

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 8 February 2023
Accepted 15 February 2023

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; nickel selenocyanate; discrete complex; thermal properties.

CCDC reference: 2242297

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$
Published under a CC BY 4.0 licence

Synthesis, crystal structure and properties of bis(isoselenocyanato- κN)tetrakis(4-methoxy-pyridine- κN)cobalt(II)

Christian Näther* and Inke Jess

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de

Reaction of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with KNCSe and 4-methoxypyridine in water led to the formation of the title compound, $\left[\mathrm{Co}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{4}\right]$ or $\mathrm{Co}(\mathrm{NCSe})_{2}(4-$ methoxypyridine $)_{2}$, which was characterized by single-crystal X-ray diffraction. Its asymmetric unit consists of one crystallographically independent Co cation, two selenocyanate anions and four 4-methoxypyridine coligands in general positions. In the crystal structure, the cobalt cations are sixfold coordinated by two terminal N -bonded selenocyanate anions and four 4-methoxypyridine coligands within a slightly distorted octahedral coordination. Between the complexes, weak $\mathrm{C}-\mathrm{H} \cdots$. Se interactions are found. IR spectroscopic investigations revealed that the CN stretching vibration of the anionic ligands is observed at $2068 \mathrm{~cm}^{-1}$, which is in agreement with the presence of only terminally coordinated selenocyanate anions. PXRD measurements prove that a pure compound was obtained. Differential thermoanalysis coupled to thermogravimetry (DTA-TG) at different heating rates shows that the TG curves are poorly resolved. PXRD measurements of the residue obtained by a TG measurement prove that an amorphous compound was obtained.

1. Chemical context

Coordination compounds based on transition-metal thiocyanates show versatile structural behavior (Buckingham, 1994; Barnett et al., 2002; Werner et al., 2015) and promising magnetic properties, because this ligand is able to mediate reasonable magnetic exchange (Barasiński et al., 2010; PalionGazda et al., 2015; Mousavi et al., 2020). In this context, compounds based on $\mathrm{Co}(\mathrm{NCS})_{2}$ are of special interest because they can show interesting magnetic behavior, such as, for example, slow relaxations of the magnetization, which is indicative of single-chain magnetism (Lescouëzec et al., 2005; Sun et al., 2010; Dhers et al., 2015). For the synthesis of such compounds, the $\mathrm{Co}^{\mathrm{II}}$ cations must be linked via the anionic ligands into mono-periodic or di-periodic networks. Compounds with di-periodicity are rare; the majority of compounds being mono-periodic, in which the $\mathrm{Co}^{\mathrm{II}}$ cations are octahedrally coordinated and linked into chains by pairs of anionic ligands (Guang et al., 2007; Shi et al., 2007; Shurdha et al., 2013; Prananto et al., 2017). If the chains are linear, ferromagnetic ordering (Werner et al., 2014) or single-chain magnet behavior (Mautner et al., 2018) is observed and if they are corrugated or exhibit an alternating Co coordination, the magnetic exchange is weak or completely suppressed (Dockum et al., 1983; Böhme et al., 2020, 2022). All this is well investigated for $\mathrm{Co}(\mathrm{NCS})_{2}$ compounds but not much is known
for compounds based on $\mathrm{Co}(\mathrm{NCSe})_{2}$, because only two compounds with μ-1,3-bridging selenocyanate anions are reported in the literature (Boeckmann et al., 2011; Wöhlert et al., 2012; Neumann et al., 2019). First results indicate that they behave in a similar manner to their thiocyanate analogs and that the exchange of thio- by selenocyanate leads to an increase in the magnetic intrachain interactions (Neumann et al., 2019).

Unfortunately, the synthesis of compounds in which $\mathrm{Co}^{\mathrm{II}}$ cations are linked by selenocyanate anions into chains in solution is always difficult to achieve or even impossible, because $\mathrm{Co}^{\text {II }}$ is not very chalcophilic and therefore, in most cases, compounds with terminally coordinated selenocyanate anions are obtained. To overcome this problem, we have developed an alternative approach for the synthesis of coordination networks based on thermal ligand removal of suitable precursor compounds that can be used for the synthesis of a wide range of materials including thio- and selenocyanates but also halide coordination compounds (Werner et al., 2014; Boeckmann et al., 2011; Näther \& Jess, 2004). For thiocyanate compounds, the precursors usually consist of discrete complexes of the general formula $\mathrm{Co}(\mathrm{NCS})_{2}(L)_{4}$ ($L=$ monocoordinating coligand), in which the $\mathrm{Co}^{\mathrm{II}}$ cations are octahedrally coordinated by two terminal N -bonded thiocyanate anions and four coligands. Upon heating, most of compounds of this type lose half of the ligands in the first mass loss and the

Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

Co1-N2	$2.092(2)$	$\mathrm{Co} 1-\mathrm{N} 21$	$2.170(2)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.108(2)$	$\mathrm{Co} 1-\mathrm{N} 41$	$2.174(2)$
$\mathrm{Co} 1-\mathrm{N} 11$	$2.139(2)$	$\mathrm{Co} 1-\mathrm{N} 31$	$2.203(2)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	$178.93(10)$	$\mathrm{N} 11-\mathrm{Co} 1-\mathrm{N} 41$	$91.26(8)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 11$	$90.65(9)$	$\mathrm{N} 21-\mathrm{Co} 1-\mathrm{N} 41$	$92.61(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 11$	$90.00(9)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 31$	$88.71(9)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 21$	$90.08(9)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 31$	$90.47(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 21$	$89.20(9)$	$\mathrm{N} 11-\mathrm{Co} 1-\mathrm{N} 31$	$88.32(8)$
$\mathrm{N} 11-\mathrm{Co} 1-\mathrm{N} 21$	$176.06(9)$	$\mathrm{N} 21-\mathrm{Co} 1-\mathrm{N} 31$	$87.83(9)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 41$	$90.07(9)$	$\mathrm{N} 41-\mathrm{Co} 1-\mathrm{N} 31$	$178.70(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 41$	$90.76(9)$		

octahedral metal coordination is retained by the sulfur atoms that were not involved in the metal coordination in the precursor, which enforces the formation of compounds with bridging anionic ligands.

