Published under a CC BY 4.0 licence

OPEN O

ACCESS

Crystal structures of di-µ-chlorido-bis({(*E*)-5-(ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenolato}copper(II)) and chloridobis(1,10-phenanthroline)copper(II) chloride tetrahydrate

Alex Meier,^a Mohammad Rasel Mian,^b Siyu Ou,^a Scott Lovell^{b,c} and Minae Mure^a*

^aDepartment of Chemistry, The University of Kansas, Lawrence, KS 66045, USA, ^bX-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66045, USA, and ^cProtein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, USA. *Correspondence e-mail: mmure@ku.edu

The dark-red title complex crystallized from an equimolar methanol solution of (E)-5-(ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenol and CuCl₂(phen) (phen = 1,10-phenanthroline) as a centrosymmetric dimer, $[CuCl(C_{14}H_{15}N_4O)]_2$. The Cu atoms are bridged by two Cl ligands and have a slightly distorted squarepyramidal coordination, where two N atoms from the azo and the pyridine moieties, a phenolic O and a Cl atom comprise the base and the other Cl occupies the apex position. The apical Cu–Cl bond, 2.6192 (4) Å, is longer than the basal one, 2.2985 (3) Å, due to Jahn-Teller distortion. The dimers are associated via weak intermolecular hydrogen bonds and π - π stacking interactions between phenyl and pyridine rings. A monomeric by-product of the same reaction, [CuCl(phen)₂]Cl·4H₂O, has a trigonal-bipyramidal coordination of Cu with equatorial Cl ligand, and extensive outer-sphere disorder. In the structure of 4, the packing of cations leaves continuous channels containing disordered Cl⁻ anions and solvent molecules. The identity of the solvent (water or a water/methanol mixture) was not certain. The disordered anion/solvent regions comprise 28% of the unit-cell volume. The disorder was approximated by five partly occupied positions of the Cl⁻ anion and ten positions of O atoms with a total occupancy of 3, giving a total of 48 electrons per asymmetric unit, in agreement with the integral electron density of 47.8 electrons in the disordered region, as was estimated using the BYPASS-type solvent-masking program [van der Sluis & Spek (1990). Acta Cryst. A46, 194-201].

1. Chemical context

The (E)-5-(ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenol ligand (1) was synthesized from a coupling reaction of pyridine-2-diazotate and 3-ethylamino-p-cresol as a model for the lysine tyrosylquinone (LTQ) cofactor (Fig. 1) of lysyl oxidase-like 2 (LOXL2) that is inhibited by 2-hydrazinopyridine (2HP). LOXL2 is a member of the lysyl oxidase family of proteins, and its upregulation has been closely associated with fibrosis and tumor metastasis (Moon et al. 2014; Mahjour et al., 2019; Wei et al., 2021). We have recently identified 2HP-modified LTQ, LTQ-2HP (Fig. 1) in 2HPinhibited LOXL2 by mass spectrometry-based peptide mapping (Meier, Go et al., 2022). Since there is no structural information of a catalytically competent form of LOXL2, we conducted comparative spectroscopic studies of 2HP-inhibited LOXL2 and the corresponding model compound in solution, in order to understand the spatial arrangement of the LTQ cofactor and the active site Cu^{II} (Meier, Moon et al., 2022). The UV-vis spectroscopic feature of 2HP-inhibited LOXL2

Received 21 September 2022 Accepted 15 February 2023

Edited by A. S. Batsanov, University of Durham, United Kingdom

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: X-ray crystallography; copper(II) complex; chlorido bridge; supramolecular features.

CCDC references: 2219280; 2219281

Supporting information: this article has supporting information at journals.iucr.org/e

ISSN 2056-9890

research communications

Figure 1

(*a*) The covalent modification of the LTQ cofactor of LOXL2 by 2HP. After the tautomerization of the hydrazone to the azo form, LTQ-2HP ligates to the active site Cu^{2+} . The 2HP-modified LTQ (LTQ-2HP) containing the peptide was detected by mass spectrometry (Meier, Go, *et al.*, 2022). Based on the close resemblances of UV–vis and resonance Raman spectra of 2HP-inhibited LOXL2 and the model compound **2**, we hypothesize that LTQ-2HP serves as a tridentate ligand to the active site Cu^{II} in LOXL2 (Meier, Moon *et al.*, 2022). The +2 charge of Cu^{II} is expected to be canceled out by the 4-oxoanion of LTQ-2HP and a nearby acidic residue or a water molecule (Meier, Kuczera *et al.*, 2022). (b) During the recrystallization of the dark red solids (**2**) isolated from an equimolar mixture of the LTQ-2HP model compound (**1**) and CuCl₂(phen) in anhydrous methanol, we first isolated dark-red crystals (**3**), then also isolated (**4**) from the mother liquor that was left for a week at room temperature.

indicated the ligation of LTQ-2HP to the active site Cu^{II} (Fig. 2).

In order to model the LTQ-2HP ligated to the active site Cu^{II} , **1** was mixed with an equimolar amount of dichloro-(phen)Cu (phen = 1,10-phenanthroline) in anhydrous methanol to isolate dark-red solids (**2**), where the phen ligand was used to mimic two of the three His ligands of the active site Cu^{II} in LOXL2 (Meier, Kuczera *et al.*, 2022). Upon slow evaporation of methanol solution of **2**, dark-red crystals (**3**) were isolated and characterized as a dimeric complex $[CuCl(C_{14}H_{15}N_4O)]_2$ (Fig. 1).

After isolation of **3**, green prismatic crystals (**4**) were isolated from the mother liquor and identified as a monomeric complex, $[CuCl(phen)_2]^- Cl^+ 4H_2O$ (Fig. 1). Herein we report the crystal structures of **3** and **4**.

2. Structural commentary

The molecule of **3** (Fig. 2) has a crystallographic inversion center. Each Cu atom is penta-coordinated by N1, N3, and the deprotonated O1 of the oxoanion **1**, as well as two inversion-related bridging chloride ligands, Cl and Cl'. Atoms N1, N3, O1 and Cl are nearly coplanar and comprise the base of a distorted square pyramid while Cl' occupies the apical position. The apical Cu—Cl bond is *ca* 0.32 Å longer than the basal one due to the Jahn–Teller effect (Addison *et al.*, 1984). The Addison parameter, $\tau = (\beta - \alpha)/60^\circ = 0.007$ (where $\alpha = 160.67^\circ$ and $\beta = 161.00^\circ$ are the widest bond angles) indicates a small distortion from an ideal square-pyramidal geometry ($\tau = 0$) towards a trigonal–bipyramidal geometry ($\tau = 1$). The coordination polyhedra of the two Cu atoms share one base-to-apex edge (Fig. 1*b*), while their basal planes are rigorously

Table 1				
Hydrogen	bonds (Å,	°) in the	crystal	of 3 .

$D - H \cdot \cdot \cdot A$	d(D-H)	$d(\mathbf{H} \cdot \cdot \cdot A)$	$d(D \cdot \cdot \cdot A)$	<(DHA)
Intramolecular				
$C11-H11\cdots O1^{i}$	0.92 (2)	2.60 (2)	3.4083 (18)	146.5 (19)
$C11-H11\cdots Cl^{a}$	0.92 (2)	2.93 (2)	3.4825 (15)	120.2 (17)
Intermolecular	. ,			
C9−H9···O1 ⁱⁱ	0.92(3)	2.59 (3)	3.1592 (18)	120.2 (17)
$C9-H9\cdots Cl^{ii,a}$	0.92(3)	2.91 (3)	3.6514 (14)	138 (2)
$C12-H12B\cdots O1^{iii}$	0.96 (3)	2.85 (3)	3.4542 (15)	111.9 (17)
C12-H12C···Cl ^{iv} , ^a	0.93(2)	3.00 (2)	3.790 (2)	169 (2)
C14-H14 B ···Cl ^{v,a}	0.97 (3)	2.94 (3)	3.6821 (16)	134.8 (19)

Symmetry transformations used to generate equivalent atoms: (i) -x + 1, -y, -z; (ii) x, y + 1, z; (iii) -x, 1 - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z; (v) x - 1, y, z + 1. Note: (a) Very weak, if any, at the borderline of a hydrogen bond (Grabowski, 2021).

parallel to each other (with an interplanar separation of 1.789 Å), in a type II arrangement as classified by Rodriguez *et al.* (1999). The Cu₂Cl₂ plane is perpendicular to the basal planes. The geometry agrees with that in other Cu₂(μ -Cl)₂ centers (Sasmal *et al.*, 2013; Rodriguez *et al.*, 1999). In the ligand **1**, the aromatic phenyl and pyridine rings are conjugated through the N=N (azo) bond of 1.301 (2) Å and adopt a *E*, or *trans*, configuration about this bond, with a C–N=N-C torsion angle of -179.0 (1)°. The dimer also contains two pairs of weak intramolecular hydrogen bonds, C11–H11···Cl and C11–H11···O1 (Table 1).

