Syntheses and crystal structures of three novel oxalate coordination compounds: $Rb_2Co(C_2O_4)_2 \cdot 4H_2O$, $Rb_2CoCl_2(C_2O_4)$ and $K_2Li_2Cu(C_2O_4)_3 \cdot 2H_2O$

Rebecca Clulow^{a,b}* and Philip Lightfoot^b

^aDepartment of Chemistry - Ångström Laboratory, Lägerhyddsvägen 1, Box 538, 751 21, Uppsala, Sweden, and ^bSchool of Chemistry, University of St Andrews, KY16 9ST, Scotland, United Kingdom. *Correspondence e-mail: rebecca.clulow@kemi.uu.se

Single crystals of three novel transition-metal oxalates, dirubidium diaquadioxalatocobalt(II) dihydrate or dirubidium cobalt(II) bis(oxalate) tetrahydrate, Rb₂[Co(C₂O₄)₂(H₂O)₂]·2H₂O, (I), *catena*-poly[dirubidium [[dichloridocobalt(II)]- μ -oxalato]] or dirubidium cobalt(II) dichloride oxalate, {Rb₂[CoCl₂(C₂O₄)]}_n, (II), and poly[dipotassium [tri- μ -oxalato-copper(II)dilithium] dihydrate] or dipotassium dilithium copper(II) tris(oxalate) dihydrate, {K₂[Li₂Cu(C₂O₄)₃]·2H₂O}_n, (III), have been grown under hydrothermal conditions and their crystal structures determined using single-crystal X-ray diffraction. The structure of (I) exhibits isolated octahedral [Co(C₂O₄)₂(H₂O)₂] units, whereas (II) consists of *trans* chains of Co²⁺ ions bridged by bidentate oxalato ligands and (III) displays a novel tri-periodic network of Li⁺ and Cu²⁺ ions linked by oxalato bridging ligands.

1. Chemical context

Oxalate-based transition-metal complexes have long attracted interest because of their promising magnetic and electrochemical properties. Their magnetic properties are in part due to the oxalato ligand, which is known to facilitate magnetic exchange between transition-metal cations, and the compounds are known to exhibit both ferro- and antiferromagnetic interactions (Miller & Drillon, 2002; Baran, 2014). In addition to their magnetic properties, there have also been numerous studies concerning their electrochemical properties, which have shown promising results (Pramanik et al., 2022; Cai et al., 2020; Yao et al., 2019). Part of the appeal of oxalate-based coordination compounds is due to their high degree of structural diversity, as a result of the oxalate ligand, which can adopt 17 different coordination modes and act as a mono-, bi-, tri- or tetradentate ligand (Rao et al., 2004). This has led to a vast compositional area, which is yet to be fully explored. In this context, the crystal structures of three new oxalate-based coordination compounds are reported and discussed herein.

2. Structural commentary

Rb₂Co(C₂O₄)₂·4H₂O (I) consists of isolated $[Co(C_2O_4)_2$ ·(H₂O)₂] octahedra. The Co²⁺ cation lies on the 2*c* Wyckoff position with a site symmetry of \overline{I} , leading to a *trans* disposition of the bidentate oxalato and aqua ligands (Fig. 1). The

CRYSTALLOGRAPHIC

COMMUNICATIONS

ISSN 2056-9890

Received 15 December 2022 Accepted 27 February 2023

Technology, Austria

2245037

Edited by M. Weil, Vienna University of

Keywords: crystal structure; oxalates; coordina-

tion compounds; first-row transition metals.

CCDC references: 2245039; 2245038;

Supporting information: this article has

supporting information at journals.iucr.org/e

research communications

Figure 1

Coordination environment of Co^{2+} in $Rb_2Co(C_2O_4)_2 \cdot 4H_2O$ (I). Colour code: Co (blue), C (black), O (red) and H (light pink). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (viii) -x + 1, -y, -z + 1].

average Co–O bond length was determined as 2.080 Å, with a calculated bond-valence sum of 2.10 valence units. The Rb⁺ cation has a coordination number of 11, defined by oxalate O atoms and water molecules. While the water molecule involving O1 coordinates to both Rb⁺ and Co²⁺, the second water

Figure 2

The hydrogen-bonding network of $Rb_2Co(C_2O_4)_2$ · $2H_2O$ (I) viewed along the *a* and *b* axes. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen bonds are shown as dashed lines. Colour code: Rb (pink), Co (blue), C (black), O (red) and H (light pink).

Figure 3

Coordination environment of Co^{2+} in Rb₂CoCl₂(C₂O₄) (II). Colour code: Co (blue), Cl (green), C (black) and O (red). Displacement ellipsoids are drawn at 50% probability level. [Symmetry codes: (i) -x + 1, y, -z + 1; (vii) x, -y + 2, z; (viii) -x + 1, -y + 2, -z + 1; (ix) -x + 2, -y + 2, -z + 1; (xii) x - 1, y, z].

Table 1	
Hydrogen-bond geometry (Å, °) for (I).

	•	, , ,		
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O2−H1···O4	0.89 (4)	2.00 (4)	2.880 (2)	171 (4)
$O2-H2\cdots O4^{i}$	0.85 (5)	2.47 (5)	3.187 (2)	143 (4)
$O2-H2\cdots O6^{i}$	0.85 (5)	2.20 (5)	3.008 (2)	159 (4)
$O1-H3\cdots O5^{ii}$	0.76 (3)	1.98 (3)	2.736 (2)	174 (3)
$O1-H4\cdots O6^{iii}$	0.78 (3)	2.05 (3)	2.825 (2)	172 (3)
Symmetry codes: $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$	(i) $-x+2$,	-y, -z+1; (1	ii) $-x + \frac{3}{2}, y + \frac{3}{2}$	$\frac{1}{2}, -z + \frac{3}{2};$ (iii)

molecule involving O2 solely bonds to the alkali metal cation. The $[Co(C_2O_4)_2(H_2O)_2]$ octahedra are interlinked by hydrogen bonding of both types of water molecules, as shown in Fig. 2. The mutually *trans* coordinating water molecules (H3, O1, H4) form hydrogen bonds with the oxalate ligands of the neighbouring $[Co(C_2O_4)_2(H_2O)_2]$ octahedra, whilst the second type of water molecule (H1, O2, H2) forms hydrogen bonds (in part bifurcated) with the oxalate ligands of two separate $[Co(C_2O_4)_2(H_2O)_2]$ octahedra. Numerical data for the hydrogen-bonding interactions are given in Table 1.

