

Received 23 February 2023 Accepted 7 March 2023

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; Grignard reagent; open-cube cluster.

CCDC reference: 2246966

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of [tBuMgCl]₂[MgCl₂(Et₂O)₂]₂

Maurice Metzler, Michael Bolte, Matthias Wagner and Hans-Wolfram Lerner*

Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/ Main, Germany. *Correspondence e-mail: lerner@chemie.uni-frankfurt.de

The title compound, di- μ_3 -chlorido-tetra- μ_2 -chlorido-tetrakis(diethyl ether- κO)bis(1,1-dimethylethyl)tetramagnesium, [Mg₄(C₄H₉)₂Cl₆(C₄H₁₀O)₄], features an Mg₄Cl₆ open-cube cluster. The two four-coordinate Mg²⁺ ions show an almost tetrahedral coordination, whereas the two six-coordinate Mg²⁺ ions have their ligands in an octahedral environment. The Mg–Cl bond lengths differ depending on the coordination number (2 or 3) of the bridging μ -Cl⁻ ligands. There are few comparable structures deposited in the Cambridge Structural Database.

1. Chemical context

Grignard reagents (*RMgX*) are among the most commonly used organometallic reagents in synthesis. However, their molecular structures are highly diverse and therefore subject to ongoing research (Elschenbroich, 2008; Peltzer *et al.*, 2020; Curtis *et al.*, 2020). The structures of *RMgX* in solution depend on the nature of the solvent, the bulkiness of the organic moiety *R*, and the choice of the halide *X* (Peltzer *et al.*, 2017). Moreover, the Schlenk equilibrium can convert *RMgX* into MgR₂ and MgX₂ (Schlenk & Schlenk jun., 1929). The formation of halide bridges between the Lewis-acidic Mg²⁺ ions (Mg-X-Mg) allows for dimeric and oligomeric structures that are in equilibrium with their monomeric units (Fig. 1). Further coordination sites at Mg²⁺ are often saturated by donor-solvent molecules (Seyferth, 2009).

Since the analysis of Grignard reagents in solution is challenging, X-ray crystallography has emerged as an alternative, frequently used method to investigate their molecular compositions. A recurring structural motif in the solid state is

Generalized Schlenk equilibrium

Figure 1 Original and generalized Schlenk equilibrium (solvent molecules neglected; Peltzer *et al.*, 2017).

research communications

Figure 2

Open-cube structures like I ($R = {}^{t}Bu$) are obtained by crystallization of ${}^{t}BuMgCl$ from THF solutions, whereas the less-solvated title compound II crystallizes from Et₂O solutions of ${}^{t}BuMgCl$.

the open-cube cluster $[RMgCl(THF)]_2[MgCl_2(THF)_2]_2$ (**I**; $R = Me, Et, {}^{i}Pr, {}^{n}Bu, {}^{t}Bu$). Toney & Stucky (1971), Sakamoto *et al.* (2001), as well as our group (Blasberg *et al.*, 2012) provided evidence for such structures obtained by crystallization of *R*MgCl from THF. According to the Schlenk equilibrium, the formation of **I** can be rationalized by assuming aggregation of two *R*MgCl·MgCl₂ entities. The two independent Mg²⁺ ions in **I** exhibit five- and six-coordination, respectively. We now report [${}^{t}BuMgCl]_2[MgCl_2(Et_2O)_2]_2$ (**II**) as the first example of such open-cube clusters obtained from Et₂O. It is noteworthy that, unlike those in **I**, the reactive Mg²⁺ ions in the title compound **II** are four-coordinate and, surprisingly, no solvent coordinates to these ${}^{t}BuMgCl_3$ entities. Subtle changes such as exchanging THF for the weaker donor Et₂O seem to have a significant effect on the observed structural motifs (Fig. 2).

2. Structural commentary

The title compound **II** features an open-cube cluster consisting of Mg²⁺ and Cl⁻ ions (Fig. 3). The Mg²⁺ ions (Mg1, Mg3) in the Mg₂Cl₂ plane are six-coordinate with four Cl⁻ ligands and the O atoms of two Et₂O molecules in an almost perfect octahedral mode. The Mg–Cl distances to the three-coordinate μ_3 -Cl⁻ ligands (Cl1, Cl4) are significantly longer [2.6204 (7)– 2.6629 (7) Å] than the Mg–Cl distances to the two-coordinate μ_2 -Cl⁻ ligands (Cl2, Cl3, Cl5, Cl6) [2.4555 (7)–2.4676 (7) Å]. The other two Mg²⁺ ions (Mg2, Mg4) are four-coordinate with three Cl⁻ ligands and one *tert*-butyl group featuring a distorted tetrahedron. As a result of the geometric strain in these MgCl entities, the Cl-Mg-Cl angles are smaller than the Cl-Mg-C angles. Again, a difference in the Mg-Cl bond lengths can be observed: as expected, the bonds between Mg²⁺ and the μ_3 -Cl⁻ ligands are longer [2.4687 (7) and 2.4689 (7) Å] than the bonds between Mg²⁺ and the μ_2 -Cl⁻ ligands [2.3785 (7)-2.3905 (7) Å].

3. Supramolecular features

There are two short $C-H\cdots Cl$ contacts bridging adjacent molecules of the title compound **II**. These hydrogen bonds (Table 1) lead to the formation of chains extending parallel to [010]. A packing diagram showing one unit cell is depicted in Fig. 4. There are no other remarkable intermolecular interactions.