In the course of our systematic work we became interested in the corresponding $\mathrm{Co}(\mathrm{NCSe})_{2}$ compounds with 4-methoxypyridine as coligand, because its thiocyanate analog $\mathrm{Co}(\mathrm{NCS})_{2}$ (4-methoxypyridine) $)_{2}$ crystallizes in the desired chain structure and is well investigated. This compound shows a metamagnetic transition and single-chain relaxations and this was investigated on powders but also using single crystals (Rams et al., 2020; Foltyn et al., 2022). The reaction of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{KSeCN}$ with 4-methoxypyridine in water, however, always led to the formation of a compound with the composition $\mathrm{Co}(\mathrm{NCSe})_{2}(4 \text {-methoxypyridine) })_{4}$ (see Synthesis and crystallization) for which the CN stretching vibration of the anionic ligand is observed at $2068 \mathrm{~cm}^{-1}$, indicative for the presence of only terminally bonded selenocyanate anions (Fig. S1). Even if $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and KSeCN were used in excess, no other crystalline phase was obtained. To identify this phase unambiguously, single crystals were grown and characterized by single-crystal X-ray diffraction.

2. Structural commentary

Single-crystal structure determination proved that the title compound, $\mathrm{Co}\left(\mathrm{NCSe}_{2}\right)_{2}(4 \text {-methoxypyridine })_{4}$, consists of discrete complexes in which the Co cations are sixfold coordinated to four 4-methoxypyridine coligands and two terminal selenocyanate anions that coordinate via the N atom of the anionic ligand to the metal center (Fig. 1). The asymmetric unit consists of one $\mathrm{Co}^{\mathrm{II}}$ cation, two selenocyanate anions and four 4-methoxypyridine ligands in general positions. From the bond lengths and angles, it is obvious that the octahedra are slightly distorted (Table 1). This is also obvious from the angle variance of 1.77 and the quadratic elongation of 1.00 calculated using the method of Robinson (Robinson et al., 1971).

The title compound is isotypic to $M(\mathrm{NCS})_{2}$ (4-methoxypyridine) $(M=\mathrm{Co}, \mathrm{Fe}, \mathrm{Ni})$ already described in the literature (Mautner et al., 2018; Jochim et al., 2018). In this context, it is noted that $\mathrm{Ni}(\mathrm{NCS})_{2}$ (4-methoxypyridine) crystallizes in two polymorphic modifications, of which the form (orthorhombic, space group Pccn) that is not isotypic to the title compound and $M(\mathrm{NCS})_{2}$ (4-methoxypyridine ($M=\mathrm{Co}, \mathrm{Fe}$) represents the

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	D \cdots A	$D-\mathrm{H} \cdots A$
C11-H11.. ${ }^{\text {O }} 11^{\text {i }}$	0.95	2.49	3.165 (3)	128
C15-H15 . $\mathrm{O}^{\text {3 }}{ }^{\text {ii }}$	0.95	2.52	3.297 (3)	139
C16-H16B $\cdots \mathrm{Se}^{1}{ }^{\text {iii }}$	0.98	3.15	4.096 (3)	163
C22-H22 . . Se $1^{\text {iv }}$	0.95	3.12	3.817 (3)	132
C26-H26A $\cdots \mathrm{Se}^{\text {v }}$	0.98	3.06	4.029 (5)	171
C36-H36B $\cdots \mathrm{Se}^{\text {vi }}$	0.98	3.13	3.952 (4)	142
C41-H41...O21 ${ }^{\text {vii }}$	0.95	2.43	3.248 (4)	144
$\mathrm{C} 45-\mathrm{H} 45 \cdots \mathrm{Se}^{\text {viii }}$	0.95	3.08	3.932 (3)	151
C46-H46A \cdots Se $1^{\text {ii }}$	0.98	3.15	3.885 (4)	133

Symmetry codes: (i) $x+\frac{1}{2}, y,-z+\frac{3}{2}$; (ii) $x-1, y, z$; (iii) $x-\frac{1}{2}, y,-z+\frac{3}{2}$; (iv) $-x+\frac{3}{2}, y-\frac{1}{2}, z$; (v) $-x+1,-y+1,-z+1$; (vi) $x+1, y, z$; (vii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (viii) $-x+\frac{1}{2}, y+\frac{1}{2}, z$.
thermodynamically stable phase at room temperature (Jochim et al., 2018). However, from this experimental observation one cannot conclude that the title compound is metastable at room temperature and that a second form must exist. It is also noted that the thiocyanate analogs with manganese and cadmium crystallize in a third form (monoclinic, space group $C 2 / c$) and that the $\mathrm{Cd}(\mathrm{NCS})_{2}$ compound also shows dimorphism and additionally crystallizes in a fourth form (tetragonal, space group $P 4_{1}$), which shows the pronounced structural variability for such simple complexes (Jochim et al., 2019). Finally, it is noted that we have not found any evidence that the title compound crystallizes in a further crystalline form.

3. Supramolecular features

In the crystal structure, the discrete complexes are arranged in an irregular manner (Fig. 2) There are a number of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots$ Se contacts, but for most of them the $\mathrm{C}-\mathrm{H} \cdots X(X=\mathrm{O}, \mathrm{Se})$ angle is far from linear and the $\mathrm{H} \cdots X$ distances are too large for any significant interaction (Table 2). Some of $\mathrm{C}-\mathrm{H} \cdots$. Se contacts exhibit angles larger than 150°, which might point to some interaction (Fig. 2 and Table 2).