Rb₂CoCl₂(C₂O₄) (II) consists of octahedrally coordinated Co²⁺ cations. They are linked by bis-bidentate oxalate ligands to form chains extending parallel to the *a* axis, as shown in Fig. 3. The oxalate ligands are mutually *trans* to one another whilst the Cl⁻ anions cap each side of the octahedron. Co–O bond lengths are 2.0616 (17) Å and longer for the Co–Cl bond at 2.4863 (9) Å, with a calculated bond-valence sum of 2.03 valence units for Co. The Rb⁺ cation has a coordination number of eight and lies between the layers formed by the Co²⁺ chains (Fig. 4), with no direct connectivity between the chains. Each of the atoms lies on a special position within the unit cell with Wyckoff positions/site symmetries: Rb⁺

Figure 4 The crystal structure of $Rb_2CoCl_2(C_2O_4)$ (II) in a view approximately along the *a* axis.

Figure 5

Coordination environments of Cu²⁺ and of Li⁺ in the crystal structure of K₂Li₂Cu(C₂O₄)₃·2H₂O (III). Colour code: Li (green), Cu (Blue), C (black) and O (red). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (vii) -x, -y, -z + 1; (ix) x + 1, y + 1, z; (xi) x - 1, y, z; (xii) -x + 1, -y + 1, -z + 1; (xiii) x + 1, y + 1, z + 1].

(4*i*, *mm*2), $\operatorname{Co}^{2+}(2d, mmm)$, $\operatorname{Cl}^{-}(4j, mm2)$, O (8*n*, *.m*) and C (4*h*, *m*2*m*). The presence of the oxalate-bridged Co²⁺ chain could allow for magnetic exchange (García-Couceiro *et al.*, 2004), hence the magnetic properties of the compound should also be investigated in the future.

The Cu²⁺ and Li⁺ binding environments of K₂Li₂Cu- $(C_2O_4)_3$ ·2H₂O (III) are shown in Fig. 5. The d^9 Cu²⁺ cations display classic Jahn-Teller distortion with elongation of the axial Cu-O bonds. The equatorial Cu-O bond lengths are 1.938 (3) (O2) and 1.942 (3) (O1) Å whilst the axial bonds are significantly longer at 2.473 (4) Å (O6). The Cu^{2+} ion lies on a special position with Wyckoff position and site symmetry of 6b and $\overline{3}$, respectively. The Cu²⁺ coordination environment consists of four oxalate ligands, two of which act as bidentate bridging ligands and two of which are axially oriented and bind to four metal cations with a tricoordinate oxygen atom. The Li⁺ cation is tetrahedrally coordinated by three oxalate molecules, one of which is bidentate whilst the other two are monodentate. The Cu²⁺ and Li⁺-centred polyhedra are interconnected into a tri-periodic network, as shown in Fig. 6. The coordination environment of the K⁺ cation lies within this network and consists of eight oxygen atoms from the oxalate ligands and two water molecules. These water molecules exhibit disorder of the O7 atom, which is split into two positions. The interatomic distances between the water molecules is ~ 3.7 Å, which is too far apart to facilitate hydrogen bonding.

3. Database survey

Database surveys were carried out using the Cambridge Structural Database (CSD, last update November 2022; Groom *et al.*, 2016) for compounds with structural similarities to the three new oxalate coordination compounds reported here. For (I), a search for first-row transition metals with the

Figure 6 The crystal structure of $K_2Li_2Cu(C_2O_4)_3 \cdot 2H_2O$ (III) viewed along the *a* axis.

same coordination environment produced numerous results for a range of transition metals. The most similar is DIHXID [dipotassium] bis(oxalato)diaquacobalt(II) tetrahydrate; Chylewska et al., 2013), which has the same formula type and coordination environment as (I) although with K⁺ rather Rb⁺ cations, but is not isostructural. For (II), there are several compounds containing transition-metal oxalate chains with the same binding environment, although with quite different cations involved. For example BEJHOQ {catena-[bis(2-(5,6dihydro-2H-[1,3]dithiolo[4,5-b][1,4]dithiin-2-ylidene)-5,6-dihydro-2*H*-[1,3]dithiolo[4,5-*b*][1,4]dithiin-1-ium) bis(μ -oxalato)tetrachlorodiiron(III) dichloromethane solvate]} and EYALIB {catena-[bis(2-(5,6-dihydro-2H-[1,3]diselenolo[4,5b][1,4]dithiin-2-ylidene)-5,6-dihydro-2H-[1,3]diselenolo[4,5*b*][1,4]dithiin-1-ium) $bis(\mu$ -oxalato)tetrachlorodiiron(III)]; Zhang, 2016, 2017). The database survey of compounds with similar binding environments to (III) focused on first-row transition metals with two bidentate and two mutually trans monodentate oxalate ligands, containing a tricoordinating oxygen atom. The search revealed evidence of only two similar compounds, viz. ADAJUL [octaammonium hexakis(μ_2 oxalato-O,O,O')bis(oxalato-O,O')diaquatetracopper(II) tetrahydrate] and ASOXOV {bis[1,4-diazoniabicyclo(2.2.2)octane]bis(μ_2 -oxalato)diaquabis(oxalato)dicopper(II) tetrahydrate; Kadir et al., 2006; Keene et al., 2004]. These contain similar types of linkages, although with only one type of cation and only as discrete molecules rather than coordination polymers. Hence, (III) represents the first example of this type of binding environment.

research communications

Table	2	
Experi	mental	details

	(I)	(II)	(III)
Crystal data			
Chemical formula	$Rb_{2}[Co(C_{2}O_{4})_{2}(H_{2}O)_{2}]\cdot 2H_{2}O$	$Rb_2[CoCl_2(C_2O_4)]$	$K_2[Li_2Cu(C_2O_4)_3]\cdot 2H_2O$
M_r	477.97	388.79	455.71
Crystal system, space group	Monoclinic, $P2_1/n$	Orthorhombic, Immm	Triclinic, $P\overline{1}$
Temperature (K)	173	173	173
a, b, c (Å)	7.8434 (5), 7.0795 (4), 10.9133 (7)	5.3445 (3), 6.4380 (4), 12.5866 (8)	6.1847 (4), 7.2575 (5), 8.1795 (5)
α, β, γ (°)	90, 102.836 (8), 90	90, 90, 90	101.327 (11), 91.723 (11), 113.563 (11)
$V(Å^3)$	590.84 (7)	433.08 (5)	327.56 (5)
Z	2	2	1
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	9.70	13.73	2.39
Crystal size (mm)	$0.21 \times 0.16 \times 0.08$	$0.20 \times 0.15 \times 0.07$	$0.14 \times 0.14 \times 0.07$
Data collection			
Diffractometer	Rigaku Mercury2 (2x2 bin mode)	Rigaku Mercury2 (2x2 bin mode)	Rigaku Mercury2 (2x2 bin mode)
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.681, 1.00	0.671, 1.00	0.610, 1.00
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5799, 1343, 1169	2218, 310, 296	3403, 1500, 1077
R _{int}	0.039	0.034	0.095
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.650	0.649	0.651
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.021, 0.050, 0.97	0.018, 0.043, 1.11	0.045, 0.114, 0.94
No. of reflections	1343	310	1500
No. of parameters	104	22	132
H-atom treatment	All H-atom parameters refined	_	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.65, -0.64	0.63, -0.53	1.03, -1.01

Computer programs: CrystalClear (Rigaku, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and ORTEP for Windows and WinGX (Farrugia, 2012).