The cation and ordered water molecule in the structure of **4**. Atomic displacement ellipsoids are drawn at the 50% probability level.

The asymmetric unit in the structure of **4** contains one monomeric cation (Fig. 3) in which the Cu^{II} atom has a distorted trigonal-bipyramidal coordination ($\tau = 0.848$) with two chelating 1,10-phenanthroline ligands and one Cl atom, the latter in an equatorial position. A similar coordination

Figure 2

Molecular structure of 3 in different aspects (a, c), showing the coordination polyhedra of Cu (b) and intramolecular hydrogen bonds (a). Atomic displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by inversion, symmetry operation 1 - x, 1 - y, -z.

research communications

Table 2			
Distances and α angle (Å, °)	of intermolecular	π - π interactions	in 3 .

	Phenyl-phenyl	phenyl-pyridine	pyridine-pyridin
Centroid–centroid distance	3.910 (1)	4.266 (1)	4.220 (1)
Plane-plane distance	3.433 (1)	3.534 (1)	3.499 (1)
α	28.60	34.06	33.99

geometry was observed in monomeric Cu^{II} complexes $[Cu(CN)(phen)_2]NO_3$ (Anderson, 1974) and $[CuCl(5,6-di-methyl-1,10-phenanthroline)_2]PF_6$ (Yamada, 2002), although the Cu–Cl bond in the latter [2.257 (1) Å] is much shorter than in **4** [2.3527 (6) Å].

3. Supramolecular features

The crystal packing of 3 is shown in Fig. 4. Each molecule forms ten weak intermolecular hydrogen bonds $C-H\cdots X$, where X = Cl or O (Grabowski, 2021). The Cl atom is engaged in four such interactions and the O atom in two (supporting Fig. 1A). Additional stabilization is provided by off-center parallel π - π stacking interactions (Janiak, 2000; Martinez & Iverson, 2012) between two phenyl rings, between two pyridine rings, or between a phenyl and a pyridine ring (Fig. 4 and supporting Fig. 1B,C). The distances between ring centers (centroid-centroid distances), the distances between the ring center and the plane of the ring (plane-plane distances) and the α angle between the ring normal and the center of the opposite ring of the three modes of π - π interactions are summarized in Table 2. Remarkably, the amino-H atom is not engaged in any hydrogen bond, probably due to screening by two adjacent methyl groups.

In the structure of **4** (supplemental Fig. 2), the packing of cations leaves continuous channels containing disordered Cl^-

anions and solvent molecules. Of the latter, one water molecule per asymmetric unit is ordered, being 'anchored' by an $O1-H1A\cdots$ Cl1 hydrogen bond with the cation $[O1\cdots$ Cl1 = 3.173 (3), H1A···Cl1 = 2.34 Å]. The rest of the solvent is intensely disordered and its identity (water or a water/ methanol mixture) was not certain. The disordered anion/ solvent regions comprise 28% of the unit-cell volume. The disorder was approximated by five partly occupied positions of the Cl⁻ anion and ten positions of O atoms with a total occupancy of 3 – presumably water molecules whose hydrogen atoms could not be located. This gives a total of 48 electrons per asymmetric unit, in agreement with the integral electron density of 47.8 electrons in the disordered region, as was estimated using the BYPASS-type solvent-masking program (van der Sluis & Spek, 1990) on the OLEX2 platform (Dolomanov et al., 2009).

4. Database survey

Several crystal structures of penta-coordinated centrosymmetric Cu^{II} dimers with the Cu atoms bridged by two Cl ligands and bonded to ligands with N and O atoms, have been deposited in the Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016), viz. FEWFAO (Rodriguez et al., 1999), MUNWIB, MUNWOH (Kapoor et al., 2002), YECGUK (Das et al., 2012), SIDQED (Sasmal et al., 2013), and POJKOQ (Smolentsev et al., 2014). However, no complexes with ligand 1 were found. To our knowledge, 3 is the first example of a penta-coordinated centrosymmetric Cu^{II} dimer in which the Cu atoms are bridged by two Cl ligands and are bonded each to two N atoms (pyridine N and aromatic -N=N-) and a phenoxy-O atom. There are multiple structures of phen and its derivatives complexed with Cu^{II}, the two structures closely related to 4 being PENCUN (Anderson, 1975) and XUMZOU (Yamada et al., 2002), see Section 2.

Figure 4

Crystal packing of **3** (*a*), showing intermolecular hydrogen bonds (*b*) and phenyl–phenyl π – π stacking interactions (*c*) (α is the angle between the ring normal and centroid–centroid vector, *d* is the displacement between the rings).

5. Synthesis and crystallization

5.1. Synthesis of pyridine-2-diazotate

Isoamyl nitrite (4.03 ml, 30 mmol) was added to a slurry of 2-aminopyridine (2.82 g, 30 mmol) and sodium amide (1.29 g, 33 mmol) in 30 ml of anhydrous THF and the reaction mixture was refluxed for 2 h (Bunton *et al.*, 1974). After cooling to room temperature, precipitates were isolated by vacuum filtration, washed with tetrahydrofuran (THF) and dried under vacuum. Pyridine-2-diazoate was isolated as a pale-yellow solid (2 g, 63%) ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.26 (*d*, *J* = 3.7 Hz, 1H), 7.55 (*dd*, *J* = 7.7 Hz, 1H), 7.39 (*d*, *J* = 8.2 Hz, 1H), 6.91 (*dd*, *J* = 7.7 Hz, 1H).

5.2. Synthesis of (*E*)-5-(ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenol, 1

3-Ethylamino-p-cresol (5.3 g, 35.1 mmol) was added to the suspension of pyridine-2-diazotate (7.5 g, 70.8 mmol) in 100 ml of ethanol and the pH of the reaction mixture was adjusted to 8 by aqueous HCl (Nakagawa & Wada, 1962). After refluxing for 2 h, the solvent was removed under reduced pressure. The resulting solids were washed with water and dried in vacuo. (E)-5-(Ethylamino)-4-methyl-2-[(pyridin-2-yl)diazenyl]phenol, 1, was isolated as a dark-red solid (4.59 g, 51%). ¹H NMR (400 MHz, chloroform-d) δ 16.05 (s, 1H), 8.40 (d, J = 4.1 Hz, 2H), 7.75–7.66 (m, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.06-6.98 (m, 2H), 6.92 (s, 2H), 5.74 (s, 2H), 4.63 (s, 1H), 3.28 (dt, J = 13.4, 7.2 Hz, 4H), 2.10 (s, 5H), 1.33 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, chloroform-d) δ 175.67, 156.20, 155.56, 148.78, 138.06, 133.91, 133.11, 121.71, 119.72, 110.42, 97.71, 38.17, 16.51, 14.08. HRMS (ESI+) C14H18N4O $(M^+ + 1)$ calculated: 257.1402, observed 257.1419.

5.3. Crystallization

Compound 1 was purified by recrystallization from methanol by slow evaporation. Dark-yellow needle-like crystals of 1 were obtained after a week at room temperature. CuCl₂(phen) (123 mg, 0.39 mmol) was added to a suspension of 1 (100 mg, 0.39 mmol) in 5 ml of methanol. The reaction mixture was sonicated to completely dissolve solids and subjected to slow evaporation of methanol at room temperature. Dark-red single crystals of 3, suitable for X-ray crystallography, were obtained within a day. After removing the crystals of 3, small green crystals of 4 were formed from the mother liquor. Recrystallization of 3 by slow evaporation of an equimolar mixture of 1 in methanol and CuCl₂ in a minimal amount of water at room temperature gave dark-red crystals within a couple of days (Fig. 1). The UV-vis spectra of crystalline 3 obtained by two methods are identical and superimposable to the visible region of the UV-vis spectrum of 2HP-inhibited LOXL2 (Fig. 5). These results strongly support our hypothesis that 2HP-inhibited LOXL2 contains LTQ-2HP that is ligated to the active site Cu²⁺ and the LTQ cofactor resides in the vicinity of the Cu²⁺ center (Meier, Moon et al., 2022; Meier, Kuczera et al., 2022).

Figure 5

UV-vis spectra of 2HP-inhibited LOXL2 (LOXL2-2HP) (in black) (Meier, Moon *et al.*, 2022), crystalline **3** isolated from a 1:1 mixture of **2** with CuCl₂(phen) (in blue), and crystalline **3** isolated from a 1:1 mixture of **2** with CuCl₂ (in red). All spectra were recorded in 50 m*M* HEPBS buffer (pH 8.0).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. In **3**, all H atoms were refined in isotropic approximation. In **4**, the H atoms of the disordered water molecules were ignored, H1*A* was refined in an isotropic approximation, other H atoms were placed in idealized positions (C-H = 0.95, O-H = 0.84 Å) and refined as riding on their carrier atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$. The treatment of the disorder is described in the *Supramolecular features* section.

