606 (8)	0.2418 (3)	0.6417 (3)	0.0769 (13)
C11	0.0709 (9)	0.1683 (4)	0.6671 (3)	0.0991 (16)
H11	0.002437	0.138749	0.629577	0.119*
C12	-0.0191 (11)	0.1377 (5)	0.7459 (4)	0.123 (2)
H12	-0.148713	0.087663	0.761742	0.148*
C13	0.0766 (14)	0.1789 (5)	0.8018 (4)	0.126 (3)
H13	0.010054	0.158714	0.855512	0.151*
C14	0.2700 (14)	0.2496 (5)	0.7791 (4)	0.122 (2)
H14	0.340262	0.276882	0.817627	0.146*
C15	0.3630 (10)	0.2812 (4)	0.6993 (3)	0.0975 (16)
H15	0.496450	0.329700	0.684040	0.117*
C16	1.0878 (8)	0.0944 (3)	0.3838 (2)	0.0635 (10)
C17	1.1610 (8)	0.1602 (3)	0.2998 (2)	0.0686 (11)
H17A	1.152062	0.232409	0.298819	0.082*
H17B	1.339762	0.144127	0.282862	0.082*
C18	0.9661 (8)	0.2057 (3)	0.1711 (2)	0.0664 (11)
C19	1.1124 (9)	0.2940 (3)	0.1450 (2)	0.0783 (13)
H19	1.228505	0.311241	0.179050	0.094*
C20	1.0843 (10)	0.3574 (4)	0.0665 (3)	0.0871 (15)
H20	1.181766	0.417527	0.049067	0.105*
C21	0.9201 (9)	0.3338 (4)	0.0157 (3)	0.0835 (14)
H21	0.906878	0.377231	-0.036360	0.100*
C22	0.7663 (8)	0.2428 (4)	0.0409 (3)	0.0745 (12)
C23	0.5937 (10)	0.2149 (4)	-0.0094 (3)	0.0892 (14)
H23	0.577497	0.256913	-0.061720	0.107*
C24	0.4485 (11)	0.1279 (5)	0.0160 (4)	0.1064 (17)
H24	0.332690	0.110928	-0.018255	0.128*
C25	0.4757 (11)	0.0636 (4)	0.0951 (3)	0.0992 (17)
H25	0.378521	0.003345	0.112441	0.119*
C26	0.6395 (8)	0.0876 (3)	0.1459 (3)	0.0782 (13)
H26	0.653446	0.044377	0.197940	0.094*
C27	0.7907 (8)	0.1786 (3)	0.1205 (2)	0.0665 (11)
C28	0.6094 (9)	0.4996 (4)	0.1449 (3)	0.0982 (17)
H28A	0.624427	0.544273	0.090701	0.147*
H28B	0.589265	0.429952	0.142465	0.147*
H28C	0.765986	0.504397	0.172318	0.147*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0821 (18)	0.091 (2)	0.0612 (18)	0.0282 (16)	-0.0048 (15)	-0.0090 (15)
O2	0.092 (2)	0.084 (2)	0.0690 (19)	0.0149 (17)	-0.0009 (17)	0.0044 (16)
03	0.0884 (19)	0.080 (2)	0.0646 (18)	0.0234 (16)	-0.0024 (15)	-0.0105 (15)
04	0.0956 (19)	0.0717 (18)	0.0488 (15)	-0.0066 (15)	-0.0098 (14)	-0.0071 (13)
N1	0.0739 (19)	0.060 (2)	0.062 (2)	0.0149 (16)	-0.0072 (17)	-0.0109 (16)