4. Synthesis and crystallization

The samples were synthesized *via* hydrothermal syntheses in the temperature range 433–463 K over four days, from commercially available starting reagents. Compounds (I) and (II) were synthesized as by-products from the reaction of rubidium carbonate, sodium carbonate, cobalt chloride hexahydrate and oxalic acid dihydrate in molar ratios of 2:2:1:1.5 and 1:1.5:1:1.5 at 433 and 463 K, respectively. Compound (III) was synthesized by the reaction of potassium carbonate, lithium carbonate, copper chloride dihydrate and oxalic acid dihydrate (1:3:1:3) at 463 K. Single crystals were isolated from a mixture of products for further analysis. The resulting crystals were filtered and dried overnight at 323 K prior to analysis by X-ray diffraction.

5. Refinement

Crystal data and refinement details of the three compounds are summarized in Table 2. The H atoms in (I) and (III) were allowed to refine freely. The disordered oxygen atom in compound III (O7) was split over two positions with their occupancies fixed at 0.5 while their atomic coordinates and U^{ij} s were refined independently.

Funding information

The authors would like to acknowledge the EPSRC for a Doctoral studentship to RC DTG012 EP/K503162–1 and the

Swedish foundation for strategic research (SSF), project contract EM-16-0039.

References

- Baran, E. J. (2014). J. Coord. Chem. 67, 3734-3768.
- Cai, J., Lan, Y., He, H., Zhang, X., Armstrong, A. R., Yao, W., Lightfoot, P. & Tang, Y. (2020). *Inorg. Chem.* 59, 16936– 16943.
- Chylewska, A., Sikorski, A., Dąbrowska, A. & Chmurzyński, L. (2013). Cent. Eur. J. Chem. 11, 8–15.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Garciacute;a-Couceiro, U., Castillo, O., Luque, A., Beobide, G. & Román, P. (2004). Inorg. Chim. Acta, 357, 339–344.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kadir, K., Mohammad Ahmed, T., Noreús, D. & Eriksson, L. (2006). Acta Cryst. E62, m1139-m1141.
- Keene, T. D., Hursthouse, M. B. & Price, D. J. (2004). Acta Cryst. E60, m378–m380.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Miller, J. S. & Drillon, M. (2002). *Magnetism: Molecules to Materials IV*. Weinheim: Wiley-VCH.
- Pramanik, A., Manche, A. G., Clulow, R., Lightfoot, P. & Armstrong, A. R. (2022). *Dalton Trans.* 51, 12467–12475.
- Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.
- Rigaku (2015). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Yao, W., Armstrong, A. R., Zhou, X., Sougrati, M. T., Kidkhunthod, P., Tunmee, S., Sun, C., Sattayaporn, S., Lightfoot, P., Ji, B., Jiang, C.,

Wu, N., Tang, Y. & Cheng, H. M. (2019). *Nat. Commun.* 10, 33483. https://doi.org/10.1038/s41467-019-11077-0
Zhang, B. (2016). Private communication (refcode: EYALIB).

CCDC, Cambridge, England.

Zhang, B. (2017). Private communication (refcode: BEJHOQ). CCDC, Cambridge, England.

Acta Cryst. (2023). E79, 267-271 [https://doi.org/10.1107/S2056989023001822]

Syntheses and crystal structures of three novel oxalate coordination compounds: Rb₂Co(C₂O₄)₂·4H₂O, Rb₂CoCl₂(C₂O₄) and K₂Li₂Cu(C₂O₄)₃·2H₂O

Rebecca Clulow and Philip Lightfoot

Computing details

For all structures, data collection: *CrystalClear* (Rigaku, 2015); cell refinement: *CrystalClear* (Rigaku, 2015); data reduction: *CrystalClear* (Rigaku, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP* for Windows (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Dirubidium diaquadioxalatocobalt(II) dihydrate (I)

Crystal data

```
Rb<sub>2</sub>[Co(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·2H<sub>2</sub>O

M_r = 477.97

Monoclinic, P2_1/n

Hall symbol: -P 2yn

a = 7.8434 (5) Å

b = 7.0795 (4) Å

c = 10.9133 (7) Å

\beta = 102.836 (8)°

V = 590.84 (7) Å<sup>3</sup>

Z = 2
```

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer Radiation source: Sealed Tube Detector resolution: 13.6612 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.681, T_{\max} = 1.00$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.050$ S = 0.971343 reflections 104 parameters 0 restraints F(000) = 458 $D_x = 2.687 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 935 reflections $\theta = 1.9-27.5^{\circ}$ $\mu = 9.70 \text{ mm}^{-1}$ T = 173 KPrism, orange $0.21 \times 0.16 \times 0.08 \text{ mm}$

5799 measured reflections 1343 independent reflections 1169 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -9 \rightarrow 9$ $l = -14 \rightarrow 13$

Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0323P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.65$ e Å⁻³ $\Delta\rho_{min} = -0.64$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Rb1	0.81534 (3)	0.66030 (3)	0.37962 (2)	0.01935 (9)
Col	0.500000	0.000000	0.500000	0.01014 (11)
01	0.5165 (2)	0.2912 (2)	0.49112 (17)	0.0160 (3)
O2	0.8705 (2)	0.2408 (3)	0.39553 (17)	0.0236 (4)
O3	0.50631 (18)	0.0198 (2)	0.69060 (13)	0.0143 (3)
O4	0.77067 (18)	-0.0152 (2)	0.57235 (13)	0.0139 (3)
05	0.6916 (2)	-0.0314 (2)	0.87422 (14)	0.0186 (3)
O6	0.96271 (19)	0.0330 (2)	0.75326 (14)	0.0191 (3)
C1	0.6578 (3)	-0.0014 (3)	0.75938 (19)	0.0118 (4)
C2	0.8121 (3)	0.0076 (3)	0.69128 (19)	0.0122 (4)
H1	0.828 (5)	0.168 (5)	0.449 (4)	0.056 (11)*
H2	0.942 (6)	0.173 (6)	0.367 (4)	0.079 (15)*
Н3	0.594 (4)	0.342 (4)	0.532 (3)	0.023 (8)*
H4	0.494 (4)	0.345 (4)	0.427 (3)	0.029 (9)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rb1	0.01880 (14)	0.02412 (14)	0.01580 (13)	0.00190 (8)	0.00529 (9)	0.00010 (8)
Co1	0.0105 (2)	0.01303 (19)	0.00658 (19)	0.00024 (14)	0.00112 (15)	-0.00043 (14)
01	0.0195 (9)	0.0142 (7)	0.0118 (8)	-0.0033 (6)	-0.0020 (7)	0.0004 (6)
O2	0.0248 (10)	0.0268 (9)	0.0231 (9)	-0.0002(8)	0.0138 (8)	0.0007 (7)
O3	0.0123 (7)	0.0216 (7)	0.0083 (7)	0.0009 (6)	0.0011 (6)	-0.0011 (6)
O4	0.0121 (7)	0.0202 (7)	0.0093 (7)	0.0010 (6)	0.0024 (6)	-0.0012 (6)
O5	0.0180 (8)	0.0291 (8)	0.0081 (7)	0.0000 (6)	0.0016 (6)	0.0021 (6)
O6	0.0126 (8)	0.0305 (9)	0.0126 (7)	-0.0007 (7)	-0.0009 (6)	0.0005 (7)
C1	0.0138 (10)	0.0119 (9)	0.0099 (9)	-0.0008(7)	0.0031 (8)	-0.0019 (8)
C2	0.0134 (10)	0.0103 (9)	0.0130 (10)	0.0020 (8)	0.0032 (8)	0.0014 (8)

Geometric parameters (Å, °)

Rb1—O2	3.0003 (18)	Co1—O1 ^{viii}	2.0690 (16)
Rb1—O5 ⁱ	3.0209 (16)	Co1—O1	2.0690 (16)
Rb1—O3 ⁱⁱ	3.0819 (15)	Co1—O3 ^{viii}	2.0744 (14)
Rb1—O2 ⁱⁱⁱ	3.0856 (19)	Co1—O3	2.0744 (14)
Rb1—O5 ⁱⁱ	3.1023 (16)	Co1—O4	2.0969 (14)
Rb1—O6 ^{iv}	3.1190 (15)	Co1—O4 ^{viii}	2.0969 (14)
Rb1—O2 ^v	3.1461 (19)	O3—C1	1.265 (2)
Rb1—O4 ^{vi}	3.1862 (15)	O4—C2	1.276 (3)

Rb1—O1 ^{vii}	3.2421 (17)	O5—C1	1.240 (3)
Rb1—O6 ^v	3.3122 (16)	O6—C2	1.237 (3)
Rb1—O3 ^{vii}	3.3497 (15)	C1—C2	1.556 (3)
O2—Rb1—O5 ¹	62.28 (5)	$O2^{in}$ —Rb1—O3 ^{vn}	58.91 (4)
O2—Rb1—O3 ⁿ	62.87 (4)	$O5^{n}$ —Rb1— $O3^{vn}$	149.98 (4)
$O5^{i}$ —Rb1— $O3^{ii}$	121.12 (4)	$O6^{iv}$ —Rb1— $O3^{vii}$	69.30 (4)
O2—Rb1—O2 ⁱⁱⁱ	105.67 (5)	O2 ^v —Rb1—O3 ^{vii}	116.60 (4)
O5 ⁱ —Rb1—O2 ⁱⁱⁱ	148.26 (5)	$O4^{vi}$ —Rb1—O3 ^{vii}	58.39 (4)
O3 ⁱⁱ —Rb1—O2 ⁱⁱⁱ	67.65 (4)	O1 ^{vii} —Rb1—O3 ^{vii}	52.51 (4)
O2—Rb1—O5 ⁱⁱ	65.45 (5)	O6 ^v —Rb1—O3 ^{vii}	84.20 (4)
O5 ⁱ —Rb1—O5 ⁱⁱ	95.16 (4)	O1 ^{viii} —Co1—O1	180.0
O3 ⁱⁱ —Rb1—O5 ⁱⁱ	42.24 (4)	O1 ^{viii} —Co1—O3 ^{viii}	89.52 (6)
O2 ⁱⁱⁱⁱ —Rb1—O5 ⁱⁱ	106.35 (5)	O1—Co1—O3 ^{viii}	90.48 (6)
O2—Rb1—O6 ^{iv}	72.16 (5)	O1 ^{viii} —Co1—O3	90.48 (6)
O5 ⁱ —Rb1—O6 ^{iv}	90.38 (4)	O1—Co1—O3	89.52 (6)
$O3^{ii}$ —Rb1— $O6^{iv}$	92.16 (4)	$O3^{\text{viii}}$ —Co1—O3	180.0
$\Omega^{2^{iii}}$ Rb1 $\Omega^{6^{iv}}$	58.00(5)	01^{viii} 01^{viii}	89.98 (6)
$O5^{ii}$ Rb1 $O6^{iv}$	128.06(4)	$01 - C_01 - 04$	90.02 (6)
O_2 Rb1 O_2^{v}	95 58 (5)	O_{3}^{viii} Col O_{4}^{viii}	90.02 (0) 90.83 (6)
$O_2 = RO1 = O_2$	95.58 (5) 64.67 (5)	03 - 01 - 04	99.85 (0) 80.17 (6)
O_{2ii} Bb1 O_{2i}	101.60(4)	0.1^{xiii} Col 0.4^{xiii}	00.02(6)
O_2 $H_0 = O_2$	101.00(4) 146.70(5)	O1 - Co1 - O4	90.02 (0) 80.08 (6)
O_2^{m} RDI O_2^{m}	140.79(3)	$01 - 01 - 04^{111}$	89.98 (0) 80.17 (()
$O5^{\mu}$ Rb1 $O2^{\nu}$	59.77 (4)	$03^{\text{m}} - 01 - 04^{\text{m}}$	80.17(6)
$O6^{tv}$ —Rb1— $O2^{v}$	155.02 (4)	$03-001-04^{\text{with}}$	99.83 (6)
$O2$ —Rb1— $O4^{v1}$	135.32 (4)	O4—Co1—O4 ^{vm}	180.0
$O5^{1}$ —Rb1—O4 ^{v1}	73.17 (4)	Col—Ol—Rbl ^{vn}	91.19 (6)
$O3^{n}$ —Rb1—O4 ^{vi}	151.80 (4)	Rb1—O2—Rb1 ^{1x}	95.49 (5)
O2 ⁱⁱⁱ —Rb1—O4 ^{vi}	114.32 (4)	Rb1—O2—Rb1 ^v	84.42 (4)
O5 ⁱⁱ —Rb1—O4 ^{vi}	117.99 (4)	Rb1 ^{ix} —O2—Rb1 ^v	156.77 (7)
$O6^{iv}$ —Rb1—O4 ^{vi}	113.04 (4)	C1—O3—Co1	113.38 (13)
$O2^{v}$ —Rb1—O4 ^{vi}	60.44 (4)	C1—O3—Rb1 ^x	94.92 (12)
O2—Rb1—O1 ^{vii}	101.48 (5)	Co1—O3—Rb1 ^x	137.42 (6)
O5 ⁱ —Rb1—O1 ^{vii}	59.06 (4)	C1—O3—Rb1 ^{vii}	140.90 (12)
O3 ⁱⁱ —Rb1—O1 ^{vii}	153.07 (4)	Co1—O3—Rb1 ^{vii}	88.13 (5)
O2 ⁱⁱⁱ —Rb1—O1 ^{vii}	98.78 (5)	Rb1 ^x	88.83 (4)
O5 ⁱⁱ —Rb1—O1 ^{vii}	153.95 (4)	C2—O4—Co1	112.61 (13)
O6 ^{iv} —Rb1—O1 ^{vii}	61.33 (4)	C2—O4—Rb1 ^{xi}	136.21 (12)
$O2^{v}$ —Rb1—O1 ^{vii}	101.68 (5)	Co1—O4—Rb1 ^{xi}	92.24 (5)
$O4^{vi}$ —Rb1—O1 ^{vii}	54.53 (4)	$C1 - O5 - Rb1^{xii}$	141.22(13)
Ω^2 —Rb1— Ω^6^v	126 25 (5)	$C1 = O5 = Rb1^{\times}$	94 51 (12)
$O5^{i}$ Rb1 $O6^{v}$	120.23(3) 14303(4)	$Rh1^{xii}$ $O5$ $Rh1^{x}$	84 84 (4)
$O3^{ii}$ _Rb1_O6 ^v	66 26 (4)	$C^2 - C^2 - Rb1^{xiii}$	145 41 (13)
Ω^{2} Rb1 Ω^{4}	68 49 (4)	$C_2 = 00 = R01$	112 75 (12)
02 - R01 - 00 05^{ii} Ph1 06^{v}	65 70 (4)	$C_2 \longrightarrow C_0 \longrightarrow C_0$ Dh1xiii $O_1 \longrightarrow C_0$	112.73(13)
$O_{\text{L}} = \mathbf{R} \mathbf{U} \mathbf{I} = \mathbf{U} \mathbf{U}^{\text{L}}$	126 40 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00.00 (4)
$O0^{\circ}$ $R01 - 00^{\circ}$	120.49 (2)	03-01-03	123.37 (19)
UZ^{*} —KDI—U6 [*]	/8.39 (4)	05-01-02	118.35 (18)
$O4^{v_1}$ —Rb1— $O6^{v}$	87.81 (4)	O3—C1—C2	116.07 (17)

