

Received 28 February 2023 Accepted 8 March 2023

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; thioether ligand; Hirshfeld surface analysis.

CCDC references: 2247226; 2247225

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of trimethyl({tris[(phenylsulfanyl)methyl]silyl}methoxy)silane and Hirshfeld surface analysis of 3-bromo-2,2-bis(bromomethyl)propan-1-ol

Jan Frederick Wappelhorst, Jonathan Wattenberg and Carsten Strohmann*

Technische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Trimethyl({tris[(phenylsulfanyl)methyl]silyl}methoxy)silane (**3**), $C_{26}H_{32}OS_3Si$, is a new ligand for transition-metal coordination chemistry derived from 3-bromo-2,2-bis(bromomethyl)propan-1-ol (**1**), $C_5H_9Br_3O$, through silylation and following exchange of bromine groups with NaSPh. Silylated thioether ligand **3** crystallizes in the centrosymmetric space group *C*2/*c*. Bromomethylalcohol **1** crystallizes in the space group *P*1 in the triclinic crystal system with four molecules in the asymmetric unit. Analysis of the Hirshfeld surface shows structure-defining interactions for bromomethylalcohol **1**, resulting in intermolecular hydrogen bonds between the hydroxyl groups along the *a*-axis direction.

1. Chemical context

Thioether ligands offer an attractive alternative to known phosphine or amine ligands. As a result of the soft property of thioethers, they coordinate to transition metals (Awaleh *et al.*, 2008; Knaust & Keller, 2003; Knorr *et al.*, 2012, 2014; Schlachter *et al.*, 2022). Furthermore, because of its two lone pairs, sulfur can act as a bridging ligand between two metal centres and thus favour coordination polymers (Awaleh *et al.*, 2010; Peindy *et al.*, 2009; Schlachter *et al.*, 2018, 2020, 2021; Viau *et al.*, 2022).

In addition, thioether ligands are increasingly gaining interest for redox catalysis, as their stabilizing effect towards the metal centres differ from those of the common phosphine or amine ligands, and thus new catalytic accesses can be created (Petuker *et al.*, 2017).

Furthermore, the solubility of ligands in polar and nonpolar solvents plays a major role. Polar hydroxyl groups, such as bromomethylalcohol **1**, will reduce solubility in non-polar solvents and can cause problems like the reduced formation of catalytic species in the process. To prevent this, the hydroxyl group was silylated *via* conditions known from the literature, thus increasing the lipophilicity of ligand **3**.

research communications

Table 1

Selected geometric parameters (A, \circ) for 1 .						
Br1-C3	1.948 (3)	Br8-C14	1.947 (3)			
Br2-C4	1.952 (3)	Br9-C15	1.951 (3)			
Br3-C5	1.950(3)	Br10-C18	1.957 (3)			
Br4-C8	1.956 (3)	Br11-C19	1.955 (3)			
Br5-C9	1.956 (3)	Br12-C20	1.955 (3)			
Br6-C10	1.954 (3)	O1-C2	1.432 (3)			
Br7-C13	1.951 (3)					
C1-C3-Br1	112.99 (18)	C1-C5-Br3	113.21 (19)			
C1-C4-Br2	113.48 (18)	O1-C2-C1	111.6 (2)			

In the following, the structure of bromomethylalcohol **1** and silylated thioether ligand **3**, as well as the surface interactions of **1** are discussed in terms of Hirshfeld surface analysis.

2. Structural commentary

Bromomethylalcohol **1** crystallizes at 243.15 K from diethyl ether in the centrosymmetric space group $P\overline{1}$ with four molecules present in the asymmetric unit (Z' = 4, Z = 2). The molecular structure of bromomethylalcohol **1** is shown in Fig. 1 and selected bond lengths and angles are given in Table 1.

The bond lengths to be expected for a C(alkyl)–Br bond are in the range 1.880–1.940 Å (Allen *et al.*, 1987). The C(alkyl)– Br bonds listed in Table 1 are located in the upper range of these bond lengths. The O1–C2 bond length of 1.432 (3) Å corresponds to an expected length for a C(alkyl)–OH bond of between 1.393–1.456 Å. Furthermore, the bond angles C1– C3–Br1, C1–C4–Br2 and C1–C5–Br3 are similar and in general comparable in size with similar structural motifs (Bukowska-Strzyżewska & Skoweranda, 1980).

The molecular structure of silylated thioether ligand **3** is shown in Fig. 2 and selected bond lengths and angles are given in Table 2.

The S-C(alkyl) bonds are of comparable lengths to each other and correspond to the expected bond lengths for alkyl-sulfur bonds (1.778–1.856 Å; Allen *et al.*, 1987). The S-C(Ph)

 Table 2

 Selected geometric parameters (Å, °) for 3.

· · · · · · · · · · · · · · · · · · ·	/	
1.8244 (10)	O1-C23	1.384 (15)
1.7661 (11)	O1′-C23	1.479 (14)
1.7625 (12)	O1-Si1	1.632 (12)
1.8214 (11)	O1'-Si1'	1.672 (13)
1.7742 (13)		
105.85 (5)	C23-O1'-Si1'	123.7 (7)
103.65 (5)	C23-O1-Si1	123.6 (7)
104.74 (5)		
	1.8244 (10) 1.7661 (11) 1.7625 (12) 1.8214 (11) 1.7742 (13) 105.85 (5) 103.65 (5) 104.74 (5)	$\begin{array}{c} 1.8244\ (10) & O1-C23\\ 1.7661\ (11) & O1'-C23\\ 1.7625\ (12) & O1-Si1\\ 1.8214\ (11) & O1'-Si1'\\ 1.7742\ (13) \\ \end{array}$

bonds, on the other hand, are significantly shorter than the S-C(alkyl) bonds, but are within the range of expected bond lengths (1.700–1.802 Å). Comparing the bond angles at sulfur to similar structural motifs, the angles are quite similar (Tinant et al., 1987; Crundwell et al., 1999). The length of the C-O bond of the ether from silvlated thioether ligand 3 lies in a comparable range to the -C-O bond from bromomethylalcohol 1. The occupancies at the disordered TMSO group are 50.9 (3)% for O1/Si1/C24-C26 and 49.1 (3)% for O1'/Si1'/ C24'-C26'. The disorder at the TMSO group also shows a shorter O1-C23 [1.384 (15) Å] bond length than O1'-C23 [1.479 (14) Å]. The expected bond length for a C-O-Sibond is between 1.365 and 1.467 Å (Allen et al., 1987). Furthermore, the bond lengths O1-Si1 [1.632 (12) Å] and O1'-Si1' [1.672 (13) Å] are similar, as are the bond angles between C23-O1-Si1 [123.6°(7)] and C23-O1'-Si1' [123.7°(7)].

3. Supramolecular features

The crystal packing of bromomethylalcohol **1** is shown in Fig. 3 and is defined by intermolecular hydrogen bonds along the *a*axis direction, which are given in Table 3. Here, the contacts between O1-H1···O2 [2.712 (3) Å] and O3-H3···O4 [2.729 (3) Å] are slightly shorter than those between O2-H2···O3 [2.766 (3) Å] and O4-H4···O1ⁱ [2.773 (3) Å]. Moreover, the angles are approximately linear at 175 (4)°

Figure 1

The molecular structure of bromomethylalcohol 1 with displacement ellipsoids drawn at the 50% probability level.

Table 3				
Hydrogen-bond	geometry	(Å,	$^{\circ}$) for 1	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O2−H2···O3	0.75 (4)	2.04 (4)	2.766 (3)	162 (5)
$O4-H4\cdots O1^i$	0.75 (5)	2.05 (5)	2.773 (3)	161 (5)
O3−H3···O4	0.74 (4)	1.99 (4)	2.729 (3)	175 (4)
$O1-H1\cdots O2$	0.72 (4)	2.00 (4)	2.712 (3)	168 (4)

Symmetry code: (i) x - 1, y, z.

 $(O3-H3\cdots O4)$ and $168 (4)^{\circ}$ $(O1-H1\cdots O2)$. These hydrogen bonds can be assigned the graph-set symbol $D_1^1(2)$. This means that a hydrogen bond between two adjacent hydroxyl groups, $O1-H1\cdots O2$, is established. The contact between $O4-H4\cdots O1$ is created *via* the symmetry operation (i) x - 1, y, z.