Figure 3

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C32 $-$ H32 A \cdots Cl3 ⁱ C34 $-$ H34 A \cdots Cl6 ⁱⁱ	0.98 0.98	2.96 2.92	3.876 (2) 3.602 (2)	155 127
254 115421 210	0.90	2.72	5.002 (2)	127

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

4. Database survey

Six comparable structures with a similar Mg₄Cl₆ open-cube cluster have been found in the Cambridge Structural Database (version 5.43, update of September 2022; Groom et al., 2016), viz., [EtMgCl(THF)]2[MgCl2(THF)2]2 (MGCLTF; Toney & Stucky, 1971), [MeMgCl(THF)]₂[MgCl₂(THF)₂]₂ (QUJSUJ; Sakamoto al., 2001), [^tBuMgCl(THF)]₂et [MgCl₂(THF)₂]₂ (OUJTAO; Sakamoto *et al.*, 2001), [benzylMgCl(THF)]₂[MgCl₂(THF)₂]₂ (QUJTEU; Sakamoto et al., 2001), $[^{i}PrMgCl(THF)]_{2}[MgCl_{2}(THF)_{2}]_{2}$ (SEJZUE; Blasberg et al., 2012), and [Me₂NCH₂CH₂CH₂MgCl]₂-[MgCl₂(THF)₂]₂ (WILMIN; Casellato & Ossola, 1994). A seventh structure ["BuMg₃Cl₅(THF)₄]₂ (ZIHQEO; Pirinen et al., 2013) also features an open-cube cluster; however, here the reactive Mg²⁺ ions are not part of the cubes. The latter structure is therefore not included in the comparison. Interestingly, all the above structures from the database show crystallographic centrosymmetry, with all of them being located at a center of inversion. The title compound, on the other hand, does not show any crystallographic symmetry, although it would be possible for II to comply with a crystallographic inversion center. A fundamental difference between the structure of the title compound and the published struc-

Figure 4

Packing diagram of the title compound II showing the C-H···Cl hydrogen bonds (cyan) between adjacent molecules of II. H atoms not involved in hydrogen bonding are omitted for clarity.

Comparison of Mg···Cl distances (Å) and sums of equatorial angles $\Sigma \theta_{eq}$ (°) of the five-coordinate Mg^{2+} ions in the literature phases.

There are two rows for the title compound because it does not show any symmetry, whereas all structures retrieved from the database are located at a center of inversion. Mg. μ_2 -Cl: bond lengths are between the five-coordinate Mg^{2+} ions and the μ_2 -Cl⁻ ions. $Mg \cdots \mu_3$ -Cl: bond lengths are between the fivecoordinate Mg²⁺ ion and the μ_3 -Cl⁻ ion in the central Mg₂Cl₂ plane.

Structure	Mg··· μ_3 -Cl	Mg··· μ_2 -Cl	Mg··· μ_2 -Cl	$\Sigma \theta_{ m eq}$
Title compound	2.4687 (7)	2.3825 (7)	2.3905 (8)	_
Title compound	2.4689 (7)	2.3785 (7)	2.3796 (7)	_
MGCLTF	2.789	2.398	2.405	359.6
QUJSUJ	2.888	2.405	2.406	358.0
QUJTAG	2.819	2.415	2.429	358.4
QUJTEU	2.834	2.389	2.393	356.6
SEJZUE	2.727	2.404	2.431	359.2
WILMIN	2.779	2.397	2.402	359.5

tures is the coordination sphere of the reactive Mg²⁺ ions. In all structures retrieved from the CSD, these Mg²⁺ ions are fivecoordinate and the ligands form a distorted trigonal bipyramid. The calculated geometry indices τ_5 (0.65–0.84) show a varying degree of deviation from the ideal trigonal bipyramidal geometry ($\tau_5 = 1$; Addison *et al.*, 1984). The Mg···Cl distances to the μ_3 -Cl⁻ ligands in the central Mg₂Cl₂ plane (Table 2) are significantly longer (mean value 2.806 Å) than in II (mean value 2.4688 Å), but in between the sum of van der Waals radii ($\Sigma r(vdW)[Mg,Cl] = 3.48 \text{ Å}$) and effective ionic

Table 3 Experimental details.

Crystal data	
Chemical formula	$[Mg_4(C_4H_9)_2Cl_6(C_4H_{10}O)_4]$
M _r	720.64
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
a, b, c (Å)	11.5663 (5), 15.4045 (8),
	22.8256 (11)
β (°)	99.209 (4)
$V(\dot{A}^3)$	4014.5 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.52
Crystal size (mm)	$0.26 \times 0.24 \times 0.19$
Data collection	
Diffractometer	STOE IPDS II two-circle-diffract-
	ometer
Absorption correction	Multi-scan (X-AREA; Stoe & Cie, 2001)
T_{\min}, T_{\max}	0.762, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20835, 7482, 5674
R _{int}	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.608
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.066, 0.93
No. of reflections	7482
No. of parameters	343
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.23, -0.18

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), XP (Sheldrick, 2008), Mercury (Macrae et al., 2020), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

radii ($\Sigma r(ion)[Mg^{2+},Cl^{-}] = 2.47$ Å) (Bondi, 1964; Shannon, 1976). Nevertheless, the sums of equatorial angles $\Sigma \theta_{eq}$ (mean value 358.6°) indicate that the Mg²⁺ ions are five-coordinate in a trigonal bipyramidal mode and that interactions with the μ_3 -Cl⁻ ions in the Mg₂Cl₂ planes exist. Structures with other halogens than Cl were not found.