O1 ^{vii} —Rb1—O6 ^v	132.20 (4)	O6—C2—O4	124.8 (2)
O2—Rb1—O3 ^{vii}	140.70 (5)	O6—C2—C1	119.63 (18)
O5 ⁱ —Rb1—O3 ^{vii}	110.22 (4)	O4—C2—C1	115.52 (18)
O3 ⁱⁱ —Rb1—O3 ^{vii}	125.45 (2)		

Symmetry codes: (i) -*x*+3/2, *y*+1/2, -*z*+3/2; (ii) *x*+1/2, -*y*+1/2, *z*-1/2; (iii) -*x*+3/2, *y*+1/2, -*z*+1/2; (iv) *x*-1/2, -*y*+1/2, *z*-1/2; (v) -*x*+2, -*y*+1, -*z*+1; (vi) *x*, *y*+1, *z*; (vii) -*x*+1, -*y*+1, -*z*+1; (viii) -*x*+1, -*y*, -*z*+1; (ix) -*x*+3/2, *y*-1/2, -*z*+1/2; (x) *x*-1/2, -*y*+1/2, *z*+1/2; (xi) *x*, *y*-1, *z*; (xii) -*x*+3/2, *y*-1/2, -*z*+3/2; (xiii) x+1/2, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
02—H1…O4	0.89 (4)	2.00 (4)	2.880 (2)	171 (4)	
O2—H2····O4 ^{xiv}	0.85 (5)	2.47 (5)	3.187 (2)	143 (4)	
O2—H2···O6 ^{xiv}	0.85 (5)	2.20 (5)	3.008 (2)	159 (4)	
O1—H3…O5 ⁱ	0.76 (3)	1.98 (3)	2.736 (2)	174 (3)	
01—H4…O6 ^{iv}	0.78 (3)	2.05 (3)	2.825 (2)	172 (3)	

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (iv) x-1/2, -y+1/2, z-1/2; (xiv) -x+2, -y, -z+1.

catena-Poly[dirubidium [[dichloridocobalt(II)]-µ-oxalato]] (II)

Crystal data

$Rb_2[CoCl_2(C_2O_4)]$	F(000) = 358
$M_r = 388.79$	$D_{\rm x} = 2.981 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Immm	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
Hall symbol: -I 2 2	Cell parameters from 800 reflection
a = 5.3445 (3) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 6.4380 (4) Å	$\mu = 13.73 \text{ mm}^{-1}$
c = 12.5866 (8) Å	T = 173 K
$V = 433.08 (5) Å^3$	Prism, purple
Z = 2	$0.20 \times 0.15 \times 0.07 \text{ mm}$

Data collection

Rigaku Mercury2 (2x2 bin mode)	2218 measured reflections
diffractometer	310 independent reflections
Radiation source: Sealed Tube	296 reflections with $I > 2\sigma(I)$
Detector resolution: 13.6612 pixels mm ⁻¹	$R_{\rm int} = 0.034$
profile data from ω -scans	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 3.2^\circ$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(SADABS; Krause et al., 2015)	$k = -8 \rightarrow 8$
$T_{\min} = 0.671, \ T_{\max} = 1.00$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2 0 res	straints
Least-squares matrix: full $w =$	$1/[\sigma^2(F_o^2) + (0.0276P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.018$ w	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.043 \tag{$\Delta/\sigma$}$	$\sigma_{\rm max} < 0.001$
$S = 1.11$ $\Delta \rho_{\rm m}$	$_{ax} = 0.63 \text{ e} \text{ Å}^{-3}$
310 reflections $\Delta \rho_{\rm m}$	$_{\rm in} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$
22 parameters	

ons

²]

