Crystal structure, Hirshfeld surface analysis and DFT study of (5E,5'E,6Z,6'Z)-6,6'-[ethane-1,2-diy]bis(azanvlvlidene)]bis{5-[2-(4-fluorophenvl)hydrazono]-3,3-dimethylcyclohexanone}

Malahat Musrat Kurbanova,^a Md. Serajul Haque Faizi,^b Emine Berrin Cinar,^c Asif Jamal,^b Mustafa Cemberci,^c Arzu Sadigova,^a Rizvan Askerov,^a Necmi Dege^d and Tahera Nabi^e*

^aBaku State University, Organic Chemistry Department, Z. Khalilov 23, Baku, AZ, 1148, Azerbaijan, ^bPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar-842001, India, ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, 55200, Türkiye, ^dDepartment of Physics, Faculty of Sciences, Ondokuz Mayıs University, Samsun, 55200, Türkiye, and ^eFaculty of Chemistry, Karte-e-chahar, Kabul, Afghanistan. *Correspondence e-mail: tahera.nabi@ku.edu.af

The title compound, C₃₀H₃₄F₂N₆O₂·2.5H₂O, was obtained by condensation of 2-[2-(4-fluorophenyl)hydrazono]-5,5-dimethylcyclohexan-1,3-dione with ethylenediamine in ethanol and crystallized as a 1:2.5 hydrate in space group C2/c. The two independent molecules, with approximate crystallographic C_2 symmetries, have different conformations and packing environments, are stabilized by intramolecular $N-H\cdots N$ hydrogen bonds and linked by O- $H \cdots O$ hydrogen bonds involving the water molecules. A Hirshfeld surface analysis showed that $H \cdots H$ contacts make by far the largest (48–50%) contribution to the crystal packing. From DFT calculations, the LUMO-HOMO energy gap of the molecule is 0.827 eV.

1. Chemical context

2.5-hydrate

Diketones are versatile starting materials in the synthesis of organic and coordination compounds (Mahmudov et al., 2017), used as shift reagents (Hinckley, 1969), chemical and photochemical catalysts or as biologically active derivatives to treat inflammatory diseases. β -Diketones can be isolated from natural sources such as bacteria, plants or fungi, and can also be obtained synthetically (Shokova et al., 2015). More recently, 1,2-bis(3,5-difluorophenyl)ethane-1,2-dione has been used to synthesize various polymers for use as photovoltaics (Cai et al., 2019) or gas chromatography stationary phases (Liu et al., 2019). Non-covalent interactions, such as halogen, hydrogen, chalcogen, pnicogen, aerogen, tetrel and icosagen bonds, as well as π -cation, π -anion, $n-\pi$, $\pi-\pi^*$ stacking and hydrophobic contacts may organize or arrange the conformation and aggregation of molecules, their stabilization and particular properties (Desiraju 1995; Akbari Afkhami et al., 2017; Hazra et al., 2018; Gurbanov et al., 2018; Kvyatkovskaya et al., 2017; Jlassi et al., 2014). Herein we report the synthesis, crystal structure and density functional theory (DFT) calculation of the title compound (II), obtained by the condensation reaction between ethylenediamine and 2-[2-(4-fluorophenyl)hydrazone]-5,5-dimethylcyclohexan-1,3-dione (I) in a 2:1 ratio, in the presence of catalytic hydrochloric acid. A

Received 25 October 2022 Accepted 1 March 2023

ISSN 2056-9890

Edited by A. S. Batsanov, University of Durham, United Kingdom

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: crystal structure; condensation; crystal packing; density functional theory; Hirshfeld surface analysis; hydrogen bonding.

CCDC reference: 2153643

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

series of similar compounds was synthesized (but not characterized crystallographically) by Rema *et al.* (1997) by the condensation of 2-phenylhydrazones of acetylacetone, benzoylacetone and 1,3-cyclohexanedione with ethylenediamine, as well as 1,3-diaminopropane and 1,6-diaminohexane.

2. Structural commentary

The asymmetric unit contains one full molecule (A) of (II) in a general position and one-half of another molecule (B), which lies on a crystallographic twofold axis, as well as three ordered water molecules (O1W, O2W, O3W) and one that is disordered over three positions (O4W, O5W and O6W) with occupancies of 0.5, 0.125 and 0.125, respectively. Thus the crystal composition is (II)·2.5H₂O.

Molecule A has an approximate non-crystallographic C_2 symmetry. Each molecule comprises two approximately planar halves, whose planarity is stabilized by intramolecular N– $H \cdots N$ hydrogen bonds, arranged in an 'open-book' mode. The connecting bridges, N3–C25–C24–N2 in molecule A and N9–C13–C13ⁱ–N9ⁱ in B, have gauche conformations, with torsion angles of -59.1 (3) and 63.7 (3)°, respectively. However, in other respects the conformations of molecules A and B are drastically different (Fig. 1). It is noteworthy that although crystal structures with Z' > 1 are common, two substantially different conformers rarely co-exist in the same structure (Sona & Gautham, 1992). The bond lengths in

Figure 1

The structures of molecules A and B. Displacement ellipsoids are drawn at the 40% probability level.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N9−H9···N1	0.86	1.93	2.609 (3)	135
$N2-H2\cdots N6$	0.86	1.91	2.585 (3)	134
N3-H3···N5	0.86	1.90	2.582 (3)	136
$C13-H13B\cdots O2W^{i}$	0.97	2.59	3.302 (4)	130
C25-H25A···O6	0.97	2.46	3.370 (4)	156
$C24-H24A\cdots O3^{ii}$	0.97	2.65	3.518 (4)	149
$C24 - H24A \cdots O5W^{iii}$	0.97	2.58	3.27 (4)	128
C27−H27 <i>B</i> ···O6	0.97	2.58	3.451 (4)	149
$C42-H42\cdots F4^{iv}$	0.93	2.52	3.218 (4)	132
$C5-H5\cdots O2W$	0.93	2.53	3.441 (5)	166
$C23-H23A\cdots O6^{v}$	0.97	2.43	3.311 (4)	151
$O2W - H2WA \cdots O7$	0.85	2.08	2.926 (4)	178
$O2W - H2WB \cdot \cdot \cdot O1W^{vi}$	0.85	1.91	2.749 (5)	171
$O1W-H1WA\cdots O3W^{vii}$	0.85	2.26	3.042 (5)	154
$O1W-H1WB\cdots O3$	0.85	2.03	2.812 (4)	152
$O3W - H3WA \cdots O4W$	0.85	2.09	2.921 (10)	164
$O3W - H3WA \cdots O5W$	0.85	2.11	2.88 (4)	151
$O3W - H3WB \cdot \cdot \cdot O7$	0.85	2.13	2.866 (4)	144
$O4W-H4WA\cdots O4W^{i}$	0.85	2.20	3.04 (2)	170
$O4W - H4WB \cdot \cdot \cdot O3W$	0.85	2.08	2.921 (10)	168
$O5W - H5WA \cdots O3W$	0.85	2.32	2.88 (4)	124
$O5W-H5WB$ ··· $O5W^{i}$	0.85	1.97	2.48 (7)	118
O6W−H6WA···O3 ^{vi}	0.85	2.06	2.90 (2)	175

