

Received 5 December 2022 Accepted 14 March 2023

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; piperazinium salt; Hirshfeld surface analysis; salicylate; graph-set notation; axial and equatorial substitution patterns in piperazinium rings.

CCDC references: 2248697; 2248696; 2248695

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses, crystal structures and Hirshfeld surface analysis of three salts of 1-(4-nitrophenyl)piperazine

Sreeramapura D. Archana,^a Sabine Foro,^b Hemmige S. Yathirajan,^a* Haruvegowda Kiran Kumar,^a Rishik Balerao^c and Ray J. Butcher^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, ^cThomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria VA 22312, USA, and ^dDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA. *Correspondence e-mail: yathirajan@hotmail.com

The structures and Hirshfeld surface analysis of three salts of 1-(4-nitrophenyl)piperazine are discussed. In 4-(4-nitrophenyl)piperazin-1-ium salicylate $(C_{10}H_{14}N_3O_2^+ \cdot C_7H_5O_3^-)$, there are strong hydrogen bonds between cation and anion and the 4-nitrophenyl substituent occupies an equatorial position in the piperazinium ring. The cation and anion are linked together by supramolecular interactions [graph-set notation of hydrogen bonding $C_2^2(6)$ propagating in the *a*-axis direction]. Additionally, there is $\pi - \pi$ stacking involving the salicylate anion and the piperazinium cation in adjacent asymmetric units as well as a $C-H\cdots\pi$ interaction between a hydrogen atom on the piperazine ring and the phenyl ring within the salicyclate anion. In bis[4-(4-nitrophenyl)piperazin-1-ium] bis(4-fluorobenzoate) trihydrate $(2C_{10}H_{14}N_3O_2^+ \cdot 2C_7H_4FO_2^- \cdot 3H_2O)$, there are two cations, two anions, and three water molecules of solvation in the asymmetric unit, all linked by hydrogen bonds [graph-set notation of hydrogen bonding $R_2^2(20)$ between adjacent cations and $R_3^3(9)$ between a cation and its adjacent anion]. In the anion, the 4-nitrophenyl ring occupies an axial substitution position in the piperazinium ring, which is relatively rare. Within the asymmetric unit, the phenyl groups in the cations show an offset π - π interaction. Additionally, there is a $C-H \cdot \cdot \pi$ interaction between a hydrogen atom on the phenyl ring within a cation and the phenyl ring within an anion. In 4-(4-nitrophenyl)piperazin-1-ium 3,5-dinitrobenzoate $(C_{10}H_{14}N_3O_2^+, C_7H_4N_2O_6^-)$, there is a strong N-H···O hydrogen bond linking the cation and anion and the 4-nitrophenyl ring occupies an axial substitution position in the piperazinium ring, as seen in the previous structure. In the crystal, the cation and the anion form a complex threedimensional hydrogen-bonded array involving $R_2^2(8)$, $R_4^4(12)$ and $R_4^4(20)$ rings propogating in the *a*-axis direction. The nitrophenyl group is disordered with occupancies of 0.806 (10) and 0.194 (10).

1. Chemical context

Piperazines and substituted piperazines are important pharmacophores that can be found in many biologically active compounds across a number of different therapeutic areas (Berkheij, 2005), being used as antifungal (Upadhayaya *et al.*, 2004), anti-bacterial, anti-malarial and anti-psychotic agents (Chaudhary *et al.*, 2006). An insight into advances on the antimicrobial activity of piperazine derivatives has been reported (Kharb *et al.*, 2012).

Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas

research communications

(Brockunier *et al.*, 2004; Bogatcheva *et al.*, 2006). A review of pharmacological and toxicological information for piperazine derivatives is given by Elliott (2011).

4-Nitrophenylpiperazinium chloride monohydrate has been used as an intermediate in the synthesis of anticancer drugs, transcriptase inhibitors and antifungal reagents and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007).

The inclusion behaviour of 4-sulfonatocalix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitrophenyl)piperazine (NPP) has been investigated by UV spectroscopy and fluorescence spectroscopy at different pH values (Zhang *et al.*, 2014). The design, synthesis and biological profiling of aryl piperazine-based scaffolds for the management of androgen-sensitive prostatic disorders has been published (Gupta *et al.*, 2016). 4-Nitrophenylpiperazine was the starting material in the synthesis and biological evaluation of novel piperazine-containing hydrazone derivatives (Kaya *et al.*, 2016). Several previous investigations in this area are outlined in the *Database Survey* section.

In view of the importance of piperazines in general, and the use of 4-nitrophenylpiperazine in particular, the present paper reports the crystal structure studies of three salts of 4-nitrophenylpiperazine, viz., 4-nitrophenylpiperazinium salicylate (1), 4-nitrophenylpiperazinium 4-fluorobenzoate trihydrate (2) and 4-nitrophenylpiperazinium 3,5-dinitrobenzoate (3).

2. Structural commentary

Compound **1**, (4-nitrophenylpiperazinium salicylate; $C_{10}H_{14}N_3O_2 \cdot C_7H_5O_3$), crystallizes in the monoclinic space group $P2_1/n$ with four molecules in the unit cell (Fig. 1). The structure contains a 4-phenylpiperazinium cation linked to a salicylate anion by an N-H···O hydrogen bond [H···O = 1.792 (15) Å; N···O = 2.6957 (18) Å; N-H···O = 174.0 (18)°, Table 1]. In the salicylate anion, there is an intramolecular

Table 1Hydrogen-bond geometry (Å, °) for 1.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C8 - H8A \cdots O5^{i} C9 - H9A \cdots O5^{ii} N2 - H21 \cdots O3^{iii} N2 - H22 \cdots O4 O5 - H5O \cdots O4$	0.97 0.97 0.92 (2) 0.91 (2) 0.86 (2)	2.53 2.47 1.88 (2) 1.79 (2) 1.73 (2)	3.430 (2) 3.407 (2) 2.784 (2) 2.6957 (18) 2.5221 (17)	155 164 170 (2) 174 (2) 152 (2)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

hydrogen bond involving the phenol hydrogen and the carboxylate group $[S_1^1(6)$ in graph-set notation (Etter *et al.*, 1990): $H \cdots O = 1.733 (17) \text{ Å}$; $O \cdots O = 2.5221 (17) \text{ Å}$; $O - H \cdots O = 152 (2)^\circ$]. In the conformation of the cation and anion, the dihedral angles between the piperazine ring and the phenyl ring, the piperazine ring with the salicylate ring, the phenyl ring, and the salicylate ring and its carboxylate group are 36.83 (6), 28.65 (6), 55.01 (5), 1.8 (3) and 7.0 (2)^\circ, respectively. The first dihedral angle of 36.83 (6)^\circ is indicative of the fact that the 4-nitrophenyl ring occupies an equatorial position in the phenyl ring, with the nitrogen lone pair occupying an axial position (see Fig. 1).

Compound **2**, (4-nitrophenylpiperazinium 4-fluorobenzoate; $2C_{10}H_{14}N_3O_2 \cdot 2C_7H_4FO_2 \cdot 3H_2O$, crystallizes in the monoclinic space group $P2_1/n$ with four formula units in the unit cell. The structure consists of two 4-nitrophenylpiperazinium cations, two 4-fluorobenzoate anions and three water solvate molecules (see Fig. 2). Each cation is linked to a corresponding anion by a strong N-H···O hydrogen bond (Table 2). The water molecules are also involved in hydrogen bonding, which will be discussed in further detail in section 3. As shown by Fig. 2, the structure has been divided into four rings, with rings A and D representing the two 4-fluoro-

Figure 1

Diagram showing atom labelling and the arrangement of cation and anion in **1**. Hydrogen bonds are shown by dashed lines. Atomic displacement parameters are at the 30% probability level.

Diagram showing atom labelling indicating four rings A-D, the arrangement of cation and anion and the three water molecules of solvation in **2**. Hydrogen bonds are shown by dashed lines. Atomic displacement parameters are at the 30% probability level.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for 2.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2C-H2CA\cdots O3D$	0.90 (2)	1.84 (2)	2.733 (5)	176 (4)
$N2C-H2CB\cdots O4A^{i}$	0.87 (2)	1.87 (2)	2.726 (5)	166 (4)
$C3C - H3C \cdots O1C^{ii}$	0.93	2.62	3.261 (7)	126
C9C−H9CA···O5	0.97	2.51	3.332 (6)	142
$C9C - H9CB \cdots O2B$	0.97	2.53	3.401 (6)	149
$C15D - H15D \cdots F1A^{iii}$	0.93	2.52	3.369 (5)	152
$N2B - H2BA \cdots O4D^{iv}$	0.88(2)	1.92 (2)	2.764 (5)	163 (4)
$N2B - H2BB \cdots O3A$	0.89 (2)	1.86 (2)	2.739 (5)	169 (4)
$C3B - H3B \cdots F1D^{v}$	0.93	2.63	3.436 (6)	145
$C8B - H8BA \cdots O1C$	0.97	2.53	3.437 (6)	155
$C8B - H8BB \cdot \cdot \cdot O6^{ii}$	0.97	2.49	3.182 (6)	129
$C15A - H15A \cdots F1D^{vi}$	0.93	2.48	3.310 (5)	149
$O5-H5A\cdots O3A^{vii}$	0.84 (2)	1.96 (2)	2.794 (4)	172 (5)
$O5-H5D\cdots O4D$	0.83 (2)	1.95 (2)	2.778 (5)	175 (5)
$O6-H6A\cdots O4A^{ii}$	0.84 (2)	2.04 (4)	2.795 (6)	149 (7)
$O6-H6D\cdots O7$	0.84 (2)	1.91 (2)	2.744 (7)	174 (8)
$O7-H7A\cdots O3D$	0.83 (2)	1.99 (3)	2.794 (5)	163 (7)
$O7-H7B\cdots O5^{viii}$	0.83 (2)	1.93 (2)	2.759 (6)	172 (7)

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y, -z; (iii) $x + \frac{3}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) x - 1, y, z; (v) -x + 1, -y, -z; (vi) $x - \frac{3}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (viii) -x + 1, -y + 1, -z.

benzoate anions and rings C and D representing the two nitrophenylpiperazinium cations. Rings A and B are linked by a strong N-H···O hydrogen bond [H···O = 1.86(2)]Å; $N \cdot \cdot \cdot O = 2.739$ (5) Å; $N - H \cdot \cdot \cdot O = 169$ (4)°], as are rings C and $D [H \cdots O = 1.84 (2) \text{ Å}; N \cdots O = 2.733 (5) \text{ Å}; N - H \cdots O =$ 176 (4)°]. Additionally, ring B's piperazine substituent forms a weak $C-H \cdots O$ interaction with an oxygen atom in ring C's terminal nitro group $[H \cdot \cdot \cdot O = 2.53 \text{ Å}; C \cdot \cdot \cdot O = 3.437 (6) \text{ Å};$ $C-H \cdots O = 155^{\circ}$]. Ring C's piperazine substituent forms a similar interaction with ring B's terminal nitro group $[H \cdot \cdot \cdot O =$ 2.53 Å; $C \cdots O = 3.401$ (6) Å; $C - H \cdots O = 149^{\circ}$]. In the conformation of rings A-D, the dihedral angles between the 4nitrophenyl rings in rings B and C, the 4-nitrophenyl ring and nitro group in ring B, the 4-nitrophenyl ring and nitro group in ring C, the piperazine ring and the 4-nitrophenyl ring in ring B, the piperazine ring and 4-nitrophenyl ring in ring C, the fluorobenzene ring in ring D and the phenyl ring in ring C, and the fluorobenzene ring in A and the phenyl ring in C are 11.4 (4), 1.1 (2), 0.2 (2), 141.72 (16), 145.17 (17), 101.47 (17) and 103.32 (17)°, respectively. The third and fourth angles listed indicate that the 4-nitrophenyl ring occupies an axial position in both cations, which is relatively rare. In a previous

Figure 3

Diagram showing atom labelling and the arrangement of cation and anion in 3 (only major component shown). Hydrogen bonds are shown by dashed lines. Atomic displacement parameters are at the 30% probability level.

Table 3		
Hydrogen-bond geometry	(Å,	°) for 3 .

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H21···O8	0.95 (2)	1.77 (2)	2.705 (3)	170.7 (17)
$N2-H22\cdots O7^{i}$	0.92 (2)	1.81 (2)	2.715 (3)	166.4 (18)
$C8-H8A\cdots O4^{ii}$	0.97	2.54	3.245 (3)	130
$C8-H8B\cdots O2^{iii}$	0.97	2.40	3.354 (4)	168
$C8-H8B\cdots O2A^{iii}$	0.97	2.39	3.353 (16)	172
$C9-H9A\cdots O1^{iii}$	0.97	2.54	3.497 (5)	171
$C9-H9A\cdots O1A^{iii}$	0.97	2.47	3.378 (14)	155
$C10-H10B\cdots O4^{iv}$	0.97	2.60	3.425 (3)	143
$C12-H12\cdots O2^{v}$	0.93	2.53	3.231 (4)	133

paper containing eleven analogous structures, only one had this substitution pattern (Archana *et al.*, 2022).

