

Received 6 March 2023 Accepted 17 March 2023

Edited by M. Zeller, Purdue University, USA

Keywords: enantiopure; (*S*)-2butyl; thiocarbamate; isothiocyanate; crystal structure.

CCDC references: 2249641; 2249640; 2249639; 2249638

Supporting information: this article has supporting information at journals.iucr.org/e

c OPEN O ACCESS Published under a CC BY 4.0 licence

Werner Kaminsky* and Max Kaganyuk

Department of Chemistry Univ. of Washington Seattle, WA 98195, USA. *Correspondence e-mail: kaminsky@chem.washington.edu

The structures of (S)-butan-2-yl N-(4-nitrophenyl)thiocarbamate, $C_{11}H_{14}N_2O_3S$, (I), (S)-butan-2-yl N-(4-methoxyphenyl)thiocarbamate, $C_{12}H_{17}NO_2S$, (II), (S)-butan-2-yl N-(4-fluorophenyl)thiocarbamate, $C_{11}H_{14}FNOS$, (III), and (S)-butan-2-yl N-(4-chlorophenyl)thiocarbamate, $C_{11}H_{14}CINOS$, (IV), all at 100 K, have monoclinic ($P2_1$) symmetry with two independent molecules in the asymmetric unit. The Flack absolute structure parameters in all cases confirm the absence of inversion symmetry. The structures display N-H···S hydrogen bonds, resulting in $R_2^2(8)$ hydrogen-bonded ring synthons connecting the two independent molecules. Despite the ring synthon, the packing follows two distinct patterns, with (I) and (IV) 'pancaking' along the *b*-axis direction, while the other two 'sandwich' in layers perpendicular to the *b* axis. Crystal morphologies were determined theoretically *via* the BFDH (Bravais, Friedel, Donnay-Harker) model and agree qualitatively with the experimentally indexed results. One of the butyl substituent of (II) exhibits structural disorder.

1. Chemical context

This research is part of an undergraduate study into creating new chiral model compounds from reacting a chiral moiety with another molecule to combine specific features of both. Initially, isothiocyanates were reacted with α -methylbenzylamine to form chiral thiourea derivatives (Kaminsky *et al.*, 2010), whereas here, the poisonous isothiocyanates were reacted with (*S*)-2-butanol to form thiocarbamates with possible protein-docking capability (Bull & Breese, 1978; Du *et al.* 2020). Specifically, (*S*)-butan-2-yl-*N*-(4-*x*-phenyl)thiocarbamates were synthesized from enantiopure (*S*)-2-butanol and 4-*x*-phenylisothiocyanate, $x = NO_2$, OCH₃, F, and Cl. Similar thiocarbamates have been investigated previously for their biological activities (Ghosh & Brindisi, 2015).

2. Structural commentary

Isothiocyanates were selected because of the ease with which the -N=C=S functional group can be reacted with amines or alcohols to form thioureas or thiocarbamates, which in turn are well suited for simple crystal-growth studies. The -R=Slinkage builds out selected hydrogen bonds, structuring the packing of the molecule and thereby enhancing crystal growth. In addition, the sulfur atom has sufficient anomalous scattering capability with Mo radiation, which permits absolute structure determinations *via* single crystal X-ray diffraction. Further, from comparing a series of crystals with small chemical variations, we hoped to gain insight into the functionality of those interchanged moieties, here NO₂, OCH₃, F, and Cl in the 4-*x* location on the structures of the phenylthiocarbamates. All four structures crystallize in the chiral space group *P*2₁ of the monoclinic system. Bond lengths and angles are in the expected ranges. We observed two pairings, where the 4-NO₂ and 4-Cl crystals exhibited a similarly short *b*-axis, whereas OCH₃ and F in the 4-*x* location had the longest axis dimensions along *b*. The chirality of the compounds was confirmed by the absolute structure parameters [(I)–(IV): -0.02 (3), -0.04 (4), 0.17 (13), and 0.022 (14), respectively].

3. Supramolecular features

In each structure shown in Fig. 1, pairs of the title molecules organize *via* the thioamide $\{\cdots H-N-C=S\}_2$ into $-R_2^2(8)$ hydrogen-bonded ring synthons (Allen *et al.*, 1999). All six non-H atoms of the ring synthons are coplanar with r.m.s. deviations from the plane of 0.026 to 0.044 Å between the four synthons. The $N \cdots S$ distances of the synthon bonds range from 3.314 (3) to 3.410 (2) Å (Tables 1–4). Hydrogen-to-

Figure 1

The molecular structure of (I)-(IV), with non-H atoms labeled and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds drawn as dashed lines. Disorder omitted for clarity.

 Table 1

 Hydrogen-bond geometry (Å, °) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1−H1 <i>N</i> ···S2	0.80(2)	2.62 (2)	3.3762 (19)	159 (2)
N3−H3N···S1	0.85(2)	2.57 (2)	3.4095 (18)	166 (2)
$C2-H2 \cdot \cdot \cdot S2$	0.95	2.87	3.592 (2)	134
$C13-H13 \cdot \cdot \cdot S1$	0.95	2.81	3.611 (2)	142
$C5-H5\cdots O2^i$	0.95	2.53	3.203 (3)	128

Symmetry code: (i) $-x, y - \frac{1}{2}, -z + 2$.

Table 2Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1N\cdots S2$	0.82 (4)	2.53 (4)	3.347 (3)	171 (4)
$N2-H2N\cdots S1$	0.86 (4)	2.47 (4)	3.314 (3)	165 (4)
$C12-H12B\cdots S1^{i}$	0.98	2.86	3.793 (4)	158
$C24-H24B\cdots S2^{ii}$	0.98	2.86	3.819 (4)	167
$C18-H18\cdots S2^{iii}$	0.95	2.98	3.730 (4)	136
C10 <i>B</i> −H10 <i>C</i> ···S1	0.99	2.96	3.445 (11)	112

Symmetry codes: (i) x + 1, y, z - 1; (ii) x - 1, y, z + 1; (iii) x - 1, y, z.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for (III).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1 - H1N \cdots S2$ $N2 - H2N \cdots S1$ $C8 - H8A \cdots F1^{i}$	0.86 (5) 0.86 (5) 0.98	2.51 (5) 2.50 (5) 2.59	3.341 (8) 3.336 (7) 3.494 (10)	164 (8) 165 (7) 154

Symmetry code: (i) x, y, z + 1.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for (IV).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···S2	0.83 (2)	2.511 (19)	3.3163 (13)	163.0 (18)
$N2 - H2 \cdots S1$ C6 - H6 \cdots S2	0.829 (19) 0.95	2.563 (19) 2.99	3.3645 (13) 3.5961 (17)	162.8 (17) 123
$C17 - H17 \cdot \cdot \cdot S1$	0.95	2.97	3.6122 (16)	127
$C_2 = H_2 A \cdots O_1$ $C_{13} = H_{13} \cdots O_2$	0.95	2.38	2.8197 (19)	111

acceptor distances are similar as well, however, the $D-H\cdots A$ angles appear to deviate slightly more from a 'straight' geometry in compounds (I) and (IV) than in (II) and (III).

Figure 2 Packing of the structures of this report. (I), (IV): view slightly inclined to the b axis·(II), (III): view approximately along the a axis. Disorder omitted for clarity.

With the exception of (III), the sulfur atoms act as acceptors for two hydrogen bonds with a major $N-H \cdots S$ and a weaker secondary $C-H \cdots S$ interaction, which causes the synthon geometry to shift slightly towards the secondary interactions. In (I), we observe a weak interaction with the ortho-C-H of the phenyl groups (C2 $-H2\cdots$ S2, C13 $-H13\cdots$ S1). The interaction is strong enough to also cause the phenyl rings to become coplanar with the synthon plane. In (II), the secondary interaction is with a proton of the methoxy group from a symmetry-related molecule. For (III), consolidating $S \cdots F$ non-covalent intermolecular interactions (Thorley & McCulloch, 2018) are found at 3.62 (1) Å instead of an $H \cdots S$ interaction. The phenyl rings in (IV) are tilted towards the ring synthon plane, causing the ortho-C-H distance to the sulfur atoms to be of lesser importance than in (I). Thus, for each case shown, we see a distinctly different bond environment of the sulfur atoms.

The packing follows two distinct patterns, with (I) and (IV) 'pancaking' along the *b*-axis direction, while the other two 'sandwich' in layers perpendicular to the *b*-axis, see Fig. 2.

Packing of (II), (III): The 4-x-phenyl moiety is approximately parallel to the *ac* plane. The $R_2^2(8)$ hydrogen-bonded rings orient roughly parallel to the *c* plane in (II) or the *bc* plane in (III). The phenylcarbamate double layers are separated by layers containing the (S)-butan-2-yl moieties. Short distances between the phenyl plane and a symmetry-related OCH₃ group are seen in (II). As a result of the S-F interaction in (III), the F atoms are not found as close to a phenyl group, but both are in hydrogen-bonding distance to a methyl group of a symmetry-related butyl moiety.

Packing of (I), (IV): The $R_2^2(8)$ hydrogen-bonded rings are roughly parallel to the *bc* planes. Each dimer stacks entirely like 'pancakes' along the short *b*-axis, with a separate stack for the 2₁ axis-related dimers. The dimers are inclined to **b** so that the NO₂ group of (I), or Cl of (IV) are found at a short distance to the phenyl of the molecule of the next layer. The NO₂-phenyl plane distances are not the same for the independent phenyl moieties and are measured at 2.99 (2) and 3.169 (16) Å in (I). In (IV), the Cl-phenyl plane distances are 3.062 (3) and 3.316 (12) Å. These distances are short and may indicate interaction between the phenyl ring and the 4-*x*groups, (NO₂, Cl). One oxygen atom of the NO₂ in (I) establishes a hydrogen bond with a proton of a symmetryrelated phenyl ring.

The different stacking models seem not to correlate with the electronegativity of the ligands, which is generally known to be in decreasing order $NO_2 > F > OCH_3 > Cl$ (Pauling, 1932).

Morphologies of the four compounds, drawn with *WinX-Morph* (Kaminsky, 2005) are shown in Fig. 3. For (I), the indexed faces are in decreasing order (increasing central distance): pinacoids $\langle 1 \ 0 \ 1 \rangle$, $\langle 1 \ 0 \ \overline{1} \rangle$, sphenoides $\langle 2 \ 1 \ 2 \rangle$, $\langle \overline{2} \ \overline{1} \ \overline{2} \rangle$. For (IV), the face indexing yielded pinacoids $\langle 1 \ 0 \ 1 \rangle$, $\langle 1 \ 0 \ \overline{1} \rangle$, sphenoides $\langle 5 \ \overline{1} \ 2 \rangle$, $\langle \overline{5} \ 1 \ \overline{2} \rangle$. This observation was confirmed qualitatively by BFDH (Bravais, Friedel, Donnay–Harker) model simulations (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) using *WinXMorph* (Kaminsky, 2007) where the dominant crystal facets are pinacoids $\langle 001 \rangle$, $\langle 100 \rangle$, $\langle 10\overline{1} \rangle$, and

Figure 3

The morphologies of the samples used to obtain structures for this report and the result of BFDH calculations based on the structures.

sphenoides $\langle 1 \ 1 \ 0 \rangle$, $\langle 0 \ 1 \ 1 \rangle$, $\langle 1 \ \overline{1} \ 0 \rangle$, $\langle 0 \ \overline{1} \ 1 \rangle$, $\langle 1 \ 1 \ \overline{1} \rangle$, and $\langle 1 \ \overline{1} \ 1 \rangle$ in decreasing order. For (I) and (IV), it is notable that the $\langle 0 \ 0 \ 1 \rangle$, $\langle 1 \ 0 \ 0 \rangle$ and calculated sphenoids were not observed. For compounds (II) and (III), a more prismatic morphology was observed. The BFDH model yields in both cases, in decreasing face-size order: pinacoids $\langle 0 \ 1 \ 0 \rangle$, $\langle 1 \ 0 \ 0 \rangle$, $\langle 1 \ 0 \ \overline{1} \rangle$, sphenoids $\langle 1 \ 1 \ 0 \rangle$, $\langle 1 \ \overline{1} \ 0 \rangle$, $\langle 1 \ \overline{1} \ 0 \rangle$, $\langle 1 \ 1 \ \overline{1} \rangle$. The observed faces in (II) are $\langle 0 \ 1 \ \overline{1} \rangle$, $\langle 0 \ 1 \ 0 \rangle$, $\langle 1 \ 0 \ 0 \rangle$, $\langle 2 \ 1 \ 2 \rangle$. Compound (III) grew with $\langle 0 \ \overline{1} \ \overline{1} \rangle$, $\langle 0 \ 1 \ \overline{3} \rangle$, and $\langle 1 \ 0 \ 0 \rangle$ faces.