Acknowledgements

The National Institutes of Health (NIH) Grant R01GM113101, the Kansas Masonic Cancer Research Institute Pilot Research Program of the University of Kansas Cancer Center, P30CA168524, and the COBRE-PSF P30 GM110761 Pilot Project, the University of Kansas, Department of Chemistry (to MM) provided funding for this research. AM was supported by National Institutes of Health NIGMS Biotechnology Predoctoral Training Program (T32-GM008359), the J. K. Lee Summer Scholar Program and Chaffee Fellowship from the Department of Chemistry, the University of Kansas. The National Science Foundation (NSF) Major Research Instrumentation Program (NSF-MRI) Grant CHE-0923449 supported the purchase of the X-ray diffractometer for the Molecular Structure Group at University of Kansas and software used in this study.

Funding information

Funding for this research was provided by: National Institutes of Health (grant No. R01GM113101 to Minae Mure); Kansas

research communications

Table 3 Experimental details.

	3	4
Crystal data		
Chemical formula	$[Cu_2Cl_2(C_{14}H_{15}N_4O)_2]$	$[CuCl(C_{12}H_{\circ}N_{2})_{2}]Cl \cdot 4H_{2}O$
М.	708.58	566.91
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, C2/c
Temperature (K)	100	100
a, b, c (Å)	8.6965 (3), 8.7974 (4), 9.5574 (4)	23,1874 (7), 30,2708 (9), 7,2839 (2)
$\alpha \beta \gamma (^{\circ})$	88 6165 (17) 79 3644 (16) 73 0017 (15)	90 97 235 (1) 90
$V(A^3)$	686 90 (5)	5071.9 (3)
Z	1	8
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	1 79	1 11
Crystal size (mm)	$0.1 \times 0.05 \times 0.02$	$0.2 \times 0.1 \times 0.05$
Data collection		
Diffractometer	Bruker D8 Venture	Bruker D8 Venture
Absorption correction	Multi-scan (SADARS: Krause et al. 2015)	Multi-scan (SADARS: Krause et al. 2015)
T + T	0.89 0.94	0.89 0.95
No of measured independent and	120912 7366 6202	67930 6173 5840
observed $[I > 2\sigma(I)]$ reflections	120912, 7300, 0202	07550, 0175, 5040
$R_{\rm c}$	0.047	0.029
$(\sin \theta / \lambda)$ $(Å^{-1})$	0.862	0.667
(Shi o/A)max (Pr	0.002	0.007
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.090, 1.03	0.045, 0.130, 1.05
No. of reflections	7366	6173
No. of parameters	250	364
H-atom treatment	All H-atom parameters refined	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.75, -0.87	1.06, -0.48

Computer programs: APEX4 (Bruker, 2021), SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

Masonic Foundation (grant No. P30CA168524 to Minae Mure); National Institutes of Health (grant No. P30 GM110761 to Minae Mure); National Institutes of Health, National Institute of General Medical Sciences (award No. T32-GM008359); National Science Foundation (grant No. CHE-0923449).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Anderson, O. P. (1975). Inorg. Chem. 14, 730-734.
- Bruker (2016). SAINT. Bruker Nano Inc., Madison, Wisconsin, USA. Bruker (2021). APEX4. Bruker Nano Inc., Madison, Wisconsin, USA.
- Bunton, C. A., Minch, M. J. & Wolfe, B. B. (1974). J. Am. Chem. Soc. 96, 3267–3275.
- Das, K., Datta, A., Sinha, C., Huang, J. H., Garribba, E., Hsiao, C. S. & Hsu, C. L. (2012). *ChemistryOpen*, 1, 80-89.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Grabowski, S. J. (2021). Understanding Hydrogen Bonds: Theoretical and Experimental Views. Cambridge. The Royal Society of Chemistry.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Kapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. & Llobet, A. (2002). *Inorg. Chem.* 41, 6153–6160.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

- Mahjour, F., Dambal, V., Shrestha, N., Singh, V., Noonan, V., Kantarci, A. & Trackman, P. C. (2019). *Oncogenesis*, **8**, 34.
- Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.
- Meier, A. A., Go, E. P., Moon, H. J., Desaire, H. & Mure, M. (2022). Int. J. Mol. Sci. 23, 5879.
- Meier, A. A., Kuczera, K. & Mure, M. (2022). Int. J. Mol. Sci. 23, 13385.
- Meier, A. A., Moon, H.-J., Sabuncu, S., Singh, P., Ronnebaum, T. R., Ou, S., Douglas, J. T., Jackson, T. A., Moenne-Loccoz, P. & Mure, M. (2022). *Int. J. Mol. Sci.* 23, 13966.
- Moon, H. J., Finney, J., Ronnebaum, T. & Mure, M. (2014). *Bioorg. Chem.* **57**, 231–241.
- Nakagawa, G. & Wada, H. (1962). Nippon Kagaku Zasshi, 83, 1098-1102.
- Rodríguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). *Inorg. Chem.* **38**, 2328–2334.
- Sasmal, A., Saha, S., Gómez-García, C. J., Desplanches, C., Garribba, E., Bauzá, A., Frontera, A., Scott, R., Butcher, R. J. & Mitra, S. (2013). *Chem. Commun.* 49, 7806–7808.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.
- Smolentsev, A., Lider, E. V., Lavrenova, L. G., Sheludyakova, L. A., Bogomyakov, A. S. & Vasilevsky, S. F. (2014). *Polyhedron*, **77**, 81– 88.
- Wei, Y., Dong, W., Jackson, J., Ho, T. C., Le Saux, C. J., Brumwell, A., Li, X., Klesney-Tait, J., Cohen, M. L., Wolters, P. J. & Chapman, H. A. (2021). *Thorax*, **76**, 729–732.
- Yamada, Y., Sakurai, H., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2002). Polyhedron, 21, 2143–2147.

Acta Cryst. (2023). E79, 201-206 [https://doi.org/10.1107/S205698902300138X]

Crystal structures of di-µ-chlorido-bis({(*E*)-5-(ethylamino)-4methyl-2-[(pyridin-2-yl)diazenyl]phenolato}copper(II)) and chloridobis(1,10phenanthroline)copper(II) chloride tetrahydrate

Alex Meier, Mohammad Rasel Mian, Siyu Ou, Scott Lovell and Minae Mure

Computing details

For both structures, data collection: *APEX4* v2021.4-0 (Bruker, 2021); cell refinement: *SAINT* V8.40B (Bruker, 2016); data reduction: *SAINT* V8.40B (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov *et al.*, 2009).

Di-µ-chlorido-bis({(E)-5-(ethylamino)-4-methyl-2-[(pyridin-2-\ yl)diazenyl]phenolato}copper(II)) (3)

Crystal data

 $[Cu_2Cl_2(C_{14}H_{15}N_4O)_2]$ $M_r = 708.58$ Triclinic, $P\overline{1}$ a = 8.6965 (3) Å b = 8.7974 (4) Å c = 9.5574 (4) Å a = 88.6165 (17)° $\beta = 79.3644$ (16)° $\gamma = 73.0017$ (15)° V = 686.90 (5) Å³

Data collection

Bruker D8 Venture diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause et al., 2015) $T_{\min} = 0.89, T_{\max} = 0.94$ 120912 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.090$ S = 1.027366 reflections 250 parameters Z = 1 F(000) = 362 $D_x = 1.713 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9951 reflections $\theta = 2.4-37.9^{\circ}$ $\mu = 1.79 \text{ mm}^{-1}$ T = 100 K Plate, clear dark red $0.1 \times 0.05 \times 0.02 \text{ mm}$

7366 independent reflections 6202 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 37.8^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -15 \rightarrow 15$ $l = -16 \rightarrow 16$