5. Synthesis and crystallization

Magnesium turnings (9.74 g, 401 mmol, 1.7 eq.) were placed in a Schlenk flask and dried under vacuum by heating. Dry Et₂O (40 ml) was added to the flask and a solution of 'BuCl (21.3 g, 230 mmol, 1.0 eq.) in Et₂O (20 ml) was added dropwise at such a rate as to maintain a gentle reflux (approx. 1 h). After cooling to room temperature, the Grignard solution was separated from residual Mg turnings by cannula transfer into a new Schlenk flask. Upon concentration of the solution at room temperature, colorless crystals of ['BuMgCl]₂[MgCl₂(Et₂O)₂]₂ formed, which were suitable for single-crystal X-ray structure determination.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3. H atoms were geometrically positioned and refined using a riding model with $C_{methylene}-H$ = 0.99 Å and $U(H) = 1.2U_{eq}(C)$ or with $C_{methyl}-H = 0.98$ Å and $U(H) = 1.5U_{eq}(C)$. References

- Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. 7, 1349–1356.
- Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2012). *Organometallics*, **31**, 1001–1005.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Casellato, U. & Ossola, F. (1994). Organometallics, 13, 4105-4108.
- Curtis, E. R., Hannigan, M. D., Vitek, A. K. & Zimmerman, P. M. (2020). J. Phys. Chem. A, **124**, 1480–1488.
- Elschenbroich, C. (2008). Organometallchemie, p. 64. Wiesbaden: Teubner.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* 53, 226–235.
- Peltzer, R. M., Eisenstein, O., Nova, A. & Cascella, M. (2017). J. Phys. Chem. B, 121, 4226–4237.
- Peltzer, R. M., Gauss, J., Eisenstein, O. & Cascella, M. (2020). J. Am. Chem. Soc. 142, 2984–2994.
- Pirinen, S., Koshevoy, I. O., Denifl, P. & Pakkanen, T. T. (2013). Organometallics, 32, 4208–4213.
- Sakamoto, S., Imamoto, T. & Yamaguchi, K. (2001). Org. Lett. 3, 1793–1795.
- Schlenk, W. & Schlenk jun, W. (1929). Ber. Dtsch. Chem. Ges. B, 62, 920–924.
- Seyferth, D. (2009). Organometallics, 28, 1598-1605.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Toney, J. & Stucky, G. D. (1971). J. Organomet. Chem. 28, 5-20.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2023). E79, 341-344 [https://doi.org/10.1107/S2056989023002190]

Crystal structure of [tBuMgCl]₂[MgCl₂(Et₂O)₂]₂

Maurice Metzler, Michael Bolte, Matthias Wagner and Hans-Wolfram Lerner

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA* (Stoe & Cie, 2001); data reduction: *X-AREA* (Stoe & Cie, 2001); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: *XP* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *SHELXL* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

 $Di-\mu_3$ -chlorido-tetra- μ_2 -chlorido-tetrakis(diethyl ether- κO)bis(1,1-dimethylethyl)tetramagnesium

Crystal data

$[Mg_4(C_4H_9)_2Cl_6(C_4H_{10}O)_4]$
$M_r = 720.64$
Monoclinic, $P2_1/c$
a = 11.5663 (5) Å
<i>b</i> = 15.4045 (8) Å
c = 22.8256 (11) Å
$\beta = 99.209 \ (4)^{\circ}$
V = 4014.5 (3) Å ³
Z = 4

Data collection

STOE IPDS II two-circle-	2083
diffractometer	7482
Radiation source: Genix 3D IµS microfocus X-	5674
ray source	$R_{\rm int} =$
ω scans	$\theta_{\rm max} =$
Absorption correction: multi-scan	h = -
(X-Area; Stoe & Cie, 2001)	k = -1
$T_{\min} = 0.762, \ T_{\max} = 1.000$	l = -2

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.066$ S = 0.937482 reflections 343 parameters 0 restraints F(000) = 1536 $D_x = 1.192 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 19794 reflections $\theta = 3.2-25.9^{\circ}$ $\mu = 0.52 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.26 \times 0.24 \times 0.19 \text{ mm}$

