Crystal structure of [2-({[2-(dimethylamino- $\kappa N$ )ethyl]imino- $\kappa N$ }methyl)phenolato- $\kappa O$ ](1,10-phenanthroline- $\kappa^2 N$ ,N')copper(II) perchlorate

Anjaneyulu Mamindla,<sup>a</sup> Manikandan Varadhan,<sup>a</sup> Marappan Velusamy,<sup>b</sup> Venkatasubramanian Ulaganathan<sup>c</sup> and Venugopal Rajendiran<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur - 610 005, India, <sup>b</sup>Department of Chemistry, North Eastern Hill University, Shillong - 793 022, India, and <sup>c</sup>School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur - 613 401, Tamil Nadu, India. \*Correspondence e-mail: rajendiran@cutn.ac.in

The title compound,  $[Cu(C_{11}H_{15}N_2O)(C_{12}H_8N_2)]ClO_4$  or [Cu(L)(phen)]-(ClO<sub>4</sub>) {where L refers to the deprotonated form of 2-[(2-dimethylaminoethylimino)methyl]phenol} and phen is 1,10-phenanthroline) is a mononuclear mixed ligand copper(II) complex. The Cu<sup>II</sup> atom is coordinated by two N and one O atoms of the tridentate Schiff base ligand (HL) and two N atoms of the 1,10phenanthroline ligand, resulting in a five-coordinate complex. The asymmetric unit of the title complex contains two crystallographically independent complex cations (**a** and **b**) with a slightly different geometry around the Cu<sup>II</sup> ion. The value of the trigonality index  $\tau$ , indicates that in both cations **a** and **b**, the Cu<sup>II</sup> atoms display a square-pyramidal distorted trigonal-bipyramidal (SPDTBP) geometry, although the distortion is greater for cation **a**.

### 1. Chemical context

The design and synthesis of mixed ligand copper(II) complexes have received much attention as they exhibit promising anticancer and nuclease activities compared to simple 1:1 complexes. Palaniandavar and co-workers (Sharma et al., 2020; Rajendiran et al., 2007; Selvakumar et al., 2006) and Chakravarty and co-workers (Goswami et al., 2012) have reported the X-ray crystal structures of several mixed ligand copper(II) complexes that have biological activity. Recently, our group has reported a series of mixed ligand copper(II) complexes and their biological applications (Karpagam et al., 2019, 2022; Radhakrishnan et al., 2021). Palaniandavar and coworkers (Jaividhya et al., 2012) prepared the title complex I and investigated its DNA binding, cleavage, and anticancer activity. It exhibits good cytotoxicity against MCF7 breast cancer cells with an IC<sub>50</sub> value of  $1.20 \pm 0.10 \,\mu M$  and against the ME180 human cervical epidermoid carcinoma cells with an IC<sub>50</sub> value of 24.6  $\pm$  0.10  $\mu$ M at 48 h incubation (Jaividhya et al., 2012). However, the crystal structure of complex I was not reported. In this work we report the crystal structure of this mixed ligand copper(II) complex.

### 2. Structural commentary

The title compound I is of the type  $\{[Cu(L)(phen)](ClO_4)\}$ {where L is the deprotonated form of 2-[(2-dimethylaminoethylimino)methyl]phenol and phen is 1,10-phenanthroline} is a mononuclear mixed ligand copper(II) complex. The metal

Received 12 December 2022 Accepted 25 February 2023

ISSN 2056-9890

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: mixed ligand copper(II) complexes; anticancer agents; crystal structure; squarepyramidal distorted trigonal-bipyramidal (SPDTBP) geometry.

CCDC reference: 2244622

**Supporting information**: this article has supporting information at journals.iucr.org/e





atom is coordinated to the tridentate Schiff base ligand (HL) through two N and one O atoms and to two N atoms of the 1,10-phenanthroline ligand, resulting in a five-coordinate complex.



Complex I (Fig. 1) crystallizes in the orthorhombic crystal system in the *Pbca* space group. The asymmetric unit contains two crystallographically independent complex cations (**a** and **b**) with a slightly different geometry around the Cu<sup>II</sup> ion. Selected geometrical parameters are listed in Table 1. The value of the trigonality index  $\tau$  suggests that both cations, **a** and **b**, display a square-pyramidal distorted trigonal–bipyramidal (SPDTBP) geometry, with cation **a** being more distorted than cation **b**.

In cation **a**, the Cu1 atom is coordinated by the two nitrogen atoms (N1, N2) and the phenolate oxygen atom (O1) of the Schiff base primary ligand, and to two nitrogen (N3, N4) atoms of the phen co-ligand. The value of the trigonality index  $\tau = 0.53 \ [\tau = (\beta - \alpha)/60, \text{ where } \beta = N1 - Cu1 - N3 =$ 175.79 (13)° and  $\alpha = N2 - Cu1 - O1 = 143.82$  (12)°;  $\tau$  is 0 for a square-pyramidal geometry and 1 for trigonal-bipyramidal] reveals that the coordination environment around Cu1 is best described as having a square-pyramidal distorted trigonalbipyramidal (SPDTBP) geometry (Addison et al., 1984; Selvakumar et al., 2006). The amine nitrogen atoms (N1, N2) and the phenolate oxygen atom (O1) of the meridionally coordinated Schiff base ligand and one of the imine nitrogen atoms of phen (N3) occupy the corners of the (Cu1)N<sub>3</sub>O basal plane of this geometry. The other nitrogen (N4) of the phen ligand occupies the axial position at a distance of 2.251 (3) Å, longer than the equatorial distances [Cu1-O1 = 1.915 (3) Å,Cu1-N1 = 1.923 (3) Å, Cu1-N2 = 2.148 (3) Å, Cu1-N3 =

Figure 1

Molecular structures of the crystallographically independent complex cations and the two perchlorate counter-ions with ellipsoids drawn at the 50% probability level; hydrogen atoms have been omitted for clarity.

| Table 1                       |     |     |
|-------------------------------|-----|-----|
| Selected geometric parameters | (Å, | °). |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |           |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------|-------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | Cu1-O1    | 1.915 (3)   | Cu2-N8    | 2.238 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | Cu1-N1    | 1.923 (3)   | Cl1-O4    | 1.407 (8)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | Cu1-N3    | 2.019 (3)   | Cl1-O5    | 1.409 (8)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | Cu1-N2    | 2.148 (3)   | Cl1-O3    | 1.415 (8)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | Cu1-N4    | 2.251 (3)   | Cl1-O6    | 1.417 (8)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | Cu2-O2    | 1.913 (3)   | Cl2-O9    | 1.367 (4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | Cu2-N5    | 1.919 (3)   | Cl2-O8    | 1.373 (4)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                            | Cu2-N7    | 2.030 (3)   | Cl2-O10   | 1.385 (5)   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                           | Cu2-N6    | 2.121 (3)   | Cl2-O7    | 1.393 (4)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |           |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                            | O1-Cu1-N1 | 93.32 (12)  | O2-Cu2-N5 | 93.37 (13)  |
| $\begin{array}{ccccccc} N1-Cu1-N3 & 175.79 \ (13) & N5-Cu2-N7 & 176.36 \ (\\ O1-Cu1-N2 & 143.82 \ (12) & O2-Cu2-N6 & 152.70 \ (\\ N1-Cu1-N2 & 82.91 \ (13) & N5-Cu2-N6 & 84.08 \ (\\ N3-Cu1-N2 & 96.57 \ (12) & N7-Cu2-N6 & 95.01 \ (\\ O1-Cu1-N4 & 114.99 \ (12) & O2-Cu2-N8 & 107.27 \ (\\ N1-Cu1-N4 & 98.12 \ (12) & N5-Cu2-N8 & 98.80 \ (\\ N3-Cu1-N4 & 77.86 \ (12) & N7-Cu2-N8 & 77.87 \ (\\ N2-Cu1-N4 & 101.14 \ (12) & N6-Cu2-N8 & 99.97 \ (\end{array}$ | O1-Cu1-N3 | 89.55 (12)  | O2-Cu2-N7 | 89.04 (12)  |
| $\begin{array}{ccccccc} O1-Cu1-N2 & 143.82 \ (12) & O2-Cu2-N6 & 152.70 \ (\\ N1-Cu1-N2 & 82.91 \ (13) & N5-Cu2-N6 & 84.08 \ (\\ N3-Cu1-N2 & 96.57 \ (12) & N7-Cu2-N6 & 95.01 \ (\\ O1-Cu1-N4 & 114.99 \ (12) & O2-Cu2-N8 & 107.27 \ (\\ N1-Cu1-N4 & 98.12 \ (12) & N5-Cu2-N8 & 98.80 \ (\\ N3-Cu1-N4 & 77.86 \ (12) & N7-Cu2-N8 & 77.87 \ (\\ N2-Cu1-N4 & 101.14 \ (12) & N6-Cu2-N8 & 99.97 \ (\end{array}$                                                      | N1-Cu1-N3 | 175.79 (13) | N5-Cu2-N7 | 176.36 (14) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                             | O1-Cu1-N2 | 143.82 (12) | O2-Cu2-N6 | 152.70 (12) |
| $\begin{array}{ccccccc} N3-Cu1-N2 & 96.57 \ (12) & N7-Cu2-N6 & 95.01 \ (\\ O1-Cu1-N4 & 114.99 \ (12) & O2-Cu2-N8 & 107.27 \ (\\ N1-Cu1-N4 & 98.12 \ (12) & N5-Cu2-N8 & 98.80 \ (\\ N3-Cu1-N4 & 77.86 \ (12) & N7-Cu2-N8 & 77.87 \ (\\ N2-Cu1-N4 & 101.14 \ (12) & N6-Cu2-N8 & 99.97 \ (\end{array}$                                                                                                                                                              | N1-Cu1-N2 | 82.91 (13)  | N5-Cu2-N6 | 84.08 (14)  |
| $\begin{array}{cccccc} O1-Cu1-N4 & 114.99 \ (12) & O2-Cu2-N8 & 107.27 \ (\\ N1-Cu1-N4 & 98.12 \ (12) & N5-Cu2-N8 & 98.80 \ (\\ N3-Cu1-N4 & 77.86 \ (12) & N7-Cu2-N8 & 77.87 \ (\\ N2-Cu1-N4 & 101.14 \ (12) & N6-Cu2-N8 & 99.97 \ (\end{array}$                                                                                                                                                                                                                  | N3-Cu1-N2 | 96.57 (12)  | N7-Cu2-N6 | 95.01 (13)  |
| $\begin{array}{ccccccc} N1-Cu1-N4 & 98.12 \ (12) & N5-Cu2-N8 & 98.80 \ (\\ N3-Cu1-N4 & 77.86 \ (12) & N7-Cu2-N8 & 77.87 \ (\\ N2-Cu1-N4 & 101.14 \ (12) & N6-Cu2-N8 & 99.97 \ (\end{array}$                                                                                                                                                                                                                                                                      | O1-Cu1-N4 | 114.99 (12) | O2-Cu2-N8 | 107.27 (12) |
| N3-Cu1-N4 77.86 (12) N7-Cu2-N8 77.87 (<br>N2-Cu1-N4 101.14 (12) N6-Cu2-N8 99.97 (                                                                                                                                                                                                                                                                                                                                                                                | N1-Cu1-N4 | 98.12 (12)  | N5-Cu2-N8 | 98.80 (13)  |
| N2-Cu1-N4 101.14 (12) N6-Cu2-N8 99.97 (                                                                                                                                                                                                                                                                                                                                                                                                                          | N3-Cu1-N4 | 77.86 (12)  | N7-Cu2-N8 | 77.87 (12)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N2-Cu1-N4 | 101.14 (12) | N6-Cu2-N8 | 99.97 (12)  |