N2	0.075 (2)	0.071 (2)	0.0536 (18)	0.0181 (17)	-0.0033 (16)	-0.0133 (16)
C1	0.068 (2)	0.062 (2)	0.061 (2)	0.0055 (19)	-0.006 (2)	-0.014 (2)
C9	0.084 (3)	0.086 (3)	0.061 (3)	0.018 (2)	-0.002 (2)	-0.016 (2)
C8	0.122 (4)	0.102 (4)	0.068 (3)	0.043 (3)	0.007 (3)	-0.004 (3)
C2	0.061 (2)	0.062 (2)	0.065 (2)	0.0057 (19)	-0.0061 (19)	-0.016 (2)
C7	0.070 (2)	0.075 (3)	0.059 (2)	0.005 (2)	-0.005 (2)	-0.014 (2)
C6	0.079 (3)	0.081 (3)	0.073 (3)	0.026 (2)	-0.006 (2)	-0.016 (2)
C5	0.082 (3)	0.075 (3)	0.076 (3)	0.018 (2)	-0.002 (2)	-0.010 (2)
C4	0.075 (2)	0.069 (3)	0.063 (3)	0.002 (2)	-0.008 (2)	-0.007 (2)
C3	0.070 (2)	0.067 (3)	0.060 (2)	0.005 (2)	-0.003 (2)	-0.011 (2)
C10	0.081 (3)	0.078 (3)	0.066 (3)	0.017 (2)	0.004 (2)	-0.014 (2)
C11	0.098 (3)	0.116 (4)	0.085 (4)	-0.008 (3)	-0.010 (3)	-0.028 (3)
C12	0.108 (4)	0.142 (6)	0.101 (5)	-0.007 (4)	0.019 (4)	-0.005 (4)
C13	0.155 (6)	0.137 (6)	0.070 (4)	0.055 (5)	0.005 (4)	-0.010 (4)
C14	0.165 (6)	0.125 (5)	0.090 (5)	0.039 (5)	-0.047 (4)	-0.050 (4)
C15	0.104 (4)	0.089 (4)	0.101 (4)	0.001 (3)	-0.020 (3)	-0.025 (3)
C16	0.068 (2)	0.067 (3)	0.055 (2)	0.009 (2)	-0.0058 (19)	-0.016 (2)
C17	0.078 (2)	0.077 (3)	0.049 (2)	0.000(2)	-0.006 (2)	-0.013 (2)
C18	0.079 (2)	0.066 (3)	0.048 (2)	0.006 (2)	0.000 (2)	-0.0062 (19)
C19	0.094 (3)	0.073 (3)	0.060 (3)	-0.007 (2)	-0.006 (2)	-0.004 (2)
C20	0.102 (3)	0.079 (3)	0.069 (3)	-0.007 (3)	0.000 (3)	0.000 (2)
C21	0.095 (3)	0.085 (3)	0.062 (3)	0.003 (3)	-0.002 (3)	-0.005 (2)
C22	0.080 (3)	0.081 (3)	0.061 (3)	0.018 (2)	-0.009 (2)	-0.018 (2)
C23	0.099 (3)	0.104 (4)	0.066 (3)	0.019 (3)	-0.025 (3)	-0.022 (3)
C24	0.110 (4)	0.121 (5)	0.098 (4)	0.007 (4)	-0.032 (3)	-0.039 (4)
C25	0.105 (4)	0.103 (4)	0.093 (4)	-0.016 (3)	-0.019 (3)	-0.027 (3)
C26	0.086 (3)	0.079 (3)	0.069 (3)	0.000 (2)	-0.007 (2)	-0.018 (2)
C27	0.072 (2)	0.073 (3)	0.055 (2)	0.008 (2)	-0.005 (2)	-0.017 (2)
C28	0.096 (3)	0.102 (4)	0.082 (3)	0.002 (3)	0.010 (3)	-0.004 (3)

Geometric parameters (Å, °)

01	1.376 (5)	C12—H12	0.9300
O1—C7	1.383 (4)	C12—C13	1.349 (7)
O2—C4	1.371 (5)	C13—H13	0.9300
O2—C28	1.411 (5)	C13—C14	1.351 (6)
O3—C16	1.228 (5)	C14—H14	0.9300
O4—C17	1.404 (5)	C14—C15	1.374 (6)
O4—C18	1.374 (4)	C15—H15	0.9300
N1—N2	1.376 (4)	C16—C17	1.503 (5)
N1-C1	1.284 (5)	C17—H17A	0.9700
N2—H2	0.8600	C17—H17B	0.9700
N2-C16	1.338 (5)	C18—C19	1.374 (5)
C1—C9	1.488 (5)	C18—C27	1.401 (6)
C1—C2	1.453 (5)	C19—H19	0.9300
С9—Н9А	0.9700	C19—C20	1.399 (6)
С9—Н9В	0.9700	C20—H20	0.9300
С9—С8	1.451 (6)	C20—C21	1.345 (7)