To gain further insight into the supramolecular packing interactions, a Hirshfeld surface analysis was performed (Spackman & Jayatilaka, 2009). The Hirshfeld surfaces and fingerprint plots were generated and analysed using the program CrystalExplorer21 (Spackman et al., 2021). The Hirshfeld surface was mapped over d_{norm} in the range -0.66 to 1.14 a.u. (Fig. 4). The contributions of the different intermolecular interactions for **1** are shown in the two-dimensional fingerprint plots (Fig. 5; McKinnon et al., 2007). The different strength of the interactions is reflected here by the colouring of the surface. The red dots represent close contacts, whereas blue areas represent no contact. The fingerprint plots show that the $O \cdots H/H \cdots O$ interactions account for only 8.9% of the total surface area, although they are probably the strongest contributors to the intermolecular interactions. The largest contribution to the surface interactions comes from the $Br \cdots H/H \cdots Br$ contacts at 50.4%. This is followed by the

Figure 3

Crystal packing of bromomethylalcohol **1** Hydrogen bonds are shown as dashed lines. Hydrogen bonds a, b and c have the graph-set motif $D_1^1(2)$.

Figure 4 Hirshfeld surface analysis of 1 showing close contacts in the crystal. The hydrogen bonds between $H1\cdots O2$ and $H2\cdots O3$ are labelled.

contributions of the $H \cdots H/H \cdots H$ contacts (27.7%). There is no contribution to the surface interactions by $C \cdots H/H \cdots C$ contacts, which is mainly due to the fact that the carbon atoms of the CH_2 groups in question are shielded from the outside by the terminal Br and OH groups so that they cannot make any contribution. The smallest contribution to the surface interactions is made by the $Br \cdots O/O \cdots Br$ contacts (0.4%), which is due to the spatial arrangement of the bromine substituents in relation to the hydroxyl group.

The crystal packing of silylated thioether ligand 3 is shown in Fig. 6 and is characterized by propagation along the *b*-axis direction. For silylated thioether ligand 3, apart from the packing effects, there are no overriding intermolecular inter-

Figure 5

Two-dimensional fingerprint plots for bromomethylalcohol **1** showing close contacts for (*a*) all contributions in the crystal and those delineated into (*b*) Br \cdots Br, (*c*) H \cdots H, (*d*) Br \cdots O/O \cdots Br, (*e*) Br \cdots H/H \cdots Br and (*f*) O \cdots H/H \cdots O-interactions.

research communications

 Table 4

 Experimental details.

	1	3
Crystal data		
Chemical formula	4C ₅ H ₀ Br ₂ O	C26H22OS2Si
М.	1299.35	484.78
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, C2/c
Temperature (K)	100	100
a, b, c (Å)	8.7763 (2), 9.4409 (3), 21.2951 (6)	27.0415 (12), 6.9329 (3), 27.7963 (14)
α, β, γ (°)	96.762 (1), 92.198 (1), 90.552 (1)	90, 96, 939 (2), 90
$V(\dot{A}^3)$	1750.69 (8)	5173.0 (4)
Z	2	8
Radiation type	Μο Κα	Μο <i>Κα</i>
$\mu (\text{mm}^{-1})$	13.75	0.35
Crystal size (mm)	$0.19 \times 0.14 \times 0.1$	$0.62 \times 0.56 \times 0.46$
Data collection		
Diffractometer	Bruker D8 VENTURE	Bruker D8 VENTURE
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, \dot{T}_{\max}	0.337, 0.565	0.671, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	61804, 10208, 8756	40629, 8253, 6927
R _{int}	0.049	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.703	0.726
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.069, 1.02	0.032, 0.077, 1.03
No. of reflections	10208	8253
No. of parameters	341	340
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.30, -1.02	0.36, -0.24

Computer programs: SAINT (Bruker, 2016, 2018), SHELXT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), CrystalExplorer21 (Spackman et al., 2021), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

actions between the molecules that influences the arrangement of the molecules.

Figure 6

Crystal packing of silylated thioether ligand **3** shown along the *b*-axis. Molecules are coloured by their symmetry relationship to the asymmetric unit. The relationships between colour and symmetry are as follows: grey – identity; light green – twofold rotation axis; dark green – twofold screw axis; golden yellow – inversion centre; magenta – glide plane.

4. Database survey

A search of the Cambridge crystallographic database (Groom *et al.*, 2016; WebCSD January 2023) for 1,3-dibromo-2-(bromomethyl)propanes revealed the following molecules structurally related to bromomethylalcohol **1**: 4-[3-bromo-2,2-bis(bromomethyl)propoxy]benzene-1,2-dicarbonitrile (VUJ-BOU; Canımkurbey *et al.*, 2020), 3-[3-bromo-2,2-bis(bromomethyl)propoxy]benzene-1,2-dicarbonitrile (VUJBUA; Canımkurbey *et al.*, 2020) and dimethyl 5-[3-bromo-2,2-bis(bromomethyl)propoxy]benzene-1,3-dicarboxylate (BAN-YOI; Najafi Khosroshahi *et al.*, 2021). For the C–Br bond lengths, similar values are found as in bromomethylalcohol **1**. Furthermore, the C–CH₂–Br angles observed in **1** correspond to the angles in the selected structures.

A search for 1,3-bis(phenylthio)-2-[(phenylthio)methyl]propan-2-ol yielded no hits in the WebCSD. By replacing the quaternary carbon with a silicon atom, the comparable structural motif of *catena*-[[μ_2 -tetrakis(methylthiomethyl)silane]dibromomercury(II)] (WAMYUF; Peindy *et al.*, 2005) was obtained. Here, the C(alkyl)—S bonds are shorter than in silylated thioether ligand **3**. The same applies to the related structure of dibromo[tetrakis(phenylthiomethyl)silane-*S*,*S*']mercury(II) (WAMZAM; Peindy *et al.*, 2005).

Another related structure motif could be found where the thioether groups act as bridging ligands between Cu_2I_2 rhomboids (Schlachter *et al.*, 2022).

5. Synthesis and crystallization

Bromomethylalcohol 1 is commercially available and was crystallized at 243.15 K from diethyl ether as clear and colourless plates.

Methyllithium (1.6 M in *n*-hexane, 16.93 mmol) was dropped into diethyl ether (50 mL) at 273.15 K to **1** (15.39 mmol). The solution was stirred for 1 h at room temperature and then chlorotrimethylsilane (16.93 mmol) was added at 273.15 K. It was stirred again for 1 h at room temperature, then the reaction solution was quenched with water. The aqueous phase was extracted three times with dichloromethane and the combined organic layers were dried over magnesium sulfate. The volatiles were removed to give compound **2** crude.

¹H NMR (600 MHz, C_6D_6) δ = 3.33 (*s*, 2H; OCH₂C), 3.18 (*s*, 6H; CCH₂Br), 0.03 (*s*, 9H; Si(CH₃)₃) ppm.

{ 1 H} 13 C NMR (151 MHz, C₆D₆) δ = 61.6 (1C; OCH₂C), 44.3 [1C; (C(CH₂)₄], 34.6 (3C; CCH₂Br), -0.7 [3C; Si(CH₃)₃] ppm.

Thiophenol (5.83 mmol) was then added to sodium hydride (5.83 mmol) in DMF (5 mL) at 273.15 K and stirred for 10 minutes. The NaSPh solution was added to 2 in DMF (10 mL) at 273.15 K and stirred for 10 minutes. The reaction solution was irradiated with microwaves (150 W, 323.15 K, 1 h) and then quenched with water. The aqueous phase was extracted three times with dichloromethane, the combined organic layers were dried over magnesium sulfate and the volatiles were removed. The residue was separated by fractional distillation under reduced pressure. Crystallization from diethyl ether at 243.15 K provided silylated thioether ligand 3 as clear and colourless blocks.

¹H NMR (600 MHz, CDCl₃) δ = 7.38–7.34 (*m*, 6H; CH_{ortho}), 7.30–7.23 (*m*, 6H; CH_{meta}), 7.19–7.15 (*m*, 3H; CH_{para}), 3.60 (*s*, 2H; OCH₂C), 3.22 (*s*, 6H; SCH₂C), 0.04 [*s*, 9H; Si(CH₃)₃] ppm.

{¹H}¹³C NMR (151 MHz, CDCl₃) δ = 137.2 (3C; C_{ipso}), 129.8 (3C; C_{ortho}), 128.9 (3C; C_{meta}), 126.2 (3C; C_{para}), 64.1 (1C; OCH₂C), 46.0 (1C; (C(CH₂)₄), 38.7 (3C; SCH₂C), -0.6 [3C; Si(CH₃)₃] ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms were positioned geometrically (C–H = 0.95–1.00 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂ and CH hydrogen atoms and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ hydrogen atoms. Hydrogen atoms H1, H2, H3 and H4 for compound **1** were refined independently. The TMSO group in **3** is disordered with occupancies converging to 50.9 (3)% for O1/Si1/C24–C26 and 49.1 (3)% for O1'/Si1'/C24'–C26'.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, 12, 1–19.