2.019 (3) Å], which is due to the presence of two electrons in the  $d_z^2$  orbital of copper(II). The Cu1-N2<sub>amine</sub> bond is longer than the Cu1-N1<sub>imine</sub> bond formed by the Schiff base ligand, which is expected of  $sp^3$  and  $sp^2$  hybridizations of the amine (N2) and imine (N1) nitrogen atoms, respectively. The Cu1-N<sub>imine</sub> bond distance is shorter than that of *trans* Cu1-N<sub>phen</sub>; this may be attributed to the fact that the azomethine nitrogen is a stronger base compared with the pyridyl nitrogen. The bond angles deviate from the ideal trigonal-bipyramidal angles of 90 and 120°, respectively, revealing the presence of significant distortion in the Cu1 coordination geometry.

In cation **b**, the Cu2 ion is coordinated by the two nitrogen atoms (N5, N6), the phenolate oxygen atom (O2) of the Schiff base primary ligand, and by the two nitrogen (N7, N8) atoms of the phen co-ligand. As for **a**, cation **b** also exhibits squarepyramidal distorted trigonal-bipyramidal (SPDTBP) geometry (Murphy, Nagle et al., 1997; Murphy, Murphy et al., 1997; Nagle et al., 1990; Rajarajeswari et al., 2014; Jaividhya et al., 2012; Radhakrishnan et al., 2021), but the value of the trigonality index  $\tau$  is slightly smaller at 0.40 [ $\tau = (\beta - \alpha)/60$ , where  $\beta = N5 - Cu2 - N7 = 176.38 (14)^{\circ}$  and  $\alpha = O2 - Cu2 - N6$ =  $152.71 (12)^{\circ}$ ], indicating that it is less distorted than cation **a**. Similar to cation **a**, the amine nitrogen atoms (N5, N6) and the phenolate oxygen atom (O2) of the meridionally coordinated Schiff base ligand and one of the imine nitrogen atoms of phen occupy the corners of the (Cu2)N<sub>3</sub>O basal plane of this geometry. The other nitrogen (N8) of the phen ligand occupies the axial position at a distance of 2.238 (3) Å, again longer than the bonds to the equatorial donor atoms [Cu2-O2 =1.913 (3) Å, Cu2-N5 = 1.919 (3) Å, Cu2-N6 = 2.121 (3) Å, Cu2-N7 = 2.030 (3) Å) but shorter than the axial bond Cu1-N4 of cation a. As a result of a slight axial compression of the axial phen nitrogen in cation **b**, a slight increase of the equatorial phen nitrogen bond length (Cu2-N7) is observed. On the other hand, the other equatorial bonds in b are shorter than in cation **a**. Similar to cation **a**, the  $Cu2-N6_{amine}$  bond is longer than the  $Cu2-N5_{imine}$  bond formed by the Schiff base ligand, as expected for  $sp^3$  and  $sp^2$  hybridizations of the amine

Table 2Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|-------------------------|-----------------------------|
| $C4-H4\cdots O10^{i}$       | 0.93 | 2.51                    | 3.293 (7)               | 142                         |
| C7−H7···O4 <sup>ii</sup>    | 0.93 | 2.59                    | 3.368 (13)              | 141                         |
| C14-H14···O2                | 0.93 | 2.33                    | 3.191 (5)               | 153                         |
| $C22-H22\cdots O3A^{iii}$   | 0.93 | 2.56                    | 3.411 (14)              | 152                         |
| $C27 - H27 \cdots O5A^{iv}$ | 0.93 | 2.41                    | 3.296 (13)              | 158                         |
| C31-H31A···O7               | 0.97 | 2.59                    | 3.530 (7)               | 165                         |
| $C36-H36\cdots O6A^{iii}$   | 0.93 | 2.50                    | 3.143 (16)              | 127                         |
| $C43-H43\cdots O9^{v}$      | 0.93 | 2.53                    | 3.417 (6)               | 160                         |

-x + 1, -y + 1, -z + 1; (iv)  $-x + \frac{3}{2}, y - \frac{1}{2}, z;$  (v)  $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$ 

(N6) and imine (N5) nitrogen atoms, respectively. The Cu2– $N_{imine}$  bond distance is shorter than the *trans* Cu2– $N_{phen}$  bond; this is also attributed to stronger basicity of the azomethine nitrogen compared to the pyridyl nitrogen. The deviations in the values of the bond angles with respect to the ideal square-pyramidal angles of 90 and 180°, respectively, again reveal a significant distortion in the Cu2 coordination geometry.

#### 3. Supramolecular features

The two crystallographically independent complex cations stack along the *c*-axis direction with a slightly different packing arrangement. The layered structures formed by complex cations **a** (coloured in blue) and **b** (coloured in green)

| Table 3   |                |         |               |           |
|-----------|----------------|---------|---------------|-----------|
| Geometric | parameters (Å, | °) of C | $-H\cdots\pi$ | contacts. |

Parameters as defined in *PLATON* (Spek, 2020). *Cg*1, *Cg2*, *Cg3* and *Cg4* are the centroids of the N4/C17–C21, C1–C6, N8/C35–C39 and C24–C29 rings, respectively.

| $C-H\cdots Cg$                     | $H \cdot \cdot \cdot Cg$ | $C \cdot \cdot \cdot Cg$ | $C-H\cdots Cg$ | Symmetry                              |
|------------------------------------|--------------------------|--------------------------|----------------|---------------------------------------|
| $C11-H11B\cdots Cg2$               | 2.78                     | 3.447 (5)                | 128            | $\frac{3}{2} - x, \frac{1}{2} + y, z$ |
| C23-H23···Cg3                      | 2.80                     | 2.337 (5)                | 118            | x, y, z                               |
| $C34 - H34C \cdot \cdot \cdot Cg4$ | 2.80                     | 2.434 (6)                | 124            | $\frac{3}{2} - x, \frac{1}{2} + y, z$ |
| $C44 - H44 \cdots Cg1$             | 2.78                     | 3.369 (5)                | 122            | $\frac{3}{2} - x, \frac{1}{2} + y, z$ |

are shown on the left in Fig. 2. In this complex, layers parallel to the *ab* plane formed by **a** cations alternate along the *c*-axis with layers of **b** cations. The cations in the supramolecular structure are linked by weak  $C-H\cdots O$  hydrogen bonds (Table 2) mediated by the oxygen atoms of the perchlorate anions. Extensive  $\pi-\pi$  interactions of moderate-to-weak strength are present in the structure, with centroid-centroid distances in the range 3.881 (2) to 4.121 (2) ÅÅ. In addition,  $C-H\cdots\pi$  interactions (Table 3) provide enhanced stability to the packing arrangement.

#### 4. Database survey

The Cambridge Structural Database (CSD, Version 5.27, updated in November 2022; Groom *et al.*, 2016) contains no entries with the exact structure of the title compound,  $[Cu(L)(phen)]ClO_4$ . However, a few reports are available for



#### Figure 2

The layered packing arrangement onto the ab plane. Complex cations **a** (blue) and **b** (green) are shown on the left side of the figure. The two perchlorate ions are coloured in yellow and red. The relative arrangement of the two layers is shown on the right side of the image.

### research communications

similar mixed ligand  $Cu^{II}$  complexes containing L and diimine ligands, for example  $[Cu(L)(bpy)]ClO_4$  (Ko et al., 2012).  $[Cu(L)(dpq)]ClO_4$  and  $[Cu(L)(dmdppz)]ClO_4$  (Jaividhya et al., 2012) where bpy is 2,2'-bipyridine, dpg is dipyrido[3,2f:2',3'-h]quinoxaline and dmdppz = 11,12-dimethyldipyrido [3,2-a:2',3'-c] phenazine. Similar to the title compound, in these complexes the N,N,O-tridentate Schiff base ligand is coordinated meridionally to the Cu<sup>II</sup> ion and one of the diimine nitrogen atoms is coordinated in an axial position. The value of the trigonality index of the bpy complex ( $\tau = 0.13$ ) is less than for the dpg ( $\tau = 0.37$ ) and dmdppz ( $\tau = 0.39$ ) complexes, as well as the title complex with phen (**a**,  $\tau = 0.53$ ; **b**,  $\tau = 0.40$ ), which exhibits the largest distortion. In addition to these diimine complexes, there are a few reports on fivecoordinate mixed ligand copper(II) complexes bearing L and an N,N-donor ligand such as benzimidazole and an O,O-donor ligand such as salicylaldehyde (Sathya & Murali, 2018). The N, N, O-tridentate Schiff base ligand is coordinated to the Cu<sup>II</sup> ion in a meridional fashion and the pyridine nitrogen of the benzimidazole ligand occupies the axial position, whereas in the salicylaldehyde complex, the carbonyl oxygen occupies the axial position. The former complex is distorted from a squarepyramidal geometry and shows a trigonality index  $\tau$  of 0.25 but the latter complex exhibits only a slight distortion from an ideal square-pyramidal geometry. Similarly, Tadokaro et al. (1995) reported the molecular structure of a mixed ligand complex with L and bidentate mono-deprotonated 2.2'biimidazolate (N,N-donor) ligands and discussed the existence of a capped-type dimeric hydrogen bond between the molecules. In another case, the authors attempted to synthesize an octahedral bis(*N*-*b*-dimethylaminoethylsalicyladiminato)copper(II) complex (Chieh & Palenik, 1972). They expected both the tridentate N.N.O-Schiff base ligands to coordinate to the Cu<sup>II</sup> ion and form an octahedral coordination geometry. However, the crystal structure revealed that the Cu<sup>II</sup> ion is pentacoordinate with one of the dimethylamino groups of the ligand not bonded to it. The resulting complex is highly distorted but appears closer to a trigonal-bipyramidal geometry rather than square pyramidal.