The BFDH model is entirely based on the metrical and space-group symmetry. It does not account for solvent–surface effects. Thus, differences of growth rates due to such effects in the real samples may often distort the habitus, as well as changing the occurrence of faces.

4. Database survey

The structures of this report are not found in the Cambridge Structural Database (CSD version 5.42; Groom *et al.*, 2016).

research communications

Table	5	
Experi	mental	details

	(I)	(II)	(III)	(IV)
Crystal data				
Chemical formula	$C_{11}H_{14}N_2O_3S$	C ₁₂ H ₁₇ NO ₂ S	C ₁₁ H ₁₄ FNOS	C ₁₁ H ₁₄ ClNOS
M_r	254.3	239.32	227.29	243.74
Crystal system, space group	Monoclinic, $P2_1$	Monoclinic, $P2_1$	Monoclinic, $P2_1$	Monoclinic, $P2_1$
Temperature (K)	100	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.052 (2), 4.7635 (6), 16.853 (2)	6.6973 (5), 21.2076 (17), 9.1899 (7)	6.9723 (13), 20.166 (3), 8.2818 (14)	15.4173 (15), 5.0170 (5), 16.2502 (15)
β (°)	101.702 (8)	102.868 (5)	99.403 (13)	105.592 (5)
$V(Å^3)$	1261.9 (3)	1272.49 (17)	1148.8 (3)	1210.7 (2)
Ζ	4	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο <i>Κα</i>
$\mu (\text{mm}^{-1})$	0.26	0.24	0.27	0.46
Crystal size (mm)	$0.6 \times 0.12 \times 0.06$	$0.6 \times 0.48 \times 0.2$	$0.5 \times 0.1 \times 0.05$	$0.6\times0.12\times0.11$
Data collection				
Diffractometer	Bruker APEXII	Bruker APEXII	Bruker APEXII	Bruker APEXII
Absorption correction	Numerical (SADABS; Krause et al., 2015)	Numerical (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause <i>et al.</i> , 2015)	Numerical (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.959, 1	0.657, 0.745	0.863, 1	0.954, 1
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	37641, 9553, 7648	21043, 7694, 5666	10466, 5263, 2448	46534, 9292, 8469
R _{int}	0.047	0.048	0.171	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.772	0.720	0.650	0.772
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.084, 1.01	0.051, 0.113, 1.01	0.068, 0.143, 0.95	0.027, 0.066, 1.04
No. of reflections	9553	7694	5263	9292
No. of parameters	317	368	257	281
No. of restraints	1	293	2	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.31, -0.28	0.51, -0.42	0.45, -0.52	0.36, -0.22
Absolute structure	Flack <i>x</i> determined using 2891 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack <i>x</i> determined using 2891 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013) 0.02 (4)	Flack <i>x</i> determined using 2891 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013) 0.12 (12)	Flack <i>x</i> determined using 2891 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013) 0.022 (4)
Absolute structure parameter	-0.02 (3)	0.05 (4)	0.17 (13)	0.022 (14)

Computer programs: APEX2 and SAINT (Bruker, 2012), SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), and ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012).

Earlier, we deposited related structures to the CSD, viz. the racemic (RS)-butan-2-yl equivalent structures to (I), (II), and (IV), denoted with a prime: (I'): CCDC 2249338, (II'): 2249339, (IV'): 2249336 (Kaganyuk et al., 2023). Instead of (III'), for which we got only a very low in quality obtained structure, we uploaded the 4-bromo structure (V'), CCDC 2249337. The 4-Cl (IV') and 4-Br (V') compounds, both in space group $P2_1/c$, exhibit very similar packing to that of (IV), despite the addition of the glide-plane symmetry. The other two crystallize in the triclinic space group $P\overline{1}$, and only the (RS)-butan-2-yl-4-CH3 phenylthiocarbamate crystal builds out the $R_2^2(8)$ synthon, thus although likely, the thiocarbamates do not always exhibit this feature. A more general search for 'thiocarbamate' gave 315 hits, indicating that this substance group has been crystallized moderately often. Via a GOOGLE search (March 2023), 'phenylthiocarbamate' is found 9,370 times. Most of the compounds incorporate a center of symmetry, which is often compatible with an $R_2^2(8)$ synthon. In fact, the internet delivers over 43,000 results when searching for 'N-H···S R22(8) synthon' (GOOGLE search, March 2023). The number drops considerably, to 93, in a search for 'ring synthon in phenylthiocarbamates'. 'Ring synthon in chiral phenylthiocarbamates' yields only one reasonable result, already included here (Kaminsky *et al.*, 2010).

5. Synthesis and crystallization

All chemicals were obtained from Sigma Aldrich. Compounds (I), (III), and (IV): 4 ml vials were charged with a stir bar, the aryl isothiocyanate [0.100 g, 0.555 mmol (I), 0.653 mmol (III), 0.590 mmol (IV)] and 2(S)-butanol (82.3 mg, 1.1 mmol). Using a hot oil bath, the reaction was run at 381 K for 24 h. Compound (II): A 4 mL vial was charged with a stir bar and 2(S)-butanol (0.054 g, 0.726 mmol). While stirring, triethylamine (0.011 g, 0.109 mmol) was added. After 5 minutes, the aryl isothiocyanate (0.100 g, 0.605 mmol) was added dropwise. The reaction was allowed to continue for 24 h at 358 K. Subsequently, for all four compounds, the vials, after allowing to cool, were covered with filter paper and left in a vacuum oven at 343 K. The crude product was purified by flash column chromatography, and eluted with 1:4 ethyl acetate/hexane.

Fractions were collected in 13×100 mm test tubes and were spotted for thin layer chromatography to locate the product. The fractions containing the product were rotovaped in a 25 ml round-bottom flask. The solid found in low yields was redissolved in a 1:4 methanol/ethanol solution and crystals grew via slow evaporation. (I): ¹H NMR (300 MHz, CDCl₃): δ 9.2638 (bs, 1H), 8.1926 (d, J = 7.1 Hz, 2H), 7.5520 (bs, 2H), 5.5528 (m, 1H), 1.7044 (m, 2H), 1.4038 (d, J = 6.3 Hz, 3H), $0.9634 (t, J = 7.4 \text{ Hz}, 3\text{H}). (II): {}^{1}\text{H} \text{NMR} (300 \text{ MHz}, (CD_3)_2\text{CO}):$ δ 9.7438 (s, 1H), 7.5813 (m, 2H), 6.9070 (d, J = 9.1 Hz, 2H), 5.4819 (bs, 3H), 3.7847 (s, 3H), 1.7022 (m, 2H), 1.2948 (s, 3H), 0.9184 (t, J = 7.4, 3H). (III): ¹H NMR (300 MHz, CDCl3): δ 8.8978 (bs, 1H), 7.2240 (bs, 2H), 7.0147 (t, J = 8.5 Hz, 2H), 5.0768 (m, 1H), 1.7280 (m, 2H), 1.3461 (d, J = 6.5 Hz, 3H), $0.9316 (t, J = 7.5 \text{ Hz}, 3\text{H}). (IV): {}^{1}\text{H} \text{ NMR} (300 \text{ MHz}, \text{CDCl}_{3}): \delta$ 8.7150 (bs, 1H), 7.2918 (d, J = 8.6 Hz, 2H), 7.2130 (bs, 2H),5.5199 (m, 1H), 1.7269 (m, 2H), 1.3640 (d, J = 6.2 Hz, 3H), 0.9472 (t, J = 7.4 Hz, 3H).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5. Hydrogen atoms on carbon atoms were positioned geometrically, using a riding model, with C-H = 0.95-1.00 Å. $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$. The nitrogen protons were refined positionally, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm N})$. The two phenyl groups of the independent molecules of (III) were optimized to enhance the C-Cbond precision with the C–C distance at 1.39 Å (AFIX 66). In (II), one of the two (S)-butan-2-yl moieties appeared threefold disordered, requiring restraint of the displacement parameters with a SIMU 0.01 command. One atom (C8) was constrained to the same displacement parameter for each fraction with EADP. The disordered geometries were linked through a SAME command to the geometry of the ordered moiety of the other molecule, and distances of O1 to C8, C8B and C8C were restrained to be similar (SADI), all with default esds. The occupancies of the three fractions were 0.444 (4), 0.354 (4), and 0.202 (4).

Acknowledgements

The contributions to this study of undergraduate students Crystal Chang, Bao-Chau Ngoc Tran, Tram-Anh Pham, Donald Responte, Dan Darenciang, Joel A. Zazueta, Joey B. Gallegos, Viktoria Pakhnyuk are gratefully acknowledged. We also like to thank the Hooked on Photonics REU program and the MDITR-STC organization at the University of Washington. We are especially indebted to Bart Kahr and Larry Dalton for lab space and Dr Meghana Rawal and Dr Delwin Elder for guidance.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 0840520).

References

- Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bravais, A. (1866). Du Cristal Considéré Comme un Simple Assemblage de Points. In Étude Cristallographiques. Paris: Gauthier-Villars.
- Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bull, H. B. & Breese, K. (1978). Biopolymers, 17, 2121-2131.
- Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.
- Du, Y., Grodowitz, M. J. & Chen, J. (2020). Biomolecules, 10, 716-726.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Friedel, G. (1907). Bull. Soc. Fr. Mineral. 22, 326-455.
- Ghosh, A. K. & Brindisi, M. (2015). J. Med. Chem. 58, 2895-2940.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kaganyuk, M., Responte, D., Daranciang, D. & Kaminsky, W. (2023). *CSD Communications* (refcodes HEZYIY, HEZYOE, HEZYUK and HEZZAR). CCDC, Cambridge, England.
- Kaminsky, W. (2005). J. Appl. Cryst. 38, 566-567.
- Kaminsky, W. (2007). J. Appl. Cryst. 40, 382-385.
- Kaminsky, W., Responte, D., Daranciang, D., Gallegos, J. B., Ngoc Tran, B. C. & Pham, T. (2010). *Molecules*, 15, 554–569.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Pauling, L. (1932). J. Am. Chem. Soc. 54, 3570-3582.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Thorley, K. J. & McCulloch, I. (2018). J. Mater. Chem. C6, 12413– 12421.

Acta Cryst. (2023). E79, 386-391 [https://doi.org/10.1107/S2056989023002591]

Enantiopure (S)-butan-2-yl N-(4-x-phenyl)thiocarbamates, $x = NO_2$, OCH₃, F, and Cl

Werner Kaminsky and Max Kaganyuk

Computing details

For all structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I)

Crystal data $C_{11}H_{14}N_2O_3S$ F(000) = 536 $M_r = 254.3$ $D_{\rm x} = 1.339 {\rm Mg} {\rm m}^{-3}$ Monoclinic, $P2_1$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: P 2yb Cell parameters from 8016 reflections a = 16.052 (2) Å $\theta = 2.5 - 32.3^{\circ}$ *b* = 4.7635 (6) Å $\mu = 0.26 \text{ mm}^{-1}$ T = 100 Kc = 16.853 (2) Å $\beta = 101.702 \ (8)^{\circ}$ Prism, yellow V = 1261.9 (3) Å³ $0.6 \times 0.12 \times 0.06 \text{ mm}$ Z = 4Data collection Bruker APEXII 37641 measured reflections diffractometer 9553 independent reflections Radiation source: sealed x-ray tube 7648 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.047$ $\theta_{\text{max}} = 33.3^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$ φ or ω oscillation scans Absorption correction: numerical (SADABS; Krause et al., 2015) $T_{\rm min} = 0.959, T_{\rm max} = 1$ Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.084$ *S* = 1.01

9553 reflections 317 parameters 1 restraint 0 constraints

 $h = -24 \rightarrow 24$ $k = -7 \rightarrow 7$ $l = -25 \rightarrow 25$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0311P)^2 + 0.2393P]$ where $P = (F_0^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm ma}$	$_{\rm ux} < 0.001$
$\Delta \rho_{\rm max} =$	= 0.31 e Å ⁻³
$\Delta \rho_{\rm min} =$	-0.28 e Å ⁻³

Absolute structure: Flack *x* determined using 2891 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013). Absolute structure parameter: -0.02 (3)