Symmetry codes: (i) $-x + 2, y, -z + \frac{1}{2}$; (II) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (v) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (vi) $x, -y + 1, z - \frac{1}{2}$; (vii) -x + 2, -y + 1, -z + 1.

molecules A and B are similar, and close to those reported earlier (Turkoglu *et al.*, 2015; Shikhaliyev *et al.*, 2019) for analogous compounds (see also Section 6).

3. Supramolecular features

In the crystal, molecules of (II) are linked directly through weak $C-H\cdots O$ and $C-H\cdots F$ hydrogen bonds and indirectly through water molecules of crystallization and strong O- $H\cdots O$ hydrogen bonds formed by the latter (Fig. 2, Table 1).

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried

Figure 2 Hydrogen bonds in the crystal of (II).

Figure 3 Hirshfeld surfaces of molecules A and B, mapped over d_{norm} .

out using *Crystal Explorer 17.5* (Turner *et al.*, 2017). The Hirshfeld surfaces of molecules *A* and *B*, mapped over d_{norm} , are shown in Fig. 3. The red spots, indicating short intermolecular contacts, correspond to $O-H\cdots O$ hydrogen bonds donated by the water molecules, and $C-H\cdots F$ contacts. The Hirshfeld surface of molecule *B* is smaller than that of *A*, both in terms of area (527.8 *vs* 532.1 Å²) and the enclosed volume (684.6 *vs* 694.0 Å³), and has a higher asphericity factor (0.211 *vs* 0.085), as a result of the difference in conformations (see above).

Two-dimensional fingerprint plots (Fig. 4) show the contributions of various contacts to the Hirshfeld surface. Thus, for both molecules A and B, by far the largest contributions are by H···H contacts, 49.9% (A) and 47.9% (B). Given that H atoms comprise ca 70% of the molecular surface, a similar share would be expected if the contact distribution were entirely random. The $O \cdots H/H \cdots O$ contacts, *i.e.* strong and weak hydrogen bonds, contribute 14.9% (A) and 13.8% (B), and $H \cdot \cdot \cdot C/C \cdot \cdot \cdot H$ contacts, *i.e.* $\sigma - \pi$ interactions, 14.1% (A) and 11.8% (B). Most remarkable is the different role of the fluorine atoms. In molecule B, $F \cdots H/H \cdots F$ contacts contribute 16.8%, much more than the 6.4% in A or the 6% expected for a random distribution. In contrast, $F \cdots C/C \cdots F$ contacts are more common in A (5.1%) than in B (1.2%). The contributions of all other contacts are negligible, except $H \cdots N/N \cdots H$ (4.0% for A, 3.8% for B). Thus, the fingerprint plots reveal that molecules A and B have substantially different packing environments.

Figure 4

Two-dimensional fingerprint plots for (a) all interactions and delineated into (b) $H \cdots H$, (c) $H \cdots O/O \cdots H$ and (d) $H \cdots F/F \cdots H$ contacts in molecules A and B.

5. Frontier molecular orbital analysis

The frontier molecular orbitals (FMOs), *i.e.* the highest occupied MO (HOMO) and the lowest unoccupied MO (LUMO) play the most significant role in defining the molecular properties (Hoffmann *et al.*, 1965; Fukui, 1982). The HOMO is associated with electron-donating and LUMO with the electron-accepting capability, their energies approximating the negative of the (first) ionization energy and the electron affinity of the molecule, respectively, from where useful information regarding donor–acceptor interactions can be obtained (Demir *et al.*, 2016), and the degree of the electrophilicity or nucleophilicity of the molecule estimated (Parr *et al.*, 1999; Chattaraj *et al.*, 2006).

The frontier orbitals of molecule (II) (Fig. 5) were calculated at the DFT-B3LYP/6-311G(d,p) level of theory as implemented in *Gaussian09* (Frisch *et al.*, 2009). The X-ray-determined structure of molecule A was taken as the starting molecular geometry. This gave the energies of HOMO as -4.8164 eV and LUMO as -3.9894 eV, with a LUMO-HOMO gap of 0.827 eV, from which the chemical potential ($\mu = -4.40 \text{ eV}$), global hardness η (= 0.41 eV), softness (S = 1.21) and the global electrophilicity index ($\omega = 23.4 \text{ eV}$) can be derived. Thus molecule (II) can be regarded as a good electrophile (Domingo *et al.*, 2002) and rather soft.

The frontier molecular orbitals of (II).