0 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.036P)^2 + 0.8401P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.75 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.50615 (2)	0.52883 (2)	0.17788 (2)	0.01407 (4)
Cl	0.69781 (4)	0.37524 (4)	-0.00149 (3)	0.01526 (6)
01	0.40583 (13)	0.36521 (12)	0.25883 (10)	0.01722 (17)
N1	0.40360 (14)	0.63488 (13)	0.36379 (11)	0.01349 (17)
N2	0.41967 (14)	0.77150 (13)	0.39617 (12)	0.01471 (18)
N3	0.57379 (14)	0.72690 (14)	0.16097 (12)	0.01486 (18)
N4	0.04781 (15)	0.28003 (15)	0.67389 (12)	0.01713 (19)
H4	-0.004 (3)	0.314 (3)	0.747 (3)	0.029 (6)*
C1	0.13310 (16)	0.51697 (16)	0.66217 (13)	0.01461 (19)
C2	0.13569 (16)	0.36764 (15)	0.59774 (13)	0.01418 (19)
C3	0.22722 (16)	0.31670 (16)	0.46195 (13)	0.0150 (2)
Н3	0.228 (3)	0.226 (3)	0.421 (3)	0.024 (6)*
C4	0.32015 (16)	0.40792 (15)	0.38531 (13)	0.01372 (19)
C5	0.31703 (15)	0.55528 (15)	0.45068 (13)	0.01324 (18)
C6	0.22484 (16)	0.60569 (16)	0.58941 (13)	0.0148 (2)
H6	0.228 (3)	0.703 (3)	0.629 (2)	0.017 (5)*
C7	0.51507 (16)	0.82151 (15)	0.28082 (13)	0.01416 (19)
C8	0.54550 (18)	0.96791 (16)	0.28910 (15)	0.0172 (2)
H8	0.503 (3)	1.033 (3)	0.375 (3)	0.023 (6)*
C9	0.63549 (18)	1.01756 (17)	0.17109 (16)	0.0191 (2)
Н9	0.653 (3)	1.115 (3)	0.180 (3)	0.032 (7)*
C10	0.69318 (19)	0.92108 (18)	0.04851 (16)	0.0207 (2)
H10	0.750 (3)	0.952 (3)	-0.035 (3)	0.032 (7)*
C11	0.65869 (18)	0.77677 (17)	0.04711 (15)	0.0188 (2)
H11	0.685 (3)	0.710 (3)	-0.032 (2)	0.021 (5)*
C12	0.02602 (18)	0.57081 (19)	0.80418 (14)	0.0187 (2)
H12A	0.060 (3)	0.489 (3)	0.876 (3)	0.027 (6)*
H12B	-0.086 (3)	0.582 (3)	0.802 (3)	0.032 (6)*
H12C	0.033 (3)	0.668 (3)	0.835 (3)	0.026 (6)*
C13	0.03874 (19)	0.12852 (17)	0.62425 (15)	0.0186 (2)
H13A	0.146 (3)	0.055 (3)	0.590 (2)	0.022 (5)*
H13B	-0.020 (3)	0.149 (3)	0.549 (3)	0.022 (5)*
C14	-0.0508 (2)	0.05186 (18)	0.74318 (16)	0.0210 (2)
H14A	-0.056 (3)	-0.046 (3)	0.710 (2)	0.021 (5)*
H14B	-0.160 (3)	0.118 (3)	0.781 (3)	0.031 (6)*
H14C	0.007 (3)	0.025 (3)	0.821 (2)	0.015 (5)*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01659 (8)	0.01450 (7)	0.01084 (6)	-0.00724 (5)	0.00253 (5)	0.00021 (5)
Cl	0.01503 (12)	0.01630 (12)	0.01354 (11)	-0.00511 (9)	0.00058 (9)	-0.00025 (9)
O1	0.0209 (4)	0.0173 (4)	0.0123 (4)	-0.0080(3)	0.0040 (3)	-0.0005 (3)
N1	0.0132 (4)	0.0147 (4)	0.0128 (4)	-0.0055 (3)	-0.0010 (3)	0.0019 (3)
N2	0.0164 (5)	0.0154 (4)	0.0126 (4)	-0.0071 (4)	0.0006 (3)	0.0004 (3)
N3	0.0157 (4)	0.0162 (4)	0.0124 (4)	-0.0066 (4)	0.0012 (3)	0.0014 (3)
N4	0.0190 (5)	0.0194 (5)	0.0134 (4)	-0.0094 (4)	0.0018 (4)	0.0022 (4)
C1	0.0137 (5)	0.0191 (5)	0.0106 (4)	-0.0059 (4)	0.0006 (4)	0.0014 (4)
C2	0.0136 (5)	0.0168 (5)	0.0122 (4)	-0.0057 (4)	-0.0009 (4)	0.0033 (4)
C3	0.0155 (5)	0.0164 (5)	0.0129 (4)	-0.0066 (4)	0.0011 (4)	0.0013 (4)
C4	0.0142 (5)	0.0148 (5)	0.0120 (4)	-0.0053 (4)	-0.0002 (4)	0.0020 (3)
C5	0.0132 (5)	0.0157 (5)	0.0109 (4)	-0.0060 (4)	0.0003 (3)	0.0019 (3)
C6	0.0152 (5)	0.0176 (5)	0.0116 (4)	-0.0064 (4)	0.0002 (4)	0.0012 (4)
C7	0.0145 (5)	0.0142 (5)	0.0132 (4)	-0.0050 (4)	0.0002 (4)	0.0009 (4)
C8	0.0196 (6)	0.0150 (5)	0.0171 (5)	-0.0070 (4)	-0.0004 (4)	0.0007 (4)
C9	0.0197 (6)	0.0162 (5)	0.0216 (6)	-0.0082 (4)	-0.0001 (5)	0.0027 (4)
C10	0.0230 (6)	0.0201 (6)	0.0190 (5)	-0.0108 (5)	0.0030 (5)	0.0034 (4)
C11	0.0209 (6)	0.0196 (5)	0.0152 (5)	-0.0091 (5)	0.0036 (4)	0.0010 (4)
C12	0.0181 (6)	0.0255 (6)	0.0128 (5)	-0.0096 (5)	0.0019 (4)	-0.0007 (4)
C13	0.0214 (6)	0.0187 (5)	0.0165 (5)	-0.0097 (5)	0.0011 (4)	0.0020 (4)
C14	0.0233 (6)	0.0206 (6)	0.0201 (6)	-0.0112 (5)	0.0011 (5)	0.0035 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cul—Cli2.6192 (4)C4—C51.4436 (18)Cul—Cl2.2985 (3)C5—C61.4233 (17)Cul—Ol1.9654 (10)C6—H60.96 (2)Cul—N11.9574 (11)C7—C81.3954 (18)Cul—N31.9897 (11)C8—H80.96 (2)Ol—C41.2974 (15)C8—C91.3876 (19)N1—N21.3008 (15)C9—H90.92 (3)N1—C51.3402 (16)C9—C101.388 (2)N2—C71.3963 (16)C10—H100.94 (3)N3—C71.3591 (17)C10—C111.388 (2)N3—C111.3385 (17)C11—H110.92 (2)N4—H40.77 (3)C12—H12A1.00 (3)N4—C21.3490 (16)C12—H12B0.96 (3)N4—C131.4539 (19)C12—H12C0.93 (2)C1—C41.3647 (17)C13—H13A0.97 (2)C1—C61.3647 (17)C13—H13B0.94 (2)C1—C121.4967 (18)C13—C141.5154 (19)C2—C31.3989 (18)C14—H14A0.94 (2)C3—H30.90 (2)C14—H14B0.97 (3)C3—C41.4021 (17)C14—H14C0.96 (2)				
Cul-Cl2.2985 (3)C5-C61.4233 (17)Cul-Ol1.9654 (10)C6-H60.96 (2)Cul-N11.9574 (11)C7-C81.3954 (18)Cul-N31.9897 (11)C8-H80.96 (2)Ol-C41.2974 (15)C8-C91.3876 (19)N1-N21.3008 (15)C9-H90.92 (3)N1-C51.3402 (16)C9-C101.388 (2)N2-C71.3963 (16)C10-H100.94 (3)N3-C71.3591 (17)C10-C111.388 (2)N3-C111.3385 (17)C11-H110.92 (2)N4-H40.77 (3)C12-H12A1.00 (3)N4-C21.3490 (16)C12-H12B0.96 (3)N4-C131.4539 (19)C12-H12C0.93 (2)C1-C21.4567 (19)C13-H13A0.97 (2)C1-C121.4967 (18)C13-C141.5154 (19)C2-C31.3989 (18)C14-H14A0.94 (2)C3-H30.90 (2)C14-H14B0.97 (3)C3-C41.4021 (17)C14-H14C0.96 (2)	Cu1—Cl ⁱ	2.6192 (4)	C4—C5	1.4436 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—Cl	2.2985 (3)	C5—C6	1.4233 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—O1	1.9654 (10)	С6—Н6	0.96 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—N1	1.9574 (11)	С7—С8	1.3954 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—N3	1.9897 (11)	C8—H8	0.96 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C4	1.2974 (15)	C8—C9	1.3876 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—N2	1.3008 (15)	С9—Н9	0.92 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C5	1.3402 (16)	C9—C10	1.388 (2)
N3—C7 $1.3591(17)$ C10—C11 $1.388(2)$ N3—C11 $1.3385(17)$ C11—H11 $0.92(2)$ N4—H4 $0.77(3)$ C12—H12A $1.00(3)$ N4—C2 $1.3490(16)$ C12—H12B $0.96(3)$ N4—C13 $1.4539(19)$ C12—H12C $0.93(2)$ C1—C2 $1.4567(19)$ C13—H13A $0.97(2)$ C1—C6 $1.3647(17)$ C13—H13B $0.94(2)$ C1—C12 $1.4967(18)$ C13—C14 $1.5154(19)$ C2—C3 $1.3989(18)$ C14—H14A $0.94(2)$ C3—H3 $0.90(2)$ C14—H14B $0.97(3)$ C3—C4 $1.4021(17)$ C14—H14C $0.96(2)$	N2C7	1.3963 (16)	C10—H10	0.94 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C7	1.3591 (17)	C10—C11	1.388 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C11	1.3385 (17)	C11—H11	0.92 (2)
N4—C21.3490 (16)C12—H12B0.96 (3)N4—C131.4539 (19)C12—H12C0.93 (2)C1—C21.4567 (19)C13—H13A0.97 (2)C1—C61.3647 (17)C13—H13B0.94 (2)C1—C121.4967 (18)C13—C141.5154 (19)C2—C31.3989 (18)C14—H14A0.94 (2)C3—H30.90 (2)C14—H14B0.97 (3)C3—C41.4021 (17)C14—H14C0.96 (2)	N4—H4	0.77 (3)	C12—H12A	1.00 (3)
N4—C131.4539 (19)C12—H12C0.93 (2)C1—C21.4567 (19)C13—H13A0.97 (2)C1—C61.3647 (17)C13—H13B0.94 (2)C1—C121.4967 (18)C13—C141.5154 (19)C2—C31.3989 (18)C14—H14A0.94 (2)C3—H30.90 (2)C14—H14B0.97 (3)C3—C41.4021 (17)C14—H14C0.96 (2)	N4—C2	1.3490 (16)	C12—H12B	0.96 (3)
C1—C21.4567 (19)C13—H13A0.97 (2)C1—C61.3647 (17)C13—H13B0.94 (2)C1—C121.4967 (18)C13—C141.5154 (19)C2—C31.3989 (18)C14—H14A0.94 (2)C3—H30.90 (2)C14—H14B0.97 (3)C3—C41.4021 (17)C14—H14C0.96 (2)	N4—C13	1.4539 (19)	C12—H12C	0.93 (2)
C1—C61.3647 (17)C13—H13B0.94 (2)C1—C121.4967 (18)C13—C141.5154 (19)C2—C31.3989 (18)C14—H14A0.94 (2)C3—H30.90 (2)C14—H14B0.97 (3)C3—C41.4021 (17)C14—H14C0.96 (2)	C1—C2	1.4567 (19)	C13—H13A	0.97 (2)
C1—C121.4967 (18)C13—C141.5154 (19)C2—C31.3989 (18)C14—H14A0.94 (2)C3—H30.90 (2)C14—H14B0.97 (3)C3—C41.4021 (17)C14—H14C0.96 (2)	C1—C6	1.3647 (17)	C13—H13B	0.94 (2)
C2—C31.3989 (18)C14—H14A0.94 (2)C3—H30.90 (2)C14—H14B0.97 (3)C3—C41.4021 (17)C14—H14C0.96 (2)	C1-C12	1.4967 (18)	C13—C14	1.5154 (19)
C3—H30.90 (2)C14—H14B0.97 (3)C3—C41.4021 (17)C14—H14C0.96 (2)	C2—C3	1.3989 (18)	C14—H14A	0.94 (2)
C3—C4 1.4021 (17) C14—H14C 0.96 (2)	С3—Н3	0.90 (2)	C14—H14B	0.97 (3)
	C3—C4	1.4021 (17)	C14—H14C	0.96 (2)