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Rb1	0.500000	0.500000	0.34642 (3)	0.01924 (15)	
Col	0.500000	1.000000	0.500000	0.01332 (18)	
C11	0.500000	1.000000	0.30247 (7)	0.0198 (2)	
O1	0.7911 (3)	0.7898 (2)	0.500000	0.0154 (4)	
C1	1.000000	0.8775 (5)	0.500000	0.0123 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rb1	0.0230 (2)	0.0136 (2)	0.0211 (2)	0.000	0.000	0.000
Col	0.0072 (3)	0.0105 (3)	0.0222 (3)	0.000	0.000	0.000
Cl1	0.0233 (4)	0.0172 (4)	0.0190 (4)	0.000	0.000	0.000
01	0.0106 (9)	0.0106 (7)	0.0251 (8)	-0.0006 (6)	0.000	0.000
C1	0.0119 (16)	0.0125 (16)	0.0125 (14)	0.000	0.000	0.000
U1	0.0119 (10)	0.0125 (10)	0.0120 (14)	0.000	0.000	0.000

Geometric parameters (Å, °)

Rb1—O1	3.1045 (13)	Co1—O1 ^{vii}	2.0616 (17)
Rb1—O1 ⁱ	3.1045 (13)	Co1—O1 ⁱ	2.0616 (17)
Rb1—O1 ⁱⁱ	3.1045 (13)	Co1—O1 ^{viii}	2.0616 (17)
Rb1—O1 ⁱⁱⁱ	3.1045 (13)	Co1—O1	2.0616 (17)
Rb1—Cl1 ^{iv}	3.2639 (6)	Co1—Cl1 ^{viii}	2.4863 (9)
Rb1—Cl1 ^v	3.2639 (6)	Co1—Cl1	2.4863 (9)
Rb1—Cl1 ^{vi}	3.2662 (3)	O1—C1	1.251 (2)
Rb1—Cl1	3.2662 (3)	C1—C1 ^{ix}	1.577 (6)
O1—Rb1—O1 ⁱ	60.14 (6)	O1 ^{vii} —Co1—O1	82.03 (9)
O1—Rb1—O1 ⁱⁱ	73.89 (5)	O1 ⁱ —Co1—O1	97.97 (9)
O1 ⁱ —Rb1—O1 ⁱⁱ	102.98 (4)	O1 ^{viii} —Co1—O1	180.0
O1—Rb1—O1 ⁱⁱⁱ	102.98 (4)	O1 ^{vii} —Co1—Cl1 ^{viii}	90.0
O1 ⁱ —Rb1—O1 ⁱⁱⁱ	73.89 (5)	O1 ⁱ —Co1—Cl1 ^{viii}	90.0
O1 ⁱⁱ —Rb1—O1 ⁱⁱⁱ	60.14 (6)	O1 ^{viii} —Co1—Cl1 ^{viii}	90.0
O1—Rb1—Cl1 ^{iv}	140.15 (3)	O1—Co1—Cl1 ^{viii}	90.0
O1 ⁱ —Rb1—Cl1 ^{iv}	86.98 (3)	O1 ^{vii} —Co1—Cl1	90.0
O1 ⁱⁱ —Rb1—Cl1 ^{iv}	140.15 (3)	O1 ⁱ —Co1—Cl1	90.0
O1 ⁱⁱⁱ —Rb1—Cl1 ^{iv}	86.98 (3)	O1 ^{viii} —Co1—Cl1	90.0
O1—Rb1—Cl1 ^v	86.98 (3)	O1—Co1—Cl1	90.0
O1 ⁱ —Rb1—Cl1 ^v	140.15 (3)	Cl1 ^{viii} —Co1—Cl1	180.0
O1 ⁱⁱ —Rb1—Cl1 ^v	86.98 (3)	Co1-Cl1-Rb1 ^{iv}	125.042 (14)

O1 ⁱⁱⁱ —Rb1—Cl1 ^v	140.15 (3)	Co1—Cl1—Rb1 ^v	125.042 (14)
Cl1 ^{iv} —Rb1—Cl1 ^v	109.92 (3)	$Rb1^{iv}$ — $Cl1$ — $Rb1^{v}$	109.92 (3)
O1—Rb1—Cl1 ^{vi}	134.25 (3)	Co1—Cl1—Rb1	80.247 (16)
O1 ⁱ —Rb1—Cl1 ^{vi}	134.25 (3)	Rb1 ^{iv} —Cl1—Rb1	95.582 (8)
O1 ⁱⁱ —Rb1—Cl1 ^{vi}	60.86 (3)	Rb1 ^v —Cl1—Rb1	95.582 (8)
O1 ⁱⁱⁱ —Rb1—Cl1 ^{vi}	60.86 (3)	Co1—Cl1—Rb1 ^x	80.246 (16)
Cl1 ^{iv} —Rb1—Cl1 ^{vi}	84.419 (8)	Rb1 ^{iv} —Cl1—Rb1 ^x	95.582 (8)
Cl1 ^v —Rb1—Cl1 ^{vi}	84.419 (8)	Rb1 ^v —Cl1—Rb1 ^x	95.582 (8)
O1—Rb1—Cl1	60.86 (3)	Rb1—Cl1—Rb1 ^x	160.49 (3)
O1 ⁱ —Rb1—Cl1	60.86 (3)	C1	112.18 (16)
O1 ⁱⁱ —Rb1—Cl1	134.25 (3)	C1—O1—Rb1 ⁱⁱⁱ	135.91 (8)
O1 ⁱⁱⁱ —Rb1—Cl1	134.25 (3)	Co1—O1—Rb1 ⁱⁱⁱ	90.94 (5)
Cl1 ^{iv} —Rb1—Cl1	84.418 (8)	C1—O1—Rb1	135.91 (8)
Cl1 ^v —Rb1—Cl1	84.418 (8)	Co1—O1—Rb1	90.94 (5)
Cl1 ^{vi} —Rb1—Cl1	160.49 (3)	Rb1 ⁱⁱⁱ —O1—Rb1	77.02 (4)
O1 ^{vii} —Co1—O1 ⁱ	180.0	$O1^{xi}$ — $C1$ — $O1$	126.4 (3)
O1 ^{vii} —Co1—O1 ^{viii}	97.97 (9)	$O1^{xi}$ — $C1$ — $C1^{ix}$	116.81 (15)
O1 ⁱ —Co1—O1 ^{viii}	82.03 (9)	O1-C1-C1 ^{ix}	116.81 (15)

Symmetry codes: (i) -*x*+1, *y*, -*z*+1; (ii) *x*, -*y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1/2, -*y*+3/2, -*z*+1/2; (v) -*x*+3/2, -*y*+3/2, -*z*+1/2; (vi) *x*, *y*-1, *z*; (vii) *x*, -*y*+2, *z*; (viii) -*x*+1, -*y*+2, -*z*+1; (ix) -*x*+2, -*y*+2, -*z*+1; (ix) -*x*+2, -*y*+2, -*z*+1.