6. Database survey

A search of the Cambridge Database (CSD Version 5.42, update of September 2021; Groom et al., 2016) did not vield any close analogue of compound (II). However, various similar compounds have been reported, viz. 7-(5-bromo-2-hydroxyphenyl)-6-(4-bromophenyl)-3,3,10,10-tetramethyl-3,4,10,11-tetrahydroindolo[1,2-a]quinoxaline-1,8[2H,9H]dione (ELIBIM; Fang & Yan, 2016), 6,6-dimethyl-1-(4-nitrophenyl)-1,5,6,7-tetrahydro-4H-benzotriazol-4-one (EMOLEZ; Singh et al., 2016), 3-(3-methoxyphenylamino)-5,5-dimethyl-2-nitroso-2-cyclohexan-1-one (GOYFOP; Gilli et al., 2000), 3-hydroxy-6,6-dimethyl-2-(4-oxo-4H-chromen-3yl)-1,5,6,7-tetrahydro-4*H*-3,1-benzimidazol-4-one methanol solvate (ZEVJUH; Nikitina et al., 2013), 1-[2,2-dichloro-1-(4chlorophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XAJZIV; Nenajdenko et al., 2020), 1-[(5-chloro-2-phenoxyphenyl)(4methoxyphenyl)carbonohydrazonoyl]-2-(4-fluorophenyl)diazene (QOWNOH; Turkoglu et al., 2015), (Z)-4-[(E)-(4fluorophenyl)diazenyl]-6-[(3-hydroxypropylamino)methylene]-2-methoxycyclohexa-2,4-dienone (KARFAM; Albayrak et al., 2012), N-(4-fluorophenyl)-N'-{1-[(4-fluorophenyl)diazenyl]-2-(methylimino)-2-phenylethylidene}-2,2-dimethylpropanehydrazide (SIDKOH; Simunek et al., 2013) and 2-[2-(3-chloro-4-fluorophenyl)hydrazono]-5,5-dimethylcyclohexane-1,3-dione (CAXPIE; Subhasri et al., 2022).

7. Synthesis and crystallization

2 mmol of (I) were dissolved in 15–20 ml of ethanol in a threenecked flask, 1 drop of HCl was added and the solution was heated to 323 K. Then 1 mmol of ethylenediamine was added and the mixture stirred for 1 h at the same temperature. The product (II) was filtered off and purified by recrystallization from ethanol (yield 59%). The reaction and the purity of the substances were monitored by TLC (Sorbil, RF:0.72, 2-propanol).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined using a riding model $[O-H = 0.85, N-H = 0.86, Csp^2-H = 0.93$ and $Csp^3-H = 0.97$ Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups or $1.2U_{eq}(O, N, C)]$.

Acknowledgements

The authors thank Ondokuz Mayıs University (Turkey) for single-crystal X-ray experiment.

References

- Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). *Dalton Trans.* 46, 14888– 14896.
- Albayrak, C., Odabaşoğlu, M., Özek, A. & Büyükgüngör, O. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 85, 85–91.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{30}H_{34}F_2N_6O_2 \cdot 2.5H_2O$
M _r	593.67
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
a, b, c (Å)	22.7715 (19), 17.2794 (15),
	25.640 (3)
β (°)	112.297 (1)
$V(Å^3)$	9334.2 (16)
Z	12
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.16 \times 0.14 \times 0.11$
Data collection	
Diffractometer	Bruker APEXII CCD
No. of measured, independent and	37069, 8249, 4099
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.070
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.596
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.193, 0.99
No. of reflections	8249
No. of parameters	601
No. of restraints	25
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.20, -0.29

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXT2013/1 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

- Cai, F., Li, L., Zhu, C., Li, J., Peng, H. & Zou, Y. (2019). Chem. Phys. Lett. 730, 271–276.
- Chattaraj, P. K., Sarkar, U. & Roy, D. R. (2006). Chem. Rev. 106, 2065–2091.
- Demir, S., Tinmaz, F., Dege, N. & Ilhan, I. O. (2016). J. Mol. Struct. 1108, 637–648.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
- Domingo, L. R., Aurell, M. J., Pérez, P. & Contreras, R. (2002). *Tetrahedron*, 58, 4417–4423.
- Fang, J. & Yan, C. G. (2016). J. Heterocycl. Chem. 53, 800-804.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
- Fukui, K. (1982). Pure Appl. Chem. 54, 1825-1836.
- Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. **122**, 10405–10417.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.

- Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). *J. Organomet. Chem.* 867, 193–200.
- Hinckley, C. C. (1969). J. Am. Chem. Soc. 91, 5160-5162.
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
- Hoffmann, R. & Woodward, R. B. (1965). J. Am. Chem. Soc. 87, 2046–2048.
- Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). *Eur. J. Inorg. Chem.* pp. 4541–4550.
- Kvyatkovskaya, E. A., Zaytsev, V. P., Zubkov, F. I., Dorovatovskii, P. V., Zubavichus, Y. V. & Khrustalev, V. N. (2017). *Acta Cryst.* E73, 515–519.
- Liu, J., Xu, L., Bai, J., Du, A. & Wu, B. (2019). New J. Chem. 43, 8290–8298.
- Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). *Coord. Chem. Rev.* **345**, 54–72.
- Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). *Molecules*, **25**, 5013–5027.
- Nikitina, P. A., Kuz'mina, L. G., Perevalov, V. P. & Tkach, I. I. (2013). *Tetrahedron*, **69**, 3249–3256.
- Parr, R. G., Szentpály, L. v. & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922–1924.

- Rema, V. T., Krishnankutty, K. & Michael, J. (1997). J. Indian Chem. Soc. 74, 391–392.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shikhaliyev, N. O., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). *CrystEngComm*, **21**, 5032–5038.
- Shokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). Russ. J. Org. Chem. 51, 755–830.
- Simunek, P. V., Bertolasi, V. & Machacek, V. (2013). Eur. J. Org. Chem. pp. 5683–5691.
- Singh, H., Khanna, G. & Khurana, J. M. (2016). *Tetrahedron Lett.* 57, 3075–3080.
- Sona, V. & Gautham, N. (1992). Acta Cryst. B48, 111-113.
- Subhasri, A., Balachandran, S., Mohanraj, K., Kumar, P. S., Jothi, K. J. & Anbuselvan, C. (2022). *Chemosphere*, **297**, 134150–134161.
- Turkoglu, G., Berber, H. & Kani, I. (2015). New J. Chem. 39, 2728–2740.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17.5*. University of Western Australia.