Special details

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using *SAINT*, *SADABS* within the APEX2 software package by Bruker (2012). Data work-up was done with *SAINT* (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.15331 (12)	-0.1677 (4)	0.84542 (12)	0.0152 (4)	
C2	0.12449 (12)	-0.0015 (4)	0.77677 (12)	0.0174 (4)	
H2	0.151144	-0.016729	0.731506	0.021*	
C3	0.05799 (13)	0.1841 (4)	0.77393 (13)	0.0180 (4)	
Н3	0.038254	0.295554	0.727155	0.022*	
C4	0.02066 (13)	0.2038 (4)	0.84101 (13)	0.0177 (4)	
C5	0.04839 (13)	0.0434 (5)	0.90953 (12)	0.0201 (4)	
Н5	0.021711	0.061094	0.954713	0.024*	
C6	0.11491 (13)	-0.1429 (4)	0.91239 (13)	0.0198 (4)	
H6	0.134354	-0.253052	0.959486	0.024*	
C7	0.27251 (12)	-0.5046 (4)	0.89663 (12)	0.0160 (4)	
C8	0.39282 (13)	-0.4736 (6)	1.07282 (13)	0.0257 (4)	
H8A	0.423896	-0.579353	1.119423	0.031*	
H8B	0.382833	-0.281755	1.089701	0.031*	
H8C	0.426392	-0.468052	1.030338	0.031*	
C9	0.30844 (13)	-0.6152 (5)	1.04042 (12)	0.0194 (4)	
H9	0.318562	-0.810097	1.022493	0.023*	
C10	0.24760 (13)	-0.6239 (5)	1.09819 (13)	0.0223 (4)	
H10A	0.192737	-0.703946	1.069676	0.027*	
H10B	0.236767	-0.429797	1.114471	0.027*	
C11	0.28090 (15)	-0.7970 (5)	1.17392 (13)	0.0251 (5)	
H11A	0.235765	-0.819771	1.204789	0.03*	
H11B	0.32951	-0.700617	1.207476	0.03*	
H11C	0.298872	-0.981959	1.158234	0.03*	
C12	0.37889 (12)	-1.0550 (4)	0.66160 (12)	0.0145 (4)	
C13	0.41365 (12)	-1.2037 (4)	0.73232 (12)	0.0162 (4)	
H13	0.393993	-1.167115	0.780817	0.019*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	0.47613 (12)	-1.4027 (4)	0.73227 (12)	0.0161 (4)
H14	0.499536	-1.504145	0.780133	0.019*
C15	0.50388 (11)	-1.4511 (4)	0.66101 (12)	0.0143 (3)
C16	0.47042 (12)	-1.3078 (4)	0.59063 (12)	0.0171 (4)
H16	0.490499	-1.345659	0.542426	0.021*
C17	0.40740 (12)	-1.1085 (4)	0.59036 (12)	0.0168 (4)
H17	0.383929	-1.009483	0.542073	0.02*
C18	0.25910 (11)	-0.7200 (4)	0.61245 (11)	0.0144 (3)
C19	0.23833 (14)	-0.7059 (6)	0.39684 (13)	0.0263 (4)
H19A	0.199951	-0.630163	0.348897	0.032*
H19B	0.250212	-0.903695	0.387626	0.032*
H19C	0.291683	-0.599465	0.406889	0.032*
C20	0.19702 (12)	-0.6818 (4)	0.46925 (11)	0.0164 (4)
H20	0.186765	-0.479585	0.480041	0.02*
C21	0.11459 (13)	-0.8446 (5)	0.46106 (14)	0.0230 (4)
H21A	0.101425	-0.87198	0.515435	0.028*
H21B	0.12168	-1.032074	0.437977	0.028*
C22	0.04055 (13)	-0.6930 (6)	0.40690 (14)	0.0283 (5)
H22A	-0.012029	-0.799175	0.405447	0.034*
H22B	0.051502	-0.677764	0.351929	0.034*
H22C	0.034616	-0.504726	0.428525	0.034*
N1	0.21907 (11)	-0.3574 (4)	0.83957 (11)	0.0166 (3)
H1N	0.2270 (15)	-0.384 (5)	0.7950 (15)	0.02*
N2	-0.04965 (11)	0.3997 (4)	0.83882 (11)	0.0228 (4)
N3	0.31755 (10)	-0.8517 (4)	0.66917 (10)	0.0151 (3)
H3N	0.3146 (15)	-0.810 (5)	0.7178 (15)	0.018*
N4	0.56963 (10)	-1.6622 (3)	0.66027 (10)	0.0173 (3)
01	-0.07477 (11)	0.5356 (4)	0.77657 (10)	0.0371 (4)
O2	-0.08002 (10)	0.4226 (4)	0.89972 (10)	0.0296 (4)
03	0.26222 (9)	-0.4523 (3)	0.97083 (8)	0.0185 (3)
O4	0.59552 (10)	-1.7972 (3)	0.72206 (9)	0.0257 (4)
05	0.59525 (9)	-1.6972 (4)	0.59691 (9)	0.0246 (3)
06	0.25984 (9)	-0.8002 (3)	0.53765 (8)	0.0168 (3)
S1	0.34368 (3)	-0.72622 (11)	0.87190 (3)	0.01983 (11)
S2	0.19349 (3)	-0.48150 (11)	0.63883 (3)	0.01827 (10)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0164 (8)	0.0135 (8)	0.0158 (9)	-0.0006 (6)	0.0037 (7)	-0.0010 (7)
C2	0.0206 (9)	0.0176 (8)	0.0146 (9)	0.0004 (8)	0.0051 (7)	-0.0011 (8)
C3	0.0213 (9)	0.0176 (9)	0.0149 (9)	0.0007 (7)	0.0031 (7)	0.0008 (7)
C4	0.0175 (9)	0.0178 (9)	0.0177 (10)	0.0016 (7)	0.0033 (7)	-0.0020(7)
C5	0.0214 (9)	0.0240 (10)	0.0162 (9)	0.0038 (8)	0.0065 (7)	0.0018 (8)
C6	0.0212 (10)	0.0227 (9)	0.0163 (10)	0.0034 (8)	0.0056 (8)	0.0025 (8)
C7	0.0182 (8)	0.0147 (8)	0.0156 (9)	-0.0001 (7)	0.0044 (7)	-0.0013 (7)
C8	0.0221 (10)	0.0343 (11)	0.0200 (10)	-0.0017 (10)	0.0025 (8)	0.0020 (10)
C9	0.0218 (10)	0.0208 (9)	0.0149 (9)	0.0033 (8)	0.0018 (7)	0.0019 (8)

C10	0.0243 (10)	0.0236 (10)	0.0194 (10)	-0.0026 (8)	0.0055 (8)	-0.0013 (8)
C11	0.0336 (12)	0.0241 (10)	0.0170 (10)	-0.0061 (9)	0.0039 (9)	-0.0004 (8)
C12	0.0130 (8)	0.0148 (8)	0.0152 (9)	-0.0002 (6)	0.0019 (7)	-0.0013 (7)
C13	0.0188 (8)	0.0174 (8)	0.0126 (9)	0.0019 (7)	0.0038 (7)	-0.0005 (8)
C14	0.0179 (9)	0.0173 (8)	0.0129 (9)	0.0024 (7)	0.0026 (7)	0.0005 (7)
C15	0.0129 (8)	0.0134 (8)	0.0166 (9)	0.0022 (6)	0.0028 (6)	0.0003 (7)
C16	0.0171 (9)	0.0206 (9)	0.0148 (9)	0.0018 (7)	0.0059(7)	-0.0004 (7)
C17	0.0187 (9)	0.0185 (8)	0.0133 (9)	0.0038 (7)	0.0037 (7)	0.0017 (7)
C18	0.0129 (8)	0.0150 (7)	0.0151 (9)	-0.0006 (7)	0.0023 (6)	0.0009 (8)
C19	0.0225 (10)	0.0397 (12)	0.0163 (10)	-0.0003 (10)	0.0032 (8)	0.0027 (10)
C20	0.0166 (8)	0.0179 (9)	0.0134 (9)	0.0017 (7)	-0.0001 (7)	0.0022 (7)
C21	0.0200 (10)	0.0252 (10)	0.0221 (11)	-0.0021 (8)	0.0002 (8)	0.0034 (9)
C22	0.0172 (9)	0.0370 (13)	0.0285 (12)	0.0020 (9)	-0.0010 (8)	-0.0010 (11)
N1	0.0215 (8)	0.0175 (8)	0.0116 (8)	0.0042 (6)	0.0051 (6)	-0.0007 (6)
N2	0.0224 (9)	0.0266 (9)	0.0201 (9)	0.0061 (7)	0.0057 (7)	0.0007 (8)
N3	0.0165 (8)	0.0176 (7)	0.0110 (8)	0.0028 (6)	0.0021 (6)	-0.0008 (6)
N4	0.0175 (8)	0.0161 (7)	0.0178 (8)	0.0023 (6)	0.0025 (6)	-0.0002 (6)
01	0.0385 (9)	0.0461 (10)	0.0284 (9)	0.0228 (9)	0.0113 (7)	0.0145 (9)
O2	0.0305 (9)	0.0396 (9)	0.0209 (8)	0.0139 (7)	0.0104 (7)	-0.0004 (7)
03	0.0234 (7)	0.0201 (7)	0.0118 (6)	0.0052 (6)	0.0030 (5)	-0.0001 (6)
O4	0.0313 (8)	0.0245 (8)	0.0205 (8)	0.0126 (6)	0.0032 (6)	0.0050 (6)
05	0.0247 (7)	0.0294 (8)	0.0224 (8)	0.0089 (7)	0.0107 (6)	-0.0004 (7)
06	0.0168 (6)	0.0209 (7)	0.0119 (6)	0.0046 (5)	0.0007 (5)	0.0001 (5)
S1	0.0218 (2)	0.0214 (2)	0.0165 (2)	0.0062 (2)	0.00440 (18)	-0.0007 (2)
S2	0.0180 (2)	0.0205 (2)	0.0167 (2)	0.00655 (19)	0.00423 (18)	0.0005 (2)

Geometric parameters (Å, °)

C1—C6	1.396 (3)	C13—C14	1.380 (3)	
C1—C2	1.401 (3)	C13—H13	0.95	
C1—N1	1.408 (2)	C14—C15	1.382 (3)	
С2—С3	1.379 (3)	C14—H14	0.95	
С2—Н2	0.95	C15—C16	1.379 (3)	
С3—С4	1.386 (3)	C15—N4	1.460 (2)	
С3—Н3	0.95	C16—C17	1.387 (3)	
C4—C5	1.381 (3)	C16—H16	0.95	
C4—N2	1.459 (3)	C17—H17	0.95	
С5—С6	1.382 (3)	C18—O6	1.320 (2)	
С5—Н5	0.95	C18—N3	1.350 (2)	
С6—Н6	0.95	C18—S2	1.669 (2)	
С7—ОЗ	1.318 (2)	C19—C20	1.507 (3)	
C7—N1	1.348 (2)	C19—H19A	0.98	
C7—S1	1.669 (2)	C19—H19B	0.98	
С8—С9	1.512 (3)	C19—H19C	0.98	
C8—H8A	0.98	C20—O6	1.481 (2)	
C8—H8B	0.98	C20—C21	1.516 (3)	
C8—H8C	0.98	C20—H20	1	
С9—ОЗ	1.475 (2)	C21—C22	1.525 (3)	