### 5. Synthesis and crystallization

The Schiff base-type ligand 2-[(2-dimethylaminoethylimino)methyl]phenol (HL) was prepared using the synthetic procedure reported by Jaividhya *et al.* (2012). Complex **I** was prepared by addition of a methanolic solution (10 mL) of 1,10phenanthroline (0.1802 g, 1 mmol) and HL (0.1949 g, 1 mmol) pretreated with triethylamine (139  $\mu$ L, 1 mmol) to remove the phenolic hydrogen, to a solution of copper(II) perchlorate hexahydrate (0.37 g, 1 mmol) in methanol (15 mL) and then stirring at 313 K for 2 h. The green solid obtained was collected by suction filtration, washed with diethyl ether, and then dried under vacuum. A crystal suitable for X-ray diffraction analysis was obtained by dissolving the complex in methanol and allowing it to crystallize.

| Table  | 4      |          |
|--------|--------|----------|
| Experi | mental | details. |

| Crystal data                                                               |                                                      |
|----------------------------------------------------------------------------|------------------------------------------------------|
| Chemical formula                                                           | $[Cu(C_{11}H_{15}N_2O)(C_{12}H_8N_2)]ClO_4$          |
| M <sub>r</sub>                                                             | 534.44                                               |
| Crystal system, space group                                                | Orthorhombic, Pbca                                   |
| Temperature (K)                                                            | 293                                                  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                         | 17.8598 (8), 15.0255 (7), 33.920 (2)                 |
| $V(Å^3)$                                                                   | 9102.6 (9)                                           |
| Ζ                                                                          | 16                                                   |
| Radiation type                                                             | Μο Κα                                                |
| $\mu (\text{mm}^{-1})$                                                     | 1.12                                                 |
| Crystal size (mm)                                                          | $0.05\times0.04\times0.03$                           |
| Data collection                                                            |                                                      |
| Diffractometer                                                             | Xcalibur, Eos, Gemini                                |
| Absorption correction                                                      | Multi-scan ( <i>CrysAlis PRO</i> ;<br>Agilent, 2013) |
| $T_{\min}, T_{\max}$                                                       | 0.792, 1.000                                         |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 28151, 9292, 6329                                    |
| R <sub>int</sub>                                                           | 0.046                                                |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                       | 0.625                                                |
| Refinement                                                                 |                                                      |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.054, 0.130, 1.05                                   |
| No. of reflections                                                         | 9292                                                 |
| No. of parameters                                                          | 663                                                  |
| No. of restraints                                                          | 154                                                  |
| H-atom treatment                                                           | H-atom parameters constrained                        |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e} {\rm ~\AA}^{-3})$ | 0.94, -0.42                                          |

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ORTEPIII (Burnett & Johnson, 1996), Mercury (Macrae et al., 2020), OLEX2 (Dolomanov et al., 2009), enCIFer (Allen et al., 2004), publCIF (Westrip, 2012) and PLATON (Spek, 2020).

### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms were placed in idealized positions and constrained to ride on their parent atoms, with d(C-H) = 0.93 Å,  $U_{iso}(H) = 1.2U_{eq}(C)$  for aromatic, 0.97 Å,  $U_{iso}(H) = 1.2U_{eq}(C)$  for CH<sub>2</sub> and 0.96 Å,  $U_{iso}(H) = 1.5U_{eq}(C)$ for CH<sub>3</sub> atoms. The hydrogens bound to carbon were refined using standard riding models. The perchlorate ions are disordered. The first, Cl1/O3–O6, was successfully refined with two disorder components which refined to a ratio of 0.611 (15):0.389 (15). Attempts to model the second perchlorate ion (Cl2/O7–O10) did not improve the disagreement factors.

### Acknowledgements

The authors acknowledge the Central University of Tamil Nadu, India, for providing an instrumentation facility. UV acknowledges support from SASTRA Deemed University, Thanjavur, Tamilnadu, India.

### References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Chieh, P. C. & Palenik, G. J. (1972). Inorg. Chem. 11, 816-819.

- Goswami, T. K., Gadadhar, S., Roy, M., Nethaji, M., Karande, A. A. & Chakravarty, A. R. (2012). *Organometallics*, **31**, 3010–3021.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jaividhya, P., Dhivya, R., Akbarsha, M. A. & Palaniandavar, M. (2012). J. Inorg. Biochem. 114, 94–105.
- Karpagam, S., Kartikeyan, R., Paravai Nachiyar, P., Velusamy, M., Kannan, M., Krishnan, M., Chitgupi, U., Lovell, J. F., Abdulkader Akbarsha, M. & Rajendiran, V. (2019). J. Coord. Chem. 72, 3102– 3127.
- Karpagam, S., Mamindla, A., Kumar Sali, V., Niranjana, R. S., Periasamy, V. S., Alshatwi, A. A., Akbarsha, M. A. & Rajendiran, V. (2022). *Inorg. Chim. Acta*, 531, 120729–120740.
- Ko, B., Chang, C., Lai, S., Lai, F. & Lin, C. (2012). *Polyhedron*, **45**, 49–54.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Murphy, G., Murphy, C., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2653–2660.
- Murphy, G., Nagle, P., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2645–2652.

- Nagle, P., O'Sullivan, E., Hathaway, B. J. & Muller, E. (1990). J. Chem. Soc. Dalton Trans. pp. 3399–3406.
- Radhakrishnan, K., Khamrang, T., Sambantham, K., Sali, V. K., Chitgupi, U., Lovell, J. F., Mohammad, A. A. & Venugopal, R. (2021). *Polyhedron*, **194**, 114886–114899.
- Rajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., Riyasdeen, A. & Akbarsha, M. A. (2014). J. Inorg. Biochem. 140, 255–268.
- Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). *Inorg. Chem.* 46, 8208–8221.
- Sathya, V. & Murali, M. (2018). Inorg. Chem. Commun. 92, 55-59.
- Selvakumar, B., Rajendiran, V., Uma Maheswari, P., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316– 330.
- Sharma, M., Ganeshpandian, M., Majumder, M., Tamilarasan, A., Sharma, M., Mukhopadhyay, R., Islam, N. S. & Palaniandavar, M. (2020). *Dalton Trans.* 49, 8282–8297.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tadokoro, M., Toyoda, J., Isobe, K., Itoh, T., Miyazaki, A., Enoki, T. & Nakasuji, K. (1995). *Chem. Lett.* **24**, 613–614.

Acta Cryst. (2023). E79, 259-263 [https://doi.org/10.1107/S2056989023001767]

Crystal structure of [2-({[2-(dimethylamino- $\kappa N$ )ethyl]imino- $\kappa N$ }methyl)phenolato- $\kappa O$ ](1,10-phenanthroline- $\kappa^2 N$ ,N')copper(II) perchlorate

### Anjaneyulu Mamindla, Manikandan Varadhan, Marappan Velusamy, Venkatasubramanian Ulaganathan and Venugopal Rajendiran

### **Computing details**

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: Olex2 (Dolomanov *et al.*, 2009), *enCIFer* (Allen *et al.*, 2004), *publCIF* (Westrip, 2012), *PLATON* (Spek, 2020).

 $[2-(\{[2-(Dimethylamino-\kappa N)ethyl]imino-\kappa N\}methyl)phenolato-\kappa O](1,10-phenanthroline-\kappa^2 N, N')copper(II) perchlorate$ 

Crystal data

| $[Cu(C_{11}H_{15}N_2O)(C_{12}H_8N_2)]ClO_4$ |
|---------------------------------------------|
| $M_r = 534.44$                              |
| Orthorhombic, Pbca                          |
| a = 17.8598 (8) Å                           |
| <i>b</i> = 15.0255 (7) Å                    |
| c = 33.920 (2) Å                            |
| V = 9102.6 (9) Å <sup>3</sup>               |
| Z = 16                                      |
| F(000) = 4400                               |
|                                             |

### Data collection

| Xcalibur, Eos, Gemini                               |
|-----------------------------------------------------|
| diffractometer                                      |
| Radiation source: Enhance (Mo) X-ray Source         |
| Graphite monochromator                              |
| Detector resolution: 8.0640 pixels mm <sup>-1</sup> |
| $\omega$ scans                                      |
| Absorption correction: multi-scan                   |
| (CrysAlisPro; Agilent, 2013)                        |
| $T_{\min} = 0.792, \ T_{\max} = 1.000$              |
|                                                     |

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.054$  $wR(F^2) = 0.130$ S = 1.05  $D_x = 1.560 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 28155 reflections  $\theta = 3.2-26.4^{\circ}$  $\mu = 1.12 \text{ mm}^{-1}$ T = 293 KNeedle, green  $0.05 \times 0.04 \times 0.03 \text{ mm}$ 

28151 measured reflections 9292 independent reflections 6329 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.046$  $\theta_{max} = 26.4^\circ, \ \theta_{min} = 3.2^\circ$  $h = -22 \rightarrow 20$  $k = -17 \rightarrow 18$  $l = -40 \rightarrow 42$ 

9292 reflections 663 parameters 154 restraints Primary atom site location: dual

| Secondary atom site location: difference Fourier | $w = 1/[\sigma^2(F_0^2) + (0.0401P)^2 + 10.7563P]$         |
|--------------------------------------------------|------------------------------------------------------------|
| map                                              | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Hydrogen site location: inferred from            | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| neighbouring sites                               | $\Delta \rho_{\rm max} = 0.94 \ {\rm e} \ {\rm \AA}^{-3}$  |
| H-atom parameters constrained                    | $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$ |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Data collection: A crystal of complex I was mounted on a glass fiber. Data were collected on an Oxford Diffraction Xcalibur EOS Gemini Diffractometer at ambient temperature using graphite-monochromated Mo K $\alpha$  radiation ( $\lambda = 0.7107$  Å). The structure was solved with SHELXT (Sheldrick, 2015a) and refined with SHELXL (Sheldrick, 2015b). The graphic interface package PLATON (Spek, 2020), ORTEP (Burnett & Johnson, 1996) and Mercury (Macrae *et al.*, 2020) were used for analysis and generation of images. Non-hydrogen atoms were refined anisotropically.