Acta Cryst. (2023). E79, 297-301 [https://doi.org/10.1107/S2056989023001895]

Crystal structure, Hirshfeld surface analysis and DFT study of (5*E*,5'*E*,6*Z*,6'*Z*)-6,6'-[ethane-1,2-diylbis(azanylylidene)]bis{5-[2-(4-fluoro-phenyl)hydrazono]-3,3-dimethylcyclohexanone} 2.5-hydrate

Malahat Musrat Kurbanova, Md. Serajul Haque Faizi, Emine Berrin Cinar, Asif Jamal, Mustafa Çemberci, Arzu Sadigova, Rizvan Askerov, Necmi Dege and Tahera Nabi

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXT2013/1* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(5*E*,5'*E*,6*Z*,6'*Z*)-6,6'-[Ethane-1,2-diylbis(azanylylidene)]bis{5-[2-(4-fluorophenyl)hydrazono]-3,3-dimethylcyclohexanone} 2.5-hydrate

Crystal data

 $C_{30}H_{34}F_{2}N_{6}O_{2}\cdot 2.5H_{2}O$ $M_{r} = 593.67$ Monoclinic, C2/c a = 22.7715 (19) Å b = 17.2794 (15) Å c = 25.640 (3) Å $\beta = 112.297 (1)^{\circ}$ $V = 9334.2 (16) \text{ Å}^{3}$ Z = 12

Data collection

Bruker APEXII CCD diffractometer φ and ω scans 37069 measured reflections 8249 independent reflections 4099 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.193$ S = 0.998249 reflections F(000) = 3780 $D_x = 1.267 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2620 reflections $\theta = 2.5-18.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.16 \times 0.14 \times 0.11 \text{ mm}$

 $R_{int} = 0.070$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -27 \rightarrow 27$ $k = -20 \rightarrow 20$ $l = -30 \rightarrow 30$

601 parameters 25 restraints Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0988P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Acta Cryst. (2023). E79, 297-301

				• •		4.1
SHI	nn	orti	nσ	into	irma	tion
	rγ					

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F2	1.09554 (9)	0.57702 (14)	0.53005 (9)	0.0952 (7)	
06	0.89907 (11)	0.85004 (13)	0.36530 (9)	0.0707 (7)	
N9	0.95271 (11)	0.63828 (14)	0.27726 (10)	0.0497 (6)	
H9	0.914706	0.638997	0.252226	0.060*	
F3	0.76710 (10)	0.32116 (12)	0.48211 (10)	0.1025 (8)	
N10	0.86237 (11)	0.75960 (14)	0.27290 (10)	0.0519 (6)	
N2	0.75280 (11)	0.67741 (14)	0.31652 (10)	0.0521 (6)	
H2	0.791352	0.677251	0.340527	0.063*	
N3	0.78027 (11)	0.76386 (14)	0.41673 (10)	0.0530(7)	
H3	0.771048	0.715792	0.417904	0.064*	
N1	0.84455 (11)	0.71070 (15)	0.23249 (10)	0.0539 (7)	
N7	0.83957 (12)	0.55075 (15)	0.32396 (11)	0.0557 (7)	
N6	0.85905 (12)	0.60375 (15)	0.36126 (11)	0.0550 (7)	
N4	0.82821 (12)	0.67186 (16)	0.51854 (11)	0.0588 (7)	
O7	0.79621 (12)	0.44357 (15)	0.24172 (11)	0.0846 (8)	
N5	0.79668 (12)	0.63644 (15)	0.47308 (11)	0.0581 (7)	
F4	0.60711 (11)	0.74370 (16)	0.06565 (10)	0.1250 (9)	
03	0.89386 (14)	0.75091 (17)	0.61336 (10)	0.0977 (9)	
C12	0.96907 (13)	0.69768 (16)	0.31285 (11)	0.0446 (7)	
C7	0.92362 (13)	0.75336 (17)	0.31220 (12)	0.0460 (7)	
C8	0.93933 (15)	0.80892 (17)	0.35815 (12)	0.0492 (7)	
C20	0.73494 (14)	0.61741 (17)	0.28199 (12)	0.0499 (8)	
C10	1.05603 (13)	0.78558 (17)	0.37729 (12)	0.0509 (8)	
C13	0.99160 (14)	0.57224 (16)	0.27573 (12)	0.0514 (8)	
H13A	0.968891	0.524959	0.276294	0.062*	
H13B	1.030349	0.572808	0.309210	0.062*	
C11	1.03605 (13)	0.70393 (17)	0.35377 (12)	0.0498 (7)	
H11A	1.063950	0.686857	0.335369	0.060*	
H11B	1.041915	0.669060	0.385002	0.060*	
C40	0.92104 (14)	0.59354 (18)	0.40252 (13)	0.0524 (8)	
C21	0.77828 (15)	0.55750 (17)	0.28450 (13)	0.0526 (8)	
C31	0.83760 (14)	0.75046 (19)	0.51517 (12)	0.0538 (8)	
C26	0.81638 (13)	0.79584 (17)	0.46495 (13)	0.0506 (8)	
C4	0.78281 (14)	0.72419 (19)	0.19112 (12)	0.0523 (8)	
C34	0.79058 (14)	0.55572 (19)	0.47871 (14)	0.0556 (8)	
C39	0.76263 (15)	0.5143 (2)	0.42909 (14)	0.0607 (9)	