Figure 2
Crystal structure of the title compound viewed along the crystallographic a-axis direction. $\mathrm{C}-\mathrm{H} \cdots \mathrm{Se}$ interactions are shown as pink dashed lines.

Figure 3
Experimental (top) and calculated PXRD pattern (bottom) of the title compound.

4. Thermal properties

Based on the single-crystal structural data, a powder pattern was calculated and compared with the experimental pattern, which shows that a pure crystalline phase was obtained (Fig. 3). To investigate if a crystalline ligand deficient phase with the composition $\mathrm{Co}(\mathrm{NCS})_{2}(4 \text {-methoxypyridine })_{4}$ can be obtained, measurements using differential thermal analysis and thermogravimetry with $8^{\circ} \mathrm{C} \mathrm{min}^{-1}$ were performed. Upon heating, the TG curve shows two poorly resolved mass losses at about 160 and $250^{\circ} \mathrm{C}$ that are accompanied with endothermic events in the DTA curve (Fig. 4). The DTG curve indicates that the

Figure 4
DTG, TG and DTA curves for the title compound measured at $8^{\circ} \mathrm{C} \mathrm{min}^{-1}$ in a nitrogen atmosphere.
first event consists of two different thermal events that cannot be successfully resolved. Nevertheless, the experimental mass loss was calculated for all three events, which shows that the first mass loss is in reasonable agreement with that calculated for the removal of one 4-methoxypyridine ligand ($\Delta m=$ -15.5%), whereas the second mass loss points to the removal of two additional 4-methoxypyridine ligands (Fig. 4). This would indicate that in the first step a compound with the composition $\mathrm{Co}(\mathrm{NCSe})_{2}(4 \text {-methoxypyridine })_{3}$ is formed, which transforms into $\mathrm{Co}(\mathrm{NCSe})_{2}$ (4-methoxypyridine) upon further heating. Compounds with such a ratio between the metal salt and neutral coligands are known for thiocyanate coordination compounds, but are very rare for selenocyanates. One compound with the composition $\mathrm{Ni}(\mathrm{NCSe})_{2}\left[N, N^{\prime}\right.$-bis(3aminopropyl)methylamine $]_{2}$ is found in which each Ni cation is octahedrally coordinated by three N atoms of one (3aminopropyl)methylamine ligand plus two bridging and two terminal selenocyanate anions (Vicente et al., 1993). Two of the Ni cations are linked by pairs of $\mu-1,3$-bridging anionic ligands into dinculear units. At first glance, the Ni:coligand ratio seems to be different but one (3-aminopropyl)methylamine ligand replaces three monocoordinating ligands. For a ratio of 1:1 between $M(\mathrm{NCS})_{2}$ and coligand, no examples can be found with selenocyanate anions but a few examples with thiocyanate are reported in the literature, including $\mathrm{Ni}(\mathrm{NCS})_{2}$ (4-aminopyridine), in which $\mathrm{Ni}(\mathrm{NCS})_{2}$ double chains are observed (Neumann et al., 2018).

To increase the resolution, measurements at different heating rates were performed, but the TG curves look similar and are still poorly resolved (Fig. S2). However, to investigate if different crystalline phases can be prepared, the residues obtained at different temperatures were isolated and investigated by PXRD, which proved that they are amorphous, and in Fig. S3 one of these patterns is shown as a representative. We also tried to anneal samples of the title compound at constant temperatures but always obtained amorphous intermediates. Therefore, no more efforts were made.

5. Database survey

In the CCDC database, no selenocyanate compounds with 4-methoxypyridine are reported (CSD version 5.42, last update November 2021; Groom et al., 2016), but some compounds with thiocyanate as the anionic ligand are found. They include compounds with the composition $M(\mathrm{NCS})_{2}(4-$ methoxypyridine) ${ }_{4}$ with $M=\mathrm{Mn}$ (Refcode COBVEX; Jochim et al., 2019), Fe (Refcode FISCIW; Jochim et al., 2018), Co (Refcode KIJPUR; Mautner et al., 2018), Ni (Refcodes FISCAO and FISCES; Jochim et al., 2019), Cd (Refcode COBTUL and COBTUL01; Jochim et al., 2019) and Ru (Refcode NAGPOD; Cadranel et al., 2016), which form discrete complexes with octahedral coordination. All of these compounds crystallize in four different structure types. There are additional discrete octahedral complexes with the composition $\mathrm{Cd}(\mathrm{NCS})_{2}(4 \text {-methoxypyridine })_{2} \cdot 4$-methoxypyridine (Refcode COBVAT; Jochim et al., 2019) and $\mathrm{Ni}(\mathrm{NCS})_{2}(4-$ methoxypyridine) 2_{2} acetonitrile (Refcode FISCOC; Jochim et
al., 2018) that form solvates and one acetonitrile complex with the composition $\mathrm{Ni}(\mathrm{NCS})_{2}(4 \text {-methoxypyridine })_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ (Refcode FISCES; Jochim et al., 2018).

With thiocyanate, compounds are reported with the composition $M(\mathrm{NCS})_{2}$ (4-methoxypyridine) ${ }_{2}$ with $M=\mathrm{Cu}$ (Refcode ABOXAT; Handy et al., 2017), Co (KIJQAY, KIJPOL and KIJPOL01; Mautner et al., 2018 and Rams et al., 2020), Ni (FISBUH; Jochim et al., 2018), Cd (COBTUL and COBVIB; Jochim et al., 2019). The Cu compound forms discrete complexes with a square-planar coordination, while the Co compounds consist of isomers forming discrete tetrahedral complexes as well as a chain compound with an octahedral coordination, which is also the case for the Co and Cd compounds.