20835 measured reflections 7482 independent reflections 5674 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 25.6^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -13 \rightarrow 14$ $k = -18 \rightarrow 18$ $l = -27 \rightarrow 27$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0337P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mg1	0.85944 (5)	0.39400 (4)	0.67934 (3)	0.02116 (13)	
Mg2	0.55207 (5)	0.36837 (4)	0.63418 (3)	0.02481 (14)	
Mg3	0.63926 (5)	0.34063 (4)	0.79150 (3)	0.02032 (13)	
Mg4	0.94919 (5)	0.36222 (4)	0.83447 (3)	0.02314 (13)	
Cl1	0.70075 (4)	0.27496 (3)	0.69305 (2)	0.02311 (10)	
Cl2	0.69752 (4)	0.47151 (3)	0.61844 (2)	0.02928 (11)	
C13	1.00678 (4)	0.30899 (3)	0.74566 (2)	0.02581 (10)	
Cl4	0.79900 (4)	0.45596 (3)	0.77698 (2)	0.02215 (9)	
C15	0.80093 (4)	0.26496 (3)	0.85501 (2)	0.02837 (10)	
Cl6	0.48646 (4)	0.41593 (3)	0.72299 (2)	0.02612 (10)	
C1	0.42463 (17)	0.32648 (13)	0.56138 (9)	0.0304 (4)	
C2	0.3138 (2)	0.38179 (17)	0.55809 (12)	0.0535 (6)	
H2A	0.283162	0.377124	0.595581	0.080*	
H2B	0.332648	0.442554	0.551086	0.080*	
H2C	0.254675	0.361090	0.525481	0.080*	
C3	0.4687 (2)	0.33588 (19)	0.50227 (11)	0.0567 (7)	
H3A	0.491852	0.396248	0.497100	0.085*	
H3B	0.536381	0.297756	0.501815	0.085*	
H3C	0.406223	0.319693	0.469862	0.085*	
C4	0.3894 (2)	0.23210 (15)	0.56802 (12)	0.0520 (6)	
H4A	0.360749	0.224622	0.605846	0.078*	
H4B	0.327370	0.216466	0.535267	0.078*	
H4C	0.457528	0.194528	0.567220	0.078*	
C5	1.08079 (16)	0.40856 (12)	0.90376 (9)	0.0289 (4)	
C6	1.20470 (18)	0.38137 (15)	0.89651 (11)	0.0417 (5)	
H6A	1.209956	0.317874	0.896460	0.063*	
H6B	1.222861	0.404082	0.858919	0.063*	
H6C	1.260780	0.404700	0.929490	0.063*	
C7	1.0590 (2)	0.37540 (19)	0.96411 (10)	0.0529 (6)	
H7A	1.061154	0.311799	0.964420	0.079*	
H7B	1.119848	0.397862	0.995260	0.079*	
H7C	0.982052	0.395248	0.971362	0.079*	
C8	1.0774 (3)	0.50716 (15)	0.90356 (13)	0.0589 (7)	
H8A	1.091295	0.528701	0.864895	0.088*	
H8B	1.000379	0.526878	0.910870	0.088*	
H8C	1.138175	0.529492	0.934768	0.088*	
01	0.97092 (10)	0.49894 (8)	0.67575 (6)	0.0256 (3)	
O2	0.90985 (12)	0.33409 (8)	0.60605 (6)	0.0304 (3)	
03	0.52786 (10)	0.23817 (7)	0.80081 (6)	0.0224 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O4	0.59432 (11)	0.41160 (8)	0.86184 (6)	0.0271 (3)
C11	1.09484 (16)	0.48893 (13)	0.67206 (10)	0.0327 (4)
H11A	1.114637	0.526710	0.640001	0.039*
H11B	1.109828	0.428090	0.661473	0.039*
C12	1.1731 (2)	0.51158 (17)	0.72924 (12)	0.0499 (6)
H12A	1.255156	0.503804	0.724439	0.075*
H12B	1.159948	0.572157	0.739516	0.075*
H12C	1.155139	0.473516	0.760993	0.075*
C13	0.93368 (18)	0.58886 (12)	0.67816 (10)	0.0358(5)
H13A	0.991791	0.620817	0.706772	0.043*
H13B	0.857846	0 590729	0.693006	0.043*
C14	0.027010 0.9204 (2)	0.63357(14)	0.61938(12)	0.0505(6)
H144	0.895273	0.693650	0.623755	0.0265 (0)
H14B	0.995619	0.633238	0.604799	0.076*
H14C	0.861591	0.603132	0.591024	0.076*
C21	0.94137(19)	0.000102 0.24253(13)	0.60446(10)	0.070
H21A	0.902128	0.24233 (13)	0.566729	0.0379(3)
H21R	0.912618	0.210780	0.637414	0.045*
C22	1.0726 (2)	0.211050 0.22900(15)	0.037414 0.60974(12)	0.045
U22 Н22 Л	1.080483	0.166741	0.608459	0.0400(0)
H22A	1.009403	0.258220	0.576734	0.009
H22D	1.101317	0.253278	0.570734	0.009
C23	0.0223(2)	0.255278	0.047419 0.55274 (0)	0.009
С23 Н23 Л	1.000960	0.371057	0.5274 (9)	0.0417 (3)
1123A 1123B	0.016738	0.371037	0.542500	0.050*
П23Б	0.910730 0.8212(2)	0.443178 0.2500 (2)	0.500696	0.030°
U24	0.0313(3)	0.3390(2)	0.30044 (11)	0.0073 (8)
П24А Ц24Д	0.043939	0.393417	0.403923	0.101*
П24D 1124C	0.857402	0.297114	0.491485	0.101*
H24C	0.755152	0.3/12/7	0.509825	0.101^{+}
	0.40608 (16)	0.24950 (15)	0.80824 (10)	0.0308 (4)
HJIA	0.391010	0.311967	0.8138//	0.03/*
H3IB	0.392537	0.218510	0.844534	0.03/*
C32	0.3211 (2)	0.21645 (17)	0./5634 (13)	0.0540(/)
H32A	0.240842	0.225693	0.763725	0.081*
H32B	0.332734	0.247793	0.720379	0.081*
H32C	0.334263	0.154292	0.751051	0.081*
C33	0.56613 (17)	0.14798 (11)	0.80251 (8)	0.0264 (4)
H33A	0.641665	0.144305	0.787481	0.032*
H33B	0.507978	0.113177	0.775802	0.032*
C34	0.58083 (18)	0.10973 (12)	0.86411 (9)	0.0330 (4)
H34A	0.606551	0.049237	0.862843	0.049*
H34B	0.639597	0.143118	0.890586	0.049*
H34C	0.505882	0.111984	0.878904	0.049*
C41	0.57470 (18)	0.50510 (12)	0.85886 (10)	0.0318 (4)
H41A	0.597755	0.527616	0.821778	0.038*
H41B	0.625584	0.533061	0.892609	0.038*
C42	0.4488 (2)	0.53006 (14)	0.86053 (11)	0.0431 (5)
H42A	0.440950	0.593379	0.858404	0.065*