- Awaleh, M. O., Baril-Robert, F., Reber, C., Badia, A. & Brisse, F. (2008). *Inorg. Chem.* 47, 2964–2974.
- Awaleh, M. O., Brisse, F., Soubaneh, Y. D., Maris, T. & Dirieh, E. S. (2010). J. Inorg. Organomet. Polym. 20, 816–824.
- Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Canımkurbey, B., Taşkan, M. C., Demir, S., Duygulu, E., Atilla, D. & Yuksel, F. (2020). *New J. Chem.* 44, 7424–7435.
- Crundwell, G., Kessler, J., Kaller, M., McCoy, M., Bayne, C., Hardinger, S. A. & Kantardjieff, K. (1999). Acta Cryst. C55, IUC9900088.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Knaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459-465.
- Knorr, M., Guyon, F., Khatyr, A., Strohmann, C., Allain, M., Aly, S. M., Lapprand, A., Fortin, D. & Harvey, P. D. (2012). *Inorg. Chem.* 51, 9917–9934.
- Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). *Cryst. Growth Des.* 14, 5373–5387.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.
- Najafi Khosroshahi, F., Feng, Y., Ma, L., Manring, S., Rold, T. L., Gallazzi, F. A., Kelley, S. P., Embree, M. F., Hennkens, H. M., Hoffman, T. J. & Jurisson, S. S. (2021). *Bioconjugate Chem.* 32, 1364–1373.
- Peindy, H. N., Guyon, F., Khatyr, A., Knorr, M., Gessner, V. H. & Strohmann, C. (2009). Z. Anorg. Allg. Chem. 635, 2099–2105.
- Peindy, H. N., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). *Inorg. Chem. Commun.* 8, 479–482.
- Petuker, A., Gerschel, P., Piontek, S., Ritterskamp, N., Wittkamp, F., Iffland, L., Miller, R., van Gastel, M. & Apfel, U.-P. (2017). *Dalton Trans.* 46, 13251–13262.
- Schlachter, A., Lapprand, A., Fortin, D., Strohmann, C., Harvey, P. D. & Knorr, M. (2020). *Inorg. Chem.* 59, 3686–3708.
- Schlachter, A., Scheel, R., Fortin, D., Strohmann, C., Knorr, M. & Harvey, P. D. (2022). *Inorg. Chem.* 61, 11306–11318.
- Schlachter, A., Tanner, K., Scheel, R., Karsenti, P.-L., Strohmann, C., Knorr, M. & Harvey, P. D. (2021). *Inorg. Chem.* 60, 13528–13538.
- Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). *Inorg. Chem.* 57, 13564–13576.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Tinant, B., Declercq, J.-P. & Van Meerssche, M. (1987). Acta Cryst. C43, 2343–2345.
- Viau, L., Knorr, M., Knauer, L., Brieger, L. & Strohmann, C. (2022). Dalton Trans. 51, 7581–7606.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Bukowska-Strzyżewska, M. & Skoweranda, J. (1980). Acta Cryst. B36, 886–889.

Acta Cryst. (2023). E79, 323-327 [https://doi.org/10.1107/S205698902300227X]

Crystal structure of trimethyl({tris[(phenylsulfanyl)methyl]silyl}methoxy)silane and Hirshfeld surface analysis of 3-bromo-2,2-bis(bromomethyl)propan-1-ol

Jan Frederick Wappelhorst, Jonathan Wattenberg and Carsten Strohmann

Computing details

Cell refinement: *SAINT* V8.40B (Bruker, 2016) for (1); *SAINT* V8.38A (Bruker, 2018) for (3). Data reduction: *SAINT* V8.40B (Bruker, 2016) for (1); *SAINT* V8.38A (Bruker, 2018) for (3). For both structures, program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov *et al.*, 2009). Software used to prepare material for publication: *CrystalExplorer21* (Spackman *et al.*, 2021), *Mercury* (Macrae *et al.*, 2020), *publCIF* (Westrip, 2010) for (1); Olex2 1.3 (Dolomanov *et al.*, 2009) for (3).

3-Bromo-2,2-bis(bromomethyl)propan-1-ol (1)

Crystal data	
4C ₅ H ₉ Br ₃ O	Z = 2
$M_r = 1299.35$	F(000) = 1216
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.465 {\rm Mg} {\rm m}^{-3}$
a = 8.7763 (2) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 9.4409 (3) Å	Cell parameters from 7029 reflections
c = 21.2951 (6) Å	$\theta = 2.3 - 15.9^{\circ}$
$\alpha = 96.762 \ (1)^{\circ}$	$\mu = 13.75 \text{ mm}^{-1}$
$\beta = 92.198 \ (1)^{\circ}$	T = 100 K
$\gamma = 90.552 (1)^{\circ}$	Block, clear colourless
V = 1750.69 (8) Å ³	$0.19 \times 0.14 \times 0.1 \text{ mm}$
Data collection	
Bruker D8 VENTURE	$T_{\min} = 0.337, T_{\max} = 0.565$
diffractometer	61804 measured reflections
Radiation source: microfocus sealed X-ray tube,	10208 independent reflections
Incoatec Iµs	8756 reflections with $I > 2\sigma(I)$
HELIOS mirror optics monochromator	$R_{\rm int} = 0.049$
Detector resolution: 10.4167 pixels mm ⁻¹	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 1.9^\circ$
ω and φ scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(SADABS; Krause et al., 2015)	$l = -29 \rightarrow 29$
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.069$ S = 1.02 10208 reflections 341 parameters 0 restraints Primary atom site location: dual Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.002$
and constrained refinement	$\Delta \rho_{\rm max} = 1.30 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0285P)^2 + 2.5017P]$	$\Delta \rho_{\rm min} = -1.02 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	
Br6	0.30125 (3)	0.63039(3)	0.93269 (2)	0.02037 (6)	
Br4	0.86961 (3)	0.53671 (3)	0.92653 (2)	0.02067 (6)	
Br12	-0.19710 (3)	0.09408 (3)	0.93843 (2)	0.02543 (7)	
Br8	0.16003 (3)	0.66948 (3)	0.52163 (2)	0.02341 (6)	
Br11	0.01625 (3)	-0.18319 (3)	0.81305 (2)	0.02304 (6)	
Br5	0.51228 (3)	0.84879 (3)	0.81175 (2)	0.02386 (7)	
Br10	0.36938 (3)	0.18854 (3)	0.93546 (2)	0.02617 (7)	
Br2	0.65686 (3)	-0.15652 (3)	0.52219 (2)	0.02328 (6)	
Br9	0.57548 (3)	0.49690 (3)	0.59268 (2)	0.02586 (7)	
Br3	1.07850(3)	0.04690 (3)	0.59305 (2)	0.02689 (7)	
Br7	-0.05124 (3)	0.56946 (3)	0.67027 (2)	0.02622 (7)	
Br1	0.45074 (3)	0.02393 (3)	0.67092 (2)	0.02651 (7)	
O2	0.6078 (3)	0.3698 (2)	0.78090 (11)	0.0242 (5)	
04	0.1096 (3)	0.2803 (2)	0.78670 (12)	0.0251 (5)	
03	0.3270 (3)	0.4014 (2)	0.72095 (10)	0.0210 (4)	
01	0.8317 (3)	0.2138 (2)	0.72320 (10)	0.0204 (4)	
C10	0.4056 (3)	0.5476 (3)	0.85794 (13)	0.0179 (5)	
H10A	0.3892	0.4429	0.8528	0.022*	
H10B	0.3591	0.5846	0.8202	0.022*	
C11	0.2610 (3)	0.5306 (3)	0.63072 (13)	0.0145 (5)	
C1	0.7645 (3)	0.0382 (3)	0.63190 (13)	0.0147 (5)	
C6	0.5773 (3)	0.5793 (3)	0.86066 (13)	0.0156 (5)	
C4	0.7044 (3)	0.0353 (3)	0.56350 (14)	0.0188 (5)	
H4A	0.7816	0.0798	0.5391	0.023*	
H4B	0.6111	0.0934	0.5628	0.023*	
C14	0.2011 (3)	0.4988 (3)	0.56232 (14)	0.0183 (5)	
H14A	0.1059	0.4413	0.5613	0.022*	
H14B	0.2768	0.4408	0.5378	0.022*	
C20	-0.0922 (3)	0.1385 (3)	0.86366 (14)	0.0198 (5)	
H20A	-0.1390	0.0808	0.8259	0.024*	
H20B	-0.1081	0.2403	0.8585	0.024*	
C16	0.0793 (3)	0.1105 (3)	0.86637 (13)	0.0175 (5)	
C9	0.6137 (3)	0.7389 (3)	0.87314 (14)	0.0186 (5)	
H9A	0.7253	0.7537	0.8720	0.022*	
H9B	0.5820	0.7752	0.9161	0.022*	