C9—C10	1.513 (3)	C21—H21A	0.99
С9—Н9	1	C21—H21B	0.99
C10—C11	1.522 (3)	C22—H22A	0.98
C10—H10A	0.99	C22—H22B	0.98
C10—H10B	0.99	C^{22} H ²² C	0.98
	0.08	NI HIN	0.90
	0.98	NI-IIIN NI2 O2	0.80(2)
	0.98	N2	1.227(2)
	0.98	N2-01	1.229 (2)
C12—C17	1.392 (3)	N3—H3N	0.85 (2)
C12—C13	1.401 (3)	N4—O4	1.223 (2)
C12—N3	1.405 (2)	N4—O5	1.231 (2)
C6—C1—C2	119.58 (18)	C13—C14—H14	120.7
C6-C1-N1	124.81 (18)	C15—C14—H14	120.7
C2-C1-N1	115.58 (17)	C16—C15—C14	121.78 (18)
C_{3} C_{2} C_{1}	120.96 (19)	C_{16} C_{15} N_{4}	121.70(10) 119.32(17)
$C_3 C_2 U_2$	110.5	C14 $C15$ $N4$	119.52(17) 118.00(17)
$C_3 = C_2 = H_2$	119.5	C14 - C15 - N4	110.90(17)
C1 = C2 = H2	119.5		119.87 (19)
02-03-04	118.36 (19)	C15—C16—H16	120.1
С2—С3—Н3	120.8	C17—C16—H16	120.1
С4—С3—Н3	120.8	C16—C17—C12	119.32 (18)
C5—C4—C3	121.68 (18)	С16—С17—Н17	120.3
C5—C4—N2	119.43 (18)	С12—С17—Н17	120.3
C3—C4—N2	118.89 (18)	O6—C18—N3	113.71 (17)
C4—C5—C6	120.01 (19)	O6—C18—S2	125.43 (14)
С4—С5—Н5	120	N3—C18—S2	120.85 (15)
С6—С5—Н5	120	C20-C19-H19A	109.5
C_{5} C_{6} C_{1}	119 41 (19)	C_{20} C_{19} H_{19B}	109.5
C5 C6 H6	120.3		109.5
$C_{1} = C_{0} = H_{0}$	120.3	$\begin{array}{cccc} \Pi & \Pi & \Pi & \Pi \\ \Pi & \Pi & \Pi & \Pi & \Pi \\ \Pi & \Pi &$	109.5
$C_1 = C_0 = H_0$	120.5		109.5
	113.22 (17)	H19A—C19—H19C	109.5
03—C7—S1	125.47 (15)	H19B—C19—H19C	109.5
N1—C7—S1	121.30 (15)	O6—C20—C19	105.04 (15)
С9—С8—Н8А	109.5	O6—C20—C21	108.67 (15)
С9—С8—Н8В	109.5	C19—C20—C21	114.00 (18)
H8A—C8—H8B	109.5	O6—C20—H20	109.7
С9—С8—Н8С	109.5	С19—С20—Н20	109.7
H8A—C8—H8C	109.5	C21—C20—H20	109.7
H8B—C8—H8C	109.5	C20—C21—C22	111.86 (18)
03	108.78 (18)	C20—C21—H21A	109.2
03-C9-C10	103 89 (16)	C^{22} C^{21} H^{21} A	109.2
C_{8} C_{9} C_{10}	115 33 (17)	C_{20} C_{21} H_{21R}	109.2
$O_3 C_0 H_0$	100.5	$C_{20} = C_{21} = H_{21} B$	109.2
$C_{2} = C_{2} = C_{112}$	109.5	$\begin{array}{c} 122 \hline 121 \hline 1121 \hline 121 $	107.2
	109.5	$\Pi \angle I A \longrightarrow U \angle I \longrightarrow \Pi \angle I B$	107.9
C_{10} C_{9} H_{9}	109.5	$U_2 I - U_2 - H_2 Z A$	109.5
C9—C10—C11	113.06 (18)	C21—C22—H22B	109.5
C9—C10—H10A	109	H22A—C22—H22B	109.5
C11—C10—H10A	109	C21—C22—H22C	109.5

C9—C10—H10B	109	H22A—C22—H22C	109.5
C11—C10—H10B	109	H22B—C22—H22C	109.5
H10A—C10—H10B	107.8	C7—N1—C1	131.41 (18)
C10-C11-H11A	109.5	C7—N1—H1N	112.9 (18)
C10—C11—H11B	109.5	C1—N1—H1N	115.7 (18)
H11A—C11—H11B	109.5	O2—N2—O1	123.36 (19)
C10—C11—H11C	109.5	O2—N2—C4	118.18 (18)
H11A—C11—H11C	109.5	O1—N2—C4	118.46 (18)
H11B—C11—H11C	109.5	C18—N3—C12	130.92 (18)
C17—C12—C13	119.81 (17)	C18—N3—H3N	114.0 (16)
C17—C12—N3	124.28 (18)	C12—N3—H3N	115.0 (16)
C13—C12—N3	115.89 (17)	O4—N4—O5	123.50 (17)
C14—C13—C12	120.70 (18)	O4—N4—C15	118.46 (17)
C14—C13—H13	119.6	O5—N4—C15	118.04 (16)
C12—C13—H13	119.6	С7—О3—С9	121.03 (16)
C13—C14—C15	118.51 (18)	C18—O6—C20	119.80 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1 <i>N</i> ···S2	0.80 (2)	2.62 (2)	3.3762 (19)	159 (2)
N3—H3 <i>N</i> ···S1	0.85 (2)	2.57 (2)	3.4095 (18)	166 (2)
C2—H2…S2	0.95	2.87	3.592 (2)	134
C13—H13…S1	0.95	2.81	3.611 (2)	142
C5—H5…O2 ⁱ	0.95	2.53	3.203 (3)	128

Symmetry code: (i) -x, y-1/2, -z+2.

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II)

$C_{12}H_{17}NO_2S$	F(000) = 512
$M_r = 239.32$	$D_{\rm x} = 1.249 {\rm Mg} {\rm m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 21109 reflections
a = 6.6973 (5) Å	$\theta = 1.9 - 30.8^{\circ}$
b = 21.2076 (17) Å	$\mu=0.24~\mathrm{mm^{-1}}$
c = 9.1899(7) Å	T = 100 K
$\beta = 102.868 \ (5)^{\circ}$	Needle, colorless
$V = 1272.49 (17) Å^3$	$0.6 \times 0.48 \times 0.2 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII	21043 measured reflections
diffractometer	7694 independent reflections
Radiation source: sealed x-ray tube	5666 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
φ or ω oscillation scans	$\theta_{\rm max} = 30.8^\circ, \theta_{\rm min} = 1.9^\circ$
Absorption correction: numerical	$h = -9 \rightarrow 9$
(SADABS; Krause et al., 2015)	$k = -30 \rightarrow 30$
$T_{\min} = 0.657, \ T_{\max} = 0.745$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.051$	and constrained refinement
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.037P)^2 + 0.3946P]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
7694 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
368 parameters	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
293 restraints	$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$
0 constraints	Absolute structure: Flack x determined using
Primary atom site location: structure-invariant direct methods	2891 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013).
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.03 (4)
map	

Special details

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using *SAINT*, *SADABS* within the APEX2 software package by Bruker (2012). Data work-up was done with *SAINT* (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.3234 (5)	0.72968 (17)	0.0597 (4)	0.0242 (8)	
C2	0.2356 (5)	0.72153 (15)	-0.0890 (4)	0.0245 (7)	
H2	0.094609	0.710973	-0.119493	0.029*	
C3	0.3544 (6)	0.72883 (15)	-0.1957 (4)	0.0233 (7)	
Н3	0.295113	0.722886	-0.298681	0.028*	
C4	0.5579 (5)	0.74471 (18)	-0.1494 (4)	0.0269 (7)	
C5	0.6459 (5)	0.7519 (2)	0.0015 (4)	0.0333 (8)	
Н5	0.787173	0.761973	0.032826	0.04*	
C6	0.5286 (5)	0.7444 (2)	0.1060 (4)	0.0340 (8)	
H6	0.58849	0.749394	0.209183	0.041*	
S 1	0.02973 (14)	0.74842 (5)	0.39257 (10)	0.0343 (2)	
C7	0.1630 (5)	0.76439 (17)	0.2634 (4)	0.0278 (8)	
01	0.2409 (4)	0.81978 (12)	0.2408 (3)	0.0355 (6)	
C8	0.444 (2)	0.9025 (7)	0.378 (3)	0.041 (2)	0.444 (4)
H8A	0.523678	0.868668	0.436354	0.061*	0.444 (4)
H8B	0.445317	0.939758	0.441278	0.061*	0.444 (4)
H8C	0.504598	0.913242	0.293399	0.061*	0.444 (4)
C9	0.229 (2)	0.8810 (7)	0.321 (2)	0.034 (2)	0.444 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	0.165251	0.873017	0.408306	0.041*	0.444 (4)
C10	0.1038 (14)	0.9302 (4)	0.2216 (12)	0.0382 (19)	0.444 (4)
H10A	0.093609	0.968145	0.282145	0.046*	0.444 (4)
H10B	0.177813	0.942314	0.143912	0.046*	0.444 (4)
C11	-0.1086 (17)	0.9096 (6)	0.1463 (15)	0.057 (3)	0.444 (4)
H11A	-0.100617	0.874981	0.077258	0.086*	0.444 (4)
H11B	-0.182427	0.945155	0.090835	0.086*	0.444 (4)
H11C	-0.181371	0.895306	0.221737	0.086*	0.444 (4)
C8B	0.393 (3)	0.9101 (8)	0.374 (3)	0.041 (2)	0.354 (4)
H8D	0.368205	0.949443	0.422835	0.061*	0.354 (4)
H8E	0.426634	0.919652	0.277802	0.061*	0.354 (4)
H8F	0.508114	0.887578	0.437639	0.061*	0.354 (4)
C9B	0.204 (3)	0.8694 (9)	0.349 (2)	0.034 (3)	0.354 (4)
H9B	0.1939	0.848955	0.445096	0.041*	0.354 (4)
C10B	0.0088 (18)	0.9043 (5)	0.2850 (13)	0.035 (2)	0.354 (4)
H10C	-0.108465	0.875614	0.282587	0.042*	0.354 (4)
H10D	-0.004249	0.939951	0.351796	0.042*	0.354 (4)
C11B	-0.003(2)	0.9293 (5)	0.1310(13)	0.039 (3)	0.354 (4)
H11D	-0.131226	0.952741	0.097632	0.058*	0.354 (4)
H11E	0.001174	0.894153	0.062582	0.058*	0.354 (4)
H11F	0.113275	0.957498	0.131893	0.058*	0.354 (4)
C8C	0.366 (4)	0.9172 (10)	0.333 (4)	0.041 (2)	0.202 (4)
H8G	0.33353	0.955948	0.380465	0.061*	0.202 (4)
H8H	0.395751	0.927403	0.235543	0.061*	0.202 (4)
H8I	0.486429	0.897102	0.396154	0.061*	0.202 (4)
C9C	0.187 (4)	0.8727 (15)	0.311 (5)	0.035 (3)	0.202 (4)
H9C	0.154489	0.861448	0.408593	0.042*	0.202 (4)
C10C	-0.005(3)	0.8952 (9)	0.201 (3)	0.036 (3)	0.202 (4)
H10E	0.026609	0.899442	0.10069	0.043*	0.202 (4)
H10F	-0.113085	0.862847	0.193378	0.043*	0.202 (4)
C11C	-0.083(3)	0.9564 (8)	0.243 (3)	0.041 (4)	0.202 (4)
H11G	-0.197989	0.970331	0.163991	0.062*	0.202 (4)
H11H	0.026427	0.98791	0.257494	0.062*	0.202 (4)
H11I	-0.129624	0.951219	0.336395	0.062*	0.202 (4)
C12	0.6008 (6)	0.7513 (2)	-0.3988(4)	0.0370 (9)	()
H12A	0.555585	0.707954	-0.424741	0.055*	
H12B	0.703873	0.763344	-0.454402	0.055*	
H12C	0.483348	0.779874	-0.424448	0.055*	
C13	-0.2448(5)	0.59142 (17)	0.4748 (4)	0.0265 (8)	
C14	-0.1540(5)	0.59857 (18)	0.6239 (4)	0.0275 (8)	
H14	-0.011877	0.607781	0.652848	0.033*	
C15	-0.2673(5)	0.59251 (17)	0.7318 (4)	0.0269 (8)	
H15	-0.204178	0.597542	0.834465	0.032*	
C16	-0.4754(5)	0.57890 (15)	0.6877 (4)	0.0224(7)	
C17	-0.5672(5)	0.57305 (19)	0.5371 (4)	0.0272 (7)	
H17	-0.709852	0.564724	0.507514	0.033*	
C18	-0.4541(5)	0.57916 (18)	0.4312 (4)	0.0265 (8)	
H18	-0.517786	0.575071	0.328341	0.032*	
	0.0 1 / / 00	0.0,00,1	0.0 - 00 11		