Compound 3, (4-nitrophenylpiperazinium 3,5-dinitrobenzoate; C₁₀H₁₄N₃O₂·C₇H₄N₂O₆), crystallizes in the monoclinic space group C2/c with eight formula units in the unit cell. The structure consists of a 4-nitrophenylpiperazinium cation and a 3,5-dinitrobenzoate anion linked by a strong $N-H \cdots O$ hydrogen bond [H···O = 1.77 (2) Å; N···O = 2.705 (3) Å; N- $H \cdot \cdot \cdot O = 170.7 (17)^{\circ}$, Table 3] as shown in Fig. 3. The nitrophenyl ring is disordered with occupancies of 0.806 (10)/ 0.194 (10). In the cation, the dihedral angles between the piperazine ring and the major component of the 4-nitrophenyl ring, and the phenyl ring and its attached nitro group are 62.4 (1) and 10.1 (7) $^{\circ}$, respectively. The former angle is indicative of the fact that the 4-nitrophenyl ring occupies an axial position, as it also did in 2. In the anion, the dihedral angle between the 3,5-dinitrobenzoate phenyl ring and its carboxylate substituent is $18.7 (1)^{\circ}$.

3. Supramolecular features

In discussing the supramolecular features of the three structures, the direct hydrogen bonding involving the linking of the 4-nitrophenylpiperazinium cations and organic acid anions is omitted since it has already been discussed in the previous section. For **1**, there is a zigzag chain of hydrogen bonds

Figure 4

Packing diagram for **1** showing the zigzag chain of hydrogen bonds [graph-set notation $C_2^2(6)$] propagating in the *a*-axis direction.

Figure 5

Fingerprint plot for **1** delineated into $O \cdots H/H \cdots O$ contacts showing the prominent spikes indicating $N-H \cdots O$ hydrogen bonds.

[graph-set notation $C_2^2(6)$ (Etter *et al.*, 1990)], propagating in the *b*-axis direction involving the piperazinium cations and salicylate anions, as shown in Fig. 4. These are also illustrated in the Hirshfeld fingerprint plot (Spackman *et al.*, 2021), which shows the prominent spikes involving both types of N-H···O hydrogen bonding (see Fig. 5). In the packing of the piperazinium cation and the salicylate anion, the salicylate anion forms a π - π interaction with the phenyl ring of a piperazinium cation [$Cg_2 \cdots Cg_3^i$ distance = 3.9296 (2) Å; symmetry code: (i)

Packing diagram for **2** showing the complex three-dimensional array of hydrogen bonding involving both $R_2^2(20)$ motifs between rings *B* and *C* (middle left in diagram with ring *B* on right and ring *C* on left) and $R_3^3(9)$ motifs between rings *C* and *D* (ring *D* on upper left of diagram) as well as one water molecule.

Figure 7

Fingerprint plot for **2** delineated into $F \cdots H/H \cdots F$ contacts showing the prominent spikes as $C-H \cdots F$ interactions.

 $\frac{3}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; slippage:1.505 Å; *Cg2* and *Cg3* are the centroids of the C1–C6 and C11–C16 rings, respectively]. Additionally, there is a C–H··· π interaction between a hydrogen atom in the piperazine ring and the phenyl ring within the salicyclate anion (H···*Cg*ⁱⁱ distance, 2.76 Å; C8–H8*B*···*Cg2*ⁱⁱ angle of 156°, symmetry code: (ii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$).

For **2**, there are two anions and two cations as well as three water molecules of solvation in the asymmetric unit. This leads to a complex three-dimensional array of hydrogen bonding involving both $R_2^2(20)$ motifs between rings *B* and *C*, and $R_3^3(9)$ motifs between rings *C* and *D* as well as one water molecule, as seen in Fig. 6. There are also $C-H \cdots F$ interactions between adjacent fluorobenzoate anions linking them into centrosymmetric dimers (symmetry code: $\frac{3}{2} + x$, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; see Table 2

Figure 8

Fingerprint plot for **2** delineated into $O \cdots H/H \cdots O$ contacts showing the prominent spikes as $N-H \cdots O$ interactions.

Figure 9

Packing diagram for **3** (only major component shown) showing the complex three-dimensional array of hydrogen bonding involving $R_2^2(8)$, $R_4^4(12)$ and $R_4^4(20)$ rings propagating in the *a*-axis direction between the the 4-nitrophenyl group of one cation with the piperazinium ring of an adjacent cation (symmetry code: $\frac{1}{2} - x$, $\frac{1}{2} - y$, 1 - z, involving O1ⁱⁱⁱ and O2ⁱⁱⁱ; Table 4), two cations and two anions in adjacent asymmetric units $(-x, -y, 1 - z, \text{involving O7}^i)$, and two cations and two anions in adjacent asymmetric units (symmetry code: $-\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$, involving O4^{iv}).

for numerical details). These interactions are shown clearly as spikes in the fingerprint plots delineated into $C-H\cdots F$ and $N-H\cdots O$ interactions (Figs. 7 and 8, respectively). In the crystal, the phenyl ring in *B* forms an offset $\pi-\pi$ interaction with the phenyl ring in *C* [*Cg*2···*Cg*4 distance, 3.8568 (7) Å; slippage of 1.835 Å; perpendicular distance of 3.454 (2) Å; *Cg*2 and *Cg*4 are the centroids of the C1*B*–C6*B* and C1*C*–C6*C* rings, respectively]. Additionally, there is a C–H··· π interaction between a hydrogen atom on the phenyl ring in *C* and the phenyl ring in *D* [H6*C*···*Cg*6ⁱ, 2.91; C6–H6*C*···*Cg*6ⁱ angle of 161°, symmetry code: (i) 1 – *x*, 1 – *y*, –*z*; *Cg*6 is the centroid of the C11*D*–C16*D* ring].

For 3, the cation and the anion form a complex threedimensional array of hydrogen bonding involving $R_2^2(8)$, $R_4^4(12)$ and $R_4^4(20)$ rings propogating in the *a*-axis direction between the 4-nitrophenyl group of one cation with the piperazinium ring of an adjacent cation (symmetry code: $\frac{1}{2} - x$,

Figure 10

Fingerprint plot for **3** delineated into $O \cdots H/H \cdots O$ contacts showing the prominent spikes as $N-H \cdots O$ interactions.

 $\frac{1}{2} - y, 1 - z$), two cations and two anions in adjacent asymmetric units (-x, -y, 1 - z), two cations and two anions in adjacent asymmetric units (symmetry code: $-\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$), respectively, as seen in Fig. 9 (Table 3). These show as sharp spikes in the fingerprint plot showing the N-H···O interactions (Fig. 10). Additionally, the nitrobenzene group within the piperazinium cation forms a π - π interaction with the phenyl group of another piperazinium cation in an adjacent asymmetric unit $[Cg2\cdots Cg2^i$ distance, 4.4132 (9) Å; perpendicular distance: 3.5596 (9) Å; slippage of 2.609 Å, symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; Cg2 is the centroid of the C1-C6D ring].

4. Database survey

Related structures containing 1-phenylpiperazine or the 1-phenylpiperazinium cation include racemic perhydrotriphenylene (PHTP), which has been shown to form a polar inclusion compound with 1-(4-nitrophenyl)piperazine (NPP) as a guest molecule (CSD refcode NOVWOK; König *et al.*, 1997). The crystal structure of the simple salt 4-nitrophenylpiperazinium chloride monohydrate has been reported (LIJNAU; Lu, 2007). The crystal structure of 4,6-dimethoxypyrimidin-2-amine-1-(4-nitrophenyl)piperazine (1:1) has been published (LUDMUU; Wang *et al.*, 2014) as well as the synthesis and crystal structure of a Schiff base, 5-methyl-2-{[4-(4-nitrophenyl)piperazin-1-yl]methyl}phenol (WUWBIC; Ayeni *et al.*, 2019).

NMR-based investigations of acyl-functionalized piperazines concerning their conformational behavior in solution has been studied and crystal structures of 1-(4-fluorobenzoyl)-4-(4-nitrophenyl)piperazine (BIQYIM), 1-(4-bromobenzoyl)-4-(4-nitrophenyl)piperazine (BIRHES), 1-(3-bromobenzoyl)-4-(4-nitrophenyl)piperazine (BIRHIW) and (piperazine-1,4divl)bis[(4-fluorophenyl)methanone] (BIRGOB) have been reported (Wodtke et al., 2018). We have recently reported the crystal structures of some salts of 4-methoxyphenylpiperazine (Kiran Kumar et al., 2019) and also 2-methoxyphenylpiperazine (Harish Chinthal et al., 2020). We have recently reported the crystal structures of some salts of piperazine derivatives (Archana et al., 2021). Very recently, we have reported the crystal structures of six salts of 4-nitrophenylpiperazine (NEBVOJ; NEBVUP; NEBWAW; NEBWEA; NEBWIE; NEBWOK) and four salts of 1-phenylpiperazine (Mahesha et al., 2022a, 2022b). The syntheses and crystal structures of 4-(4-nitrophenyl)piperazin-1-ium benzoate monohydrate (BEFGIG) and 4-(4-nitrophenyl)piperazin-1ium 2-carboxy-4,6-dinitrophenolate (BEFGOM) have been reported (Shankara Prasad et al., 2022).

5. Synthesis and crystallization

For the synthesis of salts 1–3, a solution of commercially available (from Sigma-Aldrich) 4-nitrophenylpiperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) and ethyl acetate (10 ml) viz., salicylic acid (67 mg) for

research communications

Table 4

 Experimental details.

	1	2	3
Crystal data			
Chemical formula	$C_{10}H_{14}N_{3}O_{2}^{+}C_{7}H_{5}O_{3}^{-}$	$2C_{10}H_{14}N_{3}O_{2}^{+}\cdot 2C_{7}H_{4}FO_{2}^{-}\cdot 3H_{2}O$	$C_{10}H_{14}N_{3}O_{2}^{+}\cdot C_{7}H_{3}N_{2}O_{6}^{-}$
M _r	345.35	748.73	419.35
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$	Monoclinic, C2/c
Temperature (K)	293	293	293
a, b, c (Å)	7.0018 (3), 7.3938 (3), 31.531 (1)	16.882 (2), 9.719 (1), 23.445 (4)	27.953 (6), 8.1422 (6), 24.657 (5)
β (°)	90.132 (4)	104.17 (1)	136.55 (4)
$V(Å^3)$	1632.35 (11)	3729.7 (9)	3859 (2)
Z	4	4	8
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.11	0.11	0.12
Crystal size (mm)	$0.48 \times 0.40 \times 0.40$	$0.32 \times 0.16 \times 0.14$	$0.48 \times 0.48 \times 0.40$
Data collection			
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.886, 1.000	0.887, 1.000	0.621, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6955, 3506, 2606	14552, 6755, 2429	8107, 4119, 2838
R _{int}	0.016	0.063	0.015
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.655	0.602	0.655
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.119, 1.04	0.089, 0.154, 1.06	0.044, 0.119, 1.03
No. of reflections	3506	6755	4119
No. of parameters	235	508	337
No. of restraints	3	10	262
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.22, -0.21	0.19, -0.18	0.24, -0.24

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

1, 4-fluorobenzoic acid (68 mg) for **2** and 3,5-dinitrobenzoic acid (102 mg) for **3** (see Fig. 11 for reaction scheme). The corresponding solutions were stirred for 15 minutes at room temperature and allowed to stand at the same temperature. X-ray quality crystals were formed on slow evaporation (for **1** and **2**) for a week. For **3**, DMF (3 ml) was used for crystallization. The corresponding melting points were 453–458 K (**1**), 373–378 K (**2**) and 445–447 K (**3**).

6. Refinement

Crystal data, data collection and structure refinement details for the three structures are summarized in Table 4. In all

Reaction scheme for the synthesis of 1, 2 and 3.

structures, a riding model was used for the H atoms attached to C with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ while the N–H and water O–H hydrogen atoms were refined isotropically. In **3** the nitrophenyl group is disordered with occupancies of 0.806 (10)/ 0.194 (10) and constrained to have similar metrical parameters.

Acknowledgements

SDA is grateful to the University of Mysore for research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

References

- Archana, S. D., Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Butcher, R. J. (2022). Acta Cryst. E78, 1016–1027.
- Archana, S. D., Kumar, H. K., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2021). Acta Cryst. E77, 1135–1139.
- Ayeni, A. O., Watkins, G. M. & Hosten, E. C. (2019). Bull. Chem. Soc. Ethiop. 33, 341–348.
- Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). *Tetrahedron Lett.* 46, 2369–2371.
- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.

- Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). *Bioorg. Med. Chem. Lett.* 14, 4763–4766.
- Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). *Bioorg. Med. Chem.* 14, 1819–1826.
- Elliott, S. (2011). Drug Test. Anal. 3, 430-438.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). *Med. Chem. Commun.* 7, 2111–2121.
- Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.
- Kaya, B., Ozkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. *Chem.* article ID 5878410. http://dx.doi.org/10.1155/2016/5878410.
- Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.
- Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). *Acta Cryst.* E75, 1494–1506.
- König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640.
- Lu, Y.-X. (2007). Acta Cryst. E63, 03611.

- Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022a). Acta Cryst. E78, 510– 518.
- Mahesha, N., Kumar, H. K., Akkurt, M., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022*b*). *Acta Cryst.* E78, 709–715.
- Oxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Abingdon, England.
- Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840–845.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). *Bioorg. Med. Chem.* **12**, 2225–2238.
- Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97–98.
- Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921–40933.
- Zhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 44–51.