H42B	0.397974	0.503768	0.826703	0.065*	
H42C	0.425820	0.509216	0.897577	0.065*	
C43	0.57826 (19)	0.37161 (14)	0.91760 (9)	0.0338 (4)	
H43A	0.584839	0.307827	0.913959	0.041*	
H43B	0.498345	0.384782	0.925418	0.041*	
C44	0.6661 (3)	0.40219 (19)	0.96956 (11)	0.0620(7)	
H44A	0.651058	0.373178	1.005806	0.093*	
H44B	0.745380	0.388142	0.962586	0.093*	
H44C	0.658839	0.465138	0.974051	0.093*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Mg1	0.0192 (3)	0.0236 (3)	0.0206 (3)	0.0005 (2)	0.0030 (2)	0.0011 (2)
Mg2	0.0200 (3)	0.0326 (3)	0.0209 (3)	-0.0027 (2)	0.0005 (2)	0.0008 (3)
Mg3	0.0190 (3)	0.0215 (3)	0.0204 (3)	0.0005 (2)	0.0032 (2)	0.0020(2)
Mg4	0.0193 (3)	0.0290 (3)	0.0206 (3)	-0.0014 (2)	0.0016 (2)	0.0004 (2)
C11	0.0219 (2)	0.02278 (19)	0.0247 (2)	-0.00015 (16)	0.00402 (16)	0.00018 (17)
Cl2	0.0214 (2)	0.0340 (2)	0.0312 (3)	-0.00148 (17)	0.00056 (18)	0.01139 (19)
C13	0.0240 (2)	0.0295 (2)	0.0241 (2)	0.00730 (17)	0.00460 (17)	0.00182 (18)
Cl4	0.0214 (2)	0.02222 (19)	0.0231 (2)	0.00049 (15)	0.00457 (16)	0.00038 (17)
C15	0.0212 (2)	0.0320 (2)	0.0306 (3)	-0.00177 (17)	0.00012 (18)	0.01217 (19)
C16	0.0246 (2)	0.0295 (2)	0.0242 (2)	0.00760 (17)	0.00389 (17)	0.00337 (18)
C1	0.0279 (10)	0.0358 (10)	0.0259 (10)	-0.0027 (8)	-0.0004 (8)	-0.0018 (8)
C2	0.0400 (13)	0.0587 (15)	0.0559 (16)	0.0074 (11)	-0.0106 (11)	-0.0109 (13)
C3	0.0619 (17)	0.0775 (18)	0.0307 (13)	-0.0147 (14)	0.0071 (12)	-0.0069 (12)
C4	0.0538 (15)	0.0444 (13)	0.0549 (16)	-0.0087 (11)	0.0003 (12)	0.0011 (12)
C5	0.0244 (10)	0.0361 (10)	0.0247 (10)	-0.0025 (8)	-0.0008 (8)	-0.0037 (8)
C6	0.0265 (11)	0.0512 (13)	0.0453 (14)	-0.0048 (9)	-0.0005 (9)	-0.0040 (11)
C7	0.0470 (14)	0.0851 (18)	0.0252 (12)	-0.0094 (13)	0.0014 (10)	-0.0011 (12)
C8	0.0718 (18)	0.0395 (13)	0.0577 (17)	0.0032 (12)	-0.0127 (14)	-0.0152 (12)
01	0.0195 (6)	0.0238 (6)	0.0339 (8)	-0.0012 (5)	0.0058 (5)	0.0012 (5)
O2	0.0332 (7)	0.0340 (7)	0.0252 (7)	-0.0026 (6)	0.0083 (6)	-0.0053 (6)
03	0.0175 (6)	0.0210 (6)	0.0294 (7)	0.0000 (5)	0.0058 (5)	0.0000 (5)
04	0.0331 (7)	0.0260 (6)	0.0235 (7)	-0.0016 (5)	0.0085 (5)	-0.0020 (5)
C11	0.0211 (10)	0.0391 (11)	0.0395 (12)	-0.0020 (8)	0.0095 (8)	0.0051 (9)
C12	0.0276 (12)	0.0617 (15)	0.0572 (16)	-0.0121 (11)	-0.0033 (10)	0.0053 (12)
C13	0.0338 (11)	0.0224 (9)	0.0506 (14)	0.0012 (8)	0.0046 (10)	-0.0013 (9)
C14	0.0425 (13)	0.0361 (12)	0.0695 (18)	-0.0088 (10)	-0.0009 (12)	0.0204 (12)
C21	0.0367 (12)	0.0360 (11)	0.0426 (13)	-0.0063 (9)	0.0109 (9)	-0.0163 (9)
C22	0.0395 (13)	0.0475 (13)	0.0536 (15)	0.0014 (10)	0.0148 (11)	-0.0190 (11)
C23	0.0416 (13)	0.0609 (14)	0.0247 (11)	-0.0049 (10)	0.0119 (9)	0.0027 (10)
C24	0.0683 (19)	0.104 (2)	0.0274 (13)	-0.0037 (16)	0.0001 (12)	-0.0077 (14)
C31	0.0188 (9)	0.0338 (10)	0.0422 (12)	0.0014 (7)	0.0125 (8)	0.0012 (9)
C32	0.0231 (11)	0.0653 (16)	0.0713 (19)	-0.0060 (10)	0.0009 (11)	-0.0117 (13)
C33	0.0317 (10)	0.0200 (8)	0.0273 (10)	0.0011 (7)	0.0045 (8)	-0.0035 (7)
C34	0.0384 (11)	0.0270 (10)	0.0327 (11)	-0.0036 (8)	0.0033 (9)	0.0045 (8)
C41	0.0363 (11)	0.0225 (9)	0.0377 (12)	-0.0029 (8)	0.0096 (9)	-0.0068 (8)

C42	0.0415 (13)	0.0384 (12)	0.0521 (15)	0.0049 (9)	0.0152 (11)	-0.0074 (10)
C43	0.0396 (12)	0.0409 (11)	0.0222 (10)	-0.0051 (9)	0.0092 (9)	-0.0017 (9)
C44	0.0760 (19)	0.0776 (19)	0.0286 (13)	-0.0134 (15)	-0.0031 (12)	-0.0065 (13)

Geometric parameters (A,)	Geometric	parameters	(Å,	<i>°</i>)
----------------------------	-----------	------------	-----	------------