Poly[dipotassium [tri-µ-oxalatocopper(II)dilithium] dihydrate] (III)

Crystal data

K₂[Li₂Cu(C₂O₄)₃]·2H₂O $M_r = 455.71$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.1847 (4) Å b = 7.2575 (5) Å c = 8.1795 (5) Å a = 101.327 (11)° $\beta = 91.723$ (11)° $\gamma = 113.563$ (11)° V = 327.56 (5) Å³

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer Radiation source: Sealed Tube Detector resolution: 13.6612 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.610, T_{\max} = 1.00$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.114$ S = 0.94 Z = 1 F(000) = 225 $D_x = 2.310 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 888 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 2.38 \text{ mm}^{-1}$ T = 173 KPrism, blue $0.14 \times 0.14 \times 0.07 \text{ mm}$

3403 measured reflections 1500 independent reflections 1077 reflections with $I > 2\sigma(I)$ $R_{int} = 0.095$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 9$ $l = -10 \rightarrow 10$

1500 reflections132 parameters0 restraintsHydrogen site location: difference Fourier mapAll H-atom parameters refined

$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2]$	$\Delta \rho_{\rm max} = 1.03 \text{ e} \text{ Å}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -1.01 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	1.000000	1.000000	1.000000	0.0141 (2)	
K1	0.53561 (17)	0.08774 (15)	0.80051 (12)	0.0182 (2)	
O1	1.1046 (5)	0.7828 (4)	0.9188 (4)	0.0139 (6)	
O2	0.6795 (5)	0.7931 (5)	0.9232 (4)	0.0139 (6)	
O3	0.9423 (5)	0.4577 (5)	0.7685 (4)	0.0166 (7)	
O4	0.5056 (5)	0.4613 (4)	0.7870 (4)	0.0168 (7)	
O5	0.1518 (5)	0.2387 (4)	0.4512 (4)	0.0174 (7)	
O6	-0.0303 (6)	-0.0777 (5)	0.2817 (4)	0.0194 (7)	
O7A	0.3910 (18)	-0.2142 (15)	0.5335 (14)	0.028 (2)	0.5
O7B	0.3555 (18)	-0.3016 (16)	0.5653 (14)	0.027 (2)	0.5
C1	0.9305 (7)	0.6178 (6)	0.8431 (5)	0.0125 (8)	
C2	0.6818 (7)	0.6206 (6)	0.8495 (5)	0.0129 (8)	
C3	0.0359 (7)	0.0482 (6)	0.4216 (6)	0.0138 (8)	
Li1	0.1867 (13)	0.3767 (13)	0.6931 (10)	0.0205 (17)	
H1	0.481 (15)	-0.288 (12)	0.557 (10)	0.06 (3)*	
H2	0.283 (15)	-0.343 (13)	0.491 (11)	0.07 (3)*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0105 (4)	0.0100 (4)	0.0191 (4)	0.0037 (3)	0.0009 (3)	-0.0015 (3)
K1	0.0195 (5)	0.0173 (5)	0.0177 (5)	0.0079 (4)	0.0026 (4)	0.0031 (4)
01	0.0106 (14)	0.0118 (14)	0.0176 (16)	0.0044 (11)	0.0000 (11)	0.0000 (12)
02	0.0119 (14)	0.0156 (15)	0.0133 (15)	0.0064 (12)	0.0018 (11)	-0.0001 (12)
03	0.0171 (15)	0.0116 (14)	0.0204 (17)	0.0064 (12)	0.0047 (13)	0.0005 (12)
04	0.0108 (14)	0.0102 (14)	0.0229 (17)	0.0003 (12)	-0.0022 (12)	-0.0014 (12)
05	0.0223 (16)	0.0086 (14)	0.0159 (16)	0.0012 (12)	0.0031 (13)	0.0018 (12)
06	0.0236 (17)	0.0182 (16)	0.0121 (16)	0.0051 (13)	0.0001 (13)	0.0014 (13)
O7A	0.026 (5)	0.012 (4)	0.043 (6)	0.012 (4)	-0.003 (4)	-0.011 (4)
O7B	0.019 (5)	0.014 (5)	0.036 (6)	0.007 (4)	-0.009 (4)	-0.017 (4)
C1	0.014 (2)	0.0117 (19)	0.013 (2)	0.0048 (16)	0.0038 (16)	0.0050 (16)
C2	0.013 (2)	0.016 (2)	0.0092 (19)	0.0061 (17)	0.0011 (15)	0.0027 (16)
C3	0.016 (2)	0.011 (2)	0.017 (2)	0.0089 (17)	0.0019 (17)	0.0034 (17)
Li1	0.010 (3)	0.029 (4)	0.021 (4)	0.010 (3)	0.000 (3)	-0.002(3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cu1—O2	1.938 (3)	O2—C2	1.284 (5)
Cu1—O2 ⁱ	1.938 (3)	O3—C1	1.233 (5)
Cu1—O1 ⁱ	1.942 (3)	O3—Li1 ^{viii}	1.907 (8)
Cul—O1	1.942 (3)	O4—C2	1.230 (5)
K1—07A	2.609 (10)	O4—Li1	1.901 (8)
K1—O4	2.814 (3)	O5—C3	1.245 (5)
K1—O2 ⁱⁱ	2.821 (3)	O5—Lil	1.997 (9)
K1—07B	2.854 (10)	O6—C3	1.255 (5)
K1—O1 ⁱⁱⁱ	2.878 (3)	O6—Li1 ^{vii}	2.049 (9)
K1—O3	2.919 (3)	O7A—H1	0.95 (8)
K1—O2 ^{iv}	2.946 (3)	O7A—H2	0.89 (9)
K1—O1 ^v	3.036 (3)	O7B—H1	0.75 (8)
K1—O7A ^{vi}	3.039 (12)	O7B—H2	0.68 (9)
K1—O6 ^{vii}	3.146 (3)	C1—C2	1.549 (6)
K1—O6 ^{vi}	3.178 (3)	C3—C3 ^{vii}	1.571 (9)
01—C1	1.271 (5)		
O2-Cu1-O2 ⁱ	180.0	O1 ⁱⁱⁱ —K1—O6 ^{vi}	63.34 (8)
O2-Cu1-O1 ⁱ	93.40 (12)	O3—K1—O6 ^{vi}	58.18 (8)
O2 ⁱ —Cu1—O1 ⁱ	86.60 (12)	O2 ^{iv} —K1—O6 ^{vi}	61.26 (8)
02—Cu1—O1	86.60 (12)	O1 ^v —K1—O6 ^{vi}	131.85 (9)
O2 ⁱ —Cu1—O1	93.40 (12)	$O7A^{vi}$ —K1— $O6^{vi}$	75.66 (19)
O1 ⁱ —Cu1—O1	180.00 (9)	O6 ^{vii} —K1—O6 ^{vi}	155.90 (12)
07A—K1—04	119.6 (2)	C1—O1—Cu1	110.8 (3)
O7A—K1—O2 ⁱⁱ	134.7 (2)	C1K1 ⁱⁱⁱ	137.7 (3)
O4—K1—O2 ⁱⁱ	70.35 (9)	Cu1—O1—K1 ⁱⁱⁱ	94.37 (11)
O7A—K1—O7B	13.6 (3)	C1	133.0 (3)
O4—K1—O7B	131.3 (3)	Cu1—O1—K1 ^{ix}	90.46 (11)
O2 ⁱⁱ —K1—O7B	127.0 (2)	K1 ⁱⁱⁱ —O1—K1 ^{ix}	77.56 (8)
07A—K1—01 ⁱⁱⁱ	133.6 (2)	C2—O2—Cu1	110.7 (3)
04—K1—O1 ⁱⁱⁱ	101.72 (9)	C2—O2—K1 ⁱⁱ	133.6 (3)
O2 ⁱⁱ —K1—O1 ⁱⁱⁱ	76.43 (9)	Cu1—O2—K1 ⁱⁱ	97.23 (11)
O7B—K1—O1 ⁱⁱⁱ	125.6 (2)	C2—O2—K1 ^x	132.4 (3)
O7A—K1—O3	114.9 (3)	Cu1—O2—K1 ^x	92.37 (11)
O4—K1—O3	56.61 (8)	K1 ⁱⁱ —O2—K1 ^x	79.95 (8)
O2 ⁱⁱ —K1—O3	106.84 (9)	C1—O3—Li1 ^{viii}	136.6 (4)
O7B—K1—O3	125.5 (2)	C1—O3—K1	112.5 (3)
O1 ⁱⁱⁱ —K1—O3	70.04 (9)	Li1 ^{viii} —O3—K1	107.9 (3)
O7A—K1—O2 ^{iv}	80.2 (2)	C2O4Li1	139.7 (4)
O4—K1—O2 ^{iv}	159.58 (9)	C2—O4—K1	116.4 (3)
$O2^{ii}$ —K1— $O2^{iv}$	100.05 (8)	Li1—O4—K1	103.7 (3)
O7B—K1—O2 ^{iv}	69.0 (2)	C3—O5—Lil	113.3 (4)
$O1^{iii}$ —K1— $O2^{iv}$	57.99 (8)	C3—O6—Li1 ^{vii}	111.7 (4)
O3—K1—O2 ^{iv}	112.41 (9)	C3—O6—K1 ^{vii}	100.4 (3)
O7A—K1—O1 ^v	80.5 (3)	Li1 ^{vii} —O6—K1 ^{vii}	89.8 (2)
04—K1—01 ^v	113.85 (9)	C3—O6—K1 ^{vi}	99.4 (3)