Acta Cryst. (2023). E79, 373-379 [https://doi.org/10.1107/S2056989023002517]

Syntheses, crystal structures and Hirshfeld surface analysis of three salts of 1-(4-nitrophenyl)piperazine

Sreeramapura D. Archana, Sabine Foro, Hemmige S. Yathirajan, Haruvegowda Kiran Kumar, Rishik Balerao and Ray J. Butcher

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

4-(4-Nitrophenyl)piperazin-1-ium 2-hydroxybenzoate (1)

Crystal data

 $C_{10}H_{14}N_{3}O_{2}^{+}C_{7}H_{5}O_{3}^{-}$ $M_{r} = 345.35$ Monoclinic, $P2_{1}/n$ a = 7.0018 (3) Å b = 7.3938 (3) Å c = 31.531 (1) Å $\beta = 90.132$ (4)° V = 1632.35 (11) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.886, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.119$ S = 1.043506 reflections 235 parameters 3 restraints F(000) = 728 $D_x = 1.405 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3505 reflections $\theta = 2.6-27.7^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.48 \times 0.40 \times 0.40 \text{ mm}$

6955 measured reflections 3506 independent reflections 2606 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 27.8^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 7$ $k = -5 \rightarrow 9$ $l = -30 \rightarrow 41$

Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 0.6706P]$ where $P = (F_o^2 + 2F_c^2)/3$

Acta Cryst. (2023). E79, 373-379

					• •		4 *
SU	n	00	rtii	nσ	into	rma	tion
	M			'D			

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles: correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

 $U_{\rm iso}$ */ $U_{\rm eq}$ х Ζ v C10.9480(2)0.4305(2)0.40335 (5) 0.0322(4)C2 1.1448(3)0.4516(3)0.40783 (6) 0.0420(4)H2 0.050* 1.214403 0.506875 0.386354 C3 0.0481(5)1.2372(3)0.3912(3)0.44378 (6) 0.058* H3 1.368446 0.406601 0.446657 C4 1.1344 (3) 0.3082(3)0.47539(5)0.0410(4)C5 0.47224 (6) 0.9401(3)0.2866(3)0.0435(4)H5 0.871988 0.493930 0.052* 0.231148 C6 0.8476 (3) 0.3485 (3) 0.43645 (6) 0.0416 (4) H6 0.715817 0.335531 0.434273 0.050* C7 0.6915(2)0.37246(5)0.0376(4)0.6105(3)H7A 0.742612 0.729932 0.378242 0.045* H7B 0.045* 0.616032 0.573640 0.396727 C8 0.5651(2)0.6186(3)0.33363(5)0.0380(4)H8A 0.499976 0.503859 0.330013 0.046* H8B 0.469135 0.711902 0.337361 0.046* C9 0.29013 (5) 0.0423(4)0.8353(3)0.5226(3)H9A 0.909732 0.550803 0.265077 0.051* H9B 0.780236 0.403244 0.286470 0.051* C10 0.0371 (4) 0.9632(2)0.5244(3)0.32892(5)H10A 1.064043 0.435557 0.325689 0.045* H10B 1.021744 0.642570 0.332035 0.045* C11 0.3106(2)0.5498(2)0.16617 (5) 0.0327(4)C12 0.1281(2)0.6228(2)0.17173(5)0.0322(4)C13 -0.0084(3)0.6071(3)0.13974 (6) 0.0407(4)H13 0.049* -0.1302190.654106 0.143688 C14 0.5219 (3) 0.0370(3)0.10231 (6) 0.0462(5)H14 -0.0551000.510333 0.081179 0.055* C15 0.2181 (3) 0.4534(3)0.09584 (6) 0.0500(5)H15 0.397864 0.060* 0.248883 0.070291 0.3527(3)0.4681(3)0.0434(5)C16 0.12755 (6) H16 0.474660 0.422323 0.123046 0.052* C17 0.4577(2)0.5577(2)0.20097 (6) 0.0383(4)N1 0.84988 (19) 0.4826(2)0.36656 (4) 0.0346(3)N2 0.6802(2)0.6586(2) 0.29534 (5) 0.0402(4)H21 0.735 (3) 0.771 (2) 0.2977 (6) 0.048*

).597 (2)	0.659 (3)	0.2733 (5)	0.048*
.2348 (3)	0.2403 (3)	0.51271 (6)	0.0578 (5)
.1425 (3)	0.1642 (3)	0.54024 (5)	0.0781 (5)
.4076 (3)	0.2658 (3)	0.51533 (6)	0.0970 (7)
).61169 (19)	0.4778 (2)	0.19676 (5)	0.0570 (4)
).41348 (19)	0.6511 (2)	0.23358 (4)	0.0500 (4)
0.07825 (18)	0.7116 (2)	0.20780 (4)	0.0468 (3)
0.178 (2)	0.710 (3)	0.2234 (6)	0.056*
	0.597 (2) 1.2348 (3) 1.1425 (3) 1.4076 (3) 0.61169 (19) 0.41348 (19) 0.07825 (18) 0.178 (2)	0.597 (2)0.659 (3)1.2348 (3)0.2403 (3)1.1425 (3)0.1642 (3)1.4076 (3)0.2658 (3)0.61169 (19)0.4778 (2)0.41348 (19)0.6511 (2)0.07825 (18)0.7116 (2)0.178 (2)0.710 (3)	0.597 (2)0.659 (3)0.2733 (5)1.2348 (3)0.2403 (3)0.51271 (6)1.1425 (3)0.1642 (3)0.54024 (5)1.4076 (3)0.2658 (3)0.51533 (6)0.61169 (19)0.4778 (2)0.19676 (5)0.41348 (19)0.6511 (2)0.23358 (4)0.07825 (18)0.7116 (2)0.20780 (4)0.178 (2)0.710 (3)0.2234 (6)

Atomic displacement parameters $(Å^2)$)
--	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0357 (9)	0.0313 (9)	0.0295 (8)	0.0005 (7)	-0.0032 (7)	-0.0013 (7)
C2	0.0369 (9)	0.0525 (11)	0.0367 (9)	0.0005 (8)	-0.0012 (7)	0.0080 (8)
C3	0.0357 (9)	0.0647 (13)	0.0439 (11)	0.0055 (9)	-0.0085 (8)	0.0037 (10)
C4	0.0503 (11)	0.0412 (10)	0.0315 (9)	0.0072 (9)	-0.0107 (8)	0.0010 (8)
C5	0.0532 (11)	0.0445 (11)	0.0329 (9)	-0.0067 (9)	-0.0016 (8)	0.0052 (8)
C6	0.0366 (9)	0.0507 (11)	0.0374 (9)	-0.0081 (8)	-0.0053 (7)	0.0048 (8)
C7	0.0338 (9)	0.0470 (11)	0.0320 (9)	0.0031 (8)	-0.0028 (7)	-0.0005 (8)
C8	0.0354 (9)	0.0405 (10)	0.0382 (9)	-0.0016 (8)	-0.0072 (7)	0.0009 (8)
C9	0.0453 (10)	0.0538 (12)	0.0279 (9)	-0.0024 (9)	-0.0022 (7)	-0.0002 (8)
C10	0.0359 (9)	0.0453 (10)	0.0301 (9)	0.0003 (8)	-0.0014 (7)	0.0010 (8)
C11	0.0349 (9)	0.0287 (8)	0.0344 (9)	0.0014 (7)	-0.0043 (7)	0.0036 (7)
C12	0.0341 (8)	0.0309 (9)	0.0317 (8)	-0.0008 (7)	-0.0033 (7)	0.0027 (7)
C13	0.0348 (9)	0.0412 (10)	0.0462 (10)	0.0003 (8)	-0.0078 (8)	0.0045 (8)
C14	0.0573 (12)	0.0411 (11)	0.0400 (10)	-0.0038 (9)	-0.0191 (9)	0.0009 (8)
C15	0.0727 (14)	0.0436 (11)	0.0337 (10)	0.0077 (10)	-0.0050 (9)	-0.0050 (8)
C16	0.0475 (11)	0.0419 (10)	0.0409 (10)	0.0124 (9)	0.0005 (8)	0.0005 (8)
C17	0.0369 (9)	0.0351 (9)	0.0429 (10)	-0.0007 (8)	-0.0076 (8)	0.0074 (8)
N1	0.0338 (7)	0.0434 (8)	0.0267 (7)	0.0016 (6)	-0.0025 (6)	0.0036 (6)
N2	0.0442 (9)	0.0431 (9)	0.0333 (8)	-0.0078 (7)	-0.0150 (6)	0.0049 (7)
N3	0.0719 (13)	0.0590 (11)	0.0423 (10)	0.0081 (10)	-0.0188 (9)	0.0060 (9)
01	0.0997 (13)	0.0862 (13)	0.0481 (9)	-0.0073 (11)	-0.0204 (9)	0.0270 (9)
02	0.0658 (11)	0.1458 (19)	0.0794 (13)	0.0075 (12)	-0.0338 (9)	0.0346 (12)
03	0.0401 (8)	0.0599 (9)	0.0710 (10)	0.0141 (7)	-0.0141 (7)	0.0035 (8)
O4	0.0517 (8)	0.0608 (9)	0.0375 (7)	0.0066 (7)	-0.0175 (6)	-0.0052 (7)
05	0.0427 (7)	0.0608 (9)	0.0368 (7)	0.0106 (7)	-0.0033 (5)	-0.0085 (6)

Geometric parameters (Å, °)

C1—C2	1.394 (2)	C10—N1	1.462 (2)	
C1—C6	1.398 (2)	C10—H10A	0.9700	
C1—N1	1.401 (2)	C10—H10B	0.9700	
C2—C3	1.378 (2)	C11—C16	1.391 (2)	
С2—Н2	0.9300	C11—C12	1.399 (2)	
C3—C4	1.375 (3)	C11—C17	1.504 (2)	
С3—Н3	0.9300	C12—O5	1.359 (2)	
C4—C5	1.373 (3)	C12—C13	1.393 (2)	

C4—N3	1.458 (2)	C13—C14	1.375 (3)
C5—C6	1.378 (2)	С13—Н13	0.9300
С5—Н5	0.9300	C14—C15	1.381 (3)
С6—Н6	0.9300	C14—H14	0.9300
C7—N1	1470(2)	C15—C16	1 376 (3)
C7 C8	1.170(2)	C15 H15	0.0300
C7 H7A	0.0700	C16 H16	0.9300
	0.9700		0.9300
C = H/B	0.9700	C17 = 03	1.237(2)
C8—N2	1.483 (2)	04	1.2//(2)
C8—H8A	0.9700	N2—H21	0.918 (15)
C8—H8B	0.9700	N2—H22	0.907 (15)
C9—N2	1.489 (2)	N3—O1	1.221 (2)
C9—C10	1.514 (2)	N3—O2	1.227 (3)
С9—Н9А	0.9700	O5—H5O	0.855 (15)
С9—Н9В	0.9700		
C2—C1—C6	118.13 (15)	C9—C10—H10A	109.8
C^2 — C^1 — N^1	122 42 (15)	N1-C10-H10B	109.8
C_{6}	119.41(15)	C9 - C10 - H10B	109.8
C_{2} C_{2} C_{1}	120.64(17)		109.0
$C_3 = C_2 = C_1$	120.04 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2
$C_3 = C_2 = H_2$	119.7		118.20 (13)
C1 = C2 = H2	119./		120.64 (16)
C4—C3—C2	119.66 (17)	C12—C11—C17	121.15 (15)
С4—С3—Н3	120.2	O5—C12—C13	117.97 (15)
С2—С3—Н3	120.2	O5—C12—C11	121.87 (14)
C5—C4—C3	121.31 (16)	C13—C12—C11	120.15 (16)
C5—C4—N3	119.60 (18)	C14—C13—C12	120.03 (17)
C3—C4—N3	119.09 (18)	C14—C13—H13	120.0
C4—C5—C6	118.97 (18)	С12—С13—Н13	120.0
С4—С5—Н5	120.5	C13—C14—C15	120.56 (17)
C6—C5—H5	120.5	C_{13} $-C_{14}$ $-H_{14}$	1197
C_{5} C_{6} C_{1}	120.3 121.28(17)	C_{15} C_{14} H_{14}	119.7
$C_5 C_6 H_6$	110 /	$C_{15} = C_{15} = C_{14}$	119.7
$C_{1} = C_{0} = H_{0}$	119.4	C16 C15 U15	119.40 (18)
C1 - C0 - H0	119.4		120.3
N1 - C / - C 8	111.35 (14)	C14—C15—H15	120.3
NI—C/—H/A	109.4	C15—C16—C11	121.61 (17)
С8—С/—Н/А	109.4	C15—C16—H16	119.2
N1—C7—H7B	109.4	C11—C16—H16	119.2
С8—С7—Н7В	109.4	O3—C17—O4	123.89 (16)
H7A—C7—H7B	108.0	O3—C17—C11	119.89 (17)
N2—C8—C7	110.44 (14)	O4—C17—C11	116.22 (15)
N2—C8—H8A	109.6	C1—N1—C10	117.67 (13)
С7—С8—Н8А	109.6	C1—N1—C7	116.15 (13)
N2—C8—H8B	109.6	C10—N1—C7	112.18 (13)
C7—C8—H8B	109.6	C8—N2—C9	110.67 (14)
H8A—C8—H8B	108.1	C8—N2—H21	1099(13)
N2_C9_C10	109 57 (14)	C9 - N2 - H21	108.5(12)
$N_2 = C_1 $	100.8	C8 N2 H22	105.0(12)
112-07-117/1	102.0	0-1122	103.7 (14)