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| Cul | 0.81742 (3)  | 0.43972 (3)  | 0.24313 (2)  | 0.03202 (13)                |           |
| Cu2 | 0.83369 (3)  | 0.67803 (3)  | 0.47565 (2)  | 0.03479 (14)                |           |
| 01  | 0.87548 (16) | 0.33345 (18) | 0.24931 (8)  | 0.0417 (7)                  |           |
| O2  | 0.88228 (16) | 0.56677 (18) | 0.46583 (8)  | 0.0428 (7)                  |           |
| N1  | 0.80139 (17) | 0.4198 (2)   | 0.18778 (9)  | 0.0329 (7)                  |           |
| N2  | 0.82238 (17) | 0.5766 (2)   | 0.22508 (9)  | 0.0340 (7)                  |           |
| N3  | 0.82613 (17) | 0.4625 (2)   | 0.30162 (9)  | 0.0320 (7)                  |           |
| N4  | 0.69757 (17) | 0.4291 (2)   | 0.26310 (9)  | 0.0354 (7)                  |           |
| N5  | 0.8188 (2)   | 0.6527 (2)   | 0.53054 (10) | 0.0431 (9)                  |           |
| N6  | 0.83297 (17) | 0.8127 (2)   | 0.49442 (10) | 0.0382 (8)                  |           |
| N7  | 0.84254 (17) | 0.7071 (2)   | 0.41738 (9)  | 0.0345 (7)                  |           |
| N8  | 0.71511 (18) | 0.6647 (2)   | 0.45510 (9)  | 0.0363 (8)                  |           |
| C1  | 0.8861 (2)   | 0.2715 (2)   | 0.22294 (11) | 0.0337 (9)                  |           |
| C2  | 0.9272 (2)   | 0.1952 (3)   | 0.23366 (14) | 0.0442 (10)                 |           |
| H2  | 0.947412     | 0.191565     | 0.258877     | 0.053*                      |           |
| C3  | 0.9382 (2)   | 0.1260 (3)   | 0.20769 (15) | 0.0482 (12)                 |           |
| H3  | 0.964274     | 0.075734     | 0.215921     | 0.058*                      |           |
| C4  | 0.9110 (2)   | 0.1301 (3)   | 0.16951 (14) | 0.0486 (11)                 |           |
| H4  | 0.918553     | 0.083030     | 0.152142     | 0.058*                      |           |
| C5  | 0.8730 (2)   | 0.2043 (3)   | 0.15776 (13) | 0.0430 (10)                 |           |
| H5  | 0.855520     | 0.207798     | 0.131978     | 0.052*                      |           |
| C6  | 0.8596 (2)   | 0.2757 (2)   | 0.18367 (11) | 0.0337 (9)                  |           |
| C7  | 0.8202 (2)   | 0.3509 (3)   | 0.16796 (11) | 0.0330 (9)                  |           |
| H7  | 0.807316     | 0.349462     | 0.141397     | 0.040*                      |           |
| C8  | 0.7694 (3)   | 0.4979 (3)   | 0.16863 (12) | 0.0446 (11)                 |           |
| H8A | 0.717826     | 0.506449     | 0.176737     | 0.054*                      |           |
| H8B | 0.770938     | 0.491494     | 0.140189     | 0.054*                      |           |
| C9  | 0.8169 (3)   | 0.5746 (3)   | 0.18160 (13) | 0.0501 (12)                 |           |
| H9A | 0.866550     | 0.569102     | 0.170287     | 0.060*                      |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H9B  | 0.795080   | 0.629873   | 0.172247     | 0.060*      |
|------|------------|------------|--------------|-------------|
| C10  | 0.8941 (3) | 0.6170 (3) | 0.23719 (16) | 0.0595 (13) |
| H10A | 0.934812   | 0.583264   | 0.226281     | 0.089*      |
| H10B | 0.897643   | 0.616765   | 0.265432     | 0.089*      |
| H10C | 0.896568   | 0.677117   | 0.227737     | 0.089*      |
| C11  | 0.7615 (3) | 0.6296 (3) | 0.24258 (14) | 0.0537 (12) |
| H11A | 0.763968   | 0.625587   | 0.270795     | 0.081*      |
| H11B | 0.714111   | 0.607164   | 0.233643     | 0.081*      |
| H11C | 0.766675   | 0.690688   | 0.234707     | 0.081*      |
| C12  | 0.8900 (2) | 0.4684 (3) | 0.32089 (12) | 0.0414 (10) |
| H12  | 0.934521   | 0.462017   | 0.306958     | 0.050*      |
| C13  | 0.8933 (3) | 0.4838 (3) | 0.36151 (13) | 0.0490 (11) |
| H13  | 0.939374   | 0.488978   | 0.374070     | 0.059*      |
| C14  | 0.8291 (3) | 0.4912 (3) | 0.38247 (12) | 0.0465 (11) |
| H14  | 0.830755   | 0.502418   | 0.409422     | 0.056*      |
| C15  | 0.7599 (2) | 0.4819 (2) | 0.36316 (11) | 0.0368 (9)  |
| C16  | 0.7609 (2) | 0.4667 (2) | 0.32245 (11) | 0.0301 (8)  |
| C17  | 0.6921 (2) | 0.4504 (2) | 0.30172 (11) | 0.0329 (9)  |
| C18  | 0.6353 (2) | 0.4067 (3) | 0.24435 (12) | 0.0427 (10) |
| H18  | 0.638294   | 0.391219   | 0.217854     | 0.051*      |
| C19  | 0.5647 (2) | 0.4055 (3) | 0.26280 (15) | 0.0528 (12) |
| H19  | 0.522211   | 0.388547   | 0.248859     | 0.063*      |
| C20  | 0.5598 (2) | 0.4294 (3) | 0.30130 (15) | 0.0495 (11) |
| H20  | 0.513344   | 0.430513   | 0.313678     | 0.059*      |
| C21  | 0.6242 (2) | 0.4524 (3) | 0.32249 (12) | 0.0395 (10) |
| C22  | 0.6243 (3) | 0.4718 (3) | 0.36356 (13) | 0.0477 (11) |
| H22  | 0.579133   | 0.475757   | 0.377102     | 0.057*      |
| C23  | 0.6889 (3) | 0.4844 (3) | 0.38292 (13) | 0.0471 (11) |
| H23  | 0.687706   | 0.494976   | 0.409920     | 0.057*      |
| C24  | 0.8926 (2) | 0.5020 (3) | 0.49110 (13) | 0.0417 (10) |
| C25  | 0.9310 (3) | 0.4249 (3) | 0.47817 (15) | 0.0526 (12) |
| H25  | 0.949904   | 0.422418   | 0.452650     | 0.063*      |
| C26  | 0.9405 (3) | 0.3534 (3) | 0.5032 (2)   | 0.0691 (16) |
| H26  | 0.964649   | 0.302654   | 0.493954     | 0.083*      |
| C27  | 0.9149 (3) | 0.3554 (4) | 0.5416 (2)   | 0.0746 (18) |
| H27  | 0.921524   | 0.306329   | 0.557955     | 0.090*      |
| C28  | 0.8802 (3) | 0.4293 (3) | 0.55532 (15) | 0.0618 (14) |
| H28  | 0.863768   | 0.430882   | 0.581323     | 0.074*      |
| C29  | 0.8686 (2) | 0.5037 (3) | 0.53095 (13) | 0.0440 (11) |
| C30  | 0.8346 (2) | 0.5799 (3) | 0.54829 (12) | 0.0450 (11) |
| H30  | 0.822847   | 0.576548   | 0.574952     | 0.054*      |
| C31  | 0.7896 (3) | 0.7301 (3) | 0.55210 (13) | 0.0547 (12) |
| H31A | 0.795714   | 0.722062   | 0.580293     | 0.066*      |
| H31B | 0.736946   | 0.738936   | 0.546402     | 0.066*      |
| C32  | 0.8350 (3) | 0.8079 (3) | 0.53790 (13) | 0.0564 (13) |
| H32A | 0.814990   | 0.862515   | 0.548954     | 0.068*      |
| H32B | 0.886390   | 0.801664   | 0.546723     | 0.068*      |
| C33  | 0.8999 (3) | 0.8603 (3) | 0.47925 (15) | 0.0572 (13) |

| H33A | 0.944135    | 0.826873    | 0.485509     | 0.086*      |            |
|------|-------------|-------------|--------------|-------------|------------|
| H33B | 0.902915    | 0.918063    | 0.491273     | 0.086*      |            |
| H33C | 0.895941    | 0.866840    | 0.451177     | 0.086*      |            |
| C34  | 0.7662 (3)  | 0.8622 (3)  | 0.48093 (14) | 0.0536 (12) |            |
| H34A | 0.764277    | 0.861685    | 0.452652     | 0.080*      |            |
| H34B | 0.768947    | 0.922572    | 0.490101     | 0.080*      |            |
| H34C | 0.721893    | 0.834536    | 0.491295     | 0.080*      |            |
| C35  | 0.6536 (2)  | 0.6372 (3)  | 0.47315 (13) | 0.0450 (10) |            |
| H35  | 0.657234    | 0.618632    | 0.499238     | 0.054*      |            |
| C36  | 0.5840 (2)  | 0.6347 (3)  | 0.45499 (15) | 0.0510 (12) |            |
| H36  | 0.542601    | 0.612444    | 0.468375     | 0.061*      |            |
| C37  | 0.5769 (2)  | 0.6653 (3)  | 0.41728 (15) | 0.0513 (12) |            |
| H37  | 0.530197    | 0.666457    | 0.405194     | 0.062*      |            |
| C38  | 0.6404 (2)  | 0.6951 (3)  | 0.39685 (13) | 0.0407 (10) |            |
| C39  | 0.7089 (2)  | 0.6920 (2)  | 0.41710 (11) | 0.0332 (9)  |            |
| C40  | 0.7771 (2)  | 0.7126 (2)  | 0.39697 (11) | 0.0304 (8)  |            |
| C41  | 0.7759 (2)  | 0.7336 (2)  | 0.35643 (11) | 0.0362 (9)  |            |
| C42  | 0.7043 (3)  | 0.7409 (3)  | 0.33722 (13) | 0.0485 (12) |            |
| H42  | 0.702256    | 0.757948    | 0.310885     | 0.058*      |            |
| C43  | 0.6401 (3)  | 0.7234 (3)  | 0.35672 (13) | 0.0479 (11) |            |
| H43  | 0.594667    | 0.729995    | 0.343685     | 0.058*      |            |
| C44  | 0.8442 (3)  | 0.7446 (3)  | 0.33738 (12) | 0.0431 (10) |            |
| H44  | 0.845331    | 0.757961    | 0.310617     | 0.052*      |            |
| C45  | 0.9090 (3)  | 0.7359 (3)  | 0.35772 (13) | 0.0475 (11) |            |
| H45  | 0.954831    | 0.742011    | 0.345003     | 0.057*      |            |
| C46  | 0.9061 (2)  | 0.7176 (3)  | 0.39810 (13) | 0.0440 (10) |            |
| H46  | 0.950814    | 0.712544    | 0.411947     | 0.053*      |            |
| Cl1  | 0.5801 (4)  | 0.5616 (5)  | 0.5795 (2)   | 0.0407 (13) | 0.611 (15) |
| 03   | 0.5685 (6)  | 0.4918 (7)  | 0.6068 (3)   | 0.090 (3)   | 0.611 (15) |
| 04   | 0.6566 (5)  | 0.5808 (9)  | 0.5742 (3)   | 0.078 (3)   | 0.611 (15) |
| 05   | 0.5446 (5)  | 0.6364 (7)  | 0.5961 (4)   | 0.101 (3)   | 0.611 (15) |
| O6   | 0.5472 (7)  | 0.5411 (8)  | 0.5426 (3)   | 0.074 (3)   | 0.611 (15) |
| Cl1A | 0.5833 (7)  | 0.5590 (9)  | 0.5804 (4)   | 0.054 (2)   | 0.389 (15) |
| O3A  | 0.5637 (8)  | 0.5389 (14) | 0.6192 (3)   | 0.084 (4)   | 0.389 (15) |
| O4A  | 0.6590 (8)  | 0.5378 (11) | 0.5739 (6)   | 0.071 (4)   | 0.389 (15) |
| 05A  | 0.5740 (10) | 0.6517 (7)  | 0.5773 (5)   | 0.092 (4)   | 0.389 (15) |
| O6A  | 0.5382 (12) | 0.5148 (11) | 0.5527 (5)   | 0.079 (4)   | 0.389 (15) |
| Cl2  | 0.92437 (6) | 0.67480 (8) | 0.64438 (3)  | 0.0492 (3)  | ()         |
| 07   | 0.8485 (2)  | 0.6921 (4)  | 0.65003 (14) | 0.1193 (18) |            |
| 08   | 0.9511 (3)  | 0.6909 (4)  | 0.60710 (12) | 0.127 (2)   |            |
| 09   | 0.9674 (2)  | 0.7083 (4)  | 0.67422 (14) | 0.141 (2)   |            |
| 010  | 0.9281(4)   | 0.5837 (3)  | 0.6502 (2)   | 0.168(3)    |            |
| 010  |             |             |              |             |            |