Mg1—O2	2.0742 (14)	O3—C31	1.456 (2)
Mg1—O1	2.0776 (13)	O3—C33	1.457 (2)
Mg1—Cl2	2.4560 (7)	O4—C43	1.453 (2)
Mg1—Cl3	2.4668 (7)	O4—C41	1.458 (2)
Mg1—Cl4	2.6204 (7)	C11—C12	1.506 (3)
Mg1—Cl1	2.6483 (7)	C11—H11A	0.9900
Mg1—Mg4	3.5608 (9)	C11—H11B	0.9900
Mg1—Mg2	3.5615 (8)	C12—H12A	0.9800
Mg2—C1	2.137 (2)	C12—H12B	0.9800
Mg2—Cl2	2.3825 (7)	C12—H12C	0.9800
Mg2—Cl6	2.3905 (8)	C13—C14	1.494 (3)
Mg2—Cl1	2.4687 (7)	C13—H13A	0.9900
Mg2—Mg3	3.5967 (9)	C13—H13B	0.9900
Mg3—O3	2.0698 (13)	C14—H14A	0.9800
Mg3—O4	2.0761 (14)	C14—H14B	0.9800
Mg3—Cl6	2.4555 (7)	C14—H14C	0.9800
Mg3—Cl5	2.4676 (7)	C21—C22	1.518 (3)
Mg3—Cl4	2.6222 (7)	C21—H21A	0.9900
Mg3—Cl1	2.6629 (7)	C21—H21B	0.9900
Mg3—Mg4	3.5774 (8)	C22—H22A	0.9800
Mg4—C5	2.135 (2)	C22—H22B	0.9800
Mg4—Cl3	2.3785 (7)	C22—H22C	0.9800
Mg4—Cl5	2.3796 (7)	C23—C24	1.503 (3)
Mg4—Cl4	2.4689 (7)	C23—H23A	0.9900
C1—C3	1.524 (3)	C23—H23B	0.9900
C1—C4	1.524 (3)	C24—H24A	0.9800
C1—C2	1.531 (3)	C24—H24B	0.9800
C2—H2A	0.9800	C24—H24C	0.9800
C2—H2B	0.9800	C31—C32	1.502 (3)
C2—H2C	0.9800	C31—H31A	0.9900
С3—НЗА	0.9800	C31—H31B	0.9900
С3—Н3В	0.9800	C32—H32A	0.9800
С3—Н3С	0.9800	C32—H32B	0.9800
C4—H4A	0.9800	C32—H32C	0.9800
C4—H4B	0.9800	C33—C34	1.509 (3)
C4—H4C	0.9800	С33—Н33А	0.9900
C5—C8	1.519 (3)	С33—Н33В	0.9900
C5—C7	1.527 (3)	C34—H34A	0.9800
C5—C6	1.527 (3)	C34—H34B	0.9800
С6—Н6А	0.9800	C34—H34C	0.9800
С6—Н6В	0.9800	C41—C42	1.513 (3)
С6—Н6С	0.9800	C41—H41A	0.9900

С7—Н7А	0.9800	C41—H41B	0.9900
С7—Н7В	0.9800	C42—H42A	0.9800
С7—Н7С	0.9800	C42—H42B	0.9800
C8—H8A	0.9800	C42—H42C	0.9800
C8—H8B	0.9800	C43—C44	1.508 (3)
C8—H8C	0.9800	C43—H43A	0.9900
O1—C13	1.454 (2)	C43—H43B	0.9900
O1—C11	1.457 (2)	C44—H44A	0.9800
O2—C23	1.452 (2)	C44—H44B	0.9800
02—C21	1.459 (2)	C44—H44C	0.9800
02—Mg1—01	93.33 (5)	С5—С6—Н6А	109.5
O2-Mg1-Cl2	92.70 (5)	С5—С6—Н6В	109.5
O1-Mg1-Cl2	91.22 (4)	H6A—C6—H6B	109.5
Ω_{2} -Mg1-Cl3	90.17 (4)	C5—C6—H6C	109.5
O1-Mg1-Cl3	93.73 (4)	H6A—C6—H6C	109.5
C12-Mg1-C13	174 12 (3)	H6B—C6—H6C	109.5
$\Omega_2 = Mg_1 = Cl_4$	17473(5)	C5-C7-H7A	109.5
$\Omega_1 - Mg_1 - Cl_4$	90 10 (4)	C5 - C7 - H7B	109.5
C12—Mg1— $C14$	91 21 (2)	H7A - C7 - H7B	109.5
C13—Mg1— $C14$	85.61 (2)	C_{5} C_{7} H_{7}	109.5
$\Omega^2 - Mg1 - C11$	94.41(4)	H7A - C7 - H7C	109.5
$\Omega_1 - Mg_1 - C_{11}$	171 76 (4)	H7B - C7 - H7C	109.5
C12—Mg1— $C11$	85.61 (2)	C5 - C8 - H8A	109.5
C12 Mg1 - C11	89.07 (2)	C_{5} C_{8} H8B	109.5
C14—Mg1—C11	82 38 (2)	H8A - C8 - H8B	109.5
$\Omega^2 - Mg1 - Mg4$	131.76 (5)	C5-C8-H8C	109.5
02 Mg1 Mg4 01 - Mg1 - Mg4	93 56 (4)	H8A - C8 - H8C	109.5
C12—Mg1—Mg4	134 76 (3)	H8B-C8-H8C	109.5
C12 Mg1 Mg4	41745(17)	C13 - 01 - C11	113 76 (14)
C14—Mg1—Mg4	43 883 (16)	C13 - O1 - Mg1	123 38 (11)
C11 - Mg1 - Mg4	83 37 (2)	C11 - O1 - Mg1	123.36 (11)
Ω^2 —Mg1—Mg2	96.53(4)	$C^{23} - C^{21}$	114 54 (16)
$\Omega_1 - Mg_1 - Mg_2$	$132\ 21\ (4)$	$C_{23} = 02 = 021$	121 76 (13)
C12 - Mg1 - Mg2	41.808(17)	$C_{23} = O_2 = Mg_1$	121.70 (13)
C12 Mg1 Mg2 C13 Mg1 Mg2	13272(2)	$C_{21} = C_{2} = C_{33}$	113 99 (13)
C13 - Mg1 - Mg2 C14 - Mg1 - Mg2	84.07(2)	$C_{31} = O_{3} = M_{g_{3}}$	123 39 (10)
C11 - Mg1 - Mg2	43 851 (16)	C_{33} M_{g3}	122.59 (10)
$M\sigma 4$ $M\sigma 1$ $M\sigma 2$	113 03 (2)	$C_{43} - O_{4} - C_{41}$	114 78 (15)
C1 - Mg2 - C12	120.00(6)	C43 - O4 - Mg3	114.70(13) 122 50(11)
C1 - Mg2 - C16	118 61 (6)	C43 = O4 = Mg3	122.30(11) 122.72(11)
C12 - Mg2 - C16	10454(3)	01 - C11 - C12	112 69 (18)
C1 - Mg2 - C11	125 52 (6)	01 - 012	109.1
$C12_Mg2_C11$	91.35(2)	C12-C11-H11A	109.1
C16 Mg2 C11	90.28 (3)	O1-C11-H11R	109.1
C1 - Mg2 - Mg1	142 27 (6)	C12-C11-H11B	109.1
$C12 M \sigma^2 M \sigma^1$	43 408 (17)	H11A - C11 - H11B	107.8
C_{12} $M_{\alpha 2}$ $M_{\alpha 1}$	-100(17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0
UID—IVIg2—IVIg1	27.10 (<i>L</i>)	U11-U12-1112A	107.3