С10—С9—Н9А	109.8	C9—N2—H22	112.8 (13)
N2—C9—H9B	109.8	H21—N2—H22	109.1 (18)
С10—С9—Н9В	109.8	O1—N3—O2	123.11 (18)
H9A—C9—H9B	108.2	O1—N3—C4	118.53 (19)
N1—C10—C9	109.44 (14)	O2—N3—C4	118.3 (2)
N1-C10-H10A	109.8	С12—О5—Н5О	105.3 (15)
	0.7.(2)		2.0.(2)
C6-C1-C2-C3	0.7(3)	C12—C11—C16—C15	-2.0(3)
NI-CI-C2-C3	-177.07(17)	C17—C11—C16—C15	177.55 (18)
C1—C2—C3—C4	0.5 (3)	C16—C11—C17—O3	-6.2 (3)
C2—C3—C4—C5	-1.1 (3)	C12—C11—C17—O3	173.34 (17)
C2—C3—C4—N3	178.25 (18)	C16—C11—C17—O4	173.08 (17)
C3—C4—C5—C6	0.5 (3)	C12—C11—C17—O4	-7.4 (2)
N3—C4—C5—C6	-178.85 (17)	C2-C1-N1-C10	12.9 (2)
C4—C5—C6—C1	0.7 (3)	C6-C1-N1-C10	-164.78 (16)
C2-C1-C6-C5	-1.3 (3)	C2-C1-N1-C7	-124.13 (18)
N1—C1—C6—C5	176.53 (17)	C6—C1—N1—C7	58.1 (2)
N1—C7—C8—N2	-54.0 (2)	C9—C10—N1—C1	163.32 (15)
N2-C9-C10-N1	59.2 (2)	C9—C10—N1—C7	-58.00 (19)
C16—C11—C12—O5	-177.19 (16)	C8—C7—N1—C1	-164.92 (15)
C17—C11—C12—O5	3.3 (3)	C8—C7—N1—C10	55.73 (19)
C16—C11—C12—C13	2.3 (3)	C7—C8—N2—C9	56.27 (19)
C17—C11—C12—C13	-177.21 (16)	C10—C9—N2—C8	-59.12 (19)
O5—C12—C13—C14	178.56 (17)	C5-C4-N3-O1	0.6 (3)
C11—C12—C13—C14	-1.0 (3)	C3—C4—N3—O1	-178.8 (2)
C12—C13—C14—C15	-0.8 (3)	C5—C4—N3—O2	-177.9 (2)
C13—C14—C15—C16	1.2 (3)	C3—C4—N3—O2	2.7 (3)
C14—C15—C16—C11	0.3 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.97	2.53	3.430 (2)	155
0.97	2.47	3.407 (2)	164
0.92 (2)	1.88 (2)	2.784 (2)	170 (2)
0.91 (2)	1.79 (2)	2.6957 (18)	174 (2)
0.86 (2)	1.73 (2)	2.5221 (17)	152 (2)
	<i>D</i> —H 0.97 0.97 0.92 (2) 0.91 (2) 0.86 (2)	D—H H···A 0.97 2.53 0.97 2.47 0.92 (2) 1.88 (2) 0.91 (2) 1.79 (2) 0.86 (2) 1.73 (2)	D—HH···AD···A0.972.533.430 (2)0.972.473.407 (2)0.92 (2)1.88 (2)2.784 (2)0.91 (2)1.79 (2)2.6957 (18)0.86 (2)1.73 (2)2.5221 (17)

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+1/2; (ii) *x*+1, *y*, *z*; (iii) -*x*+3/2, *y*+1/2, -*z*+1/2.

Bis[4-(4-nitrophenyl)piperazin-1-ium] bis(4-fluorobenzoate) trihydrate (2)

Crystal data	
$2C_{10}H_{14}N_3O_2^+ \cdot 2C_7H_4FO_2^- \cdot 3H_2O$	$V = 3729.7 (9) Å^3$
$M_r = 748.73$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 1576
a = 16.882 (2) Å	$D_{\rm x} = 1.333 {\rm ~Mg} {\rm ~m}^{-3}$
b = 9.719(1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 23.445 (4) Å	Cell parameters from 3000 reflections
$\beta = 104.17 (1)^{\circ}$	$\theta = 2.7 - 27.9^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.887, T_{\max} = 1.000$	14552 measured reflections 6755 independent reflections 2429 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -18 \rightarrow 20$ $k = -10 \rightarrow 11$ $l = -27 \rightarrow 28$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.089$ $wR(F^2) = 0.154$ S = 1.06 6755 reflections 508 parameters 10 restraints Primary atom site location: dual	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0366P)^2 + 1.3296P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Lambda a_{mix} = -0.18 \text{ e} \text{ Å}^{-3}$

Prism, yellow

 $0.32 \times 0.16 \times 0.14 \text{ mm}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displacement	parameters	(Å	2
									1		

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01C	-0.0312 (2)	0.0993 (6)	0.05767 (19)	0.1313 (19)	
O2C	-0.0276 (2)	0.3166 (5)	0.07469 (19)	0.1200 (17)	
N1C	0.3330 (2)	0.2257 (4)	0.05682 (18)	0.0771 (13)	
N2C	0.5029 (2)	0.2032 (6)	0.10503 (19)	0.0755 (13)	
H2CA	0.525 (3)	0.228 (5)	0.0755 (15)	0.091*	
H2CB	0.5443 (19)	0.181 (4)	0.1336 (15)	0.091*	
N3C	0.0042 (3)	0.2079 (7)	0.0642 (2)	0.0969 (18)	
C1C	0.2521 (3)	0.2222 (5)	0.05718 (18)	0.0548 (12)	
C2C	0.2079 (3)	0.1001 (5)	0.0481 (2)	0.0711 (15)	
H2C	0.233224	0.019457	0.040707	0.085*	
C3C	0.1267 (3)	0.0971 (6)	0.0501 (2)	0.0772 (16)	
H3C	0.097724	0.014854	0.044109	0.093*	
C4C	0.0892 (3)	0.2159 (7)	0.0607 (2)	0.0682 (15)	
C5C	0.1305 (3)	0.3366 (6)	0.0683 (2)	0.0733 (15)	
H5C	0.104210	0.417170	0.074714	0.088*	
C6C	0.2101 (3)	0.3398 (5)	0.0666 (2)	0.0683 (14)	
H6C	0.237594	0.423523	0.071920	0.082*	
C7C	0.3781 (3)	0.1119 (5)	0.0402 (2)	0.0780 (16)	

H7CA	0.395409	0.135654	0.004936	0.094*
H7CB	0.343097	0.031626	0.031706	0.094*
C8C	0.4513 (3)	0.0795 (5)	0.0889 (2)	0.0778 (15)
H8CA	0.433740	0.046830	0.122885	0.093*
H8CB	0.482818	0.007113	0.076378	0.093*
C9C	0.4560 (3)	0.3197 (6)	0.1201 (2)	0.0896 (18)
Н9СА	0.490449	0.400734	0.127955	0.107*
Н9СВ	0.438091	0.298123	0.155397	0.107*
C10C	0.3834 (3)	0.3483 (5)	0.0706 (3)	0.0967 (19)
H10A	0.351600	0.422484	0.081479	0.116*
H10B	0.401437	0.376935	0.036203	0.116*
F1D	0.80958 (18)	0.2961 (4)	-0.15139 (13)	0.1174 (11)
03D	0.56389 (18)	0.2765 (4)	0.01163 (13)	0.0890 (12)
O4D	0.68138 (17)	0.2812 (3)	0.07894 (14)	0.0732 (9)
C11D	0.6858 (2)	0.2799 (4)	-0.02171(19)	0.0491 (11)
C12D	0.6447(3)	0.2743(5)	-0.0801(2)	0.0695 (14)
H12D	0.588034	0.266742	-0.090222	0.083*
C13D	0.6866 (3)	0 2796 (5)	-0.1238(2)	0.0842(17)
H13D	0.658864	0.276926	-0.163259	0.101*
C14D	0 7692 (3)	0.2888(5)	-0.1075(2)	0.0737(15)
C15D	0.8119(3)	0.2932(5)	-0.0508(2)	0.0707 (14)
H15D	0.868565	0.299146	-0.041181	0.085*
C16D	0.7698 (3)	0.2886 (5)	-0.0074(2)	0.0629 (13)
H16D	0.798341	0.291399	0.031866	0.075*
C17D	0.6400 (3)	0.2786 (5)	0.0263 (2)	0.0595 (13)
O2B	0.3231 (2)	0.2769 (5)	0.20682 (17)	0.1045 (14)
01B	0.3290 (2)	0.0563(5)	0.20074 (18)	0.1105 (15)
NIB	-0.0349(2)	0.1235 (4)	0.21687 (19)	0.0790 (13)
N2B	-0.2044(2)	0.1456 (5)	0.16528 (17)	0.0588 (11)
H2BA	-0.2443(18)	0.172 (4)	0.1358 (13)	0.071*
H2BB	-0.227(2)	0.120 (4)	0.1942 (13)	0.071*
N3B	0.2917(3)	0 1638 (6)	0.20481(18)	0.0761 (14)
C1B	0.0441(3)	0.1348(5)	0.21270(19)	0.0566 (13)
C2B	0.0898(3)	0.0181(5)	0.2067(2)	0.0733(15)
H2B	0.065666	-0.068307	0.204790	0.088*
C3B	0.1698 (3)	0.0287 (6)	0.2037 (2)	0.0735 (15)
H3B	0.199054	-0.050062	0.199530	0.088*
C4B	0.2063 (3)	0.1544 (7)	0.20692 (19)	0.0605 (14)
C5B	0.1634 (3)	0.2711 (5)	0.21249 (18)	0.0651 (14)
H5B	0.188542	0.356672	0.214251	0.078*
C6B	0.0836 (3)	0.2623 (5)	0.21548 (18)	0.0640 (14)
H6B	0.055117	0.342280	0.219424	0.077*
C7B	-0.0848(3)	-0.0001(5)	0.2001 (2)	0.0835 (16)
H7BA	-0.104035	-0.032659	0.233468	0.100*
H7BB	-0.051975	-0.072114	0.188784	0.100*
C8B	-0.1567 (3)	0.0313 (5)	0.1496 (2)	0.0746 (15)
H8BA	-0.137606	0.055819	0.115176	0.090*
H8BB	-0.191039	-0.049624	0.140231	0.090*

C9B	-0.1539 (3)	0.2701 (5)	0.1840 (2)	0.0664 (14)
H9BA	-0.186574	0.340691	0.196546	0.080*
H9BB	-0.134516	0.305835	0.151264	0.080*
C10B	-0.0822(3)	0.2335 (5)	0.2341 (2)	0.0730 (15)
H10C	-0.047802	0.313746	0.245332	0.088*
H10D	-0.101734	0.204666	0.267845	0.088*
F1A	-0.49683 (18)	0.1699 (4)	0.43216 (14)	0.1397 (14)
O4A	-0.38370 (18)	0.0984 (4)	0.19821 (14)	0.0888 (11)
O3A	-0.26382 (17)	0.0937 (3)	0.26186 (12)	0.0729 (10)
C11A	-0.3810(2)	0.1255 (4)	0.29882 (19)	0.0477 (11)
C16A	-0.4654 (3)	0.1210 (4)	0.2880 (2)	0.0600 (13)
H16A	-0.496139	0.108480	0.249617	0.072*
C15A	-0.5051 (3)	0.1346 (5)	0.3326 (2)	0.0745 (15)
H15A	-0.561728	0.129803	0.325026	0.089*
C14A	-0.4589 (3)	0.1549 (6)	0.3875 (2)	0.0849 (17)
C13A	-0.3756 (3)	0.1629 (6)	0.4012 (2)	0.0885 (18)
H13A	-0.345964	0.178267	0.439690	0.106*
C12A	-0.3368 (3)	0.1473 (5)	0.3559 (2)	0.0666 (14)
H12A	-0.280128	0.151696	0.364060	0.080*
C17A	-0.3395 (3)	0.1061 (5)	0.2497 (2)	0.0585 (13)
O5	0.6374 (2)	0.4752 (4)	0.15259 (17)	0.0930 (12)
H5A	0.678 (2)	0.513 (5)	0.1756 (19)	0.112*
H5D	0.653 (3)	0.419 (4)	0.131 (2)	0.112*
O6	0.3427 (3)	0.0628 (6)	-0.1109 (2)	0.1407 (17)
H6A	0.349 (4)	0.042 (7)	-0.1444 (15)	0.169*
H6D	0.371 (4)	0.135 (4)	-0.106 (3)	0.169*
O7	0.4318 (3)	0.3010 (5)	-0.0864 (3)	0.1502 (18)
H7A	0.473 (3)	0.311 (7)	-0.059 (2)	0.180*
H7B	0.414 (4)	0.373 (4)	-0.104 (3)	0.180*

Atomic displacement parameters $(Å^2)$

$\begin{array}{c cccc} U^{13} & U^{23} \\ \hline & U^{3} & 0.032 \ (2) & -0.048 \ (4) \\ \hline & (3) & 0.025 \ (2) & -0.019 \ (4) \\ \hline & (2) & 0.014 \ (2) & -0.015 \ (3) \\ \hline & (3) & 0.012 \ (2) & 0.013 \ (3) \end{array}$
$\begin{array}{ccccc} 59 (3) & 0.032 (2) & -0.048 (4) \\ 3 (3) & 0.025 (2) & -0.019 (4) \\ 5 (2) & 0.014 (2) & -0.015 (3) \\ (3) & 0.012 (2) & 0.013 (3) \end{array}$
$\begin{array}{cccc} 3 & (3) & 0.025 & (2) & -0.019 & (4) \\ 6 & (2) & 0.014 & (2) & -0.015 & (3) \\ (3) & 0.012 & (2) & 0.013 & (3) \end{array}$
$\begin{array}{cccc} 6(2) & 0.014(2) & -0.015(3) \\ (3) & 0.012(2) & 0.013(3) \end{array}$
(3) 0.012 (2) 0.013 (3)
0 (4) 0.010 (3) -0.029 (4)
02 (3) 0.000 (2) 0.002 (3)
08 (3) 0.012 (3) -0.012 (3)
26 (3) 0.011 (3) -0.013 (3)
03 (4) 0.007 (2) -0.009 (4)
0(3) $0.010(3)$ $-0.003(3)$
6 (3) 0.013 (3) 0.000 (3)
(3) 0.011 (3) -0.019 (3)
0(3) 0.022(3) 0.007(3)
23 (3) 0.035 (3) -0.025 (4)
01 (3) 0.017 (3) 0.004 (4)