Atomic displacement parameters  $(Å^2)$ 

| $U^{23}$                     | $U^{13}$                    | $U^{12}$                  | $U^{33}$                 | $U^{22}$                 | $U^{11}$                 |            |
|------------------------------|-----------------------------|---------------------------|--------------------------|--------------------------|--------------------------|------------|
| 9) $-0.0029(2)$<br>0.0033(2) | -0.00180(19)<br>-0.0040(2)  | 0.0039(2)                 | 0.0241 (2)               | 0.0363 (3)               | 0.0357 (3)               | Cu1        |
| (                            | -0.00180 (19<br>-0.0040 (2) | 0.0039 (2)<br>-0.0001 (2) | 0.0241 (2)<br>0.0277 (3) | 0.0363 (3)<br>0.0375 (3) | 0.0357 (3)<br>0.0392 (3) | Cu1<br>Cu2 |

| 01         | 0.0471 (17)          | 0.0458 (16)          | 0.0322 (15)          | 0.0151 (14)              | -0.0085 (13)         | -0.0061 (13)                          |
|------------|----------------------|----------------------|----------------------|--------------------------|----------------------|---------------------------------------|
| O2         | 0.0531 (18)          | 0.0402 (16)          | 0.0352 (16)          | 0.0081 (14)              | -0.0035 (13)         | 0.0010 (13)                           |
| N1         | 0.0387 (18)          | 0.0376 (18)          | 0.0224 (16)          | 0.0038 (15)              | -0.0015 (14)         | 0.0024 (14)                           |
| N2         | 0.0305 (17)          | 0.0343 (18)          | 0.0371 (19)          | 0.0007 (14)              | -0.0021 (14)         | -0.0012 (14)                          |
| N3         | 0.0337 (17)          | 0.0334 (17)          | 0.0288 (17)          | -0.0014 (14)             | -0.0011 (14)         | 0.0000 (14)                           |
| N4         | 0.0340 (18)          | 0.0419 (19)          | 0.0303 (18)          | -0.0046(15)              | 0.0016 (14)          | 0.0001 (15)                           |
| N5         | 0.055 (2)            | 0.044(2)             | 0.0304 (19)          | -0.0036(17)              | -0.0049(16)          | 0.0001 (16)                           |
| N6         | 0.0331(18)           | 0.0407(19)           | 0.041 (2)            | -0.0023(16)              | -0.0041(15)          | -0.0014(16)                           |
| N7         | 0.0359 (18)          | 0.0358(18)           | 0.0319(18)           | 0.0018 (15)              | -0.0020(14)          | 0.0013 (15)                           |
| N8         | 0.0356(18)           | 0.0420(19)           | 0.0313(18)           | -0.0037(15)              | $0.000 \pm 0.001$    | 0.0012(15)                            |
| C1         | 0.028(2)             | 0.037(2)             | 0.036(2)             | 0.0013(17)               | 0.0017(17)           | 0.00022(12)                           |
| C2         | 0.028(2)<br>0.038(2) | 0.037(2)<br>0.042(2) | 0.050(2)<br>0.052(3) | 0.0013(17)<br>0.0057(19) | -0.005(2)            | 0.00000000000000000000000000000000000 |
| C3         | 0.035(2)             | 0.012(2)<br>0.032(2) | 0.052(3)<br>0.078(4) | 0.0079(19)               | 0.000(2)             | 0.001(2)                              |
| C4         | 0.033(2)<br>0.048(3) | 0.032(2)<br>0.039(2) | 0.070(1)             | -0.007(2)                | 0.001(2)<br>0.007(2) | -0.013(2)                             |
| C5         | 0.046(2)             | 0.039(2)<br>0.042(2) | 0.035(3)             | -0.002(2)                | 0.007(2)             | -0.0111(19)                           |
| C6         | 0.040(2)<br>0.031(2) | 0.042(2)<br>0.033(2) | 0.041(2)<br>0.038(2) | -0.001(2)                | 0.002(2)             | -0.0028(17)                           |
| C7         | 0.031(2)<br>0.034(2) | 0.035(2)             | 0.030(2)             | -0.0021(17)              | -0.0011(16)          | -0.0026(17)                           |
| C8         | 0.057(2)             | 0.040(2)             | 0.025(2)             | 0.0033(10)               | -0.010(2)            | 0.0020(17)                            |
|            | 0.052(3)             | 0.045(2)             | 0.037(2)             | 0.013(2)                 | 0.010(2)             | 0.0031(19)                            |
| C3         | 0.000(3)             | 0.040(3)             | 0.039(3)             | -0.007(2)                | -0.005(2)            | 0.011(2)                              |
| C10<br>C11 | 0.049(3)             | 0.032(3)             | 0.077(4)             | -0.008(2)                | -0.003(3)            | -0.009(3)                             |
| C12        | 0.033(3)             | 0.041(2)             | 0.000(3)             | -0.0013(2)               | -0.002(2)            | -0.002(2)                             |
| C12        | 0.039(2)             | 0.043(2)             | 0.039(2)             | -0.001(2)                | -0.0029(19)          | -0.002/(19)                           |
| C15        | 0.034(3)             | 0.033(3)             | 0.037(2)             | -0.004(2)                | -0.011(2)            | -0.002(2)                             |
| C14        | 0.076(3)             | 0.039(2)             | 0.025(2)             | 0.000(2)                 | -0.012(2)            | -0.0084(18)                           |
|            | 0.056 (3)            | 0.028(2)             | 0.027(2)             | 0.0008 (19)              | 0.0047 (19)          | -0.0028 (16)                          |
| C16        | 0.040 (2)            | 0.0236 (18)          | 0.027 (2)            | 0.0008 (16)              | 0.0028 (17)          | 0.0014 (15)                           |
| CI7        | 0.037 (2)            | 0.029 (2)            | 0.033 (2)            | 0.0017 (17)              | 0.0038 (17)          | 0.0013 (16)                           |
| C18        | 0.039 (2)            | 0.053 (3)            | 0.036 (2)            | -0.004 (2)               | -0.0068 (19)         | 0.003 (2)                             |
| C19        | 0.040 (3)            | 0.055 (3)            | 0.063 (3)            | -0.008 (2)               | -0.011 (2)           | 0.018 (2)                             |
| C20        | 0.033 (2)            | 0.049 (3)            | 0.066 (3)            | 0.001 (2)                | 0.008 (2)            | 0.016 (2)                             |
| C21        | 0.041 (2)            | 0.035 (2)            | 0.042 (2)            | 0.0032 (19)              | 0.0109 (19)          | 0.0041 (18)                           |
| C22        | 0.052 (3)            | 0.044 (3)            | 0.047 (3)            | 0.005 (2)                | 0.022 (2)            | 0.000 (2)                             |
| C23        | 0.077 (3)            | 0.033 (2)            | 0.031 (2)            | 0.004 (2)                | 0.015 (2)            | -0.0030 (18)                          |
| C24        | 0.038 (2)            | 0.037 (2)            | 0.051 (3)            | -0.0039 (19)             | -0.017 (2)           | -0.001 (2)                            |
| C25        | 0.049 (3)            | 0.045 (3)            | 0.063 (3)            | 0.002 (2)                | -0.016 (2)           | -0.003 (2)                            |
| C26        | 0.058 (3)            | 0.040 (3)            | 0.109 (5)            | 0.003 (2)                | -0.035 (3)           | 0.003 (3)                             |
| C27        | 0.077 (4)            | 0.053 (3)            | 0.094 (5)            | -0.009 (3)               | -0.040 (4)           | 0.028 (3)                             |
| C28        | 0.070 (3)            | 0.057 (3)            | 0.059 (3)            | -0.010 (3)               | -0.024 (3)           | 0.024 (3)                             |
| C29        | 0.044 (2)            | 0.045 (2)            | 0.043 (3)            | -0.011 (2)               | -0.019 (2)           | 0.009 (2)                             |
| C30        | 0.050 (3)            | 0.056 (3)            | 0.029 (2)            | -0.014 (2)               | -0.0082 (19)         | 0.010 (2)                             |
| C31        | 0.071 (3)            | 0.062 (3)            | 0.031 (2)            | 0.003 (3)                | 0.006 (2)            | -0.003 (2)                            |
| C32        | 0.080 (4)            | 0.051 (3)            | 0.038 (3)            | -0.003 (3)               | -0.005 (2)           | -0.013 (2)                            |
| C33        | 0.055 (3)            | 0.047 (3)            | 0.070 (3)            | -0.009 (2)               | 0.004 (3)            | -0.006 (2)                            |
| C34        | 0.054 (3)            | 0.042 (2)            | 0.065 (3)            | 0.009 (2)                | 0.001 (2)            | 0.002 (2)                             |
| C35        | 0.044 (3)            | 0.046 (2)            | 0.045 (3)            | 0.001 (2)                | 0.010 (2)            | -0.003 (2)                            |
| C36        | 0.037 (2)            | 0.053 (3)            | 0.063 (3)            | -0.005 (2)               | 0.009 (2)            | -0.012 (2)                            |
| C37        | 0.031 (2)            | 0.053 (3)            | 0.070 (3)            | 0.006 (2)                | -0.007 (2)           | -0.018 (2)                            |
| C38        | 0.039 (2)            | 0.036 (2)            | 0.046 (3)            | 0.0068 (19)              | -0.0100 (19)         | -0.0081 (19)                          |