G 0		0.50.50 (2)	0.01.400 (1.4)	0.0104(5)
C8	0.6491 (3)	0.5059 (3)	0.91482 (14)	0.0184 (5)
H8A	0.6276	0.4021	0.9064	0.022*
H8B	0.6001	0.5418	0.9546	0.022*
C7	0.6409 (3)	0.5181 (3)	0.79682 (14)	0.0196 (5)
H7A	0.5972	0.5710	0.7631	0.024*
H7B	0.7529	0.5332	0.7986	0.024*
C13	0.1613 (3)	0.6329 (3)	0.67193 (14)	0.0186 (5)
H13A	0.1659	0.7283	0.6571	0.022*
H13B	0.2028	0.6424	0.7161	0.022*
C3	0.6604 (3)	-0.0418 (3)	0.67253 (14)	0.0189 (5)
H3A	0.7016	-0.0296	0.7168	0.023*
H3B	0.6612	-0.1449	0.6571	0.023*
C17	0.1445 (3)	0.1412 (3)	0.80276 (14)	0.0203 (5)
H17A	0.2566	0.1309	0.8051	0.024*
H17B	0.1031	0.0693	0.7687	0.024*
C18	0.1501 (3)	0.2131 (3)	0.92103 (15)	0.0217 (6)
H18A	0.0978	0.1992	0.9603	0.026*
H18B	0.1319	0.3122	0.9121	0.026*
C15	0.4154 (3)	0.6086 (3)	0.63522 (14)	0.0184 (5)
H15A	0.4467	0.6330	0.6804	0.022*
H15B	0.4042	0.6990	0.6163	0.022*
C12	0.2713 (3)	0.3858 (3)	0.65646 (13)	0.0173 (5)
H12A	0.1691	0.3397	0.6534	0.021*
H12B	0.3403	0.3233	0.6303	0.021*
C2	0.7795 (3)	0.1961 (3)	0.65817 (13)	0.0174 (5)
H2A	0.8522	0.2441	0.6329	0.021*
H2B	0.6792	0.2421	0.6542	0.021*
C19	0.1148 (3)	-0.0427 (3)	0.87699 (14)	0.0199 (5)
H19A	0.0808	-0.0598	0.9193	0.024*
H19B	0.2265	-0.0558	0.8766	0.024*
C5	0.9158 (3)	-0.0390(3)	0.63634 (15)	0.0202 (5)
H5A	0.9009	-0.1395	0.6178	0.024*
H5B	0.9472	-0.0387	0.6815	0.024*
H2	0.535 (5)	0.361 (5)	0.761 (2)	0.034 (12)*
H4	0.036 (5)	0.280 (5)	0.768 (2)	0.046 (14)*
Н3	0.264 (5)	0.369 (5)	0.737 (2)	0.031 (11)*
H1	0.766 (5)	0.245 (4)	0.7388 (19)	0.027 (11)*
	(-)			

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br6	0.01720 (12)	0.02772 (14)	0.01664 (13)	0.00405 (10)	0.00425 (10)	0.00301 (10)
Br4	0.01508 (12)	0.02315 (13)	0.02331 (14)	0.00189 (10)	-0.00250 (10)	0.00171 (11)
Br12	0.02147 (14)	0.03204 (15)	0.02229 (15)	-0.00074 (11)	0.00614 (11)	-0.00048 (12)
Br8	0.02755 (15)	0.02032 (13)	0.02272 (15)	0.00141 (11)	-0.00450 (11)	0.00575 (11)
Br11	0.02468 (14)	0.01963 (13)	0.02347 (15)	-0.00413 (10)	0.00482 (11)	-0.00391 (11)
Br5	0.02543 (14)	0.02445 (14)	0.02381 (15)	0.00620(11)	0.00529 (11)	0.00985 (11)
Br10	0.01955 (14)	0.02889 (15)	0.02851 (16)	-0.00311 (11)	-0.00459 (11)	-0.00105 (12)

Br?	0.02747(15)	0.01877(13)	0.02103(15)	-0.00285(10)	-0.00348(11)	-0.00200(10)
DIZ Br0	0.02747(13)	0.01877(15) 0.02863(15)	0.02195(13)	0.00285(10)	0.00348(11)	0.00290(10)
D_{1}	0.01020(13)	0.02803(13)	0.03340(18)	0.00302(10)	0.00510(12)	0.01344(13)
DI3	0.01018 (13)	0.02337(14)	0.03834 (18)	-0.00393(10)	0.00030(12)	-0.00800 (12)
Br/	0.01773 (13)	0.02374 (14)	0.03600 (18)	-0.00242 (10)	0.00665 (12)	-0.00308 (12)
Brl	0.01738 (13)	0.02924 (15)	0.03493 (18)	0.00410 (11)	0.00650 (12)	0.01025 (13)
02	0.0205 (11)	0.0261 (11)	0.0239 (12)	0.0031 (8)	-0.0009 (9)	-0.0056 (9)
04	0.0208 (11)	0.0281 (11)	0.0277 (12)	-0.0036 (9)	0.0004 (9)	0.0091 (9)
03	0.0220 (10)	0.0240 (10)	0.0173 (10)	-0.0044 (8)	-0.0020 (8)	0.0042 (8)
01	0.0198 (10)	0.0219 (10)	0.0181 (10)	0.0044 (8)	-0.0016 (8)	-0.0027 (8)
C10	0.0176 (12)	0.0222 (13)	0.0136 (13)	0.0003 (10)	0.0011 (10)	0.0003 (10)
C11	0.0145 (11)	0.0134 (11)	0.0151 (12)	-0.0010 (9)	-0.0008 (9)	0.0008 (9)
C1	0.0159 (12)	0.0124 (11)	0.0160 (13)	0.0000 (9)	0.0002 (10)	0.0026 (9)
C6	0.0142 (11)	0.0185 (12)	0.0140 (12)	-0.0006 (9)	0.0017 (9)	0.0013 (9)
C4	0.0217 (13)	0.0135 (11)	0.0208 (14)	-0.0008 (10)	-0.0018 (11)	0.0011 (10)
C14	0.0203 (13)	0.0154 (12)	0.0182 (13)	-0.0004 (9)	-0.0040 (10)	0.0002 (10)
C20	0.0199 (13)	0.0228 (13)	0.0164 (13)	0.0013 (10)	0.0017 (10)	0.0006 (10)
C16	0.0172 (12)	0.0174 (12)	0.0173 (13)	-0.0002 (9)	0.0018 (10)	-0.0012 (10)
C9	0.0187 (12)	0.0199 (12)	0.0184 (13)	0.0012 (10)	0.0015 (10)	0.0063 (10)
C8	0.0135 (12)	0.0228 (13)	0.0191 (13)	0.0005 (10)	-0.0006 (10)	0.0029 (10)
C7	0.0178 (13)	0.0242 (13)	0.0167 (13)	-0.0002 (10)	0.0019 (10)	0.0018 (10)
C13	0.0168 (12)	0.0168 (12)	0.0210 (14)	-0.0016 (9)	-0.0004 (10)	-0.0026 (10)
C3	0.0170 (12)	0.0190 (12)	0.0214 (14)	0.0009 (10)	-0.0009 (10)	0.0053 (10)
C17	0.0205 (13)	0.0222 (13)	0.0181 (14)	-0.0016 (10)	0.0011 (10)	0.0014 (10)
C18	0.0179 (13)	0.0246 (14)	0.0207 (14)	-0.0008 (10)	-0.0011 (11)	-0.0040 (11)
C15	0.0161 (12)	0.0152 (11)	0.0238 (14)	-0.0021 (9)	-0.0003 (10)	0.0026 (10)
C12	0.0198 (13)	0.0145 (11)	0.0171 (13)	-0.0008 (9)	0.0003 (10)	-0.0001 (10)
C2	0.0203 (13)	0.0144 (11)	0.0170 (13)	0.0019 (9)	0.0007 (10)	-0.0005 (10)
C19	0.0215 (13)	0.0184 (12)	0.0186 (14)	0.0002 (10)	-0.0017 (11)	-0.0025 (10)
C5	0.0164 (12)	0.0175 (12)	0.0259 (15)	0.0025 (10)	-0.0009 (11)	0.0004 (11)

Geometric parameters (Å, °)

Br1—C3	1.948 (3)	C4—H4A	0.9900
Br2—C4	1.952 (3)	C4—H4B	0.9900
Br3—C5	1.950 (3)	C14—H14A	0.9900
Br4—C8	1.956 (3)	C14—H14B	0.9900
Br5—C9	1.956 (3)	C20—H20A	0.9900
Br6-C10	1.954 (3)	C20—H20B	0.9900
Br7—C13	1.951 (3)	C20—C16	1.531 (4)
Br8—C14	1.947 (3)	C16—C17	1.548 (4)
Br9—C15	1.951 (3)	C16—C18	1.532 (4)
Br10-C18	1.957 (3)	C16—C19	1.523 (4)
Br11-C19	1.955 (3)	С9—Н9А	0.9900
Br12-C20	1.955 (3)	C9—H9B	0.9900
O2—C7	1.426 (4)	C8—H8A	0.9900
O2—H2	0.75 (4)	C8—H8B	0.9900
O4—C17	1.428 (4)	C7—H7A	0.9900
O4—H4	0.75 (5)	С7—Н7В	0.9900