C19	-0.0790 (5)	0.55447 (17)	0.2769 (4)	0.0264 (8)
C20	0.1078 (9)	0.4170 (3)	0.3247 (7)	0.081 (2)
H20A	0.217303	0.447506	0.323526	0.122*
H20B	0.140773	0.376905	0.282401	0.122*
H20C	0.094917	0.410283	0.427702	0.122*
C21	-0.0908 (7)	0.44190 (19)	0.2334 (6)	0.0484 (12)
H21	-0.073927	0.452727	0.130872	0.058*
C22	-0.2657 (10)	0.3961 (2)	0.2227 (6)	0.0655 (17)
H22A	-0.227219	0.355534	0.183068	0.079*
H22B	-0.287127	0.38815	0.324243	0.079*
C23	-0.4637 (10)	0.4183 (3)	0.1252 (6)	0.0695 (18)
H23A	-0.506915	0.457378	0.166255	0.104*
H23B	-0.569058	0.385928	0.121697	0.104*
H23C	-0.444471	0.426172	0.024169	0.104*
C24	-0.5110 (6)	0.5739 (2)	0.9395 (4)	0.0342 (8)
H24A	-0.401411	0.5425	0.965042	0.051*
H24B	-0.615316	0.565495	0.996758	0.051*
H24C	-0.453949	0.616142	0.96361	0.051*
N1	0.2009 (5)	0.72059 (15)	0.1684 (3)	0.0284 (7)
H1N	0.157 (6)	0.684 (2)	0.170 (5)	0.034*
N2	-0.1264 (5)	0.59976 (16)	0.3643 (3)	0.0286 (7)
H2N	-0.084 (6)	0.637 (2)	0.354 (4)	0.034*
O2	0.6872 (3)	0.75506 (13)	-0.2435 (3)	0.0330 (6)
03	-0.1487 (4)	0.49852 (11)	0.3056 (3)	0.0317 (6)
O4	-0.6018 (4)	0.57030 (13)	0.7839 (3)	0.0295 (5)
S2	0.05382 (13)	0.56943 (4)	0.14638 (10)	0.0289 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0204 (18)	0.0272 (17)	0.0252 (19)	0.0030(13)	0.0060 (15)	-0.0071 (13)
C2	0.0197 (17)	0.0241 (16)	0.0278 (18)	0.0014 (13)	0.0014 (14)	-0.0046 (13)
C3	0.0241 (18)	0.0236 (16)	0.0215 (17)	0.0011 (13)	0.0034 (14)	-0.0012 (13)
C4	0.0185 (16)	0.0309 (17)	0.0314 (18)	0.0028 (14)	0.0058 (15)	-0.0042 (16)
C5	0.0150 (16)	0.045 (2)	0.037 (2)	0.0016 (16)	-0.0006 (15)	-0.0153 (19)
C6	0.0239 (18)	0.049 (2)	0.0251 (17)	0.0073 (18)	-0.0022 (15)	-0.0143 (18)
S1	0.0292 (5)	0.0490 (5)	0.0236 (4)	0.0062 (4)	0.0037 (4)	-0.0097 (4)
C7	0.0172 (16)	0.039 (2)	0.0231 (17)	0.0055 (14)	-0.0038 (14)	-0.0080 (14)
01	0.0320 (14)	0.0382 (14)	0.0362 (15)	0.0014 (11)	0.0073 (12)	-0.0150 (12)
C8	0.046 (6)	0.027 (4)	0.052 (4)	-0.002 (4)	0.018 (5)	0.001 (3)
C9	0.040 (5)	0.036 (5)	0.030 (5)	0.001 (4)	0.016 (4)	-0.009 (4)
C10	0.042 (4)	0.031 (4)	0.043 (4)	0.001 (3)	0.015 (4)	-0.005 (3)
C11	0.040 (6)	0.052 (6)	0.076 (7)	0.000 (5)	0.006 (6)	0.012 (6)
C8B	0.046 (6)	0.027 (4)	0.052 (4)	-0.002 (4)	0.018 (5)	0.001 (3)
C9B	0.038 (5)	0.030 (5)	0.036 (6)	0.005 (4)	0.009 (5)	-0.011 (4)
C10B	0.042 (5)	0.029 (4)	0.036 (5)	0.002 (4)	0.013 (4)	-0.005 (4)
C11B	0.045 (7)	0.028 (5)	0.042 (6)	-0.001 (5)	0.009 (6)	0.008 (5)
C8C	0.046 (6)	0.027 (4)	0.052 (4)	-0.002 (4)	0.018 (5)	0.001 (3)

C9C	0.040 (6)	0.032 (5)	0.036(6)	-0.001(5)	0.015 (5)	-0.006(5)
C10C	0.041 (6)	0.032 (6)	0.037 (6)	0.004 (5)	0.015 (6)	-0.003(5)
C11C	0.046 (9)	0.024 (7)	0.057 (9)	-0.002(7)	0.019 (8)	-0.004 (7)
C12	0.032 (2)	0.042 (2)	0.039 (2)	0.0034 (19)	0.0139 (18)	-0.0048 (19)
C13	0.0198 (18)	0.038 (2)	0.0214 (17)	0.0015 (14)	0.0032 (15)	-0.0062 (14)
C14	0.0148 (16)	0.044 (2)	0.0235 (18)	-0.0006 (15)	0.0032 (14)	-0.0062(15)
C15	0.0209 (18)	0.0382 (19)	0.0199 (17)	0.0017 (14)	0.0005 (14)	-0.0058 (14)
C16	0.0208 (16)	0.0229 (17)	0.0259 (16)	0.0030(13)	0.0105 (14)	-0.0036 (14)
C17	0.0145 (15)	0.0330 (17)	0.0331 (18)	0.0001 (15)	0.0034 (14)	-0.0046 (17)
C18	0.0202 (17)	0.036 (2)	0.0225 (16)	-0.0008 (14)	0.0025 (14)	-0.0049 (15)
C19	0.0166 (16)	0.043 (2)	0.0185 (16)	0.0067 (14)	0.0013 (13)	-0.0011 (14)
C20	0.080 (4)	0.071 (4)	0.109 (5)	0.046 (3)	0.058 (4)	0.041 (4)
C21	0.070 (3)	0.031 (2)	0.057 (3)	0.013 (2)	0.041 (3)	0.0039 (19)
C22	0.121 (5)	0.023 (2)	0.070 (3)	-0.001 (2)	0.060 (4)	0.002 (2)
C23	0.100 (5)	0.047 (3)	0.073 (4)	-0.036 (3)	0.044 (4)	-0.017 (3)
C24	0.036 (2)	0.042 (2)	0.0289 (18)	0.0073 (19)	0.0168 (17)	0.0025 (18)
N1	0.0259 (17)	0.0364 (17)	0.0223 (15)	0.0022 (13)	0.0041 (13)	-0.0085 (13)
N2	0.0248 (16)	0.0391 (17)	0.0242 (16)	-0.0037 (13)	0.0100 (14)	-0.0074 (13)
O2	0.0199 (12)	0.0426 (15)	0.0380 (14)	-0.0018 (11)	0.0099 (11)	-0.0088 (13)
03	0.0351 (15)	0.0343 (14)	0.0300 (14)	0.0062 (11)	0.0163 (12)	0.0007 (11)
O4	0.0233 (12)	0.0393 (13)	0.0291 (12)	0.0005 (12)	0.0128 (10)	-0.0018 (12)
S2	0.0233 (4)	0.0415 (5)	0.0231 (4)	-0.0021 (4)	0.0079 (3)	-0.0047 (4)

Geometric parameters (Å, °)

C1—C2	1.373 (5)	C9C—C10C	1.52 (2)
C1—C6	1.380 (5)	С9С—Н9С	1
C1—N1	1.440 (4)	C10C—C11C	1.486 (18)
C2—C3	1.402 (5)	C10C—H10E	0.99
С2—Н2	0.95	C10C—H10F	0.99
C3—C4	1.376 (5)	C11C—H11G	0.98
С3—Н3	0.95	C11C—H11H	0.98
C4—O2	1.371 (4)	C11C—H11I	0.98
C4—C5	1.390 (5)	C12—O2	1.417 (4)
C5—C6	1.378 (5)	C12—H12A	0.98
С5—Н5	0.95	C12—H12B	0.98
С6—Н6	0.95	C12—H12C	0.98
S1—C7	1.671 (4)	C13—C14	1.378 (5)
C7—O1	1.320 (4)	C13—C18	1.394 (5)
C7—N1	1.337 (4)	C13—N2	1.432 (4)
O1—C9C	1.38 (4)	C14—C15	1.382 (5)
O1—C9B	1.50 (2)	C14—H14	0.95
O1—C9	1.51 (2)	C15—C16	1.392 (5)
С8—С9	1.490 (13)	C15—H15	0.95
C8—H8A	0.98	C16—O4	1.365 (4)
C8—H8B	0.98	C16—C17	1.389 (5)
C8—H8C	0.98	C17—C18	1.366 (5)
C9—C10	1.512 (14)	C17—H17	0.95

С9—Н9А	1	C18—H18	0.95
C10—C11	1.501 (13)	C19—O3	1.323 (4)
C10—H10A	0.99	C19—N2	1.335 (4)
C10—H10B	0.99	C19—S2	1.674 (4)
C11—H11A	0.98	C20—C21	1.502 (7)
C11—H11B	0.98	C20—H20A	0.98
C11—H11C	0.98	C20—H20B	0.98
C8B—C9B	1.508 (16)	C20—H20C	0.98
C8B—H8D	0.98	C21—O3	1.466 (5)
C8B—H8E	0.98	C21—C22	1.508 (7)
C8B—H8F	0.98	C21—H21	1
C9B—C10B	1.504 (16)	C22—C23	1.501 (8)
C9B—H9B	1	C22—H22A	0.99
C10B—C11B	1.497 (13)	C22—H22B	0.99
C10B—H10C	0.99	С23—Н23А	0.98
C10B—H10D	0.99	С23—Н23В	0.98
C11B—H11D	0.98	С23—Н23С	0.98
C11B—H11E	0.98	C24—O4	1.426 (4)
C11B—H11F	0.98	C24—H24A	0.98
C8C—C9C	1.51 (2)	C24—H24B	0.98
C8C—H8G	0.98	C24—H24C	0.98
С8С—Н8Н	0.98	N1—H1N	0.82 (4)
C8C—H8I	0.98	N2—H2N	0.86 (4)
C2—C1—C6	120.8 (3)	O1—C9C—H9C	110.8
C2-C1-N1	119.3 (3)	С8С—С9С—Н9С	110.8
C6—C1—N1	119.9 (3)	С10С—С9С—Н9С	110.8
C1—C2—C3	119.9 (3)	C11C—C10C—C9C	113 (2)
С1—С2—Н2	120.1	C11C-C10C-H10E	109
С3—С2—Н2	120.1	C9C-C10C-H10E	109
C4—C3—C2	119.2 (3)	C11C—C10C—H10F	109
С4—С3—Н3	120.4	C9C-C10C-H10F	109
С2—С3—Н3	120.4	H10E—C10C—H10F	107.8
O2—C4—C3	124.5 (3)	C10C—C11C—H11G	109.5
O2—C4—C5	115.2 (3)	C10C—C11C—H11H	109.5
C3—C4—C5	120.4 (3)	H11G—C11C—H11H	109.5
C6—C5—C4	120.1 (3)	C10C—C11C—H11I	109.5
С6—С5—Н5	119.9	H11G—C11C—H11I	109.5
С4—С5—Н5	119.9	H11H—C11C—H11I	109.5
C5—C6—C1	119.6 (3)	O2—C12—H12A	109.5
С5—С6—Н6	120.2	O2—C12—H12B	109.5
С1—С6—Н6	120.2	H12A—C12—H12B	109.5
O1—C7—N1	112.1 (3)	O2—C12—H12C	109.5
O1—C7—S1	125.7 (3)	H12A—C12—H12C	109.5
N1—C7—S1	122.1 (3)	H12B—C12—H12C	109.5
C7—O1—C9C	119.8 (15)	C14—C13—C18	120.0 (3)
C7—O1—C9B	112.9 (7)	C14—C13—N2	120.0 (3)
С7—О1—С9	128.6 (7)	C18—C13—N2	119.9 (3)