| C39  | 0.037 (2)  | 0.029 (2)   | 0.034 (2)  | 0.0042 (17) | -0.0028 (17) | -0.0019 (17) |
|------|------------|-------------|------------|-------------|--------------|--------------|
| C40  | 0.037 (2)  | 0.0246 (18) | 0.030 (2)  | 0.0041 (16) | -0.0060 (17) | -0.0011 (16) |
| C41  | 0.054 (3)  | 0.0238 (19) | 0.030 (2)  | 0.0039 (19) | -0.0037 (19) | -0.0013 (16) |
| C42  | 0.074 (3)  | 0.038 (2)   | 0.034 (2)  | 0.012 (2)   | -0.021 (2)   | 0.0017 (19)  |
| C43  | 0.048 (3)  | 0.048 (3)   | 0.048 (3)  | 0.012 (2)   | -0.021 (2)   | -0.004 (2)   |
| C44  | 0.066 (3)  | 0.033 (2)   | 0.031 (2)  | 0.003 (2)   | 0.006 (2)    | 0.0029 (18)  |
| C45  | 0.053 (3)  | 0.046 (3)   | 0.043 (3)  | 0.004 (2)   | 0.020 (2)    | 0.004 (2)    |
| C46  | 0.038 (2)  | 0.047 (3)   | 0.047 (3)  | 0.001 (2)   | 0.002 (2)    | 0.002 (2)    |
| Cl1  | 0.037 (2)  | 0.049 (2)   | 0.036 (2)  | -0.003 (2)  | 0.0024 (19)  | 0.005 (2)    |
| O3   | 0.097 (5)  | 0.086 (6)   | 0.087 (6)  | -0.013 (5)  | -0.011 (5)   | 0.037 (5)    |
| O4   | 0.049 (4)  | 0.125 (7)   | 0.059 (4)  | -0.028 (5)  | 0.005 (3)    | 0.003 (6)    |
| 05   | 0.098 (6)  | 0.093 (5)   | 0.111 (6)  | 0.003 (5)   | 0.027 (5)    | -0.037 (5)   |
| 06   | 0.072 (5)  | 0.100(7)    | 0.051 (4)  | -0.018 (5)  | -0.020 (4)   | 0.003 (4)    |
| Cl1A | 0.052 (4)  | 0.064 (4)   | 0.046 (4)  | -0.009 (4)  | -0.017 (3)   | -0.006 (4)   |
| O3A  | 0.078 (6)  | 0.124 (9)   | 0.049 (6)  | -0.021 (7)  | 0.019 (5)    | 0.007 (6)    |
| O4A  | 0.048 (6)  | 0.085 (8)   | 0.078 (7)  | 0.006 (6)   | -0.003 (5)   | -0.002 (8)   |
| O5A  | 0.113 (8)  | 0.054 (6)   | 0.109 (8)  | 0.003 (6)   | 0.009 (7)    | 0.004 (6)    |
| O6A  | 0.088 (7)  | 0.077 (8)   | 0.070 (8)  | -0.027 (6)  | -0.020 (7)   | -0.010 (6)   |
| Cl2  | 0.0434 (6) | 0.0572 (7)  | 0.0469 (6) | -0.0083 (5) | 0.0026 (5)   | 0.0063 (5)   |
| 07   | 0.050 (2)  | 0.205 (6)   | 0.103 (4)  | 0.011 (3)   | 0.000 (2)    | 0.023 (4)    |
| 08   | 0.106 (3)  | 0.213 (6)   | 0.062 (3)  | -0.061 (4)  | 0.011 (2)    | 0.034 (3)    |
| 09   | 0.076 (3)  | 0.261 (7)   | 0.085 (3)  | -0.056 (4)  | 0.011 (3)    | -0.061 (4)   |
| O10  | 0.222 (7)  | 0.074 (3)   | 0.207 (7)  | 0.021 (4)   | 0.078 (5)    | 0.029 (4)    |
|      |            |             |            |             |              |              |

### Geometric parameters (Å, °)

| Cu1—O1 | 1.915 (3) | C18—H18 | 0.9300    |
|--------|-----------|---------|-----------|
| Cu1—N1 | 1.923 (3) | C19—C20 | 1.358 (6) |
| Cu1—N3 | 2.019 (3) | C19—H19 | 0.9300    |
| Cu1—N2 | 2.148 (3) | C20—C21 | 1.400 (6) |
| Cu1—N4 | 2.251 (3) | C20—H20 | 0.9300    |
| Cu2—O2 | 1.913 (3) | C21—C22 | 1.423 (6) |
| Cu2—N5 | 1.919 (3) | C22—C23 | 1.342 (6) |
| Cu2—N7 | 2.030 (3) | C22—H22 | 0.9300    |
| Cu2—N6 | 2.121 (3) | С23—Н23 | 0.9300    |
| Cu2—N8 | 2.238 (3) | C24—C25 | 1.416 (6) |
| 01—C1  | 1.305 (4) | C24—C29 | 1.418 (6) |
| O2—C24 | 1.310 (5) | C25—C26 | 1.379 (7) |
| N1C7   | 1.280 (5) | C25—H25 | 0.9300    |
| N1—C8  | 1.457 (5) | C26—C27 | 1.382 (8) |
| N2-C11 | 1.473 (5) | C26—H26 | 0.9300    |
| N2-C10 | 1.476 (5) | C27—C28 | 1.354 (8) |
| N2-C9  | 1.479 (5) | C27—H27 | 0.9300    |
| N3—C12 | 1.317 (5) | C28—C29 | 1.406 (6) |
| N3—C16 | 1.365 (5) | C28—H28 | 0.9300    |
| N4—C18 | 1.325 (5) | C29—C30 | 1.423 (6) |
| N4—C17 | 1.352 (5) | C30—H30 | 0.9300    |
| N5-C30 | 1.280 (5) | C31—C32 | 1.502 (6) |
|        |           |         |           |

| N5—C31         | 1.468 (5)   | C31—H31A          | 0.9700               |
|----------------|-------------|-------------------|----------------------|
| N6-C32         | 1.477 (5)   | C31—H31B          | 0.9700               |
| N6—C34         | 1.479 (5)   | C32—H32A          | 0.9700               |
| N6-C33         | 1.485 (5)   | C32—H32B          | 0.9700               |
| N7—C46         | 1.319 (5)   | C33—H33A          | 0.9600               |
| N7—C40         | 1.361 (5)   | C33—H33B          | 0.9600               |
| N8—C35         | 1.324 (5)   | C33—H33C          | 0.9600               |
| N8-C39         | 1.357 (5)   | C34—H34A          | 0.9600               |
| C1-C2          | 1.408 (5)   | C34—H34B          | 0.9600               |
| C1-C6          | 1 415 (5)   | C34—H34C          | 0.9600               |
| $C^2 - C^3$    | 1 378 (6)   | C35-C36           | 1 388 (6)            |
| C2—H2          | 0.9300      | C35—H35           | 0.9300               |
| $C_3 - C_4$    | 1 384 (6)   | $C_{36} - C_{37}$ | 1 365 (6)            |
| C3—H3          | 0.9300      | C36—H36           | 0.9300               |
| C4—C5          | 1 365 (6)   | $C_{37}$ $C_{38}$ | 1 402 (6)            |
| C4—H4          | 0.9300      | C37—H37           | 0.9300               |
| C5-C6          | 1,407(5)    | $C_{38}$ $C_{39}$ | 1 403 (5)            |
| C5_H5          | 0.9300      | $C_{38}$ $C_{43}$ | 1.405 (5)            |
| C5—II5         | 1.434(5)    | $C_{39} C_{40}$   | 1.420(0)             |
| Со—С7<br>С7 Ц7 | 0.0300      | $C_{40} = C_{40}$ | 1.431(5)             |
| $C^{-11}$      | 0.9300      | C40-C41           | 1.411(3)<br>1 380(6) |
|                | 1.497 (0)   | $C_{41} = C_{44}$ | 1.369 (0)            |
|                | 0.9700      | C41 - C42         | 1.440(0)<br>1.240(6) |
|                | 0.9700      | C42 - C43         | 1.349 (0)            |
| С9—п9А         | 0.9700      | $C42-\Pi42$       | 0.9300               |
| С9—п9В         | 0.9700      | C43—H43           | 0.9300               |
| CIO—HIOA       | 0.9600      | C44—C45           | 1.354 (6)            |
| CI0—HI0B       | 0.9600      | C44—H44           | 0.9300               |
| CIU—HIUC       | 0.9600      | C45-C46           | 1.398 (6)            |
| CII—HIIA       | 0.9600      | C45—H45           | 0.9300               |
| CII—HIIB       | 0.9600      | C46—H46           | 0.9300               |
| CII—HIIC       | 0.9600      | CII—04            | 1.407 (8)            |
| C12—C13        | 1.399 (6)   |                   | 1.409 (8)            |
| C12—H12        | 0.9300      |                   | 1.415 (8)            |
| C13—C14        | 1.354 (6)   | CII—O6            | 1.417 (8)            |
| С13—Н13        | 0.9300      | CIIA—O3A          | 1.396 (12)           |
| C14—C15        | 1.406 (6)   | CIIA—O6A          | 1.403 (12)           |
| C14—H14        | 0.9300      | CIIA—O4A          | 1.406 (12)           |
| C15—C16        | 1.400 (5)   | CIIA—O5A          | 1.408 (12)           |
| C15—C23        | 1.434 (6)   | Cl2—O9            | 1.367 (4)            |
| C16—C17        | 1.436 (5)   | Cl2—O8            | 1.373 (4)            |
| C17—C21        | 1.403 (5)   | Cl2—O10           | 1.385 (5)            |
| C18—C19        | 1.407 (6)   | Cl2—07            | 1.393 (4)            |
| O1—Cu1—N1      | 93.32 (12)  | N4—C18—H18        | 118.6                |
| 01—Cu1—N3      | 89.55 (12)  | C19—C18—H18       | 118.6                |
| N1—Cu1—N3      | 175.79 (13) | C20-C19-C18       | 118.8 (4)            |
| 01—Cu1—N2      | 143.82 (12) | C20—C19—H19       | 120.6                |
| N1—Cu1—N2      | 82.91 (13)  | C18—C19—H19       | 120.6                |