O3—C12	1.431 (3)	C13—H13A	0.9900
O3—H3	0.74 (4)	C13—H13B	0.9900
O1—C2	1.432 (3)	C3—H3A	0.9900
O1—H1	0.72 (4)	С3—Н3В	0.9900
C10—H10A	0.9900	C17—H17A	0.9900
C10—H10B	0.9900	C17—H17B	0.9900
C10—C6	1.531 (4)	C18—H18A	0.9900
C11—C14	1.524 (4)	C18—H18B	0.9900
C11—C13	1.531 (4)	C15—H15A	0.9900
C11—C15	1.530 (4)	C15—H15B	0.9900
C11—C12	1.534 (4)	C12—H12A	0.9900
C1—C4	1.527 (4)	C12—H12B	0.9900
C1—C3	1.535 (4)	C2—H2A	0.9900
C1—C2	1.532 (4)	C2—H2B	0.9900
C1—C5	1.526 (4)	C19—H19A	0.9900
C6—C9	1.528 (4)	C19—H19B	0.9900
C6—C8	1.532 (4)	C5—H5A	0.9900
C6—C7	1.540 (4)	С5—Н5В	0.9900
С7—О2—Н2	109 (3)	H8A—C8—H8B	107.7
C17—O4—H4	111 (4)	O2—C7—C6	113.0 (2)
С12—О3—Н3	102 (3)	O2—C7—H7A	109.0
C2—O1—H1	102 (3)	O2—C7—H7B	109.0
Br6—C10—H10A	108.8	С6—С7—Н7А	109.0
Br6—C10—H10B	108.8	C6—C7—H7B	109.0
H10A—C10—H10B	107.7	H7A—C7—H7B	107.8
C6—C10—Br6	113.95 (19)	Br7—C13—H13A	109.0
C6—C10—H10A	108.8	Br7—C13—H13B	109.0
C6—C10—H10B	108.8	C11—C13—Br7	112.91 (18)
C14—C11—C13	113.7 (2)	C11—C13—H13A	109.0
C14—C11—C15	111.6 (2)	C11—C13—H13B	109.0
C14—C11—C12	105.9 (2)	H13A—C13—H13B	107.8
C13—C11—C12	110.9 (2)	Br1—C3—H3A	109.0
C15—C11—C13	103.0 (2)	Br1—C3—H3B	109.0
C15—C11—C12	111.9 (2)	C1—C3—Br1	112.99 (18)
C4—C1—C3	113.2 (2)	C1—C4—Br2	113.48 (18)
C4—C1—C2	105.9 (2)	C1—C3—H3A	109.0
C2—C1—C3	110.8 (2)	C1—C3—H3B	109.0
C5—C1—C4	111.9 (2)	НЗА—СЗ—НЗВ	107.8
C5—C1—C3	103.2 (2)	O4—C17—C16	113.3 (2)
C5—C1—C2	112.0 (2)	O4—C17—H17A	108.9
C10—C6—C8	107.7 (2)	O4—C17—H17B	108.9
C10—C6—C7	107.9 (2)	C16—C17—H17A	108.9
C9—C6—C10	112.4 (2)	C16—C17—H17B	108.9
C9—C6—C8	108.6 (2)	H17A—C17—H17B	107.7
C9—C6—C7	109.6 (2)	Br10-C18-H18A	108.8
C8—C6—C7	110.7 (2)	Br10-C18-H18B	108.8
Br2—C4—H4A	108.9	C16-C18-Br10	113.95 (19)

Br2—C4—H4B	108.9	C16—C18—H18A	108.8
C1—C4—H4A	108.9	C16—C18—H18B	108.8
C1—C4—H4B	108.9	H18A—C18—H18B	107.7
H4A—C4—H4B	107.7	Br9—C15—H15A	108.9
Br8-C14-H14A	108.9	Br9—C15—H15B	108.9
Br8-C14-H14B	108.9	C11—C15—Br9	113.19 (18)
C11—C14—Br8	113.49 (18)	C11—C15—H15A	108.9
C11—C14—H14A	108.9	C11—C15—H15B	108.9
C11—C14—H14B	108.9	H15A—C15—H15B	107.8
H14A—C14—H14B	107.7	O3—C12—C11	111.4 (2)
Br12—C20—H20A	108.8	O3—C12—H12A	109.4
Br12—C20—H20B	108.8	O3—C12—H12B	109.4
H20A—C20—H20B	107.7	C11—C12—H12A	109.4
C16—C20—Br12	114.0 (2)	C11—C12—H12B	109.4
C16—C20—H20A	108.8	H12A—C12—H12B	108.0
C16—C20—H20B	108.8	O1—C2—H2A	109.3
C20—C16—C17	108.1 (2)	01—C2—H2B	109.3
C_{20} C_{16} C_{18}	107.3 (2)	C1—C2—H2A	109.3
C_{18} C_{16} C_{17}	1104(2)	C1 - C2 - H2B	109.3
C19 - C16 - C20	1124(2)	$H^2A - C^2 - H^2B$	108.0
C19 - C16 - C17	109.0(2)	Br11—C19—H19A	109.0
C19 - C16 - C18	109.0(2) 109.7(2)	Br11—C19—H19B	109.0
Br5-C9-H9A	109.0	C16-C19-Br11	102.0 112.9(2)
Br5—C9—H9B	109.0	C16 - C19 - H19A	109.0
C_{6} C_{9} Br5	113.0(2)	C16—C19—H19B	109.0
C6-C9-H9A	109.0	H19A - C19 - H19B	107.8
C6-C9-H9B	109.0	Br3—C5—H5A	107.0
H9A_C9_H9B	107.8	Br3—C5—H5B	108.9
Br4—C8—H8A	108.8	C1 - C5 - Br3	113 21 (19)
Br4—C8—H8B	108.8	$01 - C^2 - C^1$	113.21(17)
C6-C8-Br4	113 72 (19)	C1 - C5 - H5A	108.9
	108.8	C1 C5 H5B	108.9
C6-C8-H8B	108.8	$H_{5}A = C_{5} = H_{5}B$	107.7
C0-C0-110D	100.0	115A-C5-115B	107.7
Br6-C10-C6-C9	-545(3)	C13-C11-C14-Br8	52.6 (3)
Br6-C10-C6-C8	650(3)	C13 - C11 - C15 - Br9	175 11 (19)
Br6-C10-C6-C7	-17547(18)	C_{13} $-C_{11}$ $-C_{12}$ $-O_{3}$	-563(3)
Br12 - C20 - C16 - C17	176 50 (18)	C_{3} C_{1} C_{4} Br^{2}	-52.8(3)
Br12—C20—C16—C18	-645(3)	C_{3} $-C_{1}$ $-C_{2}$ $-O_{1}$	55 4 (3)
Br12 - C20 - C16 - C19	56 1 (3)	C_{3} C_{1} C_{5} Br_{3}	-176 37 (18)
C10-C6-C9-Br5	-554(3)	C_{17} C_{16} C_{18} Br_{10}	-652(3)
C10 - C6 - C8 - Br4	-17921(18)	$C_{17} = C_{16} = C_{19} = Br_{11}$	-635(3)
$C_{10} = C_{0} = C_{0} = C_{10}$	-55.7(3)	$C_{17} = C_{10} = C_{17} = D_{111}$	-62.8(3)
$C_{10} = C_{0} = C_{1} = C_{2}$	-54 A (3)	$C_{18} = C_{10} = C_{17} = 04$	175.64(10)
$C_{4} = C_{1} = C_{3} = D_{11}$	178 5 (2)	$C_{10} = C_{10} = C_{17} = D_{111}$	-63 4 (3)
$C_{4} = C_{1} = C_{2} = 0_{1}$	616(3)	$C_{15} - C_{11} - C_{13} - B_{r7}$	175 29 (18)
$C_{1} = C_{1} = C_{2} = D_{12}$	51.0(3)	$C_{13} - C_{11} - C_{13} - D_{17}$	1/3.27(10)
C14 = C11 = C15 = D17	-62 5 (2)	$C_{13} = C_{11} = C_{12} = C_{13}$	30.1(3)
C14—C11—C15—BIY	-02.3 (3)	C12—C11—C14—Brð	1/4.39 (18)

C14—C11—C12—O3	179.9 (2)	C12—C11—C13—Br7	-64.9 (3)
C20—C16—C17—O4	54.2 (3)	C12—C11—C15—Br9	56.0 (3)
C20-C16-C18-Br10	177.22 (19)	C2C1C4Br2	-174.38 (18)
C20-C16-C19-Br11	56.4 (3)	C2—C1—C3—Br1	64.4 (3)
C9—C6—C8—Br4	-57.3 (3)	C2C1C5Br3	-57.1 (3)
C9—C6—C7—O2	-178.4 (2)	C19—C16—C17—O4	176.7 (2)
C8—C6—C9—Br5	-174.45 (17)	C19-C16-C18-Br10	54.8 (3)
C8—C6—C7—O2	61.9 (3)	C5-C1-C4-Br2	63.4 (3)
C7—C6—C9—Br5	64.5 (3)	C5-C1-C3-Br1	-175.56 (18)
C7—C6—C8—Br4	63.0 (3)	C5-C1-C2-O1	-59.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O2—H2…O3	0.75 (4)	2.04 (4)	2.766 (3)	162 (5)
O4—H4…O1 ⁱ	0.75 (5)	2.05 (5)	2.773 (3)	161 (5)
O3—H3…O4	0.74 (4)	1.99 (4)	2.729 (3)	175 (4)
O1—H1…O2	0.72 (4)	2.00 (4)	2.712 (3)	168 (4)

Symmetry code: (i) x-1, y, z.