С8—Н8	0.9800	C21—H21	0.9300
C8—C10	1.485 (6)	C21—C22	1.425 (6)
C2—C7	1.382 (5)	C22—C23	1.392 (6)
C2—C3	1.406 (5)	C22—C27	1.414 (6)
C7—C6	1.376 (6)	С23—Н23	0.9300
С6—Н6	0.9300	C23—C24	1.357 (7)
C6—C5	1.360 (5)	C24—H24	0.9300
C5—H5	0.9300	C_{24} C_{25}	1.410(7)
C5—C4	1.387 (6)	C25—H25	0.9300
C4—C3	1 361 (5)	$C_{25} = C_{26}$	1 345 (6)
C3—H3	0.9300	C26—H26	0.9300
C10—C11	1 366 (5)	$C_{26} = C_{27}$	1 416 (6)
C10-C15	1 372 (6)	C28—H28A	0.9600
C11—H11	0.9300	C28—H28B	0.9600
C_{11} C_{12}	1 352 (6)	C28_H28C	0.9600
011-012	1.552 (0)	626-11260	0.9000
C8—O1—C7	115.8 (3)	C13—C14—H14	120.0
C4—O2—C28	116.6 (4)	C13—C14—C15	120.1 (6)
C18—O4—C17	118.8 (3)	C15—C14—H14	120.0
C1—N1—N2	118.2 (3)	C10—C15—C14	120.6 (5)
N1—N2—H2	120.4	C10—C15—H15	119.7
C16—N2—N1	119.1 (3)	C14—C15—H15	119.7
C16—N2—H2	120.4	O3—C16—N2	121.2 (3)
N1—C1—C9	126.7 (4)	O3—C16—C17	121.6 (3)
N1—C1—C2	116.4 (3)	N2—C16—C17	117.2 (4)
C2—C1—C9	116.8 (3)	O4—C17—C16	107.4 (3)
C1—C9—H9A	109.0	O4—C17—H17A	110.2
C1—C9—H9B	109.0	04—C17—H17B	110.2
H9A—C9—H9B	107.8	С16—С17—Н17А	110.2
C8—C9—C1	113.0 (4)	С16—С17—Н17В	110.2
С8—С9—Н9А	109.0	H17A—C17—H17B	108.5
C8—C9—H9B	109.0	04-018-027	116.1 (3)
01	118.2 (5)	C19—C18—O4	122.8 (4)
01—C8—H8	102.8	C19—C18—C27	121.1 (4)
O1-C8-C10	109.7 (4)	С18—С19—Н19	120.4
С9—С8—Н8	102.8	C18—C19—C20	119.1 (5)
C9—C8—C10	117.8 (4)	С20—С19—Н19	120.4
C10—C8—H8	102.8	С19—С20—Н20	119.1
C7—C2—C1	120.0 (4)	C21—C20—C19	121.8 (4)
C7—C2—C3	117.8 (4)	C21—C20—H20	119.1
C_{3} $-C_{2}$ $-C_{1}$	122.1 (4)	C_{20} C_{21} H_{21}	119.8
$C_2 - C_7 - O_1$	1219(4)	C_{20} C_{21} C_{22}	120 4 (4)
C6-C7-O1	1170(4)	C^{22} C^{21} H^{21}	119.8
C6-C7-C2	121 1 (4)	C_{23} C_{22} C_{21} C_{21}	122.6 (4)
C7—C6—H6	120.0	C_{23} C_{22} C_{27}	119 0 (4)
$C_{5} - C_{6} - C_{7}$	120.0 (4)	C_{27} C_{22} C_{21}	118 4 (4)
C5-C6-H6	120.0	C22—C23—H23	119.7
C6-C5-H5	119.7	C_{24} C_{23} C_{22}	121 7 (5)
00 05-115	11/1/	027 - 023 - 022	141.7 (3)