Cl-Cu1-Cl ⁱ	90.307 (12)	C1—C6—C5	120.28 (12)
O1—Cu1—Cl ⁱ	93.88 (3)	C1—C6—H6	121.2 (13)
O1—Cu1—Cl	98.20 (3)	С5—С6—Н6	118.5 (13)
O1—Cu1—N3	160.67 (4)	N3—C7—N2	118.82 (11)
N1—Cu1—Cl ⁱ	108.61 (3)	N3—C7—C8	121.30 (11)
N1—Cu1—Cl	161.00 (4)	C8—C7—N2	119.86 (12)
N1—Cu1—O1	82.69 (4)	С7—С8—Н8	120.2 (14)
N1—Cu1—N3	77.99 (4)	C9—C8—C7	118.74 (13)
N3—Cu1—Cl	99.86 (3)	С9—С8—Н8	121.0 (14)
N3—Cu1—Cl ⁱ	92.90 (4)	С8—С9—Н9	116.4 (16)
Cu1—Cl—Cu1 ⁱ	89.693 (12)	C8—C9—C10	119.56 (13)
C4—O1—Cu1	111.30 (8)	С10—С9—Н9	124.0 (17)
N2—N1—Cu1	121.35 (8)	C9—C10—H10	122.3 (16)
N2—N1—C5	124.44 (11)	C9—C10—C11	118.88 (12)
C5—N1—Cu1	114.21 (9)	С11—С10—Н10	118.7 (16)
N1—N2—C7	109.40 (10)	N3—C11—C10	122.01 (13)
C7—N3—Cu1	112 44 (8)	N3-C11-H11	1139(14)
C_{11} N3— C_{11}	127.97 (10)	C10-C11-H11	1240(14)
C11 - N3 - C7	119 48 (12)	C1-C12-H12A	121.0(11) 1094(14)
C2—N4—H4	118.0(19)	C1-C12-H12B	1117(16)
C_2 N4 C_{13}	$124\ 10\ (12)$	C1-C12-H12C	112.1(15)
C13—N4—H4	117 8 (19)	H_{12A} $-C_{12}$ H_{12B}	107(2)
C_2 — C_1 — C_1_2	119.00(11)	H12A - C12 - H12D	107(2) 109(2)
C6-C1-C2	118.99 (11)	H12B $C12$ $H12C$	109(2) 108(2)
C6-C1-C12	121.99 (12)	N4_C13_H13A	100(2) 1124(14)
N4-C2-C1	121.99(12) 117.71(11)	N4-C13-H13B	112.4(14) 1074(14)
N4 C2 C1	121.30(12)	N4 C13 C14	107.4(14) 110.26(12)
C_{3} C_{2} C_{1}	121.30(12) 120.99(11)	$H_{13} = C_{13} = H_{13} B$	108.9(12)
$C_2 = C_2 = C_1$	120.99(11) 121.3(15)	C_{14} C_{13} H_{13A}	108.5(17)
$C_2 = C_3 = C_4$	121.5(13) 120.54(12)	C14 $C13$ $H13R$	100.3(14) 100.2(14)
$C_2 = C_3 = C_4$	120.34(12) 118.2(15)	$C_{14} = C_{13} = H_{14A}$	109.2(14)
$C_{4} = C_{3} = 115$	110.2(13) 122.38(12)	C_{13} C_{14} H_{14} H	109.0(14) 112.8(16)
01 - 04 - 05	122.38(12) 110.72(11)	C_{13} C_{14} $H_{14}C$	112.0(10) 112.1(13)
$C_{1}^{2} = C_{1}^{2} = C_{2}^{2}$	117.72(11) 117.80(11)	$H_{14A} = C_{14} = H_{14D}$	112.1(13)
$C_{3} - C_{4} - C_{3}$	117.09(11) 111.07(11)	$H_{A} C_{14} H_{14C}$	109(2) 104.7(10)
N1_C5_C6	111.97(11) 126.70(12)	$H_{A} - C_{I4} - H_{I4} C_{I4}$	104.7(19)
NI = C5 = C6	120.70(12) 121.28(11)	П14Б—С14—П14С	108 (2)
0-0-04	121.28 (11)		
C_{11} O_1 C_4 C_3	175 56 (10)	C2 C1 C6 C5	21(2)
Cu1 = 01 = C4 = C5	1/5.50(10)	$C_2 = C_1 = C_0 = C_3$	2.1(2)
Cu1 = 01 = 04 = 03	-5.02(15)	$C_2 = C_3 = C_4 = O_1$	-1/9.38(13)
Cu1 - N1 - N2 - C7	0.45(15)	$C_2 = C_3 = C_4 = C_5$	-0.39(19)
Cu1 - N1 - C5 - C4	-0.01(14)	$C_3 = C_4 = C_5 = C_1$	-1/6./2(12)
Cu1 = N1 = C5 = C6	-1//.55(11)	$C_{3} - C_{4} - C_{5} - C_{6}$	0.98(19)
Cu1 - N3 - C / - N2	0.24(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.9(2)
$Cu1 - N3 - C / - C\delta$	-1/8.40(11)	C = N I = N 2 = C / C = N 4	-1/9.00(12)
$Cu_1 - N_3 - C_{11} - C_{10}$	1/1.02(12)	$C_0 - C_1 - C_2 - N_4$	1/8.01 (12)
01-04-05-01	2.50 (18)	$C_0 - C_1 - C_2 - C_3$	-1.5(2)
01 - C4 - C5 - C6	-179.81 (12)	C/—N3—C11—C10	1.9 (2)