C9—C8—H8B 109.5 C13—C14—H14	
	119.6
наа—Са—нав 109.5 С15—С14—Н14	119.6
C9—C8—H8C 109.5 C14—C15—C16	118.9 (3)
H8A—C8—H8C 109.5 C14—C15—H15	120.5
H8B—C8—H8C 109.5 C16—C15—H15	120.5
C8—C9—O1 106.4 (12) O4—C16—C17	115.6 (3)
C8—C9—C10 111.3 (12) O4—C16—C15	124.3 (3)
O1—C9—C10 112.3 (12) C17—C16—C15	120.1 (3)
C8—C9—H9A 108.9 C18—C17—C16	120.6 (3)
O1—C9—H9A 108.9 C18—C17—H17	119.7
С10—С9—Н9А 108.9 С16—С17—Н17	119.7
C11—C10—C9 114.8 (10) C17—C18—C13	119.6 (3)
C11—C10—H10A 108.6 C17—C18—H18	120.2
C9—C10—H10A 108.6 C13—C18—H18	120.2
C11—C10—H10B 108.6 O3—C19—N2	112.5 (3)
C9—C10—H10B 108.6 O3—C19—S2	125.5 (3)
H10A—C10—H10B 107.5 N2—C19—S2	122.0 (3)
C10—C11—H11A 109.5 C21—C20—H20A	109.5
C10—C11—H11B 109.5 C21—C20—H20B	109.5
H11A—C11—H11B 109.5 H20A—C20—H20B	109.5
C10—C11—H11C 109.5 C21—C20—H20C	109.5
H11A—C11—H11C 109.5 H20A—C20—H20C	109.5
H11B—C11—H11C 109.5 H20B—C20—H20C	109.5
C9B—C8B—H8D 109.5 O3—C21—C20	109.0 (4)
C9B—C8B—H8E 109.5 O3—C21—C22	106.1 (3)
H8D—C8B—H8E 109.5 C20—C21—C22	112.8 (4)
C9B—C8B—H8F 109.5 O3—C21—H21	109.6
H8D—C8B—H8F 109.5 C20—C21—H21	109.6
H8E—C8B—H8F 109.5 C22—C21—H21	109.6
C10B—C9B—O1 110.0 (12) C23—C22—C21	114.0 (4)
C10B—C9B—C8B 114.0 (14) C23—C22—H22A	108.8
O1—C9B—C8B 104.2 (14) C21—C22—H22A	108.8
С10В—С9В—Н9В 109.5 С23—С22—Н22В	108.8
O1—C9B—H9B 109.5 C21—C22—H22B	108.8
C8B—C9B—H9B 109.5 H22A—C22—H22B	107.6
C11B—C10B—C9B 113.7 (11) C22—C23—H23A	109.5
C11B—C10B—H10C 108.8 C22—C23—H23B	109.5
C9B—C10B—H10C 108.8 H23A—C23—H23B	109.5
C11B—C10B—H10D 108.8 C22—C23—H23C	109.5
C9B—C10B—H10D 108.8 H23A—C23—H23C	109.5
H10C—C10B—H10D 107.7 H23B—C23—H23C	109.5
C10B—C11B—H11D 109.5 O4—C24—H24A	109.5
C10B—C11B—H11E 109.5 O4—C24—H24B	109.5
	109.5
H11D—C11B—H11E 109.5 H24A—C24—H24B	
H11D—C11B—H11E 109.5 H24A—C24—H24B C10B—C11B—H11F 109.5 O4—C24—H24C	109.5
H11D—C11B—H11E 109.5 H24A—C24—H24B C10B—C11B—H11F 109.5 O4—C24—H24C H11D—C11B—H11F 109.5 H24A—C24—H24C	109.5 109.5

C9C—C8C—H8G	109.5	C7—N1—C1	125.5 (3)
С9С—С8С—Н8Н	109.5	C7—N1—H1N	121 (3)
H8G—C8C—H8H	109.5	C1—N1—H1N	113 (3)
С9С—С8С—Н8І	109.5	C19—N2—C13	125.6 (3)
H8G—C8C—H8I	109.5	C19—N2—H2N	119 (3)
H8H—C8C—H8I	109.5	C13—N2—H2N	116 (3)
O1—C9C—C8C	107 (3)	C4—O2—C12	116.9 (3)
O1—C9C—C10C	102 (2)	C19—O3—C21	120.2 (3)
C8C—C9C—C10C	115 (2)	C16—O4—C24	117.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N1—H1 <i>N</i> ···S2	0.82 (4)	2.53 (4)	3.347 (3)	171 (4)
N2—H2 <i>N</i> ···S1	0.86 (4)	2.47 (4)	3.314 (3)	165 (4)
$C12$ — $H12B$ ···· $S1^{i}$	0.98	2.86	3.793 (4)	158
C24—H24 <i>B</i> ····S2 ⁱⁱ	0.98	2.86	3.819 (4)	167
C18—H18…S2 ⁱⁱⁱ	0.95	2.98	3.730 (4)	136
C10B—H10C…S1	0.99	2.96	3.445 (11)	112
C10B—H10C…S1	0.99	2.96	3.445 (11)	112

Symmetry codes: (i) *x*+1, *y*, *z*-1; (ii) *x*-1, *y*, *z*+1; (iii) *x*-1, *y*, *z*.

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III)

Crystal data

C₁₁H₁₄FNOS $M_r = 227.29$ Monoclinic, P2₁ Hall symbol: P 2yb a = 6.9723 (13) Å b = 20.166 (3) Å c = 8.2818 (14) Å $\beta = 99.403 (13)^{\circ}$ $V = 1148.8 (3) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII diffractometer Radiation source: sealed x-ray tube Graphite monochromator φ or ω oscillation scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.863, T_{\max} = 1$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.143$ S = 0.955263 reflections F(000) = 480 $D_x = 1.314 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1312 reflections $\theta = 2.7-18.9^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.5 \times 0.1 \times 0.05 \text{ mm}$

10466 measured reflections 5263 independent reflections 2448 reflections with $I > 2\sigma(I)$ $R_{int} = 0.171$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -26 \rightarrow 26$ $l = -10 \rightarrow 10$

257 parameters2 restraints0 constraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} < 0.001$
map	$\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: mixed	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	Absolute structure: Flack <i>x</i> determined using
and constrained refinement	2891 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
$w = 1/[\sigma^2(F_o^2) + (0.0402P)^2]$	al., 2013).
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure parameter: 0.17 (13)

Special details

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using *SAINT*, *SADABS* within the APEX2 software package by Bruker (2012). Data work-up was done with *SAINT* (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.8966 (7)	0.6722 (3)	0.5978 (6)	0.021 (2)
C2	1.0905 (8)	0.6846 (3)	0.6605 (5)	0.023 (2)
H2	1.130829	0.688684	0.775314	0.028*
C3	1.2256 (6)	0.6911 (3)	0.5552 (7)	0.024 (2)
Н3	1.35816	0.699572	0.598067	0.029*
C4	1.1666 (7)	0.6852 (4)	0.3872 (6)	0.023 (2)
C5	0.9726 (8)	0.6727 (3)	0.3245 (5)	0.022 (2)
Н5	0.932364	0.66869	0.209695	0.027*
C6	0.8376 (6)	0.6663 (3)	0.4298 (7)	0.022 (2)
H6	0.70503	0.657801	0.386939	0.027*
C7	0.7286 (12)	0.6991 (4)	0.8282 (12)	0.019 (2)
C8	1.0523 (12)	0.8141 (4)	1.0396 (12)	0.032 (3)
H8A	1.116505	0.772014	1.073864	0.048*
H8B	1.065696	0.84452	1.133121	0.048*
H8C	1.112971	0.833823	0.952221	0.048*
C9	0.8394 (12)	0.8018 (4)	0.9774 (11)	0.019 (2)
H9	0.775524	0.782224	1.06603	0.023*
C10	0.7329 (12)	0.8630 (4)	0.9100 (11)	0.025 (2)
H10A	0.801429	0.881895	0.824864	0.03*
H10B	0.740265	0.896099	0.999075	0.03*
C11	0.5181 (11)	0.8534 (4)	0.8352 (12)	0.034 (3)
H11A	0.50897	0.826147	0.736278	0.051*
H11B	0.458106	0.896705	0.80698	0.051*
H11C	0.450137	0.831193	0.914735	0.051*
C12	0.1978 (7)	0.5306 (3)	0.9155 (6)	0.019 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.0041 (8)	0.5172 (3)	0.8542 (5)	0.023 (2)
H13	-0.036579	0.511975	0.739728	0.027*
C14	-0.1301 (6)	0.5113 (3)	0.9604 (7)	0.023 (2)
H14	-0.262522	0.502042	0.918484	0.028*
C15	-0.0706 (8)	0.5188 (3)	1.1279 (7)	0.023 (2)
C16	0.1231 (9)	0.5323 (3)	1.1892 (5)	0.025 (2)
H16	0.163773	0.537508	1.303733	0.029*
C17	0.2573 (6)	0.5382 (3)	1.0831 (7)	0.021 (2)
H17	0.38972	0.547441	1.124978	0.026*
C18	0.3719 (11)	0.5013 (4)	0.6901 (11)	0.014 (2)
C19	0.4944 (12)	0.3531 (4)	0.6560 (11)	0.028 (2)
H19A	0.605381	0.383457	0.678678	0.042*
H19B	0.5244	0.317553	0.583497	0.042*
H19C	0.468179	0.333968	0.758962	0.042*
C20	0.3174 (12)	0.3908 (4)	0.5742 (11)	0.023 (2)
H20	0.344348	0.410563	0.469454	0.028*
C21	0.1363 (12)	0.3495 (4)	0.5410 (11)	0.026 (2)
H21A	0.112572	0.330173	0.645849	0.031*
H21B	0.160071	0.312194	0.468958	0.031*
C22	-0.0480 (12)	0.3853 (4)	0.4618 (12)	0.031 (3)
H22A	-0.080503	0.419931	0.535926	0.047*
H22B	-0.155415	0.353511	0.440115	0.047*
H22C	-0.0265	0.40553	0.358697	0.047*
N1	0.7567 (10)	0.6619 (4)	0.7012 (9)	0.0215 (19)
N2	0.3377 (10)	0.5404 (3)	0.8108 (9)	0.0188 (18)
01	0.8371 (7)	0.7537 (3)	0.8418 (7)	0.0201 (14)
O2	0.2729 (8)	0.4444 (3)	0.6850 (7)	0.0220 (15)
F1	1.2980 (7)	0.6908 (2)	0.2885 (7)	0.0307 (14)
F2	-0.2026 (7)	0.5147 (3)	1.2271 (7)	0.0310 (13)
S1	0.5732 (3)	0.67758 (11)	0.9542 (3)	0.0232 (6)
S2	0.5266 (3)	0.52266 (12)	0.5636 (3)	0.0237 (6)
H1N	0.682 (11)	0.628 (3)	0.681 (10)	0.028*
H2N	0.384 (10)	0.580 (3)	0.832 (10)	0.028*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.026 (5)	0.017 (5)	0.020 (5)	0.000 (4)	0.005 (4)	-0.003 (5)
C2	0.022 (5)	0.024 (5)	0.024 (5)	0.005 (4)	0.004 (4)	-0.006 (5)
C3	0.017 (5)	0.028 (6)	0.026 (6)	0.002 (4)	0.001 (4)	-0.002 (5)
C4	0.020 (5)	0.020 (5)	0.032 (6)	0.003 (4)	0.012 (5)	-0.001 (5)
C5	0.019 (5)	0.016 (5)	0.032 (6)	-0.002 (4)	0.005 (4)	0.005 (5)
C6	0.015 (5)	0.019 (5)	0.031 (6)	-0.003 (4)	0.001 (4)	-0.004 (5)
C7	0.014 (5)	0.018 (5)	0.024 (6)	-0.001 (4)	0.000 (4)	0.001 (4)
C8	0.021 (6)	0.031 (6)	0.039 (7)	-0.003 (4)	-0.007(5)	0.001 (5)
C9	0.021 (5)	0.015 (5)	0.022 (5)	-0.004 (4)	0.004 (4)	-0.005 (4)
C10	0.027 (5)	0.019 (5)	0.028 (6)	0.005 (4)	0.003 (4)	-0.005 (4)
C11	0.014 (5)	0.038 (6)	0.046 (7)	0.011 (4)	-0.001(5)	0.006 (5)