O2 ⁱⁱ —K1—O1 ^v	57.50 (8)	Li1 ^{vii} —O6—K1 ^{vi}	95.6 (2)
O7B—K1—O1 ^v	70.1 (2)	K1 ^{vii} —O6—K1 ^{vi}	155.90 (12)
$O1^{iii}$ —K1— $O1^{v}$	102.44 (8)	$K1$ — $O7A$ — $K1^{vi}$	115.8 (4)
O3—K1—O1 ^v	164.28 (9)	K1—O7A—H1	100 (5)
$O2^{iv}$ —K1—O1 ^v	72.19 (8)	K1 ^{vi} —O7A—H1	113 (5)
O7A—K1—O7A ^{vi}	64.2 (4)	K1—O7A—H2	144 (6)
O4—K1—O7A ^{vi}	64.04 (18)	K1 ^{vi} —O7A—H2	96 (6)
$O2^{ii}$ —K1—O7 A^{vi}	132.00 (18)	H1—O7A—H2	81 (7)
07B—K1—07A ^{vi}	77.7 (4)	K1—O7B—H1	89 (6)
O1 ⁱⁱⁱ —K1—O7A ^{vi}	126.0 (2)	K1—O7B—H2	135 (8)
O3—K1—O7A ^{vi}	58.7 (2)	H1—O7B—H2	113 (9)
$O2^{iv}$ —K1—O7 A^{vi}	127.94 (18)	O3—C1—O1	126.1 (4)
$O1^v$ —K1— $O7A^{vi}$	131.4 (2)	O3—C1—C2	118.0 (4)
O7A—K1—O6 ^{vii}	82.2 (2)	O1—C1—C2	115.9 (4)
O4—K1—O6 ^{vii}	61.81 (9)	O4—C2—O2	125.6 (4)
$O2^{ii}$ —K1— $O6^{vii}$	63.59 (8)	O4—C2—C1	118.7 (4)
O7B—K1—O6 ^{vii}	84.8 (2)	O2—C2—C1	115.7 (3)
$O1^{iii}$ — $K1$ — $O6^{vii}$	139.77 (9)	O5—C3—O6	128.1 (4)
O3—K1—O6 ^{vii}	116.35 (9)	O5—C3—C3 ^{vii}	116.4 (5)
O2 ^{iv} —K1—O6 ^{vii}	131.16 (9)	O6—C3—C3 ^{vii}	115.6 (5)
O1 ^v —K1—O6 ^{vii}	60.12 (8)	O4—Li1—O3 ^{xi}	131.6 (5)
$O7A^{vi}$ —K1— $O6^{vii}$	81.9 (2)	O4—Li1—O5	108.5 (4)
O7A—K1—O6 ^{vi}	80.2 (2)	O3 ^{xi} —Li1—O5	117.8 (4)
O4—K1—O6 ^{vi}	114.08 (9)	O4—Li1—O6 ^{vii}	102.2 (4)
$O2^{ii}$ —K1— $O6^{vi}$	139.69 (9)	O3 ^{xi} —Li1—O6 ^{vii}	97.4 (4)
O7B—K1—O6 ^{vi}	82.0 (2)	O5—Li1—O6 ^{vii}	82.4 (3)

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) -*x*+2, -*y*+1, -*z*+2; (iv) *x*, *y*-1, *z*; (v) *x*-1, *y*-1, *z*; (vi) -*x*+1, -*y*, -*z*+1; (vii) -*x*, -*y*, -*z*+1; (viii) *x*+1, *y*, *z*; (ix) *x*+1, *y*+1, *z*; (x) *x*, *y*+1, *z*; (xi) *x*-1, *y*, *z*.

Cu—O bond Lengths of Compound III

Bond	Bond distance (Å)
Cu—O1	1.942 (3)
Cu—O1 ⁱ	1.942 (3)
Cu—O2	1.938 (3)
Cu—O2 ⁱ	1.938 (3)
Cu—O6	2.473 (4)
Cu—O6 ⁱ	2.473 (4)

Symmetry codes: (i) -x + 2, -y + 2, -z + 2.