F1D	0.107 (2)	0.179 (3)	0.084 (2)	-0.010 (2)	0.0579 (19)	-0.012 (2)
O3D	0.048 (2)	0.157 (3)	0.063 (2)	0.004 (2)	0.0152 (17)	0.019 (2)
O4D	0.065 (2)	0.100 (3)	0.054 (2)	0.0097 (18)	0.0136 (17)	0.009 (2)
C11D	0.045 (3)	0.053 (3)	0.050 (3)	0.000 (2)	0.014 (2)	0.005 (3)
C12D	0.056 (3)	0.090 (4)	0.059 (4)	-0.005 (3)	0.009 (3)	-0.008 (3)
C13D	0.084 (4)	0.124 (5)	0.048 (3)	-0.010 (4)	0.024 (3)	-0.017 (3)
C14D	0.073 (4)	0.090 (4)	0.074 (4)	-0.006 (3)	0.048 (3)	-0.008 (4)
C15D	0.058 (3)	0.085 (4)	0.069 (4)	0.003 (3)	0.016 (3)	0.002 (4)
C16D	0.058 (3)	0.080 (4)	0.054 (3)	0.004 (3)	0.019 (3)	0.011 (3)
C17D	0.056 (3)	0.072 (4)	0.050 (3)	0.004 (3)	0.012 (3)	0.008 (3)
O2B	0.073 (3)	0.147 (4)	0.101 (3)	-0.043 (3)	0.036 (2)	-0.035 (3)
O1B	0.055 (2)	0.145 (4)	0.134 (4)	0.022 (2)	0.028 (2)	0.016 (3)
N1B	0.041 (2)	0.065 (3)	0.131 (4)	-0.004 (2)	0.020 (2)	-0.014 (3)
N2B	0.047 (3)	0.074 (3)	0.056 (3)	0.008 (3)	0.0141 (19)	0.009 (3)
N3B	0.051 (3)	0.123 (5)	0.054 (3)	-0.006 (3)	0.012 (2)	0.001 (3)
C1B	0.039 (3)	0.065 (4)	0.059 (3)	0.007 (3)	-0.001 (2)	0.002 (3)
C2B	0.044 (3)	0.069 (4)	0.103 (4)	0.002 (3)	0.010 (3)	0.009 (3)
C3B	0.052 (3)	0.080 (4)	0.085 (4)	0.011 (3)	0.010 (3)	0.006 (3)
C4B	0.038 (3)	0.091 (4)	0.050 (3)	-0.008 (3)	0.005 (2)	0.002 (3)
C5B	0.060 (3)	0.078 (4)	0.054 (3)	-0.010 (3)	0.009 (2)	-0.005 (3)
C6B	0.053 (3)	0.069 (4)	0.068 (4)	-0.002 (3)	0.010 (2)	-0.010 (3)
C7B	0.049 (3)	0.066 (4)	0.137 (5)	0.002 (3)	0.025 (3)	0.003 (4)
C8B	0.057 (3)	0.074 (4)	0.100 (4)	-0.004 (3)	0.033 (3)	-0.017 (3)
C9B	0.060 (3)	0.060 (3)	0.081 (4)	0.004 (3)	0.021 (3)	0.001 (3)
C10B	0.052 (3)	0.082 (4)	0.086 (4)	0.004 (3)	0.018 (3)	-0.014 (3)
F1A	0.100 (2)	0.246 (4)	0.090 (2)	-0.018 (2)	0.055 (2)	-0.043 (3)
O4A	0.067 (2)	0.145 (3)	0.051 (2)	0.020 (2)	0.0076 (18)	-0.003 (2)
O3A	0.0438 (19)	0.116 (3)	0.061 (2)	0.0097 (18)	0.0175 (16)	0.012 (2)
C11A	0.042 (3)	0.052 (3)	0.048 (3)	0.001 (2)	0.010 (2)	0.000 (3)
C16A	0.055 (3)	0.070 (3)	0.054 (3)	-0.001 (3)	0.010 (2)	-0.005 (3)
C15A	0.055 (3)	0.102 (4)	0.070 (4)	-0.013 (3)	0.021 (3)	-0.018 (4)
C14A	0.068 (4)	0.131 (5)	0.069 (4)	-0.011 (4)	0.043 (3)	-0.023 (4)
C13A	0.075 (4)	0.141 (5)	0.050 (3)	-0.012 (4)	0.017 (3)	-0.024 (4)
C12A	0.055 (3)	0.090 (4)	0.053 (3)	-0.005 (3)	0.010 (3)	-0.009 (3)
C17A	0.055 (3)	0.072 (4)	0.050 (3)	0.007 (3)	0.016 (3)	0.007 (3)
05	0.061 (2)	0.112 (3)	0.100 (3)	-0.002 (2)	0.008 (2)	-0.036 (3)
06	0.115 (3)	0.170 (5)	0.149 (4)	-0.041 (3)	0.056 (3)	-0.068 (4)
07	0.122 (4)	0.128 (4)	0.156 (5)	-0.024 (3)	-0.050 (3)	0.019 (4)

Geometric parameters (Å, °)

O1C—N3C	1.203 (6)	N1B—C10B	1.449 (5)
O2C—N3C	1.237 (6)	N1B—C7B	1.464 (5)
N1C—C1C	1.368 (5)	N2B—C8B	1.470 (5)
N1C—C7C	1.449 (5)	N2B—C9B	1.483 (5)
N1C—C10C	1.454 (5)	N2B—H2BA	0.875 (18)
N2C—C9C	1.474 (6)	N2B—H2BB	0.892 (18)
N2C—C8C	1.478 (6)	N3B—C4B	1.456 (6)

N2C—H2CA	0.897 (19)	C1B—C2B	1.398 (6)
N2C—H2CB	0.869 (19)	C1B—C6B	1.402 (5)
N3C—C4C	1.460 (6)	C2B—C3B	1.372 (5)
C1C—C2C	1.391 (5)	C2B—H2B	0.9300
C1C—C6C	1.391 (5)	C3B—C4B	1.363 (6)
C2C—C3C	1.382 (6)	СЗВ—НЗВ	0.9300
C2C—H2C	0.9300	C4B—C5B	1.369 (6)
C3C—C4C	1.368 (6)	C5B—C6B	1.369 (5)
СЗС—НЗС	0.9300	С5В—Н5В	0.9300
C4C—C5C	1.354 (6)	C6B—H6B	0.9300
C5C—C6C	1.355 (5)	C7B—C8B	1.505 (5)
C5C—H5C	0.9300	С7В—Н7ВА	0.9700
С6С—Н6С	0.9300	C7B—H7BB	0.9700
C7C—C8C	1.495 (5)	C8B—H8BA	0.9700
С7С—Н7СА	0.9700	C8B—H8BB	0.9700
С7С—Н7СВ	0.9700	C9B—C10B	1.508 (5)
C8C—H8CA	0.9700	С9В—Н9ВА	0.9700
C8C—H8CB	0.9700	С9В—Н9ВВ	0.9700
C9C—C10C	1.493 (6)	C10B—H10C	0.9700
С9С—Н9СА	0.9700	C10B—H10D	0.9700
С9С—Н9СВ	0.9700	F1A—C14A	1.363 (5)
C10C—H10A	0.9700	O4A—C17A	1.257 (5)
C10C—H10B	0.9700	O3A—C17A	1.245 (4)
F1D—C14D	1.368 (5)	C11A—C12A	1.379 (5)
O3D—C17D	1.247 (4)	C11A—C16A	1.386 (5)
O4D—C17D	1.260 (5)	C11A—C17A	1.499 (6)
C11D—C12D	1.376 (5)	C16A—C15A	1.380 (6)
C11D—C16D	1.377 (5)	C16A—H16A	0.9300
C11D—C17D	1.514 (6)	C15A—C14A	1.346 (6)
C12D—C13D	1.381 (6)	C15A—H15A	0.9300
C12D—H12D	0.9300	C14A—C13A	1.365 (6)
C13D—C14D	1.356 (6)	C13A—C12A	1.387 (6)
C13D—H13D	0.9300	C13A—H13A	0.9300
C14D—C15D	1.350 (6)	C12A—H12A	0.9300
C15D—C16D	1.375 (6)	O5—H5A	0.843 (19)
C15D—H15D	0.9300	O5—H5D	0.833 (19)
C16D—H16D	0.9300	O6—H6A	0.84 (2)
O2B—N3B	1.216 (5)	O6—H6D	0.84 (2)
O1B—N3B	1.236 (5)	O7—H7A	0.83 (2)
N1B—C1B	1.365 (5)	O7—H7B	0.83 (2)
C1C—N1C—C7C	125.0 (4)	C10B—N1B—C7B	111.1 (4)
C1C—N1C—C10C	123.3 (4)	C8B—N2B—C9B	112.3 (3)
C7C—N1C—C10C	111.6 (4)	C8B—N2B—H2BA	113 (3)
C9C—N2C—C8C	111.6 (4)	C9B—N2B—H2BA	106 (3)
C9C—N2C—H2CA	109 (3)	C8B—N2B—H2BB	110 (3)
C8C—N2C—H2CA	111 (3)	C9B—N2B—H2BB	109 (3)
C9C—N2C—H2CB	113 (3)	H2BA—N2B—H2BB	107 (4)

C8C—N2C—H2CB	108 (3)	O2B—N3B—O1B	122.8 (5)
H2CA—N2C—H2CB	105 (4)	O2B—N3B—C4B	118.7 (5)
O1C—N3C—O2C	123.3 (6)	O1B—N3B—C4B	118.5 (5)
O1C—N3C—C4C	120.2 (6)	N1B—C1B—C2B	121.0 (5)
O2C—N3C—C4C	116.5 (6)	N1B—C1B—C6B	122.0 (5)
N1C—C1C—C2C	121.3 (5)	C2B—C1B—C6B	117.0 (4)
N1C—C1C—C6C	122.0 (5)	C3B—C2B—C1B	121.2 (5)
C2C—C1C—C6C	116.7 (4)	C3B—C2B—H2B	119.4
C3C—C2C—C1C	120.9 (5)	C1B—C2B—H2B	119.4
C3C—C2C—H2C	119.6	C4B—C3B—C2B	120.2 (5)
C1C-C2C-H2C	119.6	C4B—C3B—H3B	119.9
C4C-C3C-C2C	119.6 (5)	C2B—C3B—H3B	119.9
C4C-C3C-H3C	120.2	C3B-C4B-C5B	120 3 (4)
$C_2C_2C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C$	120.2	C3B-C4B-N3B	119 5 (6)
$C_{5}C_{-}C_{4}C_{-}C_{3}C_{-}C_{3}C_{-}C_{5$	120.6 (5)	C5B-C4B-N3B	120.2(5)
C5C-C4C-N3C	121.3 (6)	C6B-C5B-C4B	120.2(5) 120.3(5)
$C_3C - C_4C - N_3C$	118 1 (6)	C6B-C5B-H5B	119.9
C4C-C5C-C6C	119.9 (5)	C4B - C5B - H5B	119.9
C4C - C5C - H5C	120.1	C5B-C6B-C1B	121.1 (5)
C6C - C5C - H5C	120.1	C5B-C6B-H6B	119.5
$C_{0} = C_{0} = C_{1} = C_{1$	122.1	C1B-C6B-H6B	119.5
$C_{5C} = C_{6C} = H_{6C}$	118.0	N1B C7B C8B	119.3
$C_{1}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	118.0	NIB C7B H7BA	100.6
N1C C7C C8C	110.3 (4)	$\begin{array}{cccc} \mathbf{N}\mathbf{I}\mathbf{D} & -\mathbf{C}^{T}\mathbf{D} & -\mathbf{I}^{T}\mathbf{D}\mathbf{A} \\ \mathbf{C}^{T}\mathbf{R} & \mathbf{C}^{T}\mathbf{R} & \mathbf{U}^{T}\mathbf{R}\mathbf{A} \end{array}$	109.0
N1C = C7C = H7CA	100.6	N1P C7P H7PP	109.0
$C_{C} C_{T} C_{T$	109.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0
NIC C7C H7CB	109.0		109.0
CPC C7C H7CP	109.0	$\frac{11}{DA} = \frac{C}{D} = \frac{11}{DD}$	108.1
H_{1}^{2}	109.0	N2D = C8D = C7D	110.0 (4)
H/CA - C/C - H/CB	100.1	$N2D - C\delta D - H\delta DA$	109.7
$N_{2}C = C_{3}C = U_{3}C_{4}$	110.4 (4)	V2D C2D U2DD	109.7
$N_2 C = C_8 C = H_8 C A$	109.6	$N2B - C\delta B - H\delta BB$	109.7
C/C = C8C = H8CA	109.0	$C/B = C\delta B = H\delta B B$	109.7
$N_2 C = C_8 C = H_8 C B$	109.6	H8BA-C8B-H8BB	108.2
	109.6	N2B-C9B-C10B	109.4 (4)
H8CA—C8C—H8CB	108.1	N2B—C9B—H9BA	109.8
$N_2C = C_9C = C_{10}C_{10}$	110.1 (4)	CIOB—COB—HODD	109.8
N2C—C9C—H9CA	109.6	N2B—C9B—H9BB	109.8
C10C - C9C - H9CA	109.6	CI0B—C9B—H9BB	109.8
N2C—C9C—H9CB	109.6	H9BA—C9B—H9BB	108.2
Cloc—C9C—H9CB	109.6	NIB—CI0B—C9B	110.4 (4)
Н9СА—С9С—Н9СВ	108.2	NIB—CI0B—HI0C	109.6
NIC-C10C-C9C	110.2 (4)	C9B—C10B—H10C	109.6
NIC-CIOC-HIOA	109.6	NIB—CI0B—HI0D	109.6
C9C—C10C—H10A	109.6	C9B—C10B—H10D	109.6
NIC-CIOC-HI0B	109.6	HIUC—CIUB—HIUD	108.1
С9С—С10С—Н10В	109.6	C12A—C11A—C16A	118.0 (4)
H10A—C10C—H10B	108.1	C12A—C11A—C17A	121.4 (4)
C12D—C11D—C16D	118.9 (4)	C16A—C11A—C17A	120.5 (4)