N1—N2—C7—N3	-0.44 (17)	C7—C8—C9—C10	-0.2 (2)
N1—N2—C7—C8	178.23 (12)	C8—C9—C10—C11	0.2 (2)
N1-C5-C6-C1	175.44 (13)	C9-C10-C11-N3	-1.1 (2)
N2—N1—C5—C4	179.48 (12)	C11—N3—C7—N2	176.77 (13)
N2—N1—C5—C6	1.9 (2)	C11—N3—C7—C8	-1.9 (2)
N2—C7—C8—C9	-177.61 (13)	C12—C1—C2—N4	-3.82 (19)
N3—C7—C8—C9	1.0 (2)	C12—C1—C2—C3	176.62 (13)
N4—C2—C3—C4	-178.88 (13)	C12—C1—C6—C5	-175.99 (13)
C1—C2—C3—C4	0.7 (2)	C13—N4—C2—C1	-179.80 (13)
C2—N4—C13—C14	172.24 (13)	C13—N4—C2—C3	-0.2 (2)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C9—H9····Cl ⁱⁱ	0.92 (3)	2.91 (3)	3.6514 (14)	138 (2)
С9—Н9…О1 ^{іі}	0.92 (3)	2.59 (3)	3.1592 (18)	120 (2)
C11—H11···Cl	0.92 (2)	2.93 (2)	3.4825 (15)	120.2 (17)
C11—H11···O1 ⁱ	0.92 (2)	2.60 (2)	3.4083 (18)	146.5 (19)
C12—H12B····O1 ⁱⁱⁱ	0.96 (3)	2.85 (3)	3.7902 (19)	169 (2)
C12—H12 C ···Cl ^{iv}	0.93 (2)	3.00(2)	3.4542 (15)	111.9 (17)
C14—H14 B ····Cl ^v	0.97 (3)	2.94 (3)	3.6821 (16)	134.8 (19)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z+1.

Chloridobis(1,10-phenanthroline)copper(II) chloride tetrahydrate (4)

Crystal data

[CuCl(C₁₂H₈N₂)₂]Cl·4H₂O $M_r = 566.91$ Monoclinic, C2/c a = 23.1874 (7) Å b = 30.2708 (9) Å c = 7.2839 (2) Å $\beta = 97.235$ (1)° V = 5071.9 (3) Å³ Z = 8

Data collection

Bruker D8 Venture
diffractometer
θ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min} = 0.89, \ T_{\max} = 0.95$
67930 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ F(000) = 2328 $D_x = 1.485 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9891 reflections $\theta = 2.7-33.0^{\circ}$ $\mu = 1.11 \text{ mm}^{-1}$ T = 100 KPlate, clear greenish green $0.2 \times 0.1 \times 0.05 \text{ mm}$

6173 independent reflections 5840 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 3.5^{\circ}$ $h = -30 \rightarrow 29$ $k = -40 \rightarrow 40$ $l = -9 \rightarrow 9$

 $wR(F^2) = 0.130$ S = 1.05 6173 reflections

364 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0642P)^2 + 16.2399P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 1.06 \text{ e } \text{\AA}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.27540 (2)	0.11858 (2)	0.34073 (4)	0.02177 (10)	
Cl1	0.29111 (3)	0.14735 (2)	0.05112 (7)	0.02655 (13)	
N1	0.22658 (8)	0.15474 (6)	0.5111 (3)	0.0219 (4)	
N2	0.33904 (9)	0.15480 (6)	0.4699 (3)	0.0249 (4)	
N3	0.20905 (8)	0.08317 (6)	0.2241 (3)	0.0237 (4)	
N4	0.31053 (8)	0.05547 (6)	0.3980 (2)	0.0215 (3)	
C2	0.11535 (11)	0.07030 (9)	0.0549 (4)	0.0339 (5)	
H2	0.080421	0.082186	-0.008153	0.041*	
C3	0.12262 (11)	0.02558 (9)	0.0713 (3)	0.0320 (5)	
Н3	0.092669	0.006179	0.019772	0.038*	
C4	0.17442 (10)	0.00847 (8)	0.1643 (3)	0.0262 (4)	
C5	0.21693 (10)	0.03886 (7)	0.2389 (3)	0.0223 (4)	
C6	0.18679 (12)	-0.03787 (8)	0.1861 (3)	0.0294 (5)	
H6	0.158392	-0.058845	0.137680	0.035*	
C7	0.23830 (12)	-0.05215 (8)	0.2746 (3)	0.0299 (5)	
H7	0.245351	-0.082976	0.287392	0.036*	
C8	0.28242 (11)	-0.02157 (7)	0.3493 (3)	0.0248 (4)	
C9	0.27151 (9)	0.02397 (7)	0.3316 (3)	0.0215 (4)	
C10	0.33706 (11)	-0.03444 (8)	0.4395 (3)	0.0288 (5)	
H10	0.346589	-0.064863	0.454168	0.035*	
C11	0.37645 (11)	-0.00274 (8)	0.5063 (3)	0.0288 (5)	
H11	0.413550	-0.010993	0.567009	0.035*	
C12	0.36138 (10)	0.04220 (8)	0.4839 (3)	0.0253 (4)	
H12	0.388785	0.063878	0.532360	0.030*	
C13	0.17066 (10)	0.15345 (7)	0.5335 (3)	0.0254 (4)	
H13	0.147100	0.130709	0.473677	0.030*	
C14	0.14494 (11)	0.18425 (8)	0.6418 (3)	0.0302 (5)	
H14	0.104956	0.181807	0.656823	0.036*	
C15	0.17792 (12)	0.21793 (8)	0.7258 (3)	0.0311 (5)	
H15	0.160782	0.239449	0.796876	0.037*	
C16	0.23741 (11)	0.22029 (7)	0.7056 (3)	0.0265 (5)	
C17	0.25979 (10)	0.18725 (7)	0.5984 (3)	0.0223 (4)	
C18	0.32006 (10)	0.18741 (7)	0.5757 (3)	0.0237 (4)	
C19	0.35695 (11)	0.22065 (8)	0.6583 (3)	0.0289 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C20	0.33264 (12)	0.25421 (8)	0.7643 (3)	0.0329 (5)	
H20	0.357096	0.276952	0.820068	0.040*	
C21	0.27566 (12)	0.25416 (8)	0.7864 (3)	0.0319 (5)	
H21	0.260710	0.276953	0.856655	0.038*	
C22	0.41563 (12)	0.21906 (9)	0.6275 (4)	0.0359 (6)	
H22	0.442180	0.240951	0.679455	0.043*	
C23	0.43414 (12)	0.18584 (10)	0.5223 (4)	0.0381 (6)	
H23	0.473811	0.184258	0.502541	0.046*	
C24	0.39459 (11)	0.15413 (9)	0.4438 (4)	0.0313 (5)	
H24	0.407952	0.131427	0.369617	0.038*	
C27	0.15990 (10)	0.09837 (8)	0.1320 (3)	0.0297 (5)	
H27	0.154850	0.129383	0.118071	0.036*	
Cl2	0.46154 (12)	0.28339 (11)	0.0469 (4)	0.0402 (6)	0.25
C13	0.500000	0.3448 (2)	0.750000	0.0671 (14)	0.25
Cl4	0.45206 (18)	0.41920 (18)	0.5363 (8)	0.1083 (15)	0.35
C15	0.500000	0.0804 (2)	0.250000	0.0353 (12)*	0.15
C16	0.4700 (2)	0.33053 (15)	0.8319 (8)	0.0601 (11)	0.2
01	0.42362 (11)	0.17008 (13)	0.0286 (4)	0.0799 (10)	
H1A	0.387673	0.166966	0.029787	0.087 (16)*	
H1B	0.442713	0.147816	0.083907	0.131*	
O2	0.45025 (16)	0.25165 (18)	0.1188 (6)	0.0775 (13)	0.75
O3	0.500000	0.37225 (18)	0.250000	0.0705 (14)	0.8
O4	0.5355 (7)	0.3708 (6)	0.890 (2)	0.051 (4)*	0.15
05	0.4383 (4)	0.3247 (3)	0.9597 (13)	0.062 (2)*	0.3
O6	0.500000	0.4802 (5)	0.750000	0.078 (6)	0.3
07	0.500000	0.5117 (8)	0.750000	0.143 (8)	0.5
08	0.500000	0.0553 (2)	0.250000	0.073 (3)	0.5
09	0.4821 (6)	0.0907 (4)	0.0297 (18)	0.057 (3)*	0.2
O10	0.5421 (3)	0.0980 (3)	0.6321 (11)	0.0487 (17)*	0.3
011	0.4997 (5)	0.0460 (3)	0.6952 (12)	0.069 (3)*	0.3