H39	0.749549	0.540146	0.394719	0.073*
C25	0.75416 (15)	0.80125 (18)	0.36141 (12)	0.0580 (8)
H25A	0.788441	0.819537	0.350919	0.070*
H25B	0.728565	0.845438	0.362886	0.070*
C24	0.71388 (14)	0.74392 (18)	0.31816 (12)	0.0559 (8)
H24A	0.678742	0.726986	0.327934	0.067*
H24B	0.696646	0.768255	0.281344	0.067*
С9	1.00665 (14)	0.81378 (18)	0.39906 (12)	0.0544 (8)
H9A	1.010664	0.783819	0.432237	0.065*
H9B	1.015934	0.867263	0.410773	0.065*
C22	0.75933 (17)	0.4957(2)	0.24298 (14)	0.0634 (9)
C45	0.96325 (16)	0.53591(19)	0.40083(14)	0.0595(9)
H45	0.951641	0 500797	0 371137	0.071*
C41	0.93867 (14)	0.64476 (19)	0.44682(14)	0.0581(8)
H41	0.910566	0.683324	0.447703	0.070*
C35	0.80994 (15)	0.505521	0.53017(14)	0.0626 (9)
H35	0.828554	0.543580	0.563835	0.075*
C36	0.80127 (16)	0.513300 0.4373(2)	0.53080(17)	0.0724(10)
H36	0.80127 (10)	0.410494	0.564756	0.0724 (10)
C44	1 02267 (16)	0.410494 0.5316(2)	0.44389 (16)	0.0675(10)
H44	1.051675	0.494183	0.443113	0.081*
C19	0.66830 (15)	0.494105 0.61617 (18)	0.23968 (13)	0.0621 (9)
H19A	0.665624	0.649403	0.20908 (15)	0.0021 ())
H10R	0.640637	0.637650	0.256904	0.075*
C13	1.03705(16)	0.037030	0.250904 0.48728 (16)	0.075
C43	1.03733(10) 0.87277(17)	0.3828(2) 0.7878(2)	0.48728(10) 0.56840(15)	0.0000(10)
C30	0.87277(17) 0.80082(16)	0.7878(2) 0.00513(10)	0.50849(13) 0.51674(14)	0.0078(9)
C28	0.83082(10) 0.83332(15)	0.30313(13)	0.31074(14) 0.46480(13)	0.0039(9)
	0.85552 (15)	0.07079 (17)	0.40489 (13)	0.0007 (9)
П2/А Ц27Р	0.790890	0.909/88	0.402471	0.073*
П2/D С19	0.642091	0.000947	0.431332 0.21674(14)	0.075°
C18 C28	0.04399(10) 0.75208(16)	0.3337(2)	0.21074(14) 0.42005(16)	0.0080(10)
C38	0.73398 (10)	0.4558 (2)	0.42995 (10)	0.0093(10)
П38 С42	0.734707	0.408502	0.390338	0.085
C42	0.99709(10)	0.0397(2)	0.49014(14) 0.520210	0.0000 (9)
H42	1.009572	0.674041	0.520510	0.080^{*}
	0.74440(10)	0.7809 (2)	0.19078 (14)	0.0655 (9)
H3A	0.758677	0.824248	0.21889/	0.079*
	0.76179(16)	0.6708 (2)	0.14840 (14)	0.06/2 (9)
H5	0.787844	0.629339	0.148330	0.081*
	1.06016 (17)	0.83952 (19)	0.331/3 (14)	0.0701 (10)
HISA	1.088826	0.818125	0.316115	0.105*
HI5B	1.075407	0.889248	0.347916	0.105*
HI5C	1.018841	0.845162	0.302490	0.105*
C29	0.88290 (17)	0.8731 (2)	0.56898 (14)	0.0710 (10)
H29A	0.920447	0.886039	0.601720	0.085*
H29B	0.847052	0.898716	0.573198	0.085*
C37	0.77395 (16)	0.3988 (2)	0.48037 (19)	0.0713 (10)
C23	0.69345 (16)	0.4967 (2)	0.19936 (14)	0.0726 (10)

1122 4	0 690241	0 442726	0 199760	0.007*	
П23А 1122D	0.000241	0.443720	0.166700	0.007*	
П23Б	1 12080 (15)	0.322601	0.100131	0.087°	
U14	1.12089 (15)	0.7801 (2)	0.42304 (14)	0.0742 (10)	
HI4A	1.118189	0.745758	0.454065	0.111*	
HI4B	1.133661	0.830553	0.441640	0.111*	
H14C	1.151542	0.760639	0.411575	0.111*	
C46	0.66604 (18)	0.7378 (3)	0.10724 (16)	0.0812 (11)	
C6	0.70266 (19)	0.6772 (3)	0.10544 (15)	0.0791 (11)	
H6	0.688639	0.641151	0.076380	0.095*	
C33	0.95173 (17)	0.8743 (2)	0.51310 (16)	0.0831 (11)	
H33A	0.949259	0.818939	0.509510	0.125*	
H33B	0.987162	0.888138	0.546644	0.125*	
H33C	0.957199	0.896237	0.480848	0.125*	
C17	0.63175 (18)	0.4872 (2)	0.26157 (17)	0.0875 (12)	
H17A	0.670640	0.481196	0.293764	0.131*	
H17B	0.616002	0.437181	0.246323	0.131*	
H17C	0.600946	0.512764	0.272725	0.131*	
C2	0.68508 (18)	0.7934 (2)	0.14860 (16)	0.0795 (11)	
H2A	0.658518	0.834447	0.148160	0.095*	
C16	0.58150 (18)	0.5454 (2)	0.16554 (17)	0.0996 (14)	
H16A	0.550401	0.569113	0.177259	0.149*	
H16B	0.566489	0.495546	0.149430	0.149*	
H16C	0.588558	0.577506	0.137932	0.149*	
C32	0.8926 (2)	0.9931 (2)	0.51835 (18)	0.0964 (13)	
H32A	0.896750	1.012411	0.484791	0.145*	
H32B	0.928180	1.010059	0.550779	0.145*	
H32C	0.854080	1.012447	0.520502	0.145*	
O2W	0.85971 (16)	0.5119 (2)	0.17268 (14)	0.1381 (12)	
H2WA	0.840883	0.493144	0.192778	0.207*	
H2WB	0.879123	0 473704	0 165798	0.207*	
01W	0.93443(17)	0.6011 (2)	0 65403 (17)	0.1587(15)	
H1WA	0.970580	0.620651	0.672785	0.238*	
HIWB	0.910130	0.639951	0.641847	0.238*	
O3W	0.910130 0.92308(17)	0.3840(2)	0.2815(2)	0.1847 (19)	
H3WA	0.92508 (17)	0.338346	0.279348	0.1047 (17)	
	0.982802	0.380027	0.279348	0.277*	
O4W	0.002092	0.380027 0.2282 (5)	0.209100	0.277 0.180 (3)	0.5
	0.9709(4)	0.2202 (3)	0.2984 (4)	0.100 (5)	0.5
	0.963140	0.227073	0.208724	0.270*	0.5
	0.902001	0.273303	0.290093	0.270°	0.5
USW	0.9411 (10)	0.241(2)	0.2313(14)	0.175 (4)	0.125
H5WA	0.911013	0.265707	0.236069	0.263*	0.125
прав	0.909813	0.2/339/	0.230399	0.203*	0.125
U6W	0.9656 (16)	0.1682 (18)	0.2174 (11)	0.152 (11)	0.125
H6WA	0.942959	0.192682	0.18/885	0.229*	0.125
H6WB	0.949669	0.123032	0.212835	0.229*	0.125