There are also discrete complexes with selenocyanate anions and pyridine derivatives as coligands reported in the literature that are comparable to the title compound. These include, for example, $\mathrm{Fe}(\mathrm{NCSe})_{2}[4-2$ (phenylvinyl)pyridine$\mathrm{N}]_{4}$ (Refcodes XUKNUN, XUKNUN01, XUKPEZ and XUKPEZ01; Boillot et al., 2009) and $\mathrm{Co}(\mathrm{NCSe})_{2}$ [Refcodes ITISOU (Boeckmann \& Näther, 2011) and TIXDOW, TIXDOW01 and TIXFAK (Neumann et al., 2019)].

6. Synthesis and crystallization

$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and KSeCN were purchased from Aldrich and 4-methoxypyridine was purchased from Alfa Aesar.

Synthesis:

Larger amounts of a microcrystalline powder were obtained by the reaction of $0.15 \mathrm{mmol}(35.7 \mathrm{mg})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with $0.30 \mathrm{mmol}(43.3 \mathrm{mg})$ of KSeCN and $0.60 \mathrm{mmol}(60.8 \mu \mathrm{~L})$ of 4-methoxypyridine in 1 ml of demineralized water. The mixture was stirred for 2 d at room temperature, the light-pink-colored precipitate was filtered off and washed with a very small amount of water. Single crystals were obtained by slow evaporation of the solvent from the filtrate. It is noted that the same compound is obtained if $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 4-methoxypyridine are used in a 1:1 ratio.

Experimental details:

The XRPD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using $\mathrm{CuK} \alpha_{1}$ radiation $(\lambda=1.540598 \AA)$. The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson. Thermogravimetry and differential thermoanalysis (TG-DTA) measurements were performed in a dynamic nitrogen atmosphere in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned with idealized geometry $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$, methyl H atoms

Table 3
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{Co}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{4}\right]$
$M_{\text {r }}$	705.39
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	200
$a, b, c(\AA)$	$\begin{aligned} & 10.0531(2), 17.3479(4), \\ & 34.3141(5) \end{aligned}$
$V\left(\AA^{3}\right)$	5984.4 (2)
Z	8
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.05
Crystal size (mm)	$0.23 \times 0.19 \times 0.17$
Data collection	
Diffractometer	Stoe IPDS2
Absorption correction	Numerical ($X-R E D$ and X-SHAPE; Stoe, 2008)
$T_{\text {min }}, T_{\text {max }}$	0.457, 0.738
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	56525, 5862, 5130
$R_{\text {int }}$	0.035
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.617
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.038, 0.087, 1.07
No. of reflections	5862
No. of parameters	356
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.34, -0.48

Computer programs: X-AREA (Stoe, 2008), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 1999) and publCIF (Westrip, 2010).
allowed to rotate but not to tip) and were refined with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})(1.5$ for methyl H atoms $)$ using a riding model.

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

Barasiński, A., Sobczak, P., Drzewiński, A., Kamieniarz, G., Bieńko, A., Mroziński, J. \& Gatteschi, D. (2010). Polyhedron, 29, 14851491.

Barnett, S. A., Blake, A. J., Champness, N. R. \& Wilson, C. (2002). Chem. Commun. pp. 1640-1641.
Boeckmann, J. \& Näther, C. (2011). Chem. Commun. 47, 7104-7106.
Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. \& Näther, C. (2020). Inorg. Chem. 59, 5325-5338.

Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. \& Näther, C. (2022). Inorg. Chem. 61, 16841-16855.
Boillot, M. L., Pillet, S., Tissot, A., Rivière, E., Claiser, N. \& Lecomte, C. (2009). Inorg. Chem. 48, 4729-4736.

Brandenburg, K. \& Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.
Cadranel, A., Pieslinger, G. E., Tongying, P., Kuno, M. K., Baraldo, L. M. \& Hodak, J. H. (2016). Dalton Trans. 45, 5464-5475.

Dhers, S., Feltham, H. L. C. \& Brooker, S. (2015). Coord. Chem. Rev. 296, 24-44.
Dockum, B. W., Eisman, G. A., Witten, H. \& Reiff, W. M. (1983). Inorg. Chem. 22, 150-156.
Foltyn, M., Pinkowicz, D., Näther, C. \& Rams, M. (2022). Phys. Chem. Chem. Phys. 24, 24439-24446.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Guang, Y., Qian, Z., Xiang-Pei, Z., Yu, Z. \& Ng, S. W. (2007). J. Chem. Res. 384-386.
Handy, J. V., Ayala, G. \& Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.
Jochim, A., Ceglarska, M., Rams, M. \& Näther, C. (2018). Z. Anorg. Allg. Chem. 644, 1760-1770.
Jochim, A., Gallo, G., Dinnebier, R. E. \& Näther, C. (2019). Z. Naturforsch. B, 74, 49-58.
Lescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. \& Julve, M. (2005). Coord. Chem. Rev. 249, 2691-2729.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. \& Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.

Näther, C. \& Jess, I. (2004). Eur. J. Inorg. Chem. 2004, 2868-2876.
Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. \& Näther, C. (2018). Inorg. Chem. 57, 3305-3314.
Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. \& Näther, C. (2019). Chem. Commun. 55, 2652-2655.
Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. \& Batten, S. R. (2017). Aust. J. Chem. 70, 516528.

Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. \& Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567570.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shi, J. M., Chen, J., Wu, C. J. \& Ma, J. P. (2007). J. Coord. Chem. 60, 2009-2013.
Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. \& Miller, J. S. (2013). Inorg. Chem. 52, 1058310594.

Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Sun, H. L., Wang, Z. M. \& Gao, S. (2010). Coord. Chem. Rev. 254, 1081-1100.
Vicente, R., Escuer, A., Ribas, J., Solans, X. \& Font-Bardia, M. (1993). Inorg. Chem. 32, 6117-6118.
Werner, J., Rams, M., Tomkowicz, Z. \& Näther, C. (2014). Dalton Trans. 43, 17333-17342.
Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Ruschewitz, U. \& Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.

supporting information

Synthesis, crystal structure and properties of bis(isoselenocyanato- κN)tetrakis-(4-methoxypyridine- κN) cobalt(II)

Christian Näther and Inke Jess

Computing details

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure:
SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(isoselenocyanato- κN)tetrakis(4-methoxypyridine- κN)cobalt(II)

Crystal data

$\left[\mathrm{Co}(\mathrm{NCSe})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{4}\right]$
$M_{r}=705.39$
Orthorhombic, Pbca
$a=10.0531$ (2) \AA
$b=17.3479$ (4) \AA
$c=34.3141(5) \AA$
$V=5984.4(2) \AA^{3}$
$Z=8$
$F(000)=2824$

Data collection

Stoe IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
$T_{\text {min }}=0.457, T_{\text {max }}=0.738$
56525 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.087$
$S=1.07$
5862 reflections
356 parameters
0 restraints
$D_{\mathrm{x}}=1.566 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 56525 reflections
$\theta=1.2-26.0^{\circ}$
$\mu=3.05 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, light pink
$0.23 \times 0.19 \times 0.17 \mathrm{~mm}$

5862 independent reflections
5130 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=1.2^{\circ}$
$h=-12 \rightarrow 9$
$k=-21 \rightarrow 21$
$l=-42 \rightarrow 42$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0382 P)^{2}+4.2748 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Col	0.42296 (4)	0.38984 (2)	0.62207 (2)	0.04280 (10)
N1	0.4898 (3)	0.50081 (14)	0.60651 (7)	0.0509 (5)
C1	0.5320 (3)	0.56297 (17)	0.60594 (8)	0.0479 (6)
Se1	0.59634 (4)	0.65844 (2)	0.60535 (2)	0.07361 (13)
N2	0.3601 (2)	0.27886 (13)	0.63726 (7)	0.0504 (5)
C2	0.3463 (3)	0.22263 (16)	0.65509 (8)	0.0453 (6)
Se2	0.32769 (4)	0.13723 (2)	0.68306 (2)	0.06769 (12)
N11	0.3567 (2)	0.43341 (13)	0.67705 (6)	0.0426 (5)
C11	0.4297 (3)	0.48409 (16)	0.69698 (8)	0.0449 (6)
H11	0.508929	0.502719	0.685193	0.054*
C12	0.3978 (3)	0.51110 (16)	0.73342 (7)	0.0435 (6)
H12	0.454554	0.546307	0.746578	0.052*
C13	0.2809 (3)	0.48581 (15)	0.75052 (8)	0.0443 (6)
C14	0.2031 (3)	0.43319 (16)	0.72997 (8)	0.0482 (6)
H14	0.122509	0.414453	0.740865	0.058*
C15	0.2436 (3)	0.40891 (15)	0.69422 (8)	0.0449 (6)
H15	0.189538	0.372893	0.680651	0.054*
O11	0.2361 (2)	0.50833 (14)	0.78569 (6)	0.0613 (5)
C16	0.3177 (4)	0.5600 (2)	0.80767 (10)	0.0743 (10)
H16A	0.402605	0.534966	0.813740	0.111*
H16B	0.272280	0.573788	0.831961	0.111*
H16C	0.334262	0.606763	0.792371	0.111*
N21	0.5040 (2)	0.34562 (13)	0.56789 (6)	0.0469 (5)
C21	0.5856 (3)	0.28430 (16)	0.56790 (8)	0.0496 (6)
H21	0.587114	0.252310	0.590368	0.059*
C22	0.6666 (3)	0.26539 (16)	0.53735 (8)	0.0512 (7)
H22	0.722378	0.221281	0.538708	0.061*
C23	0.6661 (3)	0.31148 (15)	0.50441 (8)	0.0475 (6)
C24	0.5771 (3)	0.37243 (16)	0.50266 (8)	0.0523 (7)
H24	0.569119	0.403015	0.479818	0.063*
C25	0.5007 (3)	0.38721 (17)	0.53511 (8)	0.0510 (7)
H25	0.441604	0.429897	0.534145	0.061*
O21	0.7538 (2)	0.29286 (12)	0.47615 (6)	0.0593 (5)
C26	0.7672 (4)	0.3449 (2)	0.44407 (10)	0.0761 (11)
H26A	0.683599	0.346536	0.429403	0.114*
H26B	0.839033	0.327220	0.426951	0.114*
H26C	0.788117	0.396546	0.453862	0.114*
N31	0.6165 (2)	0.36451 (13)	0.64936 (6)	0.0441 (5)
C31	0.7328 (3)	0.38797 (17)	0.63423 (8)	0.0513 (7)