C12	0.015 (5)	0.017 (5)	0.027 (5)	-0.007 (4)	0.006 (4)	-0.004 (5)
C13	0.010 (5)	0.019 (5)	0.038 (6)	0.007 (4)	0.000 (4)	0.003 (5)
C14	0.022 (5)	0.020 (6)	0.027 (6)	0.001 (4)	0.000 (5)	0.000 (5)
C15	0.024 (6)	0.025 (6)	0.023 (6)	0.000 (5)	0.014 (5)	0.010 (5)
C16	0.034 (6)	0.018 (5)	0.020 (5)	0.003 (4)	-0.001 (5)	-0.010 (4)
C17	0.017 (5)	0.022 (5)	0.025 (5)	-0.001 (4)	0.000 (4)	-0.003 (4)
C18	0.014 (5)	0.019 (5)	0.010 (5)	0.002 (4)	0.002 (4)	0.002 (4)
C19	0.024 (6)	0.028 (6)	0.032 (6)	0.012 (4)	0.004 (5)	-0.003 (5)
C20	0.024 (5)	0.023 (5)	0.022 (6)	-0.004 (4)	0.006 (4)	-0.008 (4)
C21	0.026 (5)	0.025 (5)	0.028 (6)	-0.008 (4)	0.009 (4)	-0.005 (5)
C22	0.022 (6)	0.031 (6)	0.038 (7)	-0.001 (4)	-0.001 (5)	0.002 (5)
N1	0.018 (5)	0.023 (5)	0.026 (5)	-0.007 (3)	0.011 (4)	-0.006 (4)
N2	0.015 (4)	0.016 (4)	0.027 (5)	-0.003 (3)	0.010 (4)	-0.005 (4)
01	0.017 (3)	0.017 (3)	0.026 (4)	-0.007 (2)	0.004 (3)	0.000 (3)
O2	0.030 (4)	0.013 (3)	0.023 (4)	0.000 (3)	0.003 (3)	-0.007 (3)
F1	0.026 (3)	0.039 (4)	0.031 (3)	-0.002 (3)	0.016 (2)	0.003 (3)
F2	0.028 (3)	0.035 (3)	0.033 (3)	-0.001 (3)	0.012 (2)	-0.002 (3)
S1	0.0187 (13)	0.0246 (13)	0.0264 (14)	-0.0067 (10)	0.0038 (10)	-0.0008 (12)
S2	0.0196 (13)	0.0255 (13)	0.0264 (15)	-0.0052 (10)	0.0046 (10)	-0.0018 (12)

Geometric parameters (Å, °)

C1—C2	1.39	C12—C17	1.39
C1—C6	1.39	C12—N2	1.421 (8)
C1—N1	1.414 (8)	C13—C14	1.39
С2—С3	1.39	C13—H13	0.95
С2—Н2	0.95	C14—C15	1.39
C3—C4	1.39	C14—H14	0.95
С3—Н3	0.95	C15—F2	1.333 (6)
C4—F1	1.329 (6)	C15—C16	1.39
C4—C5	1.39	C16—C17	1.39
C5—C6	1.39	C16—H16	0.95
С5—Н5	0.95	C17—H17	0.95
С6—Н6	0.95	C18—N2	1.325 (10)
C7—O1	1.329 (9)	C18—O2	1.335 (9)
C7—N1	1.332 (11)	C18—S2	1.678 (9)
C7—S1	1.680 (9)	C19—C20	1.512 (10)
С8—С9	1.510 (10)	C19—H19A	0.98
C8—H8A	0.98	C19—H19B	0.98
C8—H8B	0.98	C19—H19C	0.98
C8—H8C	0.98	C20—O2	1.483 (10)
С9—О1	1.483 (10)	C20—C21	1.501 (11)
C9—C10	1.500 (11)	C20—H20	1
С9—Н9	1	C21—C22	1.526 (11)
C10-C11	1.536 (10)	C21—H21A	0.99
C10—H10A	0.99	C21—H21B	0.99
C10—H10B	0.99	C22—H22A	0.98
C11—H11A	0.98	C22—H22B	0.98

C11 H11P	0.08	C^{22} $H^{22}C$	0.08
	0.98	N1 H1N	0.96
	0.96		0.00(5)
C12—C13	1.39	N2—H2N	0.86 (5)
C2—C1—C6	120	C14—C13—H13	120
C2—C1—N1	121.7 (5)	С12—С13—Н13	120
C6-C1-N1	118.2 (5)	C13—C14—C15	120
C1-C2-C3	120	C13—C14—H14	120
C1 - C2 - H2	120	C15—C14—H14	120
C3—C2—H2	120	F_{2} - C15 - C16	1210(5)
C_{4} C_{3} C_{2}	120	F_{2} C_{15} C_{10}	121.0(5)
C4—C3—H3	120	C_{16} C_{15} C_{14}	120
$C_2 C_3 H_3$	120	$C_{10} = C_{10} = C_{14}$	120
$E_2 = C_3 = H_3$	120	$C_{15} = C_{16} = C_{17}$	120
$F_1 = C_4 = C_3$	120.8(5)	$C_{13} = C_{10} = 1110$	120
F1 - C4 - C3	119.2 (5)	C16 C17 C12	120
C_{3}	120	C16 - C17 - C12	120
C_{0}	120	C10C1/H1/	120
C6—C5—H5	120	C12—C17—H17	120
C4—C5—H5	120	N2-C18-O2	112.3 (7)
C5—C6—C1	120	N2—C18—S2	122.1 (6)
С5—С6—Н6	120	O2—C18—S2	125.6 (7)
C1—C6—H6	120	С20—С19—Н19А	109.5
01—C7—N1	112.2 (8)	С20—С19—Н19В	109.5
O1—C7—S1	125.2 (7)	H19A—C19—H19B	109.5
N1—C7—S1	122.5 (7)	С20—С19—Н19С	109.5
С9—С8—Н8А	109.5	H19A—C19—H19C	109.5
С9—С8—Н8В	109.5	H19B—C19—H19C	109.5
H8A—C8—H8B	109.5	O2—C20—C21	105.3 (7)
С9—С8—Н8С	109.5	O2—C20—C19	109.1 (7)
H8A—C8—H8C	109.5	C21—C20—C19	113.8 (8)
H8B—C8—H8C	109.5	O2—C20—H20	109.5
O1—C9—C10	108.2 (7)	C21—C20—H20	109.5
O1—C9—C8	104.7 (7)	C19—C20—H20	109.5
C10—C9—C8	113.0 (7)	C20—C21—C22	116.1 (7)
О1—С9—Н9	110.2	C20—C21—H21A	108.3
С10—С9—Н9	110.2	C22—C21—H21A	108.3
С8—С9—Н9	110.2	C20—C21—H21B	108.3
C9-C10-C11	1159(7)	C22—C21—H21B	108.3
C9-C10-H10A	108.3	$H_{21}A - C_{21} - H_{21}B$	107.4
C11—C10—H10A	108.3	C_{21} C_{22} H_{22A}	109.5
C9-C10-H10B	108.3	$C_{21} = C_{22} = H_{22R}$	109.5
C_{11} C_{10} H_{10B}	108.3	$H_{22}A = C_{22} = H_{22}B$	109.5
HIOA CIO HIOB	107.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C10_C11_H11A	107.4	$H_{22} = -222 = H_{22} = H_{$	109.5
	109.5	$H_{22} = C_{22} = H_{22} = H$	109.5
	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.5
	109.5	$C_1 = N_1 = C_1$	120.9(/)
UIU-UII-HIIU	109.5	C = NI = HIN	110 (0)
HIIA—CII—HIIC	109.5	CI-NI-HIN	117 (6)

H11B—C11—H11C	109.5	C18—N2—C12	127.2 (7)
C13—C12—C17	120	C18—N2—H2N	126 (6)
C13—C12—N2	121.8 (5)	C12—N2—H2N	106 (6)
C17—C12—N2	118.1 (5)	C7—O1—C9	122.8 (7)
C14—C13—C12	120	C18—O2—C20	119.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
N1—H1 <i>N</i> ····S2	0.86 (5)	2.51 (5)	3.341 (8)	164 (8)
N2—H2 <i>N</i> ···S1	0.86 (5)	2.50 (5)	3.336 (7)	165 (7)
C8—H8A····F1 ⁱ	0.98	2.59	3.494 (10)	154

F(000) = 512

 $\theta = 2.6 - 33.1^{\circ}$

 $\mu = 0.46 \text{ mm}^{-1}$

T = 100 KPrsm, colourless

 $D_{\rm x} = 1.337 {\rm ~Mg} {\rm ~m}^{-3}$

 $0.6 \times 0.12 \times 0.11 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9275 reflections

Symmetry code: (i) x, y, z+1.

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV)

Crystal data

C₁₁H₁₄ClNOS $M_r = 243.74$ Monoclinic, P2₁ Hall symbol: P 2yb a = 15.4173 (15) Å b = 5.0170 (5) Å c = 16.2502 (15) Å $\beta = 105.592 (5)^{\circ}$ $V = 1210.7 (2) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII	46534 measured reflections
diffractometer	9292 independent reflections
Radiation source: sealed x-ray tube	8469 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.029$
p or ω oscillation scans	$\theta_{\rm max} = 33.3^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: numerical	$h = -23 \rightarrow 23$
(SADABS; Krause et al., 2015)	$k = -7 \longrightarrow 7$
$T_{\min} = 0.954, \ T_{\max} = 1$	$l = -24 \rightarrow 25$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.066$ S = 1.049292 reflections 281 parameters 1 restraint 0 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0312P)^2 + 0.1769P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 2891 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013). Absolute structure parameter: 0.022 (14)

Special details

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5° . Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using *SAINT*, *SADABS* within the APEX2 software package by Bruker (2012). Data work-up was done with *SAINT* (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.35185 (9)	0.0662 (3)	0.14953 (8)	0.0139 (2)	
C2	0.41945 (10)	0.0839 (4)	0.10745 (9)	0.0190 (3)	
H2A	0.467553	0.206748	0.126558	0.023*	
C3	0.41621 (10)	-0.0787 (4)	0.03751 (10)	0.0192 (3)	
Н3	0.461955	-0.066932	0.008467	0.023*	
C4	0.34615 (10)	-0.2577 (3)	0.01033 (9)	0.0166 (3)	
C5	0.27962 (11)	-0.2816 (4)	0.05240 (10)	0.0205 (3)	
Н5	0.232416	-0.407588	0.033739	0.025*	
C6	0.28265 (10)	-0.1197 (3)	0.12206 (10)	0.0187 (3)	
H6	0.23729	-0.135039	0.151438	0.022*	
C7	0.40912 (9)	0.3612 (3)	0.27658 (9)	0.0143 (3)	
C8	0.58731 (11)	0.2067 (4)	0.41659 (10)	0.0234 (3)	
H8A	0.533102	0.191469	0.436836	0.035*	
H8B	0.63713	0.274749	0.46281	0.035*	
H8C	0.60323	0.030984	0.398713	0.035*	
C9	0.56953 (10)	0.3964 (3)	0.34164 (9)	0.0152 (3)	
Н9	0.555206	0.577305	0.3603	0.018*	
C10	0.64685 (10)	0.4172 (3)	0.30082 (10)	0.0183 (3)	
H10A	0.658195	0.239034	0.279654	0.022*	
H10B	0.701819	0.471755	0.344903	0.022*	
C11	0.62976 (12)	0.6144 (4)	0.22712 (11)	0.0246 (3)	
H11A	0.578675	0.553323	0.180904	0.037*	
H11B	0.68351	0.627046	0.206055	0.037*	
H11C	0.616089	0.790011	0.246922	0.037*	
C12	0.15284 (10)	0.8652 (3)	0.36586 (9)	0.0139 (3)	
C13	0.08213 (10)	0.8722 (3)	0.40427 (9)	0.0177 (3)	
H13	0.03196	0.756607	0.384976	0.021*	
C14	0.08536 (10)	1.0489 (4)	0.47084 (9)	0.0188 (3)	
H14	0.037264	1.054228	0.497095	0.023*	
C15	0.15837 (10)	1.2168 (3)	0.49896 (9)	0.0156 (3)	
C16	0.22863 (10)	1.2164 (3)	0.46032 (10)	0.0173 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H16	0.278113	1.334668	0.479234	0.021*
C17	0.22527 (9)	1.0408 (3)	0.39386 (9)	0.0163 (3)
H17	0.272809	1.03958	0.366869	0.02*
C18	0.09692 (9)	0.5412 (3)	0.24559 (8)	0.0143 (2)
C19	-0.11540 (12)	0.3508 (5)	0.25809 (12)	0.0303 (4)
H19A	-0.07721	0.226643	0.298634	0.045*
H19B	-0.170239	0.25891	0.226207	0.045*
H19C	-0.131607	0.50161	0.289328	0.045*
C20	-0.06464 (10)	0.4518 (4)	0.19644 (10)	0.0196 (3)
H20	-0.043938	0.297952	0.16748	0.024*
C21	-0.11786 (11)	0.6453 (4)	0.13017 (11)	0.0285 (4)
H21A	-0.133859	0.802766	0.159794	0.034*
H21B	-0.174639	0.558583	0.098314	0.034*
C22	-0.06701 (14)	0.7390 (6)	0.06654 (13)	0.0423 (6)
H22A	-0.011127	0.827881	0.097427	0.063*
H22B	-0.104658	0.864221	0.02596	0.063*
H22C	-0.052677	0.58506	0.035482	0.063*
N1	0.34513 (8)	0.2393 (3)	0.21636 (8)	0.0161 (2)
H1	0.2928 (13)	0.275 (5)	0.2178 (12)	0.019*
N2	0.15996 (8)	0.6818 (3)	0.30193 (8)	0.0148 (2)
H2	0.2126 (13)	0.652 (4)	0.3009 (12)	0.018*
01	0.49217 (6)	0.2959 (2)	0.27480 (6)	0.0150 (2)
O2	0.01363 (7)	0.5970 (2)	0.24906 (7)	0.0169 (2)
S1	0.38309 (2)	0.57287 (9)	0.34614 (2)	0.02056 (8)
S2	0.12456 (2)	0.32279 (9)	0.17890 (2)	0.01850 (8)
C11	0.34068 (3)	-0.45232 (9)	-0.07979 (2)	0.02263 (8)
C12	0.16375 (3)	1.43009 (8)	0.58491 (2)	0.02094 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0125 (5)	0.0154 (6)	0.0131 (5)	0.0004 (6)	0.0022 (4)	-0.0009 (6)
C2	0.0149 (6)	0.0245 (8)	0.0182 (6)	-0.0054 (6)	0.0053 (5)	-0.0064 (6)
C3	0.0157 (6)	0.0250 (8)	0.0178 (6)	-0.0024 (6)	0.0059 (5)	-0.0054 (6)
C4	0.0165 (6)	0.0171 (7)	0.0147 (6)	0.0016 (5)	0.0017 (5)	-0.0034 (5)
C5	0.0186 (7)	0.0201 (8)	0.0231 (7)	-0.0055 (6)	0.0063 (6)	-0.0069 (6)
C6	0.0166 (7)	0.0210 (8)	0.0202 (6)	-0.0041 (6)	0.0075 (5)	-0.0038 (6)
C7	0.0133 (6)	0.0161 (7)	0.0135 (6)	-0.0012 (5)	0.0037 (5)	-0.0010 (5)
C8	0.0242 (8)	0.0261 (8)	0.0168 (7)	-0.0033 (7)	0.0002 (6)	0.0043 (6)
C9	0.0127 (6)	0.0160 (7)	0.0147 (6)	-0.0015 (5)	-0.0001 (5)	-0.0016 (5)
C10	0.0143 (6)	0.0180 (7)	0.0216 (7)	-0.0024 (6)	0.0032 (5)	0.0014 (6)
C11	0.0266 (8)	0.0219 (9)	0.0266 (8)	-0.0034 (6)	0.0092 (6)	0.0035 (6)
C12	0.0137 (6)	0.0148 (7)	0.0124 (6)	0.0009 (5)	0.0023 (5)	-0.0007(5)
C13	0.0151 (6)	0.0216 (8)	0.0176 (6)	-0.0042 (5)	0.0061 (5)	-0.0040 (6)
C14	0.0168 (6)	0.0228 (7)	0.0181 (6)	-0.0011 (6)	0.0070 (5)	-0.0046 (6)
C15	0.0175 (6)	0.0149 (6)	0.0135 (6)	0.0021 (5)	0.0024 (5)	-0.0015 (5)
C16	0.0152 (6)	0.0175 (7)	0.0185 (6)	-0.0023 (6)	0.0031 (5)	-0.0029 (6)
C17	0.0141 (6)	0.0180 (7)	0.0175 (6)	-0.0015 (6)	0.0053 (5)	-0.0018 (6)