Trimethyl({tris[(phenylsulfanyl)methyl]silyl}methoxy)silane (3)

Crystal data

 $C_{26}H_{32}OS_{3}Si$ $M_{r} = 484.78$ Monoclinic, C2/c a = 27.0415 (12) Å b = 6.9329 (3) Å c = 27.7963 (14) Å $\beta = 96.939$ (2)° V = 5173.0 (4) Å³ Z = 8

Data collection

Bruker D8 VENTURE diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ s HELIOS mirror optics monochromator Detector resolution: 10.4167 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.077$ S = 1.038253 reflections 340 parameters F(000) = 2064 $D_x = 1.245 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9874 reflections $\theta = 2.2-31.0^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 100 KBlock, clear colourless $0.62 \times 0.56 \times 0.46 \text{ mm}$

 $T_{\min} = 0.671, T_{\max} = 0.746$ 40629 measured reflections 8253 independent reflections 6927 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$ $\theta_{\text{max}} = 31.1^{\circ}, \theta_{\text{min}} = 2.2^{\circ}$ $h = -39 \rightarrow 39$ $k = -10 \rightarrow 10$ $l = -40 \rightarrow 40$

0 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 3.6217P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta\rho_{\rm max} = 0.36$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	V	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
S1	0.29397 (2)	0.49136 (4)	0.53826 (2)	0.01817 (6)	
S2	0.20238 (2)	0.78150 (4)	0.58269 (2)	0.02262 (6)	
S3	0.31216 (2)	1.14605 (4)	0.66285 (2)	0.02538 (7)	
C8	0.30483 (4)	0.80744 (14)	0.60358 (4)	0.01565 (18)	
C7	0.30656 (4)	0.74642 (14)	0.55036 (4)	0.01713 (18)	
H7A	0.3399	0.7775	0.5412	0.021*	
H7B	0.2819	0.8238	0.5294	0.021*	
C9	0.25831 (4)	0.72995 (14)	0.62389 (4)	0.01716 (18)	
H9A	0.2556	0.7904	0.6557	0.021*	
H9B	0.2615	0.5889	0.6288	0.021*	
C16	0.30594 (4)	1.02993 (15)	0.60364 (4)	0.0201 (2)	
H16A	0.2749	1.0768	0.5848	0.024*	
H16B	0.3340	1.0724	0.5864	0.024*	
C1	0.34951 (4)	0.39457 (15)	0.52076 (4)	0.0198 (2)	
C23	0.34988 (4)	0.72598 (16)	0.63568 (4)	0.01953 (19)	
C15	0.16005 (4)	0.70047 (17)	0.66701 (4)	0.0246 (2)	
H15	0.1914	0.6503	0.6805	0.029*	
C2	0.34409 (5)	0.23215 (16)	0.49074 (4)	0.0250 (2)	
H2	0.3117	0.1857	0.4793	0.030*	
C6	0.39722 (4)	0.46279 (18)	0.53680 (4)	0.0277 (2)	
H6	0.4014	0.5728	0.5573	0.033*	
C17	0.25090 (5)	1.14867 (15)	0.67960 (4)	0.0255 (2)	
C10	0.15440 (4)	0.77326 (17)	0.62029 (4)	0.0230 (2)	
C22	0.24394 (5)	1.07987 (17)	0.72557 (4)	0.0300 (3)	
H22	0.2712	1.0258	0.7459	0.036*	
C18	0.21056 (5)	1.22418 (17)	0.64960 (5)	0.0307 (3)	
H18	0.2150	1.2712	0.6183	0.037*	
C14	0.12017 (5)	0.7002 (2)	0.69433 (5)	0.0330 (3)	
H14	0.1245	0.6515	0.7265	0.040*	
C3	0.38577 (5)	0.13854 (18)	0.47757 (5)	0.0332 (3)	
Н3	0.3818	0.0272	0.4576	0.040*	
C21	0.19743 (6)	1.09037 (19)	0.74155 (5)	0.0375 (3)	
H21	0.1930	1.0455	0.7730	0.045*	
C5	0.43855 (5)	0.3689 (2)	0.52267 (5)	0.0371 (3)	
H5	0.4710	0.4167	0.5332	0.044*	
C11	0.10797 (4)	0.8453 (2)	0.60058 (5)	0.0355 (3)	
H11	0.1036	0.8962	0.5686	0.043*	

C4	0.43306 (5)	0.2064 (2)	0.49342 (5)	0.0377 (3)	
H4	0.4615	0.1422	0.4843	0.045*	
C20	0.15751 (6)	1.16595 (19)	0.71180 (6)	0.0414 (3)	
H20	0.1257	1.1738	0.7229	0.050*	
C19	0.16397 (5)	1.23047 (19)	0.66560(6)	0.0384 (3)	
H19	0.1363	1.2792	0.6449	0.046*	
C13	0.07437 (5)	0.7706 (3)	0.67479 (6)	0.0442 (4)	
H13	0.0471	0.7701	0.6934	0.053*	
C12	0.06846 (5)	0.8419 (3)	0.62797 (6)	0.0482 (4)	
H12	0.0368	0.8892	0.6144	0.058*	
Si1'	0.44785 (2)	0.8553 (2)	0.64956 (3)	0.0190 (2)	0.491 (3)
Si1	0.44762 (2)	0.7677 (2)	0.65917 (3)	0.0212 (2)	0.509 (3)
C26′	0.49264 (14)	0.8897 (5)	0.60512 (14)	0.0309 (7)	0.491 (3)
H26A	0.4950	0.7705	0.5866	0.046*	0.491 (3)
H26B	0.5254	0.9218	0.6222	0.046*	0.491 (3)
H26C	0.4812	0.9949	0.5830	0.046*	0.491 (3)
C25	0.45259 (9)	0.5178 (4)	0.68366 (9)	0.0302 (6)	0.509 (3)
H25A	0.4263	0.4959	0.7044	0.045*	0.509 (3)
H25B	0.4852	0.5003	0.7027	0.045*	0.509 (3)
H25C	0.4489	0.4254	0.6568	0.045*	0.509 (3)
C26	0.49628 (13)	0.8198 (6)	0.61941 (14)	0.0355 (7)	0.509 (3)
H26D	0.4953	0.7212	0.5941	0.053*	0.509 (3)
H26E	0.5291	0.8190	0.6387	0.053*	0.509 (3)
H26F	0.4902	0.9469	0.6044	0.053*	0.509 (3)
C24	0.44964 (10)	0.9441 (4)	0.70963 (9)	0.0321 (6)	0.509 (3)
H24A	0.4819	0.9348	0.7298	0.048*	0.509 (3)
H24B	0.4228	0.9157	0.7293	0.048*	0.509 (3)
H24C	0.4453	1.0748	0.6964	0.048*	0.509 (3)
C24′	0.44206 (10)	1.0777 (4)	0.68546 (11)	0.0341 (7)	0.491 (3)
H24D	0.4307	1.1841	0.6637	0.051*	0.491 (3)
H24E	0.4745	1.1101	0.7032	0.051*	0.491 (3)
H24F	0.4179	1.0565	0.7085	0.051*	0.491 (3)
C25′	0.46508 (10)	0.6452 (4)	0.68981 (11)	0.0346 (7)	0.491 (3)
H25D	0.4425	0.6380	0.7148	0.052*	0.491 (3)
H25E	0.4994	0.6607	0.7053	0.052*	0.491 (3)
H25F	0.4625	0.5264	0.6706	0.052*	0.491 (3)
O1′	0.3933 (5)	0.813 (2)	0.6162 (5)	0.0183 (11)	0.491 (3)
01	0.3954 (5)	0.788 (2)	0.6234 (5)	0.0193 (11)	0.509 (3)
H23A	0.3479 (5)	0.7632 (18)	0.6703 (5)	0.021 (3)*	
H23B	0.3497 (5)	0.5849 (19)	0.6332 (5)	0.019 (3)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01888 (11)	0.01749 (11)	0.01825 (12)	-0.00061 (9)	0.00277 (9)	-0.00230 (9)
S2	0.01735 (11)	0.03543 (15)	0.01493 (12)	0.00120 (10)	0.00136 (9)	-0.00211 (10)
S3	0.03324 (15)	0.02129 (12)	0.02207 (13)	-0.00472 (11)	0.00528 (11)	-0.00615 (10)
C8	0.0167 (4)	0.0162 (4)	0.0140 (4)	-0.0005 (3)	0.0020 (3)	0.0005 (3)