| N3—Cu1—N2                     | 96.57 (12)  | C19—C20—C21                | 120.4 (4) |
|-------------------------------|-------------|----------------------------|-----------|
| O1—Cu1—N4                     | 114.99 (12) | С19—С20—Н20                | 119.8     |
| N1—Cu1—N4                     | 98.12 (12)  | C21—C20—H20                | 119.8     |
| N3—Cu1—N4                     | 77.86 (12)  | C20—C21—C17                | 116.6 (4) |
| N2—Cu1—N4                     | 101.14 (12) | C20—C21—C22                | 123.7 (4) |
| O2—Cu2—N5                     | 93.37 (13)  | C17—C21—C22                | 119.7 (4) |
| O2—Cu2—N7                     | 89.04 (12)  | C23—C22—C21                | 120.6 (4) |
| N5—Cu2—N7                     | 176.36 (14) | С23—С22—Н22                | 119.7     |
| O2—Cu2—N6                     | 152.70 (12) | C21—C22—H22                | 119.7     |
| N5—Cu2—N6                     | 84.08 (14)  | C22—C23—C15                | 121.9 (4) |
| N7—Cu2—N6                     | 95.01 (13)  | C22—C23—H23                | 119.1     |
| O2—Cu2—N8                     | 107.27 (12) | C15—C23—H23                | 119.1     |
| N5—Cu2—N8                     | 98.80 (13)  | 02-C24-C25                 | 118.2 (4) |
| N7—Cu2—N8                     | 77.87 (12)  | 02 - C24 - C29             | 124.6 (4) |
| N6—Cu2—N8                     | 99.97 (12)  | $C_{25}$ $C_{24}$ $C_{29}$ | 117.2 (4) |
| C1                            | 126.8(2)    | $C_{26}$ $C_{25}$ $C_{24}$ | 120.4(5)  |
| $C_{24} = 0^{2} = C_{12}^{2}$ | 126.8 (3)   | $C_{26} = C_{25} = H_{25}$ | 119.8     |
| C7-N1-C8                      | 1213(3)     | $C_{24}$ $C_{25}$ $H_{25}$ | 119.8     |
| C7—N1—Cu1                     | 1269(3)     | $C_{25} - C_{26} - C_{27}$ | 121.5 (5) |
| C8-N1-Cu1                     | 111.6(2)    | $C_{25} = C_{26} = H_{26}$ | 119.2     |
| C11 - N2 - C10                | 107.9 (3)   | C27—C26—H26                | 119.2     |
| $C_{11} = N_2 = C_9$          | 111 3 (3)   | $C_{28} - C_{27} - C_{26}$ | 119.6 (5) |
| C10 - N2 - C9                 | 110.1 (3)   | C28—C27—H27                | 120.2     |
| C11-N2-Cu1                    | 111.9 (2)   | C26—C27—H27                | 120.2     |
| C10-N2-Cu1                    | 110.5 (3)   | $C_{27}$ $C_{28}$ $C_{29}$ | 121.2(5)  |
| C9—N2—Cu1                     | 105.2 (2)   | C27—C28—H28                | 119.4     |
| C12 - N3 - C16                | 118.7 (3)   | C29—C28—H28                | 119.4     |
| C12 - N3 - Cu1                | 124.4 (3)   | C28—C29—C24                | 120.1 (4) |
| C16—N3—Cu1                    | 116.8 (2)   | C28—C29—C30                | 117.4 (4) |
| C18—N4—C17                    | 117.7 (3)   | C24—C29—C30                | 122.5 (4) |
| C18—N4—Cu1                    | 132.2 (3)   | N5—C30—C29                 | 126.0 (4) |
| C17—N4—Cu1                    | 110.1 (2)   | N5—C30—H30                 | 117.0     |
| C30—N5—C31                    | 121.4 (4)   | С29—С30—Н30                | 117.0     |
| C30—N5—Cu2                    | 126.5 (3)   | N5-C31-C32                 | 105.4 (4) |
| C31—N5—Cu2                    | 112.1 (3)   | N5—C31—H31A                | 110.7     |
| C32—N6—C34                    | 110.7 (4)   | С32—С31—Н31А               | 110.7     |
| C32—N6—C33                    | 110.5 (3)   | N5—C31—H31B                | 110.7     |
| C34—N6—C33                    | 107.4 (3)   | С32—С31—Н31В               | 110.7     |
| C32—N6—Cu2                    | 104.7 (3)   | H31A—C31—H31B              | 108.8     |
| C34—N6—Cu2                    | 113.1 (3)   | N6—C32—C31                 | 110.2 (4) |
| C33—N6—Cu2                    | 110.5 (3)   | N6—C32—H32A                | 109.6     |
| C46—N7—C40                    | 118.6 (3)   | C31—C32—H32A               | 109.6     |
| C46—N7—Cu2                    | 125.1 (3)   | N6—C32—H32B                | 109.6     |
| C40—N7—Cu2                    | 116.2 (2)   | C31—C32—H32B               | 109.6     |
| C35—N8—C39                    | 117.7 (4)   | H32A—C32—H32B              | 108.1     |
| C35—N8—Cu2                    | 132.0 (3)   | N6—C33—H33A                | 109.5     |
| C39—N8—Cu2                    | 110.3 (2)   | N6—C33—H33B                | 109.5     |
| 01-C1-C2                      | 118.6 (4)   | H33A—C33—H33B              | 109.5     |
|                               |             |                            |           |

| O1—C1—C6                      | 124.3 (3) | N6—C33—H33C                | 109.5                |
|-------------------------------|-----------|----------------------------|----------------------|
| C2—C1—C6                      | 117.0 (4) | H33A—C33—H33C              | 109.5                |
| C3—C2—C1                      | 121.6 (4) | H33B—C33—H33C              | 109.5                |
| С3—С2—Н2                      | 119.2     | N6—C34—H34A                | 109.5                |
| C1—C2—H2                      | 119.2     | N6—C34—H34B                | 109.5                |
| C2—C3—C4                      | 121.0 (4) | H34A—C34—H34B              | 109.5                |
| С2—С3—Н3                      | 119.5     | N6—C34—H34C                | 109.5                |
| С4—С3—Н3                      | 119.5     | H34A—C34—H34C              | 109.5                |
| C5—C4—C3                      | 118.9 (4) | H34B—C34—H34C              | 109.5                |
| C5—C4—H4                      | 120.5     | N8—C35—C36                 | 123.1 (4)            |
| C3—C4—H4                      | 120.5     | N8—C35—H35                 | 118.4                |
| C4—C5—C6                      | 121.7 (4) | C36—C35—H35                | 118.4                |
| C4—C5—H5                      | 119.2     | $C_{37} - C_{36} - C_{35}$ | 1193(4)              |
| C6-C5-H5                      | 119.2     | C37—C36—H36                | 120.3                |
| C5-C6-C1                      | 119.8 (4) | C35—C36—H36                | 120.3                |
| $C_{5}$ $C_{6}$ $C_{7}$       | 116.9 (4) | $C_{36} = C_{37} = C_{38}$ | 1197(4)              |
| C1 - C6 - C7                  | 1234(3)   | C36—C37—H37                | 120.1                |
| N1 - C7 - C6                  | 123.1 (3) | $C_{38}$ $C_{37}$ $H_{37}$ | 120.1                |
| N1                            | 117.6     | $C_{37} - C_{38} - C_{39}$ | 120.1<br>1169(4)     |
| C6-C7-H7                      | 117.6     | $C_{37}$ $C_{38}$ $C_{43}$ | 124.3(4)             |
| N1 - C8 - C9                  | 105 5 (3) | $C_{39}$ $C_{38}$ $C_{43}$ | 124.3(4)<br>1187(4)  |
| N1-C8-H8A                     | 110.6     | N8-C39-C38                 | 1231(4)              |
| C9-C8-H8A                     | 110.6     | N8-C39-C40                 | 125.1(1)<br>1166(3)  |
| N1-C8-H8B                     | 110.6     | $C_{38}$ $C_{39}$ $C_{40}$ | 1201(4)              |
| C9-C8-H8B                     | 110.6     | N7-C40-C41                 | 120.1(1)<br>121.5(4) |
| H8A - C8 - H8B                | 108.8     | N7-C40-C39                 | 121.3(1)<br>1184(3)  |
| $N_2 - C_9 - C_8$             | 110.2 (3) | $C_{41} - C_{40} - C_{39}$ | 1200(3)              |
| N2-C9-H9A                     | 109.6     | C44 - C41 - C40            | 120.0(3)<br>117.8(4) |
| C8-C9-H9A                     | 109.6     | C44-C41-C42                | 1240(4)              |
| N2-C9-H9B                     | 109.6     | C40-C41-C42                | 121.0(1)<br>1181(4)  |
| C8-C9-H9B                     | 109.6     | $C_{43}$ $C_{42}$ $C_{41}$ | 121.2(4)             |
| H9A_C9_H9B                    | 108.1     | C43 - C42 - H42            | 119.4                |
| N2-C10-H10A                   | 109.5     | C41 - C42 - H42            | 119.1                |
| N2-C10-H10B                   | 109.5     | C42 - C43 - C38            | 121.5(4)             |
| H10A - C10 - H10B             | 109.5     | C42 - C43 - H43            | 119.2                |
| $N_2$ —C10—H10C               | 109.5     | $C_{38}$ $C_{43}$ $H_{43}$ | 119.2                |
| $H_{10A}$ $-C_{10}$ $H_{10C}$ | 109.5     | C45 - C44 - C41            | 120.1 (4)            |
| H10B $C10$ $H10C$             | 109.5     | C45 - C44 - H44            | 120.0                |
| N2-C11-H11A                   | 109.5     | C41—C44—H44                | 120.0                |
| N2-C11-H11B                   | 109.5     | C44 - C45 - C46            | 1191(4)              |
| $H_{11}A = C_{11} = H_{11}B$  | 109.5     | C44 - C45 - H45            | 120.4                |
| N2-C11-H11C                   | 109.5     | C46—C45—H45                | 120.1                |
| H11A—C11—H11C                 | 109.5     | N7-C46-C45                 | 122.8 (4)            |
| H11B—C11—H11C                 | 109.5     | N7—C46—H46                 | 118.6                |
| N3—C12—C13                    | 122.4 (4) | C45—C46—H46                | 118.6                |
| N3—C12—H12                    | 118.8     | 04-Cl1-O5                  | 109.0 (7)            |
| C13—C12—H12                   | 118.8     | 04—C11—O3                  | 112.2 (7)            |
| C14—C13—C12                   | 119.7 (4) | O5—Cl1—O3                  | 105.2 (6)            |