H31	0.730644	0.422024	0.612555	0.062^{*}
C32	$0.8543(3)$	$0.36555(18)$	$0.64827(9)$	$0.0552(7)$
H32	0.933751	0.384252	0.636632	0.066^{*}
C33	$0.8602(3)$	$0.31539(17)$	$0.67957(8)$	$0.0468(6)$
C34	$0.7418(3)$	$0.29132(16)$	$0.69587(8)$	$0.0478(6)$
H34	0.741410	0.257422	0.717608	0.057^{*}
C35	$0.6246(3)$	$0.31725(17)$	$0.68008(7)$	$0.0463(6)$
H35	0.543881	0.300535	0.691747	0.056^{*}
O31	$0.9822(2)$	$0.29425(13)$	$0.69180(6)$	$0.0613(5)$
C36	$0.9907(4)$	$0.2312(2)$	$0.71856(11)$	$0.0772(10)$
H36A	0.949864	0.245955	0.743396	0.116^{*}
H36B	1.084362	0.217962	0.722851	0.116^{*}
H36C	0.943834	0.186517	0.707773	0.116^{*}
N41	$0.2300(2)$	$0.41270(13)$	$0.59591(6)$	$0.0471(5)$
C41	$0.1720(3)$	$0.36068(17)$	$0.57240(9)$	$0.0562(7)$
H41	0.214155	0.312096	0.569187	0.067^{*}
C42	$0.0557(3)$	$0.37370(19)$	$0.55288(9)$	$0.0592(8)$
H42	0.019107	0.335190	0.536376	0.071^{*}
C43	$-0.0080(3)$	$0.44397(18)$	$0.55750(8)$	$0.0512(6)$
C44	$0.0467(3)$	$0.49680(16)$	$0.58295(8)$	$0.0505(7)$
H44	0.003580	0.544520	0.587894	0.061^{*}
C45	$0.1652(3)$	$0.47896(15)$	$0.60105(8)$	$0.0476(6)$
H45	0.202896	0.516039	0.618178	0.057^{*}
O41	$-0.1208(2)$	$0.45430(15)$	$0.53667(7)$	$0.0696(6)$
C46	$-0.1853(4)$	$0.5276(2)$	$0.53937(13)$	$0.0798(11)$
H46A	-0.212437	0.536910	0.566395	0.120^{*}
H46B	-0.263923	0.528030	0.522492	0.120^{*}
H46C	-0.123661	0.568224	0.531068	0.120^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.04374(19)$	$0.04212(19)$	$0.04252(19)$	$-0.00171(15)$	$0.00192(15)$	$0.00372(14)$
N 1	$0.0553(14)$	$0.0453(13)$	$0.0522(13)$	$-0.0025(11)$	$0.0056(11)$	$0.0050(10)$
C1	$0.0508(16)$	$0.0524(16)$	$0.0405(13)$	$0.0026(13)$	$0.0043(12)$	$0.0047(11)$
Se1	$0.0947(3)$	$0.05033(18)$	$0.0758(2)$	$-0.02052(18)$	$0.00388(19)$	$0.00265(15)$
N2	$0.0518(14)$	$0.0460(13)$	$0.0532(13)$	$-0.0049(11)$	$-0.0007(11)$	$0.0044(11)$
C2	$0.0431(14)$	$0.0463(15)$	$0.0465(14)$	$-0.0031(12)$	$-0.0012(11)$	$-0.0067(12)$
Se2	$0.0820(3)$	$0.04693(18)$	$0.0741(2)$	$-0.00859(16)$	$-0.00418(18)$	$0.01474(15)$
N11	$0.0373(11)$	$0.0470(12)$	$0.0435(11)$	$-0.0019(9)$	$0.0011(9)$	$0.0020(9)$
C11	$0.0371(13)$	$0.0513(15)$	$0.0463(14)$	$-0.0056(11)$	$0.0006(11)$	$0.0047(11)$
C12	$0.0393(14)$	$0.0477(14)$	$0.0436(13)$	$-0.0030(11)$	$-0.0023(11)$	$0.0031(11)$
C13	$0.0431(14)$	$0.0473(14)$	$0.0426(13)$	$0.0031(12)$	$0.0030(11)$	$0.0028(11)$
C14	$0.0386(14)$	$0.0539(16)$	$0.0523(15)$	$-0.0053(12)$	$0.0053(12)$	$0.0034(12)$
C15	$0.0377(13)$	$0.0459(14)$	$0.0511(14)$	$-0.0042(11)$	$0.0014(11)$	$0.0028(11)$
O11	$0.0571(12)$	$0.0760(14)$	$0.0509(11)$	$-0.0092(11)$	$0.0127(10)$	$-0.0123(10)$
C16	$0.082(2)$	$0.082(2)$	$0.0585(19)$	$-0.018(2)$	$0.0122(17)$	$-0.0227(17)$
N21	$0.0525(14)$	$0.0458(12)$	$0.0424(11)$	$0.0030(10)$	$0.0003(10)$	$0.0025(9)$