C12D—C11D—C17D	120.9 (4)	C15A—C16A—C11A	121.8 (4)
C16D—C11D—C17D	120.2 (4)	C15A—C16A—H16A	119.1
C11D—C12D—C13D	120.7 (4)	C11A—C16A—H16A	119.1
C11D—C12D—H12D	119.7	C14A—C15A—C16A	117.6 (5)
C13D—C12D—H12D	119.7	С14А—С15А—Н15А	121.2
C14D—C13D—C12D	118.2 (5)	С16А—С15А—Н15А	121.2
C14D—C13D—H13D	120.9	C15A - C14A - F1A	118.7 (5)
C12D—C13D—H13D	120.9	C15A - C14A - C13A	123.8 (5)
C15D— $C14D$ — $C13D$	122.9 (5)	F1A—C14A—C13A	117.6 (5)
C15D—C14D—F1D	119.7 (5)	C14A - C13A - C12A	117.7 (5)
C13D - C14D - F1D	1174(5)	C14A - C13A - H13A	121.1
C14D— $C15D$ — $C16D$	1187(5)	C12A - C13A - H13A	121.1
C14D— $C15D$ — $H15D$	120.7	C11A - C12A - C13A	121.1
C16D - C15D - H15D	120.7	$C_{11A} = C_{12A} = H_{12A}$	119 5
C15D $C15D$ $C15D$ $C11D$	120.7	$C_{13}A - C_{12}A - H_{12}A$	119.5
C15D = C16D = H16D	119.7	O3A - C17A - O4A	123 3 (4)
$C_{11}D_{-}C_{16}D_{-}H_{16}D_{-}$	119.7	$O_{3}A - C_{17}A - C_{11}A$	123.3(4) 1189(4)
$O_{3}D$ $C_{1}D$ $O_{4}D$	123.0 (4)	$O_{AA} = C_{AA} = C$	117.8(4)
O_{3D} C_{17D} C_{11D}	123.9(4) 118.3(4)	$H_{5A} = 0.05 H_{5D}$	117.8(4)
03D - C17D - C11D	117.8(4)		110(3)
C1R N1R $C10R$	117.0(4) 125.1(4)	H7A O7 H7B	98(7)
C1B = N1B = C7B	123.1(4) 123.7(4)	П/А—О/—П/В	115(7)
CIB-NIB-C/B	125.7 (4)		
C7C - N1C - C1C - C2C	81(7)	C10B-N1B-C1B-C2B	1677(4)
C10C - N1C - C1C - C2C	-1750(5)	C7B—N1B— $C1B$ — $C2B$	-170(7)
C7C-N1C-C1C-C6C	-172.0(4)	C10B $N1B$ $C1B$ $C6B$	-10.8(7)
C10C - N1C - C1C - C6C	4.9(7)	C7B— $N1B$ — $C1B$ — $C6B$	164.5 (5)
N1C-C1C-C2C-C3C	178.4 (4)	N1B— $C1B$ — $C2B$ — $C3B$	-178.7(4)
C6C-C1C-C2C-C3C	-16(7)	C6B-C1B-C2B-C3B	-0.1(7)
C1C-C2C-C3C-C4C	0.3(7)	C1B-C2B-C3B-C4B	0.4(7)
$C_{2}C_{-}C_{3}C_{-}C_{4}C_{-}C_{5$	13(8)	C2B - C3B - C4B - C5B	-0.7(7)
$C_{2}C_{-}C_{3}C_{-}C_{4}C_{-}N_{3}C_{-}C_{-}C_{4}C_{-}N_{3}C_{-}C_{-}C_{4}C_{-}N_{3}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	-1782(4)	C2B = C3B = C4B = N3B	1788(4)
01C - N3C - C4C - C5C	-1795(5)	O2B $N3B$ $C4B$ $C3B$	178.9(5)
02C - N3C - C4C - C5C	-0.4(7)	O1B $N3B$ $C4B$ $C3B$	-0.7(7)
01C - N3C - C4C - C3C	-0.1(7)	O2B $N3B$ $C4B$ $C5B$	-1.6(7)
02C - N3C - C4C - C3C	1790(5)	O1B $N3B$ $C4B$ $C5B$	178.8(5)
$C_{3}C_{-}C_{4}C_{-}C_{5}C_{-}C_{6$	-14(7)	C_{3B} C_{4B} C_{5B} C_{6B}	0.6(7)
$N_{3}C_{-}C_{4}C_{-}C_{5}C_{-}C_{6}C_{-}C_{-$	1780(4)	N3B - C4B - C5B - C6B	-1789(4)
$C_{4}C_{-}C_{5}C_{-}C_{6}C_{-}C_{1}C_{-}C_{-$	0.0(7)	$C_{4B} = C_{5B} = C_{6B} = C_{1B}$	-0.3(7)
N1C-C1C-C6C-C5C	-1785(4)	N1B-C1B-C6B-C5B	178.6(4)
$C_{1}^{2}C$	14(7)	$\begin{array}{c} C2B \\ \hline C1B \\ \hline C6B \\ \hline C5B \hline \hline C5B \\ \hline C5B \hline \hline C5B \\ \hline C5B \hline \hline \hline C5B \hline \hline \hline C5B \hline \hline \hline \hline C5B \hline \hline \hline \hline C5B \hline \hline \hline \hline \hline \hline \hline $	170.0(4)
C1C - N1C - C7C - C8C	-1241(5)	C1B $N1B$ $C7B$ $C8B$	-1166(5)
C10C N1C C7C C8C	58 7 (5)	C10B N1B C7B C8B	59.3 (5)
$C_{0}C_{0} = 0.000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000000$	55.0 (5)	C9B = N2B = C8B = C7B	55.5 (5)
N1C - C7C - C8C - N2C	-55.7 (5)	N1B - C7B - C8B - N2B	-56.2(5)
C8C = N2C = C9C = C10C	-55 5 (5)	C8B N2B C9B C10B	-55.5(5)
C1C N1C C10C C9C	123 A (5)	C1B N1B C10B C0B	1160(5)
CTC = N1C = C10C = C9C	-504(6)	CTP NIP CIOD COP	$-50 \circ (5)$
C/C-NIC-CIUC-C9C	-39.4 (0)	CID-NID-CIUB-CYB	-39.8 (3)

N2C—C9C—C10C—N1C	56.9 (6)	N2B—C9B—C10B—N1B	56.8 (5)
C16D—C11D—C12D—C13D	-1.1 (8)	C12A—C11A—C16A—C15A	-1.5 (7)
C17D—C11D—C12D—C13D	178.1 (5)	C17A—C11A—C16A—C15A	178.1 (5)
C11D—C12D—C13D—C14D	0.8 (8)	C11A—C16A—C15A—C14A	1.1 (8)
C12D—C13D—C14D—C15D	-0.1 (9)	C16A—C15A—C14A—F1A	179.4 (5)
C12D—C13D—C14D—F1D	-179.0 (5)	C16A—C15A—C14A—C13A	0.1 (9)
C13D—C14D—C15D—C16D	-0.3 (9)	C15A—C14A—C13A—C12A	-0.8 (9)
F1D—C14D—C15D—C16D	178.6 (4)	F1A—C14A—C13A—C12A	179.8 (5)
C12D—C11D—C16D—C15D C17D—C11D—C16D—C15D C17D—C11D—C16D—C15D C12D—C11D—C17D—O3D C16D—C11D—C17D—O3D C12D—C11D—C17D—O4D C16D—C11D—C17D—O4D	0.8 (7) -178.5 (5) -2.2 (7) 177.0 (4) 178.6 (4) -2.2 (7)	C17A—C11A—C12A—C13A C14A—C13A—C12A—C11A C12A—C11A—C17A—O3A C16A—C11A—C17A—O3A C12A—C11A—C17A—O3A C12A—C11A—C17A—O4A C16A—C11A—C17A—O4A	$\begin{array}{c} -178.9 (5) \\ 0.4 (8) \\ 8.3 (7) \\ -171.2 (4) \\ -174.1 (4) \\ 6.4 (7) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H	H···A	D···A	D—H···A
0.90 (2)	1.84 (2)	2.733 (5)	176 (4)
0.87 (2)	1.87 (2)	2.726 (5)	166 (4)
0.93	2.62	3.261 (7)	126
0.97	2.51	3.332 (6)	142
0.97	2.53	3.401 (6)	149
0.93	2.52	3.369 (5)	152
0.88 (2)	1.92 (2)	2.764 (5)	163 (4)
0.89 (2)	1.86 (2)	2.739 (5)	169 (4)
0.93	2.63	3.436 (6)	145
0.97	2.53	3.437 (6)	155
0.97	2.49	3.182 (6)	129
0.93	2.48	3.310 (5)	149
0.84 (2)	1.96 (2)	2.794 (4)	172 (5)
0.83 (2)	1.95 (2)	2.778 (5)	175 (5)
0.84 (2)	2.04 (4)	2.795 (6)	149 (7)
0.84 (2)	1.91 (2)	2.744 (7)	174 (8)
0.83 (2)	1.99 (3)	2.794 (5)	163 (7)
0.83 (2)	1.93 (2)	2.759 (6)	172 (7)
	$\begin{array}{c} D - H \\ 0.90 (2) \\ 0.87 (2) \\ 0.93 \\ 0.97 \\ 0.97 \\ 0.97 \\ 0.93 \\ 0.88 (2) \\ 0.89 (2) \\ 0.93 \\ 0.97 \\ 0.97 \\ 0.97 \\ 0.97 \\ 0.97 \\ 0.93 \\ 0.84 (2) \\ 0.83 (2) \\ 0.84 (2) \\ 0.83 (2) \\ 0.83 (2) \\ 0.83 (2) \\ 0.83 (2) \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*, -*y*, -*z*; (iii) *x*+3/2, -*y*+1/2, *z*-1/2; (iv) *x*-1, *y*, *z*; (v) -*x*+1, -*y*, -*z*; (vi) *x*-3/2, -*y*+1/2, *z*+1/2; (vii) -*x*+1/2, *y*+1/2, -*z*+1/2; (viii) -*x*+1, -*y*+1, -*z*.