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F2	0.0492 (12)	0.1286 (19)	0.0893 (15)	0.0052 (12)	0.0055 (12)	0.0275 (14)
O6	0.0634 (15)	0.0765 (16)	0.0659 (15)	0.0190 (13)	0.0174 (12)	-0.0113 (12)
N9	0.0451 (14)	0.0494 (15)	0.0520 (15)	-0.0007 (12)	0.0157 (12)	-0.0013 (13)
F3	0.0878 (16)	0.0592 (13)	0.133 (2)	-0.0079 (11)	0.0110 (14)	0.0246 (13)
N10	0.0481 (16)	0.0540 (16)	0.0504 (16)	0.0013 (13)	0.0153 (14)	0.0014 (13)
N2	0.0465 (15)	0.0554 (16)	0.0465 (15)	-0.0008 (13)	0.0088 (12)	-0.0035 (13)
N3	0.0575 (16)	0.0460 (15)	0.0480 (15)	-0.0019 (12)	0.0114 (13)	0.0015 (12)
N1	0.0471 (16)	0.0600 (17)	0.0506 (16)	-0.0003 (13)	0.0141 (14)	0.0011 (14)
N7	0.0548 (17)	0.0560 (17)	0.0556 (16)	-0.0069 (13)	0.0200 (15)	-0.0017 (14)
N6	0.0489 (16)	0.0614 (17)	0.0512 (16)	-0.0062 (13)	0.0150 (14)	-0.0006 (14)
N4	0.0586 (17)	0.0617 (19)	0.0545 (17)	0.0017 (14)	0.0194 (14)	0.0029 (14)
O7	0.0789 (18)	0.0724 (17)	0.100 (2)	-0.0005 (14)	0.0314 (16)	-0.0241 (15)
N5	0.0596 (17)	0.0575 (18)	0.0527 (17)	-0.0005 (14)	0.0162 (14)	-0.0002 (14)
F4	0.0794 (16)	0.154 (2)	0.0920 (17)	0.0178 (15)	-0.0236 (14)	0.0128 (16)
O3	0.123 (2)	0.098 (2)	0.0496 (15)	-0.0072 (17)	0.0072 (16)	0.0027 (15)
C12	0.0480 (18)	0.0432 (18)	0.0428 (17)	-0.0026 (14)	0.0174 (15)	0.0015 (14)
C7	0.0442 (18)	0.0466 (17)	0.0447 (17)	0.0040 (14)	0.0141 (15)	0.0048 (14)
C8	0.0532 (19)	0.0493 (18)	0.0453 (18)	0.0078 (16)	0.0189 (16)	0.0036 (15)
C20	0.0531 (19)	0.0517 (19)	0.0415 (17)	-0.0090 (16)	0.0143 (15)	0.0034 (15)
C10	0.0459 (18)	0.0524 (19)	0.0500 (18)	-0.0059 (15)	0.0134 (15)	-0.0055 (15)
C13	0.0559 (19)	0.0392 (16)	0.0572 (19)	-0.0019 (15)	0.0193 (16)	0.0004 (14)
C11	0.0439 (18)	0.0504 (18)	0.0518 (18)	0.0026 (15)	0.0146 (15)	0.0012 (15)
C40	0.0451 (19)	0.056 (2)	0.056 (2)	-0.0016 (16)	0.0188 (17)	0.0053 (16)
C21	0.0502 (19)	0.0482 (19)	0.056 (2)	-0.0041 (16)	0.0163 (17)	-0.0007 (16)
C31	0.0536 (19)	0.060 (2)	0.0438 (18)	0.0015 (16)	0.0141 (16)	-0.0051 (16)
C26	0.0447 (18)	0.0520 (19)	0.055 (2)	0.0034 (15)	0.0194 (16)	-0.0079 (16)
C4	0.0476 (19)	0.065 (2)	0.0389 (17)	0.0007 (17)	0.0104 (15)	0.0049 (16)
C34	0.0494 (19)	0.057 (2)	0.061 (2)	0.0031 (16)	0.0225 (17)	0.0116 (17)
C39	0.058 (2)	0.062 (2)	0.056 (2)	0.0010 (17)	0.0154 (17)	0.0074 (18)
C25	0.062 (2)	0.0522 (19)	0.0497 (19)	0.0048 (16)	0.0101 (17)	0.0060 (16)
C24	0.0528 (19)	0.057 (2)	0.0486 (18)	0.0060 (16)	0.0086 (16)	0.0040 (16)
C9	0.057 (2)	0.0558 (19)	0.0472 (18)	-0.0013 (16)	0.0162 (16)	-0.0041 (15)
C22	0.067 (2)	0.056 (2)	0.065 (2)	-0.0082 (19)	0.023 (2)	-0.0040 (18)
C45	0.061 (2)	0.061 (2)	0.061 (2)	0.0007 (18)	0.0274 (19)	0.0072 (17)
C41	0.0442 (19)	0.060 (2)	0.065 (2)	0.0024 (16)	0.0155 (18)	0.0031 (18)
C35	0.057 (2)	0.074 (2)	0.056 (2)	0.0042 (18)	0.0200 (17)	0.0082 (18)
C36	0.062 (2)	0.072 (3)	0.079 (3)	0.003 (2)	0.022 (2)	0.030 (2)
C44	0.051 (2)	0.071 (2)	0.084 (3)	0.0148 (18)	0.028 (2)	0.024 (2)
C19	0.054 (2)	0.062 (2)	0.056 (2)	-0.0027 (16)	0.0051 (17)	-0.0009 (17)
C43	0.044 (2)	0.082 (3)	0.066 (2)	-0.002 (2)	0.0114 (19)	0.021 (2)
C30	0.067 (2)	0.077 (3)	0.055 (2)	0.006 (2)	0.0184 (19)	-0.005 (2)
C28	0.065 (2)	0.061 (2)	0.066 (2)	-0.0066 (18)	0.0187 (19)	-0.0158 (18)
C27	0.064 (2)	0.053 (2)	0.061 (2)	0.0050 (16)	0.0187 (18)	-0.0070 (16)
C18	0.057 (2)	0.067 (2)	0.063 (2)	-0.0098 (18)	0.0033 (18)	-0.0026 (18)
C38	0.062 (2)	0.062 (2)	0.072 (2)	-0.0038 (18)	0.013 (2)	0.004 (2)