C7	0.0191 (4)	0.0170 (4)	0.0153 (4)	-0.0002 (4)	0.0022 (3)	-0.0002 (3)
C9	0.0182 (4)	0.0189 (4)	0.0145 (4)	-0.0010 (4)	0.0025 (3)	-0.0002(3)
C16	0.0264 (5)	0.0174 (4)	0.0174 (5)	-0.0018 (4)	0.0058 (4)	-0.0006 (4)
C1	0.0234 (5)	0.0207 (5)	0.0156 (5)	0.0035 (4)	0.0030 (4)	-0.0004 (4)
C23	0.0178 (4)	0.0226 (5)	0.0177 (5)	0.0000 (4)	0.0004 (4)	-0.0010 (4)
C15	0.0225 (5)	0.0276 (5)	0.0244 (5)	-0.0024 (4)	0.0061 (4)	-0.0026 (4)
C2	0.0308 (6)	0.0227 (5)	0.0225 (5)	-0.0004 (4)	0.0063 (4)	-0.0040 (4)
C6	0.0228 (5)	0.0340 (6)	0.0255 (6)	0.0040 (5)	0.0001 (4)	-0.0091 (5)
C17	0.0377 (6)	0.0157 (4)	0.0246 (5)	-0.0008(4)	0.0103 (5)	-0.0049 (4)
C10	0.0180 (5)	0.0295 (5)	0.0219 (5)	-0.0023 (4)	0.0039 (4)	-0.0065 (4)
C22	0.0471 (7)	0.0225 (5)	0.0218 (6)	-0.0035 (5)	0.0095 (5)	-0.0062 (4)
C18	0.0409 (7)	0.0192 (5)	0.0336 (7)	0.0043 (5)	0.0113 (5)	0.0003 (4)
C14	0.0299 (6)	0.0432 (7)	0.0281 (6)	-0.0080(5)	0.0129 (5)	-0.0038 (5)
C3	0.0426 (7)	0.0280 (6)	0.0306 (6)	0.0054 (5)	0.0102 (5)	-0.0072 (5)
C21	0.0580 (9)	0.0275 (6)	0.0313 (7)	-0.0067 (6)	0.0229 (6)	-0.0097 (5)
C5	0.0230 (6)	0.0510 (8)	0.0368 (7)	0.0078 (6)	0.0021 (5)	-0.0108 (6)
C11	0.0206 (5)	0.0593 (9)	0.0259 (6)	0.0044 (6)	0.0005 (4)	-0.0050 (6)
C4	0.0347 (7)	0.0446 (7)	0.0347 (7)	0.0163 (6)	0.0080 (5)	-0.0067 (6)
C20	0.0495 (8)	0.0259 (6)	0.0546 (9)	-0.0009 (6)	0.0302 (7)	-0.0126 (6)
C19	0.0403 (7)	0.0246 (6)	0.0522 (9)	0.0087 (5)	0.0130 (6)	-0.0040 (6)
C13	0.0212 (6)	0.0742 (11)	0.0396 (8)	-0.0059 (6)	0.0136 (5)	-0.0133 (7)
C12	0.0183 (6)	0.0866 (12)	0.0394 (8)	0.0053 (7)	0.0028 (5)	-0.0113 (8)
Si1'	0.0157 (3)	0.0224 (5)	0.0190 (3)	-0.0008 (3)	0.0016 (2)	-0.0026 (3)
Si1	0.0166 (3)	0.0259 (6)	0.0208 (3)	-0.0004 (3)	0.0014 (2)	-0.0031 (3)
C26′	0.0251 (13)	0.0358 (18)	0.0338 (18)	-0.0041 (13)	0.0118 (12)	-0.0020 (13)
C25	0.0293 (12)	0.0294 (13)	0.0315 (13)	0.0064 (10)	0.0017 (10)	0.0022 (10)
C26	0.0256 (13)	0.042 (2)	0.041 (2)	-0.0075 (14)	0.0115 (13)	-0.0063 (14)
C24	0.0323 (12)	0.0354 (13)	0.0272 (12)	-0.0013 (10)	-0.0024 (9)	-0.0072 (10)
C24′	0.0216 (11)	0.0366 (14)	0.0437 (16)	-0.0031 (10)	0.0021 (10)	-0.0184 (12)
C25′	0.0277 (12)	0.0378 (16)	0.0373 (15)	0.0041 (11)	-0.0003 (10)	0.0125 (12)
01′	0.0127 (13)	0.025 (3)	0.016 (3)	-0.0020 (18)	-0.0013 (17)	0.0021 (18)
01	0.0191 (16)	0.022 (3)	0.016 (3)	-0.0006 (15)	0.0003 (18)	0.0033 (17)

Geometric parameters (Å, °)

S1—C7	1.8244 (10)	C21—H21	0.9500
S1—C1	1.7661 (11)	C21—C20	1.381 (2)
S2—C9	1.8188 (10)	С5—Н5	0.9500
S2-C10	1.7625 (12)	C5—C4	1.3864 (19)
S3—C16	1.8214 (11)	C11—H11	0.9500
S3—C17	1.7742 (13)	C11—C12	1.3850 (19)
С8—С7	1.5446 (14)	C4—H4	0.9500
С8—С9	1.5367 (14)	C20—H20	0.9500
C8—C16	1.5428 (14)	C20—C19	1.391 (2)
C8—C23	1.5286 (14)	С19—Н19	0.9500
C7—H7A	0.9900	С13—Н13	0.9500
С7—Н7В	0.9900	C13—C12	1.383 (2)
С9—Н9А	0.9900	C12—H12	0.9500

С9—Н9В	0.9900	Si1'—C26'	1.847 (4)
C16—H16A	0.9900	Si1'—C24'	1.853 (3)
C16—H16B	0.9900	Si1'—C25'	1.861 (3)
C1—C2	1.3986 (15)	O1—Si1	1.632 (12)
C1—C6	1.3957 (15)	O1'—Si1'	1.672 (13)
O1—C23	1.384 (15)	Si1—C25	1.861 (3)
O1′—C23	1.479 (14)	Sil—C26	1.853 (4)
С23—Н23А	1.004 (14)	Si1—C24	1.856 (3)
С23—Н23В	0.981 (13)	C26'—H26A	0.9800
С15—Н15	0.9500	C26'—H26B	0.9800
C15—C10	1.3845 (16)	C26'—H26C	0.9800
C15—C14	1.3918 (16)	C25—H25A	0.9800
C2—H2	0.9500	C25—H25B	0.9800
$C^2 - C^3$	1 3875 (17)	C_{25} H25D	0.9800
C6—H6	0.9500	C26—H26D	0.9800
C6-C5	1 3905 (17)	C26—H26E	0.9800
C_{17} C_{22}	1 3977 (17)	C26—H26E	0.9800
C17 - C18	1 3925 (18)	C_{24} H24A	0.9800
C10-C11	1 3998 (16)	C24 - H24R	0.9800
C22 H22	0.9500	$C_{24} = H_{24}C$	0.9800
$C_{22} = C_{21}$	1 3856 (19)	C24' - H24D	0.9800
C18 H18	0.9500	C24' = H24E	0.9800
C18 - C19	1 3865 (19)	C24 - H24E C24' - H24E	0.9800
C14 $H14$	0.9500	$C_{24} = H_{24}$	0.9800
C14 $C13$	1 380 (2)	C25' H25E	0.9800
$C_1 + C_1 = C_1$	0.0500	C25' H25E	0.9800
$C_3 = C_4$	1.384(2)	C25—11251	0.9800
CJC4	1.564 (2)		
C1—S1—C7	105.85 (5)	C4—C5—C6	120.88 (12)
C10—S2—C9	103.65 (5)	С4—С5—Н5	119.6
C17—S3—C16	104.74 (5)	C10—C11—H11	120.2
C9—C8—C7	112.14 (8)	C12—C11—C10	119.60 (13)
C9—C8—C16	111.46 (8)	C12—C11—H11	120.2
C16—C8—C7	105.78 (8)	C3—C4—C5	119.50 (12)
C23—C8—C7	110.11 (8)	C3—C4—H4	120.3
C23—C8—C9	106.65 (8)	C5—C4—H4	120.3
C23—C8—C16	110.77 (8)	С21—С20—Н20	120.1
S1—C7—H7A	108.6	C21—C20—C19	119.90 (13)
S1—C7—H7B	108.6	С19—С20—Н20	120.1
C8—C7—S1	114.55 (7)	C18 - C19 - C20	120.43 (14)
C8—C7—H7A	108.6	C18 - C19 - H19	119.8
C8—C7—H7B	108.6	C20-C19-H19	119.8
H7A-C7-H7B	107.6	C14—C13—H13	120.2
S2—C9—H9A	109.5	C14—C13—C12	119.53 (12)
S2—C9—H9B	109.5	C12—C13—H13	120.2
C8—C9—S2	110.82 (7)	C11—C12—H12	119.5
С8—С9—Н9А	109.5	C13—C12—C11	120.94 (13)
C8—C9—H9B	109.5	C13—C12—H12	119.5