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02256 (16)	0.01895 (15)	0.02420 (16)	0.00082 (9)	0.00442 (10)	-0.00141 (9)
Cl1	0.0350 (3)	0.0203 (2)	0.0253 (3)	0.00274 (19)	0.0076 (2)	0.00302 (18)
N1	0.0266 (9)	0.0171 (8)	0.0227 (8)	0.0038 (7)	0.0052 (7)	0.0018 (6)
N2	0.0261 (9)	0.0222 (9)	0.0266 (9)	0.0002 (7)	0.0038 (7)	0.0006 (7)
N3	0.0249 (9)	0.0235 (9)	0.0233 (9)	0.0011 (7)	0.0055 (7)	-0.0010 (7)
N4	0.0252 (9)	0.0209 (8)	0.0195 (8)	0.0024 (7)	0.0071 (7)	0.0006 (7)
C2	0.0250 (11)	0.0440 (14)	0.0327 (12)	0.0025 (10)	0.0028 (9)	-0.0055 (11)
C3	0.0281 (11)	0.0416 (13)	0.0273 (11)	-0.0072 (10)	0.0073 (9)	-0.0083 (10)
C4	0.0307 (11)	0.0300 (11)	0.0199 (10)	-0.0055 (9)	0.0114 (8)	-0.0042 (8)
C5	0.0268 (10)	0.0236 (10)	0.0182 (9)	-0.0014 (8)	0.0094 (8)	-0.0012 (7)
C6	0.0405 (13)	0.0265 (11)	0.0234 (10)	-0.0101 (9)	0.0131 (9)	-0.0054 (8)
C7	0.0476 (14)	0.0211 (10)	0.0240 (11)	-0.0051 (9)	0.0159 (10)	-0.0020 (8)
C8	0.0372 (12)	0.0204 (10)	0.0194 (10)	0.0008 (8)	0.0130 (9)	0.0010 (7)
C9	0.0287 (10)	0.0205 (10)	0.0171 (9)	-0.0005 (8)	0.0100 (8)	-0.0002 (7)

C10	0.0414 (13)	0.0217 (10)	0.0257 (11)	0.0069 (9)	0.0134 (9)	0.0047 (8)
C11	0.0329 (12)	0.0289 (11)	0.0258 (11)	0.0088 (9)	0.0085 (9)	0.0054 (9)
C12	0.0265 (10)	0.0266 (11)	0.0235 (10)	0.0035 (8)	0.0066 (8)	0.0013 (8)
C13	0.0272 (11)	0.0222 (10)	0.0278 (11)	0.0043 (8)	0.0070 (8)	0.0030 (8)
C14	0.0306 (11)	0.0323 (12)	0.0288 (11)	0.0111 (9)	0.0079 (9)	0.0033 (9)
C15	0.0404 (13)	0.0295 (11)	0.0232 (10)	0.0167 (10)	0.0038 (9)	0.0000 (9)
C16	0.0381 (12)	0.0203 (10)	0.0196 (9)	0.0092 (9)	-0.0016 (9)	0.0024 (8)
C17	0.0293 (11)	0.0177 (9)	0.0194 (9)	0.0047 (8)	0.0008 (8)	0.0029 (7)
C18	0.0294 (11)	0.0188 (9)	0.0220 (10)	0.0024 (8)	0.0000 (8)	0.0036 (8)
C19	0.0351 (12)	0.0216 (10)	0.0275 (11)	0.0000 (9)	-0.0060 (9)	0.0041 (8)
C20	0.0461 (14)	0.0206 (10)	0.0280 (11)	0.0020 (9)	-0.0113 (10)	-0.0005 (9)
C21	0.0495 (15)	0.0198 (10)	0.0236 (10)	0.0101 (10)	-0.0065 (10)	-0.0020 (8)
C22	0.0333 (12)	0.0306 (12)	0.0407 (14)	-0.0069 (10)	-0.0069 (10)	0.0035 (10)
C23	0.0258 (12)	0.0409 (14)	0.0468 (15)	-0.0038 (10)	0.0019 (10)	0.0046 (12)
C24	0.0266 (11)	0.0315 (12)	0.0365 (13)	-0.0001 (9)	0.0065 (9)	0.0012 (10)
C27	0.0267 (11)	0.0313 (12)	0.0310 (12)	0.0043 (9)	0.0035 (9)	-0.0020 (9)
Cl2	0.0320 (12)	0.0532 (16)	0.0341 (12)	-0.0030 (11)	-0.0004 (10)	-0.0101 (12)
C13	0.080 (4)	0.062 (3)	0.056 (3)	0.000	-0.006 (3)	0.000
Cl4	0.072 (2)	0.118 (3)	0.141 (4)	0.034 (2)	0.037 (2)	-0.002 (3)
Cl6	0.057 (2)	0.042 (2)	0.081 (3)	0.0021 (18)	0.008 (2)	0.001 (2)
01	0.0370 (13)	0.150 (3)	0.0549 (15)	-0.0042 (16)	0.0139 (11)	0.0370 (18)
O2	0.0407 (18)	0.115 (4)	0.074 (3)	0.020 (2)	-0.0037 (17)	-0.031 (3)
O3	0.069 (3)	0.065 (3)	0.072 (3)	0.000	-0.011 (3)	0.000
O6	0.034 (7)	0.077 (9)	0.132 (17)	0.000	0.050 (8)	0.000
O7	0.029 (4)	0.37 (3)	0.034 (4)	0.000	0.006 (3)	0.000
08	0.019 (3)	0.046 (4)	0.141 (8)	0.000	-0.043 (4)	0.000

Geometric parameters (Å, °)

Cu1—Cl1	2.3527 (6)	C11—H11	0.9500
Cu1—N1	2.0914 (18)	C11—C12	1.409 (3)
Cu1—N2	1.979 (2)	C12—H12	0.9500
Cu1—N3	1.977 (2)	С13—Н13	0.9500
Cu1—N4	2.0979 (18)	C13—C14	1.402 (3)
N1-C13	1.328 (3)	C14—H14	0.9500
N1-C17	1.357 (3)	C14—C15	1.371 (4)
N2-C18	1.359 (3)	C15—H15	0.9500
N2-C24	1.326 (3)	C15—C16	1.407 (4)
N3—C5	1.356 (3)	C16—C17	1.407 (3)
N3—C27	1.330 (3)	C16—C21	1.433 (4)
N4—C9	1.361 (3)	C17—C18	1.428 (3)
N4—C12	1.326 (3)	C18—C19	1.406 (3)
С2—Н2	0.9500	C19—C20	1.434 (4)
C2—C3	1.367 (4)	C19—C22	1.408 (4)
C2—C27	1.400 (4)	C20—H20	0.9500
С3—Н3	0.9500	C20—C21	1.351 (4)
C3—C4	1.402 (4)	C21—H21	0.9500
C4—C5	1.407 (3)	C22—H22	0.9500