C42	0.052 (2)	0.075 (2)	0.065 (2)	-0.0087 (19)	0.0135 (19)	-0.0012 (19)
C3	0.067 (2)	0.068 (2)	0.055 (2)	0.0049 (19)	0.0147 (19)	0.0068 (17)
C5	0.060 (2)	0.081 (2)	0.054 (2)	0.0016 (19)	0.0142 (19)	-0.0019 (19)
C15	0.079 (2)	0.058 (2)	0.081 (2)	-0.0153 (18)	0.039 (2)	0.0003 (19)
C29	0.073 (2)	0.076 (3)	0.057 (2)	0.006 (2)	0.0171 (19)	-0.0179 (19)
C37	0.054 (2)	0.055 (2)	0.095 (3)	-0.0012 (18)	0.017 (2)	0.009 (2)
C23	0.075 (3)	0.065 (2)	0.067 (2)	-0.009(2)	0.014 (2)	-0.0092 (18)
C14	0.057 (2)	0.077 (3)	0.077 (2)	-0.0035 (19)	0.0117 (19)	-0.016 (2)
C46	0.061 (2)	0.102 (3)	0.058 (2)	0.002 (2)	-0.004(2)	0.012 (2)
C6	0.072 (3)	0.095 (3)	0.052 (2)	-0.005 (2)	0.004 (2)	-0.005 (2)
C33	0.063 (2)	0.104 (3)	0.077 (3)	-0.010 (2)	0.021 (2)	-0.019 (2)
C17	0.077 (3)	0.082 (3)	0.098 (3)	-0.018 (2)	0.027 (2)	0.005 (2)
C2	0.070 (3)	0.085 (3)	0.076 (3)	0.024 (2)	0.018 (2)	0.020 (2)
C16	0.075 (3)	0.091 (3)	0.091 (3)	-0.010 (2)	-0.016 (2)	-0.018 (2)
C32	0.118 (4)	0.063 (3)	0.099 (3)	-0.015 (2)	0.031 (3)	-0.025 (2)
O2W	0.137 (3)	0.153 (3)	0.134 (3)	0.008 (2)	0.062 (2)	0.002 (2)
O1W	0.130 (3)	0.116 (3)	0.188 (4)	-0.014 (2)	0.013 (3)	0.049 (2)
O3W	0.111 (3)	0.134 (3)	0.298 (6)	-0.003(2)	0.066 (3)	0.025 (3)
O4W	0.160 (6)	0.137 (6)	0.170 (6)	-0.040 (5)	-0.019 (5)	0.015 (5)
O5W	0.157 (7)	0.138 (7)	0.166 (7)	-0.038 (6)	-0.011 (6)	0.015 (6)
O6W	0.19 (3)	0.13 (2)	0.12 (2)	0.05 (2)	0.05 (2)	0.050 (18)

Geometric parameters (Å, °)

F2—C43	1.357 (4)	C36—C37	1.375 (5)
O6—C8	1.227 (3)	C36—H36	0.9300
N9—C12	1.329 (3)	C44—C43	1.360 (5)
N9-C13	1.454 (4)	C44—H44	0.9300
N9—H9	0.8600	C19—C18	1.529 (4)
F3—C37	1.353 (4)	C19—H19A	0.9700
N10—N1	1.278 (3)	C19—H19B	0.9700
N10-C7	1.380 (3)	C43—C42	1.365 (5)
N2-C20	1.323 (3)	C30—C29	1.491 (5)
N2-C24	1.461 (4)	C28—C32	1.521 (5)
N2—H2	0.8600	C28—C33	1.522 (5)
N3—C26	1.319 (3)	C28—C29	1.522 (5)
N3—C25	1.464 (3)	C28—C27	1.539 (4)
N3—H3	0.8600	C27—H27A	0.9700
N1-C4	1.423 (4)	C27—H27B	0.9700
N7—N6	1.276 (3)	C18—C23	1.517 (5)
N7—C21	1.383 (4)	C18—C17	1.531 (5)
N6-C40	1.418 (4)	C18—C16	1.536 (4)
N4—N5	1.270 (3)	C38—C37	1.357 (5)
N4—C31	1.383 (4)	C38—H38	0.9300
O7—C22	1.240 (4)	C42—H42	0.9300
N5—C34	1.414 (4)	C3—C2	1.378 (5)
F4—C46	1.365 (4)	C3—H3A	0.9300
O3—C30	1.242 (4)	C5—C6	1.383 (5)

C12—C7	1.409 (4)	С5—Н5	0.9300
C12—C11	1.491 (4)	C15—H15A	0.9600
С7—С8	1.455 (4)	C15—H15B	0.9600
C8—C9	1.496 (4)	C15—H15C	0.9600
C20—C21	1.415 (4)	C29—H29A	0.9700
C20—C19	1.494 (4)	C29—H29B	0.9700
С10—С9	1.513 (4)	C23—H23A	0.9700
C10—C15	1.525 (4)	C23—H23B	0.9700
C10—C14	1.529 (4)	C14—H14A	0.9600
C10—C11	1.534 (4)	C14—H14B	0.9600
C13—C13 ⁱ	1.507 (6)	C14—H14C	0.9600
С13—Н13А	0.9700	C46—C6	1.350 (5)
C13—H13B	0.9700	C46—C2	1.373 (5)
C11—H11A	0.9700	С6—Н6	0.9300
C11—H11B	0.9700	C33—H33A	0.9600
C40—C41	1 374 (4)	C33—H33B	0.9600
C40-C45	1 396 (4)	C33—H33C	0.9600
C_{1} C_{2} C_{2}	1.550 (4)	C17H17A	0.9600
$C_{21} = C_{22}$	1.435 (4)	C17—H17B	0.9600
C_{31} C_{20}	1.420(4) 1.448(4)	C17_H17C	0.9600
C_{26} C_{27}	1.440(4) 1.483(4)	$C_1 = H_1 / C_1$	0.9000
C_{20}	1.403(4) 1.272(4)	C2—112A C16 H16A	0.9300
C4 - C3	1.372(4) 1.300(4)	C16_H16P	0.9000
$C_{4} = C_{3}$	1.390(4)		0.9000
C34—C35	1.380 (4)		0.9600
C34—C35	1.39/(4)	C32—H32A	0.9600
C39—C38	1.3/4 (4)	C32—H32B	0.9600
С39—Н39	0.9300	C32—H32C	0.9600
C25—C24	1.510 (4)	O2W—H2WA	0.8500
C25—H25A	0.9700	O2W—H2WB	0.8497
C25—H25B	0.9700	O1W—H1WA	0.8499
C24—H24A	0.9700	O1W—H1WB	0.8500
C24—H24B	0.9700	O3W—H3WA	0.8500
С9—Н9А	0.9700	O3W—H3WB	0.8500
С9—Н9В	0.9700	O4W—H4WA	0.8503
C22—C23	1.493 (4)	O4W—H4WB	0.8499
C45—C44	1.386 (4)	O5W—H5WA	0.8501
C45—H45	0.9300	O5W—H5WB	0.8501
C41—C42	1.384 (4)	O6W—O6W ⁱ	1.80 (6)
C41—H41	0.9300	O6W—H6WA	0.8499
C35—C36	1.385 (5)	O6W—H6WB	0.8500
С35—Н35	0.9300		
C12—N9—C13	127.6 (3)	C18—C19—H19B	108.7
С12—N9—H9	116.2	H19A—C19—H19B	107.6
C13—N9—H9	116.2	F2—C43—C44	118.8 (3)
N1—N10—C7	117.5 (2)	F2—C43—C42	118.2 (4)
C20—N2—C24	126.8 (3)	C44—C43—C42	123.0 (3)
C20—N2—H2	116.6	O3—C30—C31	121.8 (3)