4-(4-Nitrophenyl)piperazin-1-ium 3,5-dinitrobenzoate (3)

$\beta = 136.55 \ (4)^{\circ}$
$V = 3859 (2) \text{ Å}^3$
Z = 8
F(000) = 1744
$D_{\rm x} = 1.443 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4154 reflections $\theta = 2.6-27.7^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$	T = 293 K Prism, orange $0.48 \times 0.48 \times 0.40 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.621, T_{\max} = 1.000$	8107 measured reflections 4119 independent reflections 2838 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 27.7^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -35 \rightarrow 23$ $k = -10 \rightarrow 10$ $l = -31 \rightarrow 30$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.119$ S = 1.03 4119 reflections 337 parameters 262 restraints Primary atom site location: dual	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0543P)^2 + 1.7099P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.02612 (8)	0.1284 (2)	0.33993 (9)	0.0580 (4)	
N2	0.02315 (7)	-0.0150 (2)	0.44281 (9)	0.0452 (4)	
H21	-0.0246 (11)	-0.041 (2)	0.4078 (11)	0.054 (5)*	
H22	0.0488 (10)	-0.044(2)	0.4941 (13)	0.060 (6)*	
01	0.29131 (19)	0.2691 (7)	0.4152 (3)	0.0936 (12)	0.806 (10)
O2	0.28193 (17)	0.5004 (6)	0.4502 (2)	0.0809 (12)	0.806 (10)
N3	0.26170 (14)	0.3612 (7)	0.42375 (18)	0.0631 (11)	0.806 (10)
C1	0.08449 (14)	0.1834 (4)	0.3603 (2)	0.0484 (8)	0.806 (10)
C2	0.12478 (14)	0.0767 (5)	0.36260 (19)	0.0547 (7)	0.806 (10)
H2A	0.112973	-0.033824	0.350722	0.066*	0.806 (10)
C3	0.18272 (12)	0.1354 (5)	0.38267 (16)	0.0554 (8)	0.806 (10)
H3A	0.209682	0.064018	0.384227	0.067*	0.806 (10)
C4	0.20037 (11)	0.3006 (5)	0.40042 (16)	0.0508 (8)	0.806 (10)
C5	0.16008 (13)	0.4073 (4)	0.3981 (2)	0.0621 (8)	0.806 (10)
H5A	0.171890	0.517846	0.409976	0.075*	0.806 (10)
C6	0.10214 (14)	0.3487 (4)	0.3780 (2)	0.0613 (8)	0.806 (10)
H6A	0.075181	0.420007	0.376471	0.074*	0.806 (10)

O1A	0.2969 (7)	0.342 (2)	0.4346 (10)	0.082 (3)	0.194 (10)
O2A	0.2788 (8)	0.575 (2)	0.4647 (10)	0.092 (4)	0.194 (10)
N3A	0.2640 (8)	0.436 (2)	0.4386 (12)	0.067 (2)	0.194 (10)
C1A	0.0900 (6)	0.2138 (18)	0.3708 (9)	0.0517 (19)	0.194 (10)
C2A	0.1283 (6)	0.1262 (16)	0.3643 (9)	0.0519 (18)	0.194 (10)
H2AA	0.116265	0.018417	0.346160	0.062*	0.194 (10)
C3A	0.1845 (6)	0.1997 (19)	0.3848 (7)	0.0519 (17)	0.194 (10)
H3AA	0.210172	0.141125	0.380427	0.062*	0.194 (10)
C4A	0.2025 (5)	0.3609 (18)	0.4119 (7)	0.0608 (19)	0.194 (10)
C5A	0.1642 (6)	0.4485 (14)	0.4184 (8)	0.064 (2)	0.194 (10)
H5AA	0.176195	0.556282	0.436505	0.077*	0.194 (10)
C6A	0.1079 (6)	0.3750 (17)	0.3979 (9)	0.062 (2)	0.194 (10)
H6AA	0.082288	0.433576	0.402238	0.075*	0.194 (10)
C7	0.01491 (10)	-0.0473 (3)	0.33759 (11)	0.0549 (5)	
H7A	0.033495	-0.105603	0.321795	0.066*	
H7B	-0.034605	-0.069484	0.298825	0.066*	
C8	0.04986 (8)	-0.1082 (2)	0.41735 (9)	0.0453 (4)	
H8A	0.040452	-0.224338	0.414378	0.054*	
H8B	0.099796	-0.093615	0.455510	0.054*	
C9	0.02899 (9)	0.1652 (3)	0.44076 (12)	0.0566 (5)	
H9A	0.077636	0.196839	0.480671	0.068*	
H9B	0.006349	0.220270	0.452198	0.068*	
C10	-0.00458 (10)	0.2165 (3)	0.36060 (13)	0.0665 (6)	
H10A	-0.054078	0.193843	0.321442	0.080*	
H10B	0.001467	0.333748	0.360480	0.080*	
O3	-0.34048 (7)	0.22513 (19)	0.30638 (8)	0.0637 (4)	
O4	-0.43333 (6)	0.11002 (19)	0.19876 (9)	0.0728 (4)	
05	-0.43221 (7)	-0.0409 (2)	0.00913 (7)	0.0831 (5)	
06	-0.33493 (8)	-0.1049 (2)	0.05113 (8)	0.0724 (4)	
O7	-0.11517 (5)	0.10834 (17)	0.40386 (6)	0.0513 (3)	
08	-0.11592 (5)	-0.06375 (17)	0.33293 (7)	0.0543 (3)	
N4	-0.37128 (7)	0.14524 (19)	0.24700 (10)	0.0500 (4)	
N5	-0.36882 (8)	-0.05526 (19)	0.06164 (8)	0.0563 (4)	
C11	-0.22389 (7)	0.03229 (19)	0.27718 (9)	0.0358 (4)	
C12	-0.26050 (8)	0.0878 (2)	0.29183 (9)	0.0379 (4)	
H12	-0.237068	0.124431	0.341817	0.046*	
C13	-0.33255 (8)	0.0880 (2)	0.23089 (10)	0.0411 (4)	
C14	-0.36957 (8)	0.0396 (2)	0.15541 (10)	0.0457 (4)	
H14	-0.417939	0.040358	0.115159	0.055*	
C15	-0.33151 (8)	-0.0098 (2)	0.14243 (9)	0.0432 (4)	
C16	-0.25940 (8)	-0.0165 (2)	0.20176 (9)	0.0398 (4)	
H16	-0.235352	-0.053046	0.191140	0.048*	
C17	-0.14489 (7)	0.0247 (2)	0.34377 (9)	0.0376 (4)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0508 (8)	0.0655 (11)	0.0574 (9)	-0.0030 (8)	0.0391 (8)	0.0125 (8)

N2	0.0288 (7)	0.0606 (10)	0.0318 (7)	-0.0051 (7)	0.0173 (6)	0.0001 (7)
01	0.0676 (16)	0.116 (3)	0.112 (2)	-0.0083 (18)	0.0703 (18)	-0.002(2)
02	0.0652 (15)	0.090 (3)	0.0628 (17)	-0.0371 (19)	0.0384 (14)	-0.006(2)
N3	0.0402 (13)	0.088 (3)	0.0429 (14)	-0.0095 (16)	0.0242 (12)	0.0118 (16)
C1	0.0460 (11)	0.0555 (16)	0.0392 (12)	-0.0086 (10)	0.0294 (10)	0.0044 (11)
C2	0.0532 (11)	0.0565 (18)	0.0525 (11)	-0.0103 (12)	0.0378 (10)	-0.0025 (13)
C3	0.0523 (11)	0.0624 (19)	0.0520 (11)	-0.0039 (13)	0.0380 (10)	0.0016 (13)
C4	0.0438 (10)	0.061 (2)	0.0415 (11)	-0.0109 (11)	0.0291 (9)	0.0037 (12)
C5	0.0620 (12)	0.0578 (17)	0.0624 (15)	-0.0131 (12)	0.0438 (12)	-0.0005 (13)
C6	0.0606 (12)	0.0606 (17)	0.0696 (18)	-0.0051 (12)	0.0495 (13)	0.0016 (14)
O1A	0.045 (4)	0.091 (8)	0.075 (6)	-0.005 (5)	0.032 (4)	0.013 (6)
O2A	0.061 (5)	0.068 (6)	0.074 (7)	-0.026 (5)	0.025 (4)	0.004 (5)
N3A	0.049 (3)	0.065 (4)	0.053 (3)	-0.013 (3)	0.026 (3)	0.008 (3)
C1A	0.054 (2)	0.060 (3)	0.050 (2)	-0.007 (2)	0.0401 (18)	0.000 (2)
C2A	0.049 (2)	0.058 (3)	0.051 (2)	-0.013 (2)	0.0370 (17)	0.001 (2)
C3A	0.0483 (18)	0.060 (3)	0.053 (2)	-0.010 (2)	0.0386 (16)	0.006 (2)
C4A	0.0518 (19)	0.060 (3)	0.052 (2)	-0.012 (2)	0.0315 (17)	0.006 (2)
C5A	0.060 (2)	0.062 (3)	0.054 (2)	-0.014 (2)	0.0357 (19)	0.000 (2)
C6A	0.060 (2)	0.058 (3)	0.056 (3)	-0.014 (2)	0.0379 (19)	0.000 (2)
C7	0.0513 (10)	0.0639 (13)	0.0459 (10)	-0.0144 (9)	0.0341 (9)	-0.0059 (9)
C8	0.0346 (8)	0.0487 (10)	0.0395 (9)	-0.0048 (7)	0.0227 (7)	-0.0014 (8)
C9	0.0436 (9)	0.0572 (12)	0.0699 (13)	-0.0088 (9)	0.0415 (10)	-0.0121 (10)
C10	0.0492 (10)	0.0591 (13)	0.0887 (15)	0.0088 (10)	0.0493 (11)	0.0230 (11)
O3	0.0575 (8)	0.0796 (10)	0.0590 (8)	0.0076 (7)	0.0439 (7)	-0.0009 (8)
O4	0.0396 (7)	0.0735 (10)	0.0930 (11)	0.0004 (7)	0.0441 (8)	-0.0027 (8)
05	0.0490 (8)	0.0826 (11)	0.0350 (7)	0.0164 (7)	0.0035 (6)	-0.0085 (7)
06	0.0707 (9)	0.0865 (11)	0.0444 (8)	-0.0093 (8)	0.0367 (7)	-0.0170 (7)
O7	0.0331 (6)	0.0708 (9)	0.0299 (6)	-0.0012 (6)	0.0163 (5)	-0.0073 (6)
08	0.0301 (6)	0.0648 (8)	0.0530 (7)	-0.0033 (6)	0.0253 (6)	-0.0166 (6)
N4	0.0391 (8)	0.0462 (9)	0.0597 (10)	0.0086 (7)	0.0341 (8)	0.0102 (8)
N5	0.0507 (9)	0.0451 (9)	0.0328 (8)	0.0016 (7)	0.0172 (7)	-0.0044 (7)
C11	0.0291 (7)	0.0349 (9)	0.0316 (8)	0.0000 (6)	0.0182 (6)	0.0014 (7)
C12	0.0327 (7)	0.0384 (9)	0.0313 (8)	0.0006 (7)	0.0195 (7)	0.0015 (7)
C13	0.0327 (8)	0.0366 (9)	0.0433 (9)	0.0042 (7)	0.0241 (7)	0.0044 (7)
C14	0.0273 (7)	0.0395 (9)	0.0396 (9)	0.0024 (7)	0.0143 (7)	0.0008 (7)
C15	0.0360 (8)	0.0366 (9)	0.0284 (8)	0.0008 (7)	0.0140 (7)	-0.0017 (7)
C16	0.0351 (8)	0.0393 (9)	0.0332 (8)	0.0012 (7)	0.0209 (7)	-0.0004 (7)
C17	0.0291 (7)	0.0422 (9)	0.0319 (8)	-0.0022 (7)	0.0190 (7)	0.0014 (7)

Geometric parameters (Å, °)

N1—C1	1.388 (3)	C5A—C6A	1.3900
N1—C7	1.457 (3)	С5А—Н5АА	0.9300
N1—C10	1.465 (3)	С6А—Н6АА	0.9300
N1—C1A	1.508 (9)	C7—C8	1.509 (3)
N2—C9	1.481 (3)	C7—H7A	0.9700
N2—C8	1.486 (2)	С7—Н7В	0.9700
N2—H21	0.95 (2)	C8—H8A	0.9700