C4—C6	1.437 (3)	C22—C23	1.366 (4)
С5—С9	1.430 (3)	С23—Н23	0.9500
С6—Н6	0.9500	C23—C24	1.399 (4)
C6—C7	1.354 (4)	C24—H24	0.9500
С7—Н7	0.9500	С27—Н27	0.9500
C7—C8	1,435 (3)	C13—C16	1.063 (6)
C8—C9	1 405 (3)	O1—H1A	0.8400
C_{8} C_{10}	1407(4)	O1—H1B	0.8759
C10—H10	0.9500	$011-011^{i}$	0.0737(18)
	1.371(4)	011-011	0.777 (10)
010-011	1.371 (4)		
N1 Cu1 Cl1	110 65 (5)	C11 C10 H10	120.2
N1 Cu1 N4	119.05(3) 125.75(7)	C_{10} C_{11} H_{11}	120.2
$N_1 = C_{11} = N_1$	123.73(7)		120.3
	91.70(0)	C10-C11-C12	119.4 (2)
N2—CuI—NI	81.65 (8)		120.3
N2—Cu1—N4	99.35 (8)	N4—C12—C11	122.7 (2)
N3—Cu1—Cl1	90.89 (6)	N4—C12—H12	118.7
N3—Cu1—N1	95.07 (8)	C11—C12—H12	118.7
N3—Cu1—N2	176.52 (8)	N1—C13—H13	118.6
N3—Cu1—N4	81.58 (8)	N1—C13—C14	122.8 (2)
N4—Cu1—Cl1	114.55 (5)	C14—C13—H13	118.6
C13—N1—Cu1	131.88 (16)	C13—C14—H14	120.3
C13—N1—C17	117.96 (19)	C15—C14—C13	119.5 (2)
C17—N1—Cu1	109.88 (14)	C15—C14—H14	120.3
C18—N2—Cu1	113.38 (15)	C14—C15—H15	120.3
C24—N2—Cu1	127.10 (17)	C14—C15—C16	119.3 (2)
C24—N2—C18	118.8 (2)	C16—C15—H15	120.3
C5—N3—Cu1	114.35 (15)	C15—C16—C17	117.2 (2)
C27—N3—Cu1	126.91 (17)	C15—C16—C21	123.9 (2)
C27—N3—C5	118.7 (2)	C17—C16—C21	119.0 (2)
C9—N4—Cu1	110.08 (14)	N1—C17—C16	123.2 (2)
C12—N4—Cu1	132.06 (16)	N1—C17—C18	116.99 (19)
C12—N4—C9	117.87 (19)	C16—C17—C18	119.8 (2)
$C_3 - C_2 - H_2$	120.4	N_{-C18} -C17	1171(2)
C_{3} C_{2} C_{2} C_{2}	119 3 (2)	N_{2} C18 C19	122.6(2)
$C_{27} - C_{2} - H_{2}$	120.4	C19-C18-C17	122.0(2) 120.3(2)
$C_2 - C_3 - H_3$	120.4	C18 - C19 - C20	120.5(2)
$C_2 = C_3 = C_4$	120.1 110.8(2)	$C_{18} = C_{19} = C_{20}$	1171(2)
$C_2 = C_3 = C_4$	119.0 (2)	$C_{10} = C_{10} = C_{22}$	117.1(2) 124.3(2)
C_{4}	120.1	$C_{22} = C_{19} = C_{20}$	124.3(2)
$C_3 = C_4 = C_5$	117.3(2)	C19 - C20 - H20	119.5
$C_{3} - C_{4} - C_{6}$	124.2(2)	$C_{21} = C_{20} = C_{19}$	121.3 (2)
	118.4 (2)	$C_{21} - C_{20} - H_{20}$	119.3
N3-C5-C4	122.4 (2)	C16—C21—H21	119.5
N3-C5-C9	116.8 (2)	C20—C21—C16	121.0 (2)
C4—C5—C9	120.8 (2)	C20—C21—H21	119.5
С4—С6—Н6	119.5	C19—C22—H22	120.2
C7—C6—C4	121.1 (2)	C23—C22—C19	119.5 (2)
С7—С6—Н6	119.5	С23—С22—Н22	120.2

С6—С7—Н7	119.4	С22—С23—Н23	120.1
C6—C7—C8	121.2 (2)	C22—C23—C24	119.9 (3)
С8—С7—Н7	119.4	С24—С23—Н23	120.1
C9—C8—C7	119.1 (2)	N2—C24—C23	122.0 (2)
C9—C8—C10	117.1 (2)	N2—C24—H24	119.0
C10—C8—C7	123.8 (2)	C23—C24—H24	119.0
N4-C9-C5	117 14 (19)	N3—C27—C2	122.3 (2)
N4-C9-C8	1235(2)	N3-C27-H27	118.8
C_{8}	129.3(2) 119.4(2)	C_{2} C_{27} H_{27}	118.8
C_{8} C_{10} H_{10}	119.4 (2)	$H_{1A} = 01 H_{1B}$	110.0
C_{11} C_{10} C_{8}	120.2 110 5 (2)	IIIA—01—IIIB	110.7
011-010-08	119.3 (2)		
Cu1—N1—C13—C14	-172.78 (17)	C8—C10—C11—C12	0.3 (3)
Cu1—N1—C17—C16	172.37 (17)	C9—N4—C12—C11	0.9 (3)
Cu1—N1—C17—C18	-6.7 (2)	C9—C8—C10—C11	0.4 (3)
Cu1—N2—C18—C17	8.1 (2)	C10-C8-C9-N4	-0.5(3)
Cu1—N2—C18—C19	-170.92(17)	C10-C8-C9-C5	179.20 (19)
Cu1 - N2 - C24 - C23	1700(2)	C10-C11-C12-N4	-1.0(3)
Cu1 - N3 - C5 - C4	-179.97(16)	C_{12} N4 C_{2} C_{5}	-179 83 (18)
Cu1 - N3 - C5 - C9	-12(2)	C12 N4 C9 C8	-0.1(3)
Cu1 = N3 = C27 = C2	-179.82(18)	C_{13} N1 C_{17} C_{16}	-23(3)
Cu1 NA C9 C5	0.5(2)	C_{13} N1 C_{17} C_{18}	178.66(10)
Cu1 = N4 = C9 = C3	-170.83(16)	$C_{13} = C_{14} = C_{15} = C_{16}$	-1.6(3)
Cu1 = N4 = C3 = C3	-179.63(10)	$C_{13} - C_{14} - C_{15} - C_{10}$	1.0(3)
$Cu_1 - N_4 - C_{12} - C_{11}$	-1/9.30(10)	C14 - C15 - C16 - C17	0.0(3)
N1 - C17 - C18 - N2	1.3(4)	C14 - C15 - C16 - C21	1/9.0(2)
NI = CI7 = CI8 = N2	-0.6(3)	C15 - C16 - C17 - N1	2.1 (3)
NI = CI / = CI = CI = CI = CI = CI = CI =	1/8.50 (19)	C15 - C16 - C17 - C18	-1/8.9(2)
N2-C18-C19-C20	178.7 (2)	C15-C16-C21-C20	179.0 (2)
N2—C18—C19—C22	-0.1(3)	C16—C17—C18—N2	-179.67 (19)
N3—C5—C9—N4	0.5 (3)	C16—C17—C18—C19	-0.6(3)
N3—C5—C9—C8	-179.28 (18)	C17—N1—C13—C14	0.4 (3)
C2—C3—C4—C5	0.5 (3)	C17—C16—C21—C20	-1.4(3)
C2—C3—C4—C6	-178.8(2)	C17—C18—C19—C20	-0.3(3)
C3—C2—C27—N3	-1.2 (4)	C17—C18—C19—C22	-179.0 (2)
C3—C4—C5—N3	0.3 (3)	C18—N2—C24—C23	0.2 (4)
C3—C4—C5—C9	-178.41 (19)	C18—C19—C20—C21	0.4 (3)
C3—C4—C6—C7	178.7 (2)	C18—C19—C22—C23	-0.6 (4)
C4—C5—C9—N4	179.26 (18)	C19—C20—C21—C16	0.4 (4)
C4—C5—C9—C8	-0.5 (3)	C19—C22—C23—C24	1.0 (4)
C4—C6—C7—C8	-0.2 (3)	C20—C19—C22—C23	-179.2 (2)
C5—N3—C27—C2	2.0 (3)	C21—C16—C17—N1	-177.6 (2)
C5-C4-C6-C7	-0.7 (3)	C21—C16—C17—C18	1.5 (3)
C6—C4—C5—N3	179.7 (2)	C22—C19—C20—C21	179.0 (2)
C6—C4—C5—C9	1.0 (3)	C22—C23—C24—N2	-0.8 (4)
C6—C7—C8—C9	0.7 (3)	C24—N2—C18—C17	179.3 (2)
C6—C7—C8—C10	-178.8 (2)	C24—N2—C18—C19	0.2 (3)
C7—C8—C9—N4	179.92 (19)	C27—N3—C5—C4	-1.6(3)
	× /		

С7—С8—С9—С5	-0.4 (3)	C27—N3—C5—C9	177.2 (2)
C7—C8—C10—C11	179.9 (2)	C27—C2—C3—C4	-0.2 (4)

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
С11—Н11…О11	0.95	2.72	3.354 (11)	125
C12—H12…O11	0.95	2.75	3.380 (12)	125
C13—H13…O4 ⁱⁱ	0.95	2.58	3.261 (17)	129
C23—H23…O1 ⁱⁱⁱ	0.95	2.46	3.399 (4)	172
C27—H27····O5 ^{iv}	0.95	2.57	3.267 (10)	130
01—H1A···Cl1	0.84	2.34	3.173 (3)	171
O1—H1 <i>B</i> ····O9	0.88	2.02	2.758 (14)	142

Symmetry codes: (ii) x-1/2, -y+1/2, z-1/2; (iii) -x+1, y, -z+1/2; (iv) -x+1/2, -y+1/2, -z+1.