supporting information

C21	$0.0608(17)$	$0.0426(14)$	$0.0452(14)$	$0.0043(13)$	$0.0002(12)$	$0.0034(11)$
C22	$0.0617(18)$	$0.0419(14)$	$0.0499(15)$	$0.0077(13)$	$-0.0003(13)$	$-0.0001(12)$
C23	$0.0534(16)$	$0.0433(14)$	$0.0457(14)$	$-0.0035(12)$	$0.0041(12)$	$-0.0052(11)$
C24	$0.0649(18)$	$0.0483(15)$	$0.0436(14)$	$0.0069(13)$	$-0.0003(13)$	$0.0044(12)$
C25	$0.0568(17)$	$0.0528(16)$	$0.0434(14)$	$0.0098(13)$	$-0.0011(13)$	$0.0033(12)$
O21	$0.0743(14)$	$0.0504(11)$	$0.0532(11)$	$0.0053(10)$	$0.0172(10)$	$-0.0017(9)$
C26	$0.101(3)$	$0.0597(19)$	$0.067(2)$	$0.0058(19)$	$0.035(2)$	$0.0068(16)$
N31	$0.0420(12)$	$0.0459(12)$	$0.0445(11)$	$-0.0011(10)$	$0.0022(9)$	$0.0036(9)$
C31	$0.0481(16)$	$0.0540(16)$	$0.0520(15)$	$-0.0062(13)$	$0.0044(12)$	$0.0114(13)$
C32	$0.0437(15)$	$0.0617(18)$	$0.0601(17)$	$-0.0075(14)$	$0.0074(13)$	$0.0104(14)$
C33	$0.0404(14)$	$0.0499(15)$	$0.0501(14)$	$-0.0031(12)$	$-0.0030(12)$	$-0.0017(12)$
C34	$0.0472(15)$	$0.0512(15)$	$0.0450(14)$	$-0.0061(12)$	$-0.0002(12)$	$0.0063(12)$
C35	$0.0415(14)$	$0.0542(15)$	$0.0432(13)$	$-0.0051(12)$	$0.0035(11)$	$0.0063(12)$
O31	$0.0428(11)$	$0.0712(14)$	$0.0700(13)$	$-0.0044(10)$	$-0.0064(10)$	$0.0116(11)$
C36	$0.058(2)$	$0.090(3)$	$0.084(2)$	$0.0044(19)$	$-0.0175(18)$	$0.027(2)$
N41	$0.0496(13)$	$0.0450(12)$	$0.0466(12)$	$0.0013(10)$	$-0.0008(10)$	$0.0004(9)$
C41	$0.0558(18)$	$0.0505(16)$	$0.0623(17)$	$0.0076(14)$	$-0.0092(14)$	$-0.0121(13)$
C42	$0.0569(18)$	$0.0586(18)$	$0.0620(18)$	$0.0030(14)$	$-0.0083(14)$	$-0.0128(14)$
C43	$0.0437(15)$	$0.0586(17)$	$0.0513(15)$	$0.0013(13)$	$0.0005(12)$	$0.0066(13)$
C44	$0.0502(16)$	$0.0450(14)$	$0.0563(16)$	$0.0032(12)$	$0.0064(13)$	$0.0053(12)$
C45	$0.0524(16)$	$0.0408(13)$	$0.0494(15)$	$-0.0002(12)$	$0.0019(12)$	$0.0016(11)$
O41	$0.0531(13)$	$0.0749(15)$	$0.0807(15)$	$0.0082(12)$	$-0.0151(11)$	$0.0034(12)$
C46	$0.061(2)$	$0.076(2)$	$0.102(3)$	$0.0171(18)$	$-0.013(2)$	$0.017(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Col-N2	2.092 (2)	C25-H25	0.9500
Col-N1	2.108 (2)	O21-C26	1.430 (4)
Col-N11	2.139 (2)	C26-H26A	0.9800
Col-N21	2.170 (2)	C26-H26B	0.9800
Co1-N41	2.174 (2)	C26-H26C	0.9800
Col-N31	2.203 (2)	N31-C35	1.338 (3)
N1-C1	1.159 (4)	N31-C31	1.342 (4)
C1-Se1	1.778 (3)	C31-C32	1.370 (4)
N2-C2	1.160 (3)	C31-H31	0.9500
$\mathrm{C} 2-\mathrm{Se} 2$	1.775 (3)	C32-C33	1.384 (4)
N11-C11	1.334 (3)	C32-H32	0.9500
N11-C15	1.349 (3)	C33-O31	1.347 (3)
C11-C12	1.373 (4)	C33-C34	1.379 (4)
C11-H11	0.9500	C34-C35	1.373 (4)
C12-C13	1.384 (4)	C34-H34	0.9500
C12-H12	0.9500	C35-H35	0.9500
C13-O11	1.346 (3)	O31-C36	1.431 (4)
C13-C14	1.393 (4)	C36-H36A	0.9800
C14-C15	1.359 (4)	C36-H36B	0.9800
C14-H14	0.9500	C36-H36C	0.9800
C15-H15	0.9500	N41-C45	1.333 (3)
O11-C16	1.431 (4)	N41-C41	1.344 (4)

C16-H16A	0.9800	C41-C42	1.366 (4)
C16-H16B	0.9800	C41-H41	0.9500
C16-H16C	0.9800	C42-C43	1.386 (4)
N21-C25	1.337 (3)	C42-H42	0.9500
N21-C21	1.343 (3)	C43-O41	1.353 (3)
C21-C22	1.367 (4)	C43-C44	1.380 (4)
$\mathrm{C} 21-\mathrm{H} 21$	0.9500	C44-C45	1.379 (4)
C22-C23	1.384 (4)	C44-H44	0.9500
C22-H22	0.9500	C45-H45	0.9500
C23-O21	1.350 (3)	O41-C46	1.431 (4)
C23-C24	1.386 (4)	C46-H46A	0.9800
C24-C25	1.377 (4)	C46-H46B	0.9800
C24-H24	0.9500	C46-H46C	0.9800
N2-Co1-N1	178.93 (10)	N21-C25-H25	117.8
N2-Col-N11	90.65 (9)	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 25$	117.8
N1-Col-N11	90.00 (9)	$\mathrm{C} 23-\mathrm{O} 21-\mathrm{C} 26$	117.6 (2)
N2-Col-N21	90.08 (9)	O21-C26-H26A	109.5
N1-Co1-N21	89.20 (9)	O21-C26-H26B	109.5
N11-Co1-N21	176.06 (9)	H26A-C26-H26B	109.5
N2-Col-N41	90.07 (9)	O21-C26-H26C	109.5
N1-Co1-N41	90.76 (9)	H26A-C26-H26C	109.5
N11-Co1-N41	91.26 (8)	H26B-C26-H26C	109.5
N21-Col-N41	92.61 (9)	C35-N31-C31	115.9 (2)
N2-Co1-N31	88.71 (9)	C35-N31-Col	120.72 (18)
N1-Co1-N31	90.47 (9)	C31-N31-Col	122.96 (18)
N11-Col-N31	88.32 (8)	N31-C31-C32	123.7 (3)
N21-Co1-N31	87.83 (9)	N31-C31-H31	118.2
N41-Co1-N31	178.70 (9)	C32-C31-H31	118.2
C1-N1-Col	166.1 (2)	C31-C32-C33	119.3 (3)
N1-C1-Se1	179.7 (3)	C31-C32-H32	120.3
C2-N2-Co1	160.3 (2)	C33-C32-H32	120.3
N2-C2-Se2	178.8 (3)	O31-C33-C34	125.2 (3)
C11-N11-C15	116.6 (2)	O31-C33-C32	116.9 (3)
C11-N11-Co1	120.90 (17)	C34-C33-C32	117.9 (3)
C15-N11-Co1	122.44 (18)	C35-C34-C33	118.8 (2)
N11-C11-C12	124.3 (2)	C35-C34-H34	120.6
N11-C11-H11	117.9	C33-C34-H34	120.6
C12-C11-H11	117.9	N31-C35-C34	124.3 (3)
C11-C12-C13	118.4 (2)	N31-C35-H35	117.8
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.8	C34-C35-H35	117.8
C13-C12-H12	120.8	C33-O31-C36	117.6 (2)
O11-C13-C12	124.9 (3)	O31-C36-H36A	109.5
O11-C13-C14	117.1 (2)	O31-C36-H36B	109.5
C12-C13-C14	118.0 (2)	H36A-C36-H36B	109.5
C15-C14-C13	119.4 (2)	O31-C36-H36C	109.5
C15-C14-H14	120.3	H36A-C36-H36C	109.5
C13-C14-H14	120.3	H36B-C36-H36C	109.5