C18	0.0134 (6)	0.0161 (6)	0.0129 (5)	-0.0006 (5)	0.0028 (4)	0.0004 (5)
C19	0.0210 (8)	0.0366 (11)	0.0354 (9)	-0.0074 (8)	0.0112 (7)	-0.0048 (9)
C20	0.0119 (6)	0.0239 (8)	0.0218 (7)	-0.0025 (6)	0.0023 (5)	-0.0080 (6)
C21	0.0180 (7)	0.0377 (11)	0.0254 (8)	0.0058 (7)	-0.0017 (6)	-0.0054 (7)
C22	0.0366 (11)	0.0611 (16)	0.0255 (9)	0.0153 (11)	0.0020 (8)	0.0125 (10)
N1	0.0107 (5)	0.0209 (6)	0.0167 (6)	-0.0008 (5)	0.0037 (4)	-0.0051 (5)
N2	0.0107 (5)	0.0181 (6)	0.0161 (5)	-0.0008 (5)	0.0044 (4)	-0.0038 (5)
01	0.0113 (4)	0.0179 (5)	0.0146 (4)	-0.0005 (4)	0.0017 (3)	-0.0031 (4)
O2	0.0109 (4)	0.0210 (6)	0.0179 (5)	-0.0004 (4)	0.0025 (4)	-0.0059 (4)
S1	0.01572 (15)	0.0266 (2)	0.01970 (16)	-0.00029 (16)	0.00542 (12)	-0.00983 (16)
S2	0.01356 (15)	0.02352 (19)	0.01815 (16)	0.00004 (15)	0.00376 (12)	-0.00788 (15)
C11	0.02137 (17)	0.02587 (19)	0.01964 (16)	0.00053 (16)	0.00377 (13)	-0.00968 (16)
Cl2	0.02176 (17)	0.02132 (18)	0.01908 (16)	0.00135 (15)	0.00432 (13)	-0.00738 (14)

Geometric parameters (Å, °)

C1—C2	1.3945 (19)	C12—C17	1.399 (2)
C1—C6	1.397 (2)	C12—N2	1.4138 (19)
C1—N1	1.4160 (19)	C13—C14	1.389 (2)
С2—С3	1.389 (2)	C13—H13	0.95
C2—H2A	0.95	C14—C15	1.382 (2)
C3—C4	1.383 (2)	C14—H14	0.95
С3—Н3	0.95	C15—C16	1.390 (2)
C4—C5	1.382 (2)	C15—Cl2	1.7436 (16)
C4—Cl1	1.7432 (16)	C16—C17	1.384 (2)
С5—С6	1.384 (2)	C16—H16	0.95
С5—Н5	0.95	C17—H17	0.95
С6—Н6	0.95	C18—O2	1.3301 (17)
C7—O1	1.3296 (17)	C18—N2	1.3425 (18)
C7—N1	1.3364 (19)	C18—S2	1.6747 (16)
C7—S1	1.6763 (15)	C19—C20	1.515 (2)
С8—С9	1.512 (2)	C19—H19A	0.98
C8—H8A	0.98	C19—H19B	0.98
C8—H8B	0.98	C19—H19C	0.98
C8—H8C	0.98	C20—O2	1.4708 (18)
C9—O1	1.4698 (17)	C20—C21	1.517 (3)
C9—C10	1.516 (2)	C20—H20	1
С9—Н9	1	C21—C22	1.530 (3)
C10-C11	1.521 (2)	C21—H21A	0.99
C10—H10A	0.99	C21—H21B	0.99
C10—H10B	0.99	C22—H22A	0.98
C11—H11A	0.98	C22—H22B	0.98
C11—H11B	0.98	C22—H22C	0.98
C11—H11C	0.98	N1—H1	0.83 (2)
C12—C13	1.395 (2)	N2—H2	0.829 (19)
C2—C1—C6	119.55 (14)	C14—C13—H13	120.1
C2-C1-N1	123.74 (14)	C12—C13—H13	120.1

C6-C1-N1	116 58 (12)	C15-C14-C13	120.14(13)
C_{3} — C_{2} — C_{1}	119.78 (15)	C15—C14—H14	119.9
$C_3 - C_2 - H_2 A$	120.1	C13—C14—H14	119.9
C1 - C2 - H2A	120.1	C14-C15-C16	120.93 (14)
C4-C3-C2	119 74 (14)	C14-C15-C12	120.99(11) 119.89(12)
C4-C3-H3	120.1	C_{16} C_{15} C_{12}	119.09(12) 119.18(12)
$C_2 = C_3 = H_3$	120.1	C17 - C16 - C15	119.10 (12)
$C_{2} = C_{3} = C_{3}$	121.20 (14)	C17 - C16 - H16	120.6
C_{5} C_{4} C_{11}	119 48 (12)	C_{15} C_{16} H_{16}	120.6
$C_3 - C_4 - C_{11}$	119.10 (12)	C_{16} C_{17} C_{12}	120.0
C4-C5-C6	119.16 (15)	$C_{16} - C_{17} - H_{17}$	119.5
C4 - C5 - H5	120.4	C12 - C17 - H17	119.5
C6-C5-H5	120.4	02-018-N2	112.09 (13)
C_{5}	120.4 120.55(14)	02-C18-S2	112.57(13) 125.57(11)
$C_5 C_6 H_6$	110.7	N2 C18 S2	123.37(11) 121.44(11)
C1C6H6	119.7	C_{20} C_{10} H_{10A}	109 5
O1 C7 N1	113.38 (13)	$C_{20} = C_{10} = H_{10R}$	109.5
$O_1 = C_7 = N_1$	115.56 (15)		109.5
$V_1 = C_7 = S_1$	123.20(11) 121.25(11)	$\begin{array}{cccc} \mathbf{H} \mathbf{J} \mathbf{A} & -\mathbf{C} \mathbf{J} \mathbf{J} & -\mathbf{H} \mathbf{J} \mathbf{B} \\ \mathbf{C} 20 & \mathbf{C} 10 & \mathbf{H} 10 \mathbf{C} \end{array}$	109.5
N1 - C / - S1	121.55 (11)	<u>Ц104</u> С19 Ц10С	109.5
$C_{0} = C_{0} = H_{0} R_{0}$	109.5	HI9A - C19 - H19C	109.5
	109.5	H19B - C19 - H19C	109.5
$\Pi \delta A - C \delta - \Pi \delta B$	109.5	02 - 020 - 021	103.08(13) 107.26(14)
	109.5	02-020-021	107.30(14)
$H\delta A = C\delta = H\delta C$	109.5	C19 - C20 - C21	113.99 (14)
$H\delta B = C\delta = H\delta C$	109.5	02-020-1120	109.9
01 - 02 - 03	108.35(12)	C19 - C20 - H20	109.9
01 - 0 - 010	106.11 (11)	$C_{21} = C_{20} = H_{20}$	109.9
$C_8 = C_9 = C_{10}$	113./2 (13)	$C_{20} = C_{21} = C_{22}$	113.51 (15)
01 - 0 - H9	109.5	C_{20} C_{21} H_{21A}	108.9
C8-C9-H9	109.5	C22—C21—H2IA	108.9
C10-C9-H9	109.5	C20—C21—H21B	108.9
C9 - C10 - C11	113.53 (13)	C22—C21—H21B	108.9
C9—C10—HI0A	108.9	$H_2IA = C_2I = H_2IB$	107.7
CII—CIO—HIOA	108.9	C21—C22—H22A	109.5
C9—C10—H10B	108.9	C21—C22—H22B	109.5
CII—CIO—HI0B	108.9	H22A—C22—H22B	109.5
HI0A—CI0—HI0B	107.7	C21—C22—H22C	109.5
Cl0—Cl1—HllA	109.5	H22A—C22—H22C	109.5
C10—C11—H11B	109.5	H22B—C22—H22C	109.5
H11A—C11—H11B	109.5	C7—N1—C1	130.59 (13)
C10—C11—H11C	109.5	C7—N1—H1	114.2 (15)
H11A—C11—H11C	109.5	C1—N1—H1	115.2 (15)
H11B—C11—H11C	109.5	C18—N2—C12	131.16 (13)
C13—C12—C17	119.34 (13)	C18—N2—H2	115.1 (14)
C13—C12—N2	124.73 (14)	C12—N2—H2	113.7 (14)
C17—C12—N2	115.86 (13)	C7—O1—C9	119.61 (11)
C14—C13—C12	119.74 (14)	C18—O2—C20	121.44 (12)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N1—H1…S2	0.83 (2)	2.511 (19)	3.3163 (13)	163.0 (18)
N2—H2…S1	0.829 (19)	2.563 (19)	3.3645 (13)	162.8 (17)
C6—H6…S2	0.95	2.99	3.5961 (17)	123
C17—H17…S1	0.95	2.97	3.6122 (16)	127
C2—H2A…O1	0.95	2.38	2.8539 (18)	111
С13—Н13…О2	0.95	2.29	2.8197 (19)	114

Hydrogen-bond geometry (Å, °)