| C14—C13—H13                     | 120.2               | O4—Cl1—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.6 (7)             |
|---------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| C12—C13—H13                     | 120.2               | O5-Cl1-O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.9 (8)             |
| C13—C14—C15                     | 119.5 (4)           | O3—Cl1—O6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.9 (7)             |
| C13—C14—H14                     | 120.3               | O3A—Cl1A—O6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 112.6 (12)            |
| C15—C14—H14                     | 120.3               | O3A—Cl1A—O4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.9 (13)            |
| C16—C15—C14                     | 117.7 (4)           | 06A—C11A—O4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.9 (13)            |
| C16-C15-C23                     | 118 4 (4)           | O3A - Cl1A - O5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.8(11)             |
| C14-C15-C23                     | 123.8 (4)           | O6A - C11A - O5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.5(12)             |
| $N_{3}$ C16 C15                 | 123.0(1)<br>1219(4) | 04A—Cl1A—05A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.0(12)             |
| N3C16C17                        | 121.9(1)<br>1180(3) | 09-012-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105.0(11)<br>115.0(3) |
| $C_{15} = C_{16} = C_{17}$      | 120.0(3)            | $O_{2}^{0} = C_{12}^{12} = O_{3}^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113.0(3)              |
| N4 C17 C21                      | 120.0(4)            | $O_{3} = C_{12} = O_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105.4(4)              |
| N4 - C17 - C21                  | 125.0(4)            | 00 - 012 - 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.7(4)              |
| N4-C1/-C16                      | 110.9(3)            | 09-012-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.1(3)              |
| $C_{21} = C_{10} = C_{10}$      | 119.3 (4)           | 08-012-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115.6 (3)             |
| N4—C18—C19                      | 122.8 (4)           | 010-012-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.3 (4)             |
| Cu1—O1—C1—C2                    | -176.3 (3)          | Cu2—O2—C24—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -179.2 (3)            |
| Cu1—O1—C1—C6                    | 4.2 (5)             | Cu2—O2—C24—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 (6)               |
| O1—C1—C2—C3                     | 177.6 (4)           | O2—C24—C25—C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -177.3 (4)            |
| C6—C1—C2—C3                     | -2.9 (6)            | C29—C24—C25—C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4 (6)               |
| C1—C2—C3—C4                     | 2.0 (7)             | C24—C25—C26—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.8(7)               |
| C2—C3—C4—C5                     | 0.1 (7)             | C25—C26—C27—C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.5(8)               |
| C3—C4—C5—C6                     | -1.2 (6)            | C26—C27—C28—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 (8)               |
| C4-C5-C6-C1                     | 0.2 (6)             | $C_{27}$ $C_{28}$ $C_{29}$ $C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8(7)                |
| C4-C5-C6-C7                     | 1790(4)             | $C_{27}$ $C_{28}$ $C_{29}$ $C_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1773(4)              |
| 01 - C1 - C6 - C5               | -1788(4)            | $0^{2}-C^{2}4-C^{2}9-C^{2}8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 177 8 (4)             |
| $C_{2}$ $C_{1}$ $C_{6}$ $C_{5}$ | 18(5)               | $C_{2}^{2} = C_{2}^{2} + C_{2}^{2} = C_{2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -29(6)                |
| 01 - C1 - C6 - C7               | 25(6)               | $0^{2}-0^{2}4-0^{2}9-0^{3}0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.1(6)               |
| $C_1 = C_1 = C_0 = C_1$         | -176.0(3)           | $C_{2}^{2} = C_{2}^{2} + C_{2}^{2} + C_{3}^{2} + C_{3$ | 1751(0)               |
| $C_2 = C_1 = C_0 = C_7$         | 170.9(3)            | $C_{23} = C_{24} = C_{29} = C_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -174.6(4)             |
| $C_0 = N_1 = C_1 = C_0$         | 1/2.3(4)            | $C_{31} = N_{3} = C_{30} = C_{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1/4.0(4)             |
| Cui = Ni = C / = Co             | -2.2(0)             | $Cu_2 = N_3 = C_3 = C_2 = C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9 (0)               |
| $C_{3}$                         | 1//.6 (4)           | $C_{28} = C_{29} = C_{30} = N_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1/8.8(4)             |
| CI = C6 = C7 = NI               | -3.7(6)             | $C_{24} = C_{29} = C_{30} = N_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1 (7)               |
| C/-NI-C8-C9                     | -126.6(4)           | $C_{30}$ —N5— $C_{31}$ — $C_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132.7 (4)             |
| Cu1—N1—C8—C9                    | 48.9 (4)            | Cu2—N5—C31—C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -44.2 (4)             |
| C11—N2—C9—C8                    | -89.4 (4)           | C34—N6—C32—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.7 (4)              |
| C10—N2—C9—C8                    | 151.0 (4)           | C33—N6—C32—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -155.4 (4)            |
| Cu1—N2—C9—C8                    | 32.0 (4)            | Cu2—N6—C32—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -36.4 (4)             |
| N1—C8—C9—N2                     | -52.8 (4)           | N5—C31—C32—N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.2 (5)              |
| C16—N3—C12—C13                  | -3.8 (6)            | C39—N8—C35—C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3 (6)               |
| Cu1—N3—C12—C13                  | -179.7 (3)          | Cu2—N8—C35—C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179.3 (3)             |
| N3—C12—C13—C14                  | 1.5 (7)             | N8—C35—C36—C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.8 (7)              |
| C12—C13—C14—C15                 | 1.0 (7)             | C35—C36—C37—C38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8 (7)               |
| C13—C14—C15—C16                 | -1.1 (6)            | C36—C37—C38—C39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.4 (6)              |
| C13—C14—C15—C23                 | 176.9 (4)           | C36—C37—C38—C43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176.1 (4)             |
| C12—N3—C16—C15                  | 3.6 (5)             | C35—N8—C39—C38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3 (6)               |
| Cu1—N3—C16—C15                  | 179.8 (3)           | Cu2—N8—C39—C38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -177.0 (3)            |
| C12—N3—C16—C17                  | -173.3 (3)          | C35—N8—C39—C40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -173.7 (3)            |

| 3.0 (4)    | Cu2—N8—C39—C40                                                                                                                                                                                                                                                                                                                                       | 7.1 (4)                                              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| -1.2 (5)   | C37—C38—C39—N8                                                                                                                                                                                                                                                                                                                                       | -2.2 (6)                                             |
| -179.3 (3) | C43—C38—C39—N8                                                                                                                                                                                                                                                                                                                                       | -179.0 (4)                                           |
| 175.6 (3)  | C37—C38—C39—C40                                                                                                                                                                                                                                                                                                                                      | 173.6 (4)                                            |
| -2.5 (5)   | C43—C38—C39—C40                                                                                                                                                                                                                                                                                                                                      | -3.1 (6)                                             |
| -1.7 (6)   | C46—N7—C40—C41                                                                                                                                                                                                                                                                                                                                       | -3.3 (5)                                             |
| 178.2 (3)  | Cu2—N7—C40—C41                                                                                                                                                                                                                                                                                                                                       | 179.1 (3)                                            |
| 174.6 (3)  | C46—N7—C40—C39                                                                                                                                                                                                                                                                                                                                       | 173.5 (3)                                            |
| -5.5 (4)   | Cu2—N7—C40—C39                                                                                                                                                                                                                                                                                                                                       | -4.1 (4)                                             |
| 2.2 (5)    | N8—C39—C40—N7                                                                                                                                                                                                                                                                                                                                        | -2.6 (5)                                             |
| -174.7 (3) | C38—C39—C40—N7                                                                                                                                                                                                                                                                                                                                       | -178.7 (3)                                           |
| 178.7 (3)  | N8—C39—C40—C41                                                                                                                                                                                                                                                                                                                                       | 174.2 (3)                                            |
| 1.8 (5)    | C38—C39—C40—C41                                                                                                                                                                                                                                                                                                                                      | -1.8 (5)                                             |
| 0.7 (6)    | N7—C40—C41—C44                                                                                                                                                                                                                                                                                                                                       | 2.9 (5)                                              |
| -179.2 (3) | C39—C40—C41—C44                                                                                                                                                                                                                                                                                                                                      | -173.9 (3)                                           |
| 1.0 (7)    | N7—C40—C41—C42                                                                                                                                                                                                                                                                                                                                       | -178.1 (3)                                           |
| -1.8 (7)   | C39—C40—C41—C42                                                                                                                                                                                                                                                                                                                                      | 5.2 (5)                                              |
| 0.9 (6)    | C44—C41—C42—C43                                                                                                                                                                                                                                                                                                                                      | 175.4 (4)                                            |
| -175.2 (4) | C40—C41—C42—C43                                                                                                                                                                                                                                                                                                                                      | -3.6 (6)                                             |
| 0.9 (6)    | C41—C42—C43—C38                                                                                                                                                                                                                                                                                                                                      | -1.4 (6)                                             |
| -175.3 (3) | C37—C38—C43—C42                                                                                                                                                                                                                                                                                                                                      | -171.7 (4)                                           |
| 177.1 (4)  | C39—C38—C43—C42                                                                                                                                                                                                                                                                                                                                      | 4.8 (6)                                              |
| 0.9 (6)    | C40—C41—C44—C45                                                                                                                                                                                                                                                                                                                                      | -0.5 (6)                                             |
| 173.0 (4)  | C42—C41—C44—C45                                                                                                                                                                                                                                                                                                                                      | -179.5 (4)                                           |
| -2.9 (6)   | C41—C44—C45—C46                                                                                                                                                                                                                                                                                                                                      | -1.3 (6)                                             |
| 2.1 (6)    | C40—N7—C46—C45                                                                                                                                                                                                                                                                                                                                       | 1.4 (6)                                              |
| 0.6 (6)    | Cu2—N7—C46—C45                                                                                                                                                                                                                                                                                                                                       | 178.7 (3)                                            |
| -177.4 (4) | C44—C45—C46—N7                                                                                                                                                                                                                                                                                                                                       | 0.9 (6)                                              |
|            | 3.0 (4)<br>-1.2 (5)<br>-179.3 (3)<br>175.6 (3)<br>-2.5 (5)<br>-1.7 (6)<br>178.2 (3)<br>174.6 (3)<br>-5.5 (4)<br>2.2 (5)<br>-174.7 (3)<br>178.7 (3)<br>1.8 (5)<br>0.7 (6)<br>-179.2 (3)<br>1.0 (7)<br>-1.8 (7)<br>0.9 (6)<br>-175.2 (4)<br>0.9 (6)<br>-175.3 (3)<br>177.1 (4)<br>0.9 (6)<br>173.0 (4)<br>-2.9 (6)<br>2.1 (6)<br>0.6 (6)<br>-177.4 (4) | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H  | $H \cdots A$ | $D \cdots A$ | D—H···A |
|--------------------------------------|------|--------------|--------------|---------|
| C4—H4…O10 <sup>i</sup>               | 0.93 | 2.51         | 3.293 (7)    | 142     |
| C7—H7····O4 <sup>ii</sup>            | 0.93 | 2.59         | 3.368 (13)   | 141     |
| C14—H14…O2                           | 0.93 | 2.33         | 3.191 (5)    | 153     |
| C22—H22···O3 <i>A</i> <sup>iii</sup> | 0.93 | 2.56         | 3.411 (14)   | 152     |
| C27—H27···O5 <i>A</i> <sup>iv</sup>  | 0.93 | 2.41         | 3.296 (13)   | 158     |
| C31—H31A···O7                        | 0.97 | 2.59         | 3.530 (7)    | 165     |
| C36—H36…O6 <i>A</i> <sup>iii</sup>   | 0.93 | 2.50         | 3.143 (16)   | 127     |
| C43—H43····O9 <sup>v</sup>           | 0.93 | 2.53         | 3.417 (6)    | 160     |
|                                      |      |              |              |         |

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+3/2, -y+1, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) -x+3/2, y-1/2, z; (v) x-1/2, -y+3/2, -z+1.