	100 5 (1)		110 0
C6—C5—C4	120.5 (4)	C24—C23—H23	119.2
C4—C5—H5	119.7	C23—C24—H24	120.4
O2—C4—C5	115.4 (4)	C23—C24—C25	119.1 (5)
C3—C4—O2	125.1 (4)	C25—C24—H24	120.4
C3—C4—C5	119.6 (4)	C24—C25—H25	119.4
С2—С3—Н3	119.5	C26—C25—C24	121.3 (5)
C4—C3—C2	121.0 (4)	С26—С25—Н25	119.4
С4—С3—Н3	119.5	С25—С26—Н26	119.9
C11—C10—C8	122.0 (5)	C25—C26—C27	120.3 (4)
C11—C10—C15	117.8 (4)	С27—С26—Н26	119.9
C15—C10—C8	120.2 (5)	C18—C27—C22	119.3 (4)
C10—C11—H11	119.5	C18—C27—C26	122.0 (4)
C12—C11—C10	121.0 (5)	C22—C27—C26	118.7 (4)
C12—C11—H11	119.5	O2—C28—H28A	109.5
C11—C12—H12	119.6	Ω^2 — C^28 — H^28B	109 5
C13 - C12 - C11	120.9 (6)	02 - C28 - H28C	109.5
C13 - C12 - H12	119.6	H_{284} C_{28} H_{28B}	109.5
$C_{12} = C_{12} = H_{12}$	119.0	$H_{20}A = C_{20} = H_{20}C$	109.5
$C_{12} = C_{13} = C_{14}$	120.2	$H_{20}A - C_{20} - H_{20}C$	109.5
C12 - C13 - C14	119.5 (0)	П28Б—С28—П28С	109.5
C14—C13—H13	120.2		
O1—C8—C10—C11	73.5 (6)	C7—C6—C5—C4	-0.6(7)
O1—C8—C10—C15	-106.7(6)	C6—C5—C4—O2	-179.6(4)
Q1—C7—C6—C5	179.8 (4)	C6—C5—C4—C3	0.7 (7)
02-C4-C3-C2	-1795(4)	$C_{5}-C_{4}-C_{3}-C_{2}$	01(6)
03-C16-C17-04	103.6 (5)	$C_{3} - C_{7} - C_{7} - C_{1}$	-1790(4)
04 - C18 - C19 - C20	-1796(4)	$C_{3} - C_{2} - C_{7} - C_{6}$	12(6)
04 - C18 - C27 - C22	-179.7(4)	C_{10} C_{11} C_{12} C_{13}	-0.2(10)
$04 \ C18 \ C27 \ C22$	-0.7(6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-21(8)
$N_1 = N_2 = C_1 = C_2 $	170.5(4)	$C_{11} = C_{10} = C_{13} = C_{14}$	-1.8(11)
N1 = N2 = C16 = C17	1/9.5(4)	$C_{12} = C_{12} = C_{13} = C_{14} = C_{15}$	1.0(11)
N1 = N2 = C10 = C17	1.4(3)	C12 - C13 - C14 - C13	1.7(10)
NI-CI-C9-C8	102.8(5)	C15 - C14 - C15 - C10	0.2(9)
NI = CI = C2 = C7	1/0.4 (4)		2.1 (8)
NI = CI = C2 = C3	-1.7(6)	C17 - 04 - C18 - C19	-2.9 (6)
N2—N1—C1—C9	-0.2 (6)	C17 - 04 - C18 - C27	177.3 (3)
N2—N1—C1—C2	-179.2 (3)	C18—O4—C17—C16	165.4 (3)
N2—C16—C17—O4	-78.3 (4)	C18—C19—C20—C21	-0.7 (8)
C1—N1—N2—C16	-171.6 (4)	C19—C18—C27—C22	0.5 (6)
C1—C9—C8—O1	42.0 (7)	C19—C18—C27—C26	179.5 (4)
C1—C9—C8—C10	177.5 (4)	C19—C20—C21—C22	0.6 (8)
C1—C2—C7—O1	2.8 (6)	C20—C21—C22—C23	-180.0 (5)
C1—C2—C7—C6	-176.9 (4)	C20—C21—C22—C27	0.1 (7)
C1—C2—C3—C4	177.0 (4)	C21—C22—C23—C24	-179.8 (5)
C9—C1—C2—C7	-2.7 (6)	C21—C22—C27—C18	-0.7 (6)
C9—C1—C2—C3	179.2 (4)	C21—C22—C27—C26	-179.7 (4)
C9—C8—C10—C11	-65.5 (7)	C22—C23—C24—C25	-0.8 (8)
C9—C8—C10—C15	114.3 (6)	C23—C22—C27—C18	179.4 (4)
C8—O1—C7—C2	19.7 (6)	C23—C22—C27—C26	0.4 (6)
00 01 0, 02			(.)

C8-01-C7-C6	-160.6 (5)	C23—C24—C25—C26	1.0 (9)
C8-C10-C11-C12	-178.1 (5)	C24—C25—C26—C27	-0.5 (8)
C8-C10-C15-C14	178.1 (5)	C25—C26—C27—C18	-179.2 (4)
C2-C1-C9-C8	-18.2 (6)	C25—C26—C27—C22	-0.2 (7)
C2-C7-C6-C5	-0.4 (7)	C27—C18—C19—C20	0.2 (7)
C7-01-C8-C9	-43.1 (6)	C27—C22—C23—C24	0.1 (7)
C7-01-C8-C10	178.1 (4)	C28—O2—C4—C5	173.4 (4)
C7	178.1 (4)	C28—O2—C4—C5	173.4 (4)
	-1.1 (6)	C28—O2—C4—C3	-6.9 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
N2—H2···O3 ⁱ	0.86	2.08	2.922 (4)	167

Symmetry code: (i) -x+2, -y, -z+1.