$\mathrm{N} 11-\mathrm{C} 15-\mathrm{C} 14$	$123.3(3)$
$\mathrm{N} 11-\mathrm{C} 15-\mathrm{H} 15$	118.4
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	118.4
$\mathrm{C} 13-\mathrm{O} 11-\mathrm{C} 16$	$117.5(2)$
$\mathrm{O} 11-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	109.5
$\mathrm{O} 11-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	109.5
$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	109.5
$\mathrm{O} 11-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	109.5
$\mathrm{H} 16 \mathrm{~A}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	109.5
$\mathrm{H} 16 \mathrm{~B}-\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	109.5
$\mathrm{C} 25-\mathrm{N} 21-\mathrm{C} 21$	$116.3(2)$
$\mathrm{C} 25-\mathrm{N} 21-\mathrm{Co1}$	$121.38(19)$
$\mathrm{C} 21-\mathrm{N} 21-\mathrm{C} 1$	$120.60(18)$
$\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22$	$123.6(3)$
$\mathrm{N} 21-\mathrm{C} 21-\mathrm{H} 21$	118.2
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21$	118.2
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$119.0(3)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	120.5
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	120.5
$\mathrm{O} 21-\mathrm{C} 23-\mathrm{C} 22$	$116.5(3)$
$\mathrm{O} 21-\mathrm{C} 23-\mathrm{C} 24$	$125.0(3)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$118.6(3)$
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 23$	$117.8(3)$
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{H} 24$	121.1
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 24$	121.1
$\mathrm{~N} 21-\mathrm{C} 25-\mathrm{C} 24$	$124.5(3)$

C45-N41-C41	116.5 (2)
C45-N41-Col	122.59 (19)
C41-N41-Col	120.87 (19)
N41-C41-C42	123.7 (3)
N41-C41-H41	118.1
C42-C41-H41	118.1
C41-C42-C43	119.0 (3)
C41-C42-H42	120.5
C43-C42-H42	120.5
O41-C43-C44	125.5 (3)
O41-C43-C42	116.3 (3)
C44-C43-C42	118.2 (3)
C45-C44-C43	118.7 (3)
C45-C44-H44	120.6
C43-C44-H44	120.6
N41-C45-C44	123.8 (3)
N41-C45-H45	118.1
C44-C45-H45	118.1
C43-O41-C46	117.6 (3)
O41-C46-H46A	109.5
O41-C46-H46B	109.5
H46A-C46-H46B	109.5
O41-C46-H46C	109.5
H46A-C46-H46C	109.5
H46B-C46-H46C	109.5

Hydrogen-bond geometry ($A,{ }^{o}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
C11-H11 ${ }^{\text {O }} 11^{\text {i }}$	0.95	2.49	3.165 (3)	128
C15-H15..O31 ${ }^{\text {ii }}$	0.95	2.52	3.297 (3)	139
C16-H16B $\cdots \mathrm{Sel}^{\text {iii }}$	0.98	3.15	4.096 (3)	163
C22-H22 ${ }^{\text {Se }} 1^{\text {iv }}$	0.95	3.12	3.817 (3)	132
C26-H26A $\cdots \mathrm{Se}^{\text {v }}$	0.98	3.06	4.029 (5)	171
C36-H36B \cdots Se $2^{\text {vi }}$	0.98	3.13	3.952 (4)	142
$\mathrm{C} 41-\mathrm{H} 41 \cdots \mathrm{O} 21^{\text {vii }}$	0.95	2.43	3.248 (4)	144
C45-H45 $\cdots \mathrm{Se}^{\text {2iii }}$	0.95	3.08	3.932 (3)	151
C46-H46A $\cdots \mathrm{Sel}^{\text {ii }}$	0.98	3.15	3.885 (4)	133

[^0]
[^0]: Symmetry codes: (i) $x+1 / 2, y,-z+3 / 2$; (ii) $x-1, y, z$; (iii) $x-1 / 2, y,-z+3 / 2$; (iv) $-x+3 / 2, y-1 / 2, z$; (v) $-x+1,-y+1,-z+1$; (vi) $x+1, y, z$; (vii) $x-1 / 2,-y+1 / 2$, $-z+1$; (viii) $-x+1 / 2, y+1 / 2, z$.