N2—H22	0.92 (2)	C8—H8B	0.9700
O1—N3	1.243 (4)	C9—C10	1.506 (3)
O2—N3	1.222 (4)	С9—Н9А	0.9700
N3—C4	1.443 (3)	С9—Н9В	0.9700
C1—C2	1.3900	C10—H10A	0.9700
C1—C6	1.3900	C10—H10B	0.9700
C2—C3	1.3900	O3—N4	1.216 (2)
C2—H2A	0.9300	O4—N4	1.229 (2)
C3—C4	1.3900	O5—N5	1.224 (2)
С3—НЗА	0.9300	O6—N5	1.219 (2)
C4—C5	1,3900	07—C17	1.250 (2)
C5—C6	1,3900	08—C17	1.2491 (19)
C5—H5A	0.9300	N4—C13	1.2.131(13)
C6—H6A	0.9300	N5-C15	1.175(2) 1 475(2)
O1A—N3A	1 251 (16)	C_{11} C_{12}	1.175(2) 1.385(2)
02A = N3A	1.237(10) 1.217(15)	C_{11} C_{16}	1.386(2)
N3A—C4A	1.217(13) 1.455(12)	C_{11} C_{17}	1.500(2) 1.520(2)
C1A $C2A$	1 3000	C_{12} C_{13}	1.320(2)
C1A = C6A	1.3900	$C_{12} = C_{13}$	0.0300
$C_{1A} = C_{0A}$	1.3900	C_{12} C_{14}	1.376(2)
$C_{2A} = C_{3A}$	0.0300	$C_{13} - C_{14}$	1.370(2) 1.375(3)
$C_{2A} = \Pi_{2AA}$	1 2000	$C_{14} = C_{13}$	1.373(3)
$C_{2A} = U_{2A}$	0.0300	C_{14}	0.9300
CAA CSA	1,2000		1.387(2)
C4A—C3A	1.3900	С10—н10	0.9300
C1_N1_C7	1196(2)	С1А—С6А—Н6АА	120.0
C1 N1 C10	117.0(2) 123.3(2)	N1 C7 C8	120.0 110.72(15)
C7 N1 $C10$	123.3(2) 100.32(15)	N1 = C7 = C3	100.72 (13)
C7 N1 C1A	107.32(13) 127.0(6)	$C_{1}^{2} = C_{1}^{2} = H_{1}^{2} X_{1}^{2}$	109.5
$C_{10} N_{1} C_{10}$	127.3(0) 1121(6)	N1 C7 H7P	109.5
$C_{10} = N_1 = C_{1X}$	112.1(0) 112.05(14)	NI - C / - II / B	109.5
$C_{9} = N_{2} = C_{8}$	112.95 (14)	$C_0 - C_1 - \Pi_1 D$	
C_{2} N2 H21	109.0(12)		109.5
	108.0 (12)	H7A—C7—H7B	109.5 108.1
	108.0 (12) 107.8 (11) 108.0 (12)	H7A—C7—H7B N2—C8—C7	109.5 108.1 109.52 (15)
C9—N2—H22 C8—N2—H22	108.0 (12) 107.8 (11) 108.0 (12)	H7A—C7—H7B N2—C8—C7 N2—C8—H8A	109.5 108.1 109.52 (15) 109.8
C9—N2—H22 C8—N2—H22 H21 N2—H22	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12)	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A	109.5 108.1 109.52 (15) 109.8 109.8
C9-N2-H22 C8-N2-H22 H21-N2-H22 H21-N2-H22	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17)	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B	109.5 108.1 109.52 (15) 109.8 109.8 109.8
C9-N2-H22 C8-N2-H22 H21-N2-H22 O2-N3-O1	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3)	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8
C9-N2-H22 C9-N2-H22 C8-N2-H22 H21-N2-H22 O2-N3-O1 O2-N3-C4	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3)	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 109.8 108.2
C9-N2-H22 C8-N2-H22 H21-N2-H22 O2-N3-O1 O2-N3-C4 O1-N3-C4	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3) 118.1 (3)	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 109.8 108.2 109.91 (17)
C9-N2-H22 C8-N2-H22 H21-N2-H22 O2-N3-O1 O2-N3-C4 O1-N3-C4 N1-C1-C2	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3) 118.1 (3) 121.22 (19)	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10 N2—C9—H9A	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 109.8 109.8 108.2 109.91 (17) 109.7
C9-N2-H22 C9-N2-H22 C8-N2-H22 H21-N2-H22 O2-N3-O1 O2-N3-C4 O1-N3-C4 N1-C1-C2 N1-C1-C6	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3) 118.1 (3) 121.22 (19) 118.78 (19)	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10 N2—C9—H9A C10—C9—H9A	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 108.2 109.91 (17) 109.7 109.7
C9-N2-H22 C8-N2-H22 H21-N2-H22 O2-N3-O1 O2-N3-C4 O1-N3-C4 N1-C1-C2 N1-C1-C6 C2-C1-C6	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3) 118.1 (3) 121.22 (19) 118.78 (19) 120.0	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10 N2—C9—H9A C10—C9—H9A N2—C9—H9B	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 108.2 109.91 (17) 109.7 109.7 109.7
C9 - N2 - H22 $C9 - N2 - H22$ $C8 - N2 - H22$ $H21 - N2 - H22$ $O2 - N3 - O1$ $O2 - N3 - C4$ $O1 - N3 - C4$ $N1 - C1 - C2$ $N1 - C1 - C6$ $C2 - C1 - C6$ $C3 - C2 - C1$	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3) 118.1 (3) 121.22 (19) 118.78 (19) 120.0 120.0	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10 N2—C9—H9A C10—C9—H9A N2—C9—H9A	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 109.8 108.2 109.91 (17) 109.7 109.7 109.7
C9 - N2 - H22 $C8 - N2 - H22$ $H21 - N2 - H22$ $H21 - N2 - H22$ $O2 - N3 - O1$ $O2 - N3 - C4$ $O1 - N3 - C4$ $N1 - C1 - C2$ $N1 - C1 - C6$ $C2 - C1 - C6$ $C3 - C2 - C1$ $C3 - C2 - H2A$	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3) 118.1 (3) 121.22 (19) 118.78 (19) 120.0 120.0	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10 N2—C9—H9A C10—C9—H9A N2—C9—H9B C10—C9—H9B	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 109.8 109.8 109.9 109.7 109.7 109.7 109.7 109.7 109.7
C9 - N2 - H22 $C9 - N2 - H22$ $C8 - N2 - H22$ $H21 - N2 - H22$ $O2 - N3 - O1$ $O2 - N3 - C4$ $O1 - N3 - C4$ $N1 - C1 - C2$ $N1 - C1 - C6$ $C2 - C1 - C6$ $C3 - C2 - C1$ $C3 - C2 - H2A$ $C1 - C2 - H2A$	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3) 118.1 (3) 121.22 (19) 118.78 (19) 120.0 120.0 120.0	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10 N2—C9—H9A C10—C9—H9A N2—C9—H9B C10—C9—H9B H9A—C9—H9B H9A—C9—H9B	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 108.2 109.91 (17) 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.8 110.88 (16)
C9 - N2 - H22 $C9 - N2 - H22$ $C8 - N2 - H22$ $H21 - N2 - H22$ $O2 - N3 - O1$ $O2 - N3 - C4$ $O1 - N3 - C4$ $N1 - C1 - C2$ $N1 - C1 - C6$ $C2 - C1 - C6$ $C3 - C2 - C1$ $C3 - C2 - H2A$ $C1 - C2 - H2A$ $C1 - C2 - H2A$	108.0 (12) 107.8 (11) 108.0 (12) 108.5 (12) 111.6 (17) 122.9 (3) 119.0 (3) 118.1 (3) 121.22 (19) 118.78 (19) 120.0 120.0 120.0 120.0	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10 N2—C9—H9A C10—C9—H9A N2—C9—H9B C10—C9—H9B H9A—C9—H9B H9A—C9—H9B N1—C10—C9 N1—C10—H10A	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 108.2 109.91 (17) 109.7 109.7 109.7 109.7 109.7 109.7 109.5 109.8 (16) 109.5
C9 - N2 - H22 $C9 - N2 - H22$ $C8 - N2 - H22$ $H21 - N2 - H22$ $O2 - N3 - O1$ $O2 - N3 - C4$ $O1 - N3 - C4$ $N1 - C1 - C2$ $N1 - C1 - C6$ $C2 - C1 - C6$ $C3 - C2 - C1$ $C3 - C2 - H2A$ $C1 - C2 - H2A$ $C1 - C2 - H2A$ $C2 - C3 - C4$	108.0 (12) $107.8 (11)$ $108.0 (12)$ $108.5 (12)$ $111.6 (17)$ $122.9 (3)$ $119.0 (3)$ $118.1 (3)$ $121.22 (19)$ $118.78 (19)$ 120.0 120.0 120.0 120.0 120.0 120.0 120.0	H7A—C7—H7B N2—C8—C7 N2—C8—H8A C7—C8—H8A N2—C8—H8B C7—C8—H8B H8A—C8—H8B N2—C9—C10 N2—C9—C10 N2—C9—H9A C10—C9—H9A N2—C9—H9B H9A—C9—H9B H9A—C9—H9B N1—C10—C9 N1—C10—H10A C9—C10—H10A	109.3 108.1 109.52 (15) 109.8 109.8 109.8 109.8 109.8 108.2 109.91 (17) 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.5 109.5

C5—C4—C3	120.0	C9—C10—H10B	109.5
C5—C4—N3	119.7 (2)	H10A-C10-H10B	108.1
C3—C4—N3	120.3 (2)	O3—N4—O4	123.95 (17)
C4—C5—C6	120.0	O3—N4—C13	118.51 (14)
С4—С5—Н5А	120.0	O4—N4—C13	117.53 (17)
С6—С5—Н5А	120.0	O6—N5—O5	123.96 (17)
C5—C6—C1	120.0	O6—N5—C15	118.28 (15)
С5—С6—Н6А	120.0	O5—N5—C15	117.76 (19)
С1—С6—Н6А	120.0	C12—C11—C16	119.88 (14)
O2A—N3A—O1A	128.2 (14)	C12—C11—C17	120.03 (14)
O2A—N3A—C4A	117.8 (13)	C16—C11—C17	120.08 (15)
O1A—N3A—C4A	114.0 (13)	C11—C12—C13	119.02 (15)
C2A—C1A—C6A	120.0	C11—C12—H12	120.5
C2A—C1A—N1	115.7 (8)	C13—C12—H12	120.5
C6A—C1A—N1	124.0 (8)	C14—C13—C12	122.68 (17)
C1A—C2A—C3A	120.0	C14—C13—N4	118.49 (15)
C1A—C2A—H2AA	120.0	C12—C13—N4	118.82 (16)
СЗА—С2А—Н2АА	120.0	C15—C14—C13	116.72 (15)
C4A—C3A—C2A	120.0	C15—C14—H14	121.6
С4А—С3А—НЗАА	120.0	C13—C14—H14	121.6
С2А—С3А—НЗАА	120.0	C14—C15—C16	122.91 (16)
C3A—C4A—C5A	120.0	C14—C15—N5	118.67 (15)
C3A—C4A—N3A	120.6 (8)	C16—C15—N5	118.41 (17)
C5A—C4A—N3A	119.3 (8)	C11—C16—C15	118.74 (16)
C6A—C5A—C4A	120.0	C11—C16—H16	120.6
С6А—С5А—Н5АА	120.0	С15—С16—Н16	120.6
С4А—С5А—Н5АА	120.0	O8—C17—O7	126.27 (14)
C5A—C6A—C1A	120.0	O8—C17—C11	116.84 (14)
С5А—С6А—Н6АА	120.0	07—C17—C11	116.90 (15)
C7—N1—C1—C2	13.5 (3)	N1—C1A—C6A—C5A	-174.0 (12)
C10—N1—C1—C2	159.33 (19)	C1—N1—C7—C8	88.7 (2)
C7—N1—C1—C6	-166.94 (18)	C10—N1—C7—C8	-61.5 (2)
C10—N1—C1—C6	-21.1 (3)	C1A—N1—C7—C8	79.6 (8)
N1—C1—C2—C3	179.6 (3)	C9—N2—C8—C7	-53.44 (19)
C6—C1—C2—C3	0.0	N1—C7—C8—N2	57.24 (19)
C1—C2—C3—C4	0.0	C8—N2—C9—C10	53.10 (19)
C2—C3—C4—C5	0.0	C1—N1—C10—C9	-87.8 (3)
C2—C3—C4—N3	178.0 (2)	C7—N1—C10—C9	61.0 (2)
O2—N3—C4—C5	8.8 (4)	C1A—N1—C10—C9	-86.7 (7)
O1—N3—C4—C5	-170.6(3)	N2-C9-C10-N1	-56.3 (2)
O2—N3—C4—C3	-169.2(3)	C16—C11—C12—C13	2.3 (2)
Q1—N3—C4—C3	11.4 (4)	C17—C11—C12—C13	-177.66 (15)
C3-C4-C5-C6	0.0	C11—C12—C13—C14	-2.0(3)
N3—C4—C5—C6	-178.0(2)	C11—C12—C13—N4	179.25 (15)
C4—C5—C6—C1	0.0	O3—N4—C13—C14	-161.90 (16)
N1—C1—C6—C5	-179.6(3)	O4—N4—C13—C14	17.5 (2)
C2-C1-C6-C5	0.0	O3—N4—C13—C12	16.9 (2)
			\ /

C7—N1—C1A—C2A	30.4 (11)	O4—N4—C13—C12	-163.67 (16)
C10-N1-C1A-C2A	170.6 (5)	C12—C13—C14—C15	-0.1 (3)
C7—N1—C1A—C6A	-155.4 (6)	N4—C13—C14—C15	178.72 (15)
C10—N1—C1A—C6A	-15.1 (10)	C13—C14—C15—C16	1.9 (3)
C6A—C1A—C2A—C3A	0.0	C13—C14—C15—N5	-177.15 (15)
N1—C1A—C2A—C3A	174.5 (11)	O6—N5—C15—C14	-177.23 (17)
C1A—C2A—C3A—C4A	0.0	O5—N5—C15—C14	2.7 (3)
C2A—C3A—C4A—C5A	0.0	O6—N5—C15—C16	3.7 (3)
C2A—C3A—C4A—N3A	175.8 (13)	O5—N5—C15—C16	-176.40 (17)
O2A—N3A—C4A—C3A	-177.1 (15)	C12—C11—C16—C15	-0.6 (2)
O1A—N3A—C4A—C3A	0 (2)	C17—C11—C16—C15	179.33 (15)
O2A—N3A—C4A—C5A	-1 (2)	C14—C15—C16—C11	-1.5 (3)
O1A—N3A—C4A—C5A	175.8 (13)	N5-C15-C16-C11	177.46 (15)
C3A—C4A—C5A—C6A	0.0	C12—C11—C17—O8	161.97 (15)
N3A—C4A—C5A—C6A	-175.9 (13)	C16—C11—C17—O8	-18.0 (2)
C4A—C5A—C6A—C1A	0.0	C12—C11—C17—O7	-18.5 (2)
C2A—C1A—C6A—C5A	0.0	C16—C11—C17—O7	161.58 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H21…O8	0.95 (2)	1.77 (2)	2.705 (3)	170.7 (17)
N2— $H22$ ···O7 ⁱ	0.92 (2)	1.81 (2)	2.715 (3)	166.4 (18)
C8—H8A····O4 ⁱⁱ	0.97	2.54	3.245 (3)	130
C8—H8 <i>B</i> …O2 ⁱⁱⁱ	0.97	2.40	3.354 (4)	168
C8—H8 B ···O2 A ⁱⁱⁱ	0.97	2.39	3.353 (16)	172
C9—H9A···O1 ⁱⁱⁱ	0.97	2.54	3.497 (5)	171
C9—H9 A ···O1 A ⁱⁱⁱ	0.97	2.47	3.378 (14)	155
C10—H10 <i>B</i> ····O4 ^{iv}	0.97	2.60	3.425 (3)	143
C12—H12····O2 ^v	0.93	2.53	3.231 (4)	133

Symmetry codes: (i) -x, -y, -z+1; (ii) -x-1/2, y-1/2, -z+1/2; (iii) -x+1/2, -y+1/2, -z+1; (iv) -x-1/2, y+1/2, -z+1/2; (v) x-1/2, y-1/2, z.