Cl1—Mg2—Mg1	48.005 (17)	C11—C12—H12B	109.5
C1—Mg2—Mg3	142.07 (6)	H12A—C12—H12B	109.5
Cl2—Mg2—Mg3	97.92 (2)	C11—C12—H12C	109.5
Cl6—Mg2—Mg3	42.779 (17)	H12A—C12—H12C	109.5
Cl1—Mg2—Mg3	47.751 (17)	H12B—C12—H12C	109.5
Mg1—Mg2—Mg3	67.468 (17)	O1—C13—C14	113.18 (19)
O3—Mg3—O4	94.89 (5)	O1—C13—H13A	108.9
O3—Mg3—Cl6	91.67 (4)	C14—C13—H13A	108.9
O4—Mg3—Cl6	90.00 (4)	O1—C13—H13B	108.9
O3—Mg3—Cl5	90.29 (4)	C14—C13—H13B	108.9
O4—Mg3—Cl5	93.12 (4)	H13A—C13—H13B	107.8
Cl6—Mg3—Cl5	176.16 (3)	C13—C14—H14A	109.5
O3—Mg3—Cl4	172.94 (4)	C13—C14—H14B	109.5
O4—Mg3—Cl4	90.55 (4)	H14A—C14—H14B	109.5
Cl6—Mg3—Cl4	92.83 (2)	C13—C14—H14C	109.5
Cl5—Mg3—Cl4	84.91 (2)	H14A—C14—H14C	109.5
O3—Mg3—Cl1	92.96 (4)	H14B—C14—H14C	109.5
04—Mg3—Cl1	170.55 (4)	O2—C21—C22	112.44 (16)
Cl6—Mg3—Cl1	84.50 (2)	02—C21—H21A	109.1
Cl5—Mg3—Cl1	92.10(2)	C22—C21—H21A	109.1
Cl4-Mg3-Cl1	82.07 (2)	O2-C21-H21B	109.1
O3—Mg3—Mg4	130.97 (4)	C22—C21—H21B	109.1
O4—Mg3—Mg4	95.91 (4)	H21A—C21—H21B	107.8
Cl6—Mg3—Mg4	135.91 (3)	C21—C22—H22A	109.5
Cl5—Mg3—Mg4	41,493 (17)	C21—C22—H22B	109.5
Cl4—Mg3—Mg4	43.636 (16)	H22A—C22—H22B	109.5
Cl1—Mg3—Mg4	82.84 (2)	C21—C22—H22C	109.5
O3—Mg3—Mg2	96.51 (4)	H22A—C22—H22C	109.5
O4—Mg3—Mg2	130.14 (4)	H22B—C22—H22C	109.5
Cl6—Mg3—Mg2	41.392 (17)	O2—C23—C24	113.1 (2)
Cl5—Mg3—Mg2	135.04 (3)	O2—C23—H23A	109.0
Cl4—Mg3—Mg2	83.34 (2)	С24—С23—Н23А	109.0
Cl1—Mg3—Mg2	43.334 (16)	O2—C23—H23B	109.0
Mg4—Mg3—Mg2	111.79 (2)	C24—C23—H23B	109.0
C5—Mg4—Cl3	118.88 (6)	H23A—C23—H23B	107.8
C5-Mg4-Cl5	121.03 (6)	C23—C24—H24A	109.5
Cl3—Mg4—Cl5	105.06 (3)	C23—C24—H24B	109.5
C5-Mg4-Cl4	123.76 (6)	H24A—C24—H24B	109.5
Cl3-Mg4-Cl4	91.02 (2)	C23—C24—H24C	109.5
C15 - Mg4 - C14	90.29 (2)	$H_24A - C_24 - H_24C$	109.5
C5-Mg4-Mg1	138 64 (6)	H_24B — C_24 — H_24C	109.5
C13 - Mg4 - Mg1	43 673 (17)	03-C31-C32	112,99 (17)
C15 - Mg4 - Mg1	100 25 (2)	03-C31-H31A	109.0
C14—Mg4—Mg1	47 368 (17)	C32—C31—H31A	109.0
$C_5 - M_{\sigma}4 - M_{\sigma}3$	142.99 (6)	03-C31-H31B	109.0
Cl3—Mg4—Mg3	98.01 (2)	C32—C31—H31B	109.0
$C15 M \sigma 4 M \sigma^3$	43 395 (17)	$H_{31}A = C_{31} = H_{31}B$	107.8
$C14 M \sigma 4 M \sigma^3$	47 132 (17)	C_{31} C_{32} H_{32}	109.5
UIT INIGT INIGJ	$\pm 1.152(17)$	031 -032-1132A	107.5