H9A—C9—H9B	108.1	C26'—Si1'—C24'	110.96 (16)
S3—C16—H16A	108.2	C26'—Si1'—C25'	111.49 (15)
S3—C16—H16B	108.2	C24'—Si1'—C25'	111.01 (15)
C8—C16—S3	116.27 (7)	O1'—Si1'—C26'	104.9 (5)
C8—C16—H16A	108.2	O1'—Si1'—C24'	108.7 (6)
C8—C16—H16B	108.2	O1'—Si1'—C25'	109.6 (4)
H16A—C16—H16B	107.4	C26—Si1—C25	112.00 (15)
C2—C1—S1	116.04 (8)	C26—Si1—C24	111.33 (15)
C6—C1—S1	124.56 (8)	C24—Si1—C25	110.04 (13)
C6—C1—C2	119.31 (10)	01—Si1—C25	108.8 (5)
C8—C23—H23A	109.5 (7)	O1—Si1—C26	104.2 (5)
C8—C23—H23B	109.2 (7)	O1—Si1—C24	110.4 (6)
O1′—C23—C8	104.4 (4)	Si1'—C26'—H26A	109.5
O1′—C23—H23A	112.6 (10)	Si1'—C26'—H26B	109.5
O1′—C23—H23B	112.1 (10)	Si1'—C26'—H26C	109.5
O1—C23—C8	114.3 (4)	H26A—C26′—H26B	109.5
O1—C23—H23A	108.0 (10)	H26A—C26′—H26C	109.5
O1—C23—H23B	106.8 (10)	H26B—C26′—H26C	109.5
H23A—C23—H23B	108.9 (11)	Si1—C25—H25A	109.5
С10—С15—Н15	119.8	Si1—C25—H25B	109.5
C10—C15—C14	120.49 (11)	Si1—C25—H25C	109.5
C14—C15—H15	119.8	H25A—C25—H25B	109.5
C1—C2—H2	119.9	H25A—C25—H25C	109.5
C3—C2—C1	120.28 (11)	H25B—C25—H25C	109.5
С3—С2—Н2	119.9	Si1—C26—H26D	109.5
C1—C6—H6	120.2	Si1—C26—H26E	109.5
C5—C6—C1	119.65 (11)	Si1—C26—H26F	109.5
С5—С6—Н6	120.2	H26D—C26—H26E	109.5
C22—C17—S3	118.00 (10)	H26D—C26—H26F	109.5
C18—C17—S3	122.37 (10)	H26E—C26—H26F	109.5
C18—C17—C22	119.57 (12)	Si1—C24—H24A	109.5
C15—C10—S2	124.22 (9)	Si1—C24—H24B	109.5
C15—C10—C11	119.28 (11)	Si1—C24—H24C	109.5
C11—C10—S2	116.50 (10)	H24A—C24—H24B	109.5
C17—C22—H22	119.9	H24A—C24—H24C	109.5
C21—C22—C17	120.19 (13)	H24B—C24—H24C	109.5
C21—C22—H22	119.9	Si1'—C24'—H24D	109.5
C17—C18—H18	120.1	Si1'—C24'—H24E	109.5
C19—C18—C17	119.75 (13)	Si1'—C24'—H24F	109.5
C19—C18—H18	120.1	H24D—C24′—H24E	109.5
C15—C14—H14	119.9	H24D—C24′—H24F	109.5
C13—C14—C15	120.15 (13)	H24E—C24′—H24F	109.5
C13—C14—H14	119.9	Si1'—C25'—H25D	109.5
С2—С3—Н3	119.8	Si1'—C25'—H25E	109.5
C4—C3—C2	120.38 (12)	Si1'—C25'—H25F	109.5
С4—С3—Н3	119.8	H25D—C25′—H25E	109.5
C22—C21—H21	119.9	H25D—C25′—H25F	109.5
C20—C21—C22	120.13 (13)	H25E—C25′—H25F	109.5

C20—C21—H21	119.9	C23—O1'—Si1'	123.7 (7)
С6—С5—Н5	119.6	C23—O1—S11	123.6 (7)
S1—C1—C2—C3	-175.92 (10)	C23—C8—C7—S1	71.19 (9)
S1—C1—C6—C5	176.56 (10)	C23—C8—C9—S2	-169.94 (7)
S2-C10-C11-C12	179.49 (12)	C23—C8—C16—S3	-53.29 (11)
S3—C17—C22—C21	175.84 (9)	C15—C10—C11—C12	-0.3 (2)
S3—C17—C18—C19	-176.99 (9)	C15—C14—C13—C12	-0.2 (2)
C8—C23—O1'—Si1'	151.5 (9)	C2-C1-C6-C5	0.14 (18)
C8—C23—O1—Si1	163.9 (8)	C2—C3—C4—C5	0.1 (2)
C7—S1—C1—C2	-153.61 (8)	C6—C1—C2—C3	0.80 (18)
C7—S1—C1—C6	29.86 (11)	C6—C5—C4—C3	0.9 (2)
C7—C8—C9—S2	-49.35 (10)	C17—S3—C16—C8	-81.99 (9)
C7—C8—C16—S3	-172.59 (7)	C17—C22—C21—C20	1.09 (18)
C7—C8—C23—O1′	60.9 (7)	C17—C18—C19—C20	1.48 (19)
C7—C8—C23—O1	60.3 (8)	C10—S2—C9—C8	-157.51 (7)
C9—S2—C10—C15	-12.64 (11)	C10-C15-C14-C13	0.8 (2)
C9—S2—C10—C11	167.62 (10)	C10-C11-C12-C13	0.9 (2)
C9—C8—C7—S1	-47.38 (10)	C22-C17-C18-C19	0.02 (17)
C9—C8—C16—S3	65.28 (10)	C22-C21-C20-C19	0.4 (2)
C9—C8—C23—O1'	-177.2 (7)	C18—C17—C22—C21	-1.30 (17)
C9—C8—C23—O1	-177.8 (8)	C14—C15—C10—S2	179.72 (10)
C16—S3—C17—C22	129.90 (9)	C14-C15-C10-C11	-0.55 (18)
C16—S3—C17—C18	-53.05 (11)	C14—C13—C12—C11	-0.6 (3)
C16—C8—C7—S1	-169.08 (7)	C21—C20—C19—C18	-1.7 (2)
C16—C8—C9—S2	69.04 (9)	C26'—Si1'—O1'—C23	163.0 (10)
C16—C8—C23—O1'	-55.8 (7)	C25—Si1—O1—C23	47.9 (13)
C16—C8—C23—O1	-56.3 (8)	C26—Si1—O1—C23	167.5 (11)
C1—S1—C7—C8	-115.70(7)	C24—Si1—O1—C23	-72.9 (12)
C1—C2—C3—C4	-0.9 (2)	C24'—Si1'—O1'—C23	-78.3 (11)
C1—C6—C5—C4	-1.0 (2)	C25'—Si1'—O1'—C23	43.2 (13)

Selected geometric parameters for bromomethylalcohol 1 (\mathring{A} , °).

1.948 (3)	C1C3Br1	112.99 (18)
1.952 (3)	C1C4Br2	113.48 (18)
1.950 (3)	C1C5Br3	113.21 (19)
1.432 (3)	01C2C1	111.6 (2)
	1.948 (3) 1.952 (3) 1.950 (3) 1.432 (3)	1.948 (3) C1-C3-Br1 1.952 (3) C1-C4-Br2 1.950 (3) C1-C5-Br3 1.432 (3) O1-C2-C1

Selected geometric parameters for silylated thioether ligand 3 (Å, °).

S1-C7	1.8242 (11)	C1-S1-C7	105.84 (5)	
S1-C1	1.7661 (11)	C10-S2-C16	103.67 (5)	
S2-C9	1.8183 (11)	C17–S3–C16	104.74 (5)	
S2-C10	1.7621 (12)	C23–O1–Si1	123.3 (8)	
S3-C16	1.8211 (11)	C23–O1'–Si1'	123.8 (8)	
S3-C17	1.7739 (13)			
O1–C23	1.385 (17)			

O1′–C23	1.480 (15)
O1–Si1	1.636 (14)
01'–Si1'	1.669 (15)