Μσ1—Μσ4—Μσ3	67 685 (17)	C31—C32—H32B	109.5
Mg^2 —C11—Mg1	88 14 (2)	$H_{32}A - C_{32} - H_{32}B$	109.5
Mg2 Cl1 Mg1 $Mg2$	88.92 (2)	C_{31} C_{32} H_{32C}	109.5
$Mg_2 = C11 = Mg_3$	96.92 (2)	$H_{32} = -C_{32} = H_{32} C_{32}$	109.5
$Mg2$ _Cl2_Mg1	94.78 (3)	$H_{32}R_{-C_{32}}H_{32}C$	109.5
Mg4 Cl2 Mg1	94.58 (2)	0^{3} 0^{23} 0^{24}	112.60 (15)
Mg4 = C13 = Mg1	94.38 (2) 98.75 (2)	03 - 03 - 03 - 034	112.09 (13)
$M_{24} = C_{14} = M_{21}$	80.73 (2)	C_{24} C_{22} H_{224}	109.1
Mg4 - CI4 - Mg3	69.25 (2) 08.62 (2)	С34—С33—П35А	109.1
Mg1—Cl4—Mg3	98.03 (2)	03—033—H33B	109.1
Mg4—Cl5—Mg3	95.11 (2)	С34—С33—Н33В	109.1
Mg2—Cl6—Mg3	95.83 (2)	H33A—C33—H33B	107.8
C3—C1—C4	108.14 (19)	С33—С34—Н34А	109.5
C3—C1—C2	107.4 (2)	C33—C34—H34B	109.5
C4—C1—C2	107.51 (19)	H34A—C34—H34B	109.5
C3—C1—Mg2	111.90 (15)	С33—С34—Н34С	109.5
C4—C1—Mg2	111.89 (15)	H34A—C34—H34C	109.5
C2—C1—Mg2	109.76 (14)	H34B—C34—H34C	109.5
C1—C2—H2A	109.5	O4—C41—C42	113.16 (16)
C1—C2—H2B	109.5	O4—C41—H41A	108.9
H2A—C2—H2B	109.5	C42—C41—H41A	108.9
C1—C2—H2C	109.5	O4—C41—H41B	108.9
H2A—C2—H2C	109.5	C42—C41—H41B	108.9
H2B—C2—H2C	109.5	H41A—C41—H41B	107.8
С1—С3—НЗА	109.5	C41—C42—H42A	109.5
C1—C3—H3B	109.5	C41—C42—H42B	109.5
H3A—C3—H3B	109.5	H42A—C42—H42B	109.5
C1 - C3 - H3C	109.5	C41 - C42 - H42C	109.5
H_{3A} $-C_{3}$ $-H_{3C}$	109.5	H42A - C42 - H42C	109.5
H3B_C3_H3C	109.5	H42B— $C42$ — $H42C$	109.5
C1 - C4 - H4A	109.5	04-C43-C44	113.08 (18)
C1 C4 H4B	109.5	$O_4 C_{43} H_{43}$	100.0
	109.5	C_{44} C_{43} H_{43}	109.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	C44 - C43 - H43A	109.0
	109.5	C_{44} C_{43} H_{43} H_{43} H_{43}	109.0
H4A - C4 - H4C	109.5	$C44 - C43 - \Pi 43D$	109.0
H4B - C4 - H4C	109.5	H43A - C43 - H43B	107.8
	109.2(2)	C43—C44—H44A	109.5
	107.36 (19)	C43—C44—H44B	109.5
C7—C5—C6	107.40 (18)	H44A—C44—H44B	109.5
C8—C5—Mg4	108.47 (15)	С43—С44—Н44С	109.5
C7—C5—Mg4	110.82 (14)	H44A—C44—H44C	109.5
C6—C5—Mg4	113.46 (14)	H44B—C44—H44C	109.5
C13—O1—C11—C12	71.5 (2)	C33—O3—C31—C32	-68.9 (2)
Mg1-01-C11-C12	-107.09 (18)	Mg3	113.14 (17)
C11—O1—C13—C14	76.2 (2)	C31—O3—C33—C34	-72.6 (2)
Mg1-01-C13-C14	-105.27 (18)	Mg3	105.41 (16)
C23—O2—C21—C22	72.4 (2)	C43—O4—C41—C42	-66.1 (2)
Mg1—O2—C21—C22	-104.48 (19)	Mg3	112.98 (17)

C21—O2—C23—C24	71.3 (3)	C41—O4—C43—C44	-64.8 (2)
Mg1-02-C23-C24	-111.7 (2)	Mg3—O4—C43—C44	116.12 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C32—H32A····Cl3 ⁱ	0.98	2.96	3.876 (2)	155
C34—H34 <i>A</i> ···C16 ⁱⁱ	0.98	2.92	3.602 (2)	127

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, *y*-1/2, -*z*+3/2.