C24_N2_H2	116.6	03 - C30 - C29	1197(3)
$C_{26} = N_{3} = C_{25}$	127.1 (3)	$C_{31} - C_{30} - C_{29}$	119.7(3) 118.5(3)
$C_{26} = N_{3} = H_{3}$	116.5	$C_{32} - C_{28} - C_{33}$	109.7(3)
C25—N3—H3	116.5	$C_{32} = C_{28} = C_{29}$	109.7(3)
N10-N1-C4	110.5 114.6(3)	$C_{32} = C_{20} = C_{20}$	110.9(3)
N6 N7 C21	117.0(3)	$C_{33}^{33} = C_{20}^{32} = C_{23}^{32}$	100.0(3)
$N_{1} = N_{1} = C_{2}$	117.1(3) 115.8(3)	$C_{32} = C_{20} = C_{27}$	109.0(3)
N5 N4 C31	117.6(3)	C_{20} C_{28} C_{27}	107.9(3)
$N_{4} = N_{5} = C_{34}$	117.0(3) 115.1(3)	$C_{29} = C_{20} = C_{27}$	107.8(3) 114.0(3)
$N_{1} = N_{2} = C_{1}$	113.1(3) 120.4(2)	$C_{20} = C_{27} = C_{28}$	108.5
N9 - C12 - C7	120.4(3)	$C_{20} = C_{27} = H_{27} A$	108.5
$N_{2} = C_{12} = C_{11}$	119.0(3)	$C_{20} = C_{27} = H_{27} R$	108.5
C/-CI2-CII	120.0(3)	$C_{20} = C_{27} = H_{27} B$	108.5
N10-C7-C12	120.0 (3)	C_{28} C_{27} $H_{27}B$	108.5
N10-C7-C8	114.2 (3)	$H_2/A = C_2/=H_2/B$	107.5
C12 - C7 - C8	119.2 (3)	C_{23} C_{18} C_{19}	108.4 (3)
06-08-07	122.3 (3)	C23—C18—C17	110.1 (3)
06	119.2 (3)	C19—C18—C17	110.6 (3)
C7—C8—C9	118.5 (3)	C23—C18—C16	110.3 (3)
N2—C20—C21	120.7 (3)	C19—C18—C16	108.2 (3)
N2—C20—C19	117.8 (3)	C17—C18—C16	109.1 (3)
C21—C20—C19	121.4 (3)	C37—C38—C39	118.9 (3)
C9—C10—C15	110.9 (3)	C37—C38—H38	120.6
C9—C10—C14	110.2 (2)	C39—C38—H38	120.6
C15—C10—C14	109.7 (3)	C43—C42—C41	118.0 (3)
C9—C10—C11	106.8 (2)	C43—C42—H42	121.0
C15—C10—C11	110.9 (2)	C41—C42—H42	121.0
C14—C10—C11	108.3 (2)	C2—C3—C4	119.7 (3)
N9-C13-C13 ⁱ	112.5 (2)	С2—С3—НЗА	120.1
N9-C13-H13A	109.1	C4—C3—H3A	120.1
C13 ⁱ —C13—H13A	109.1	C4—C5—C6	121.4 (3)
N9—C13—H13B	109.1	C4—C5—H5	119.3
C13 ⁱ —C13—H13B	109.1	C6—C5—H5	119.3
H13A—C13—H13B	107.8	C10—C15—H15A	109.5
C12—C11—C10	114.5 (2)	C10—C15—H15B	109.5
C12—C11—H11A	108.6	H15A—C15—H15B	109.5
C10-C11-H11A	108.6	C10—C15—H15C	109.5
C12—C11—H11B	108.6	H15A—C15—H15C	109.5
C10-C11-H11B	108.6	H15B—C15—H15C	109.5
H11A—C11—H11B	107.6	C30—C29—C28	114.9 (3)
C41—C40—C45	119.8 (3)	C30—C29—H29A	108.5
C41—C40—N6	115.6 (3)	C28—C29—H29A	108.5
C45—C40—N6	124.6 (3)	C30—C29—H29B	108.5
N7—C21—C20	126.0(3)	C28—C29—H29B	108.5
N7—C21—C22	114.2 (3)	H29A—C29—H29B	107.5
C_{20} C_{21} C_{22}	119.8 (3)	F3—C37—C38	119.8 (4)
N4—C31—C26	126.1 (3)	F3—C37—C36	117.7 (4)
N4—C31—C30	115.0 (3)	$C_{38} - C_{37} - C_{36}$	122.5(3)
C26—C31—C30	118.9 (3)	C22-C23-C18	115.6 (3)

N3—C26—C31	119.6 (3)	С22—С23—Н23А	108.4
N3—C26—C27	118.3 (3)	C18—C23—H23A	108.4
C31—C26—C27	122.2 (3)	С22—С23—Н23В	108.4
C5—C4—C3	119.4 (3)	C18—C23—H23B	108.4
C5—C4—N1	115.6 (3)	H23A—C23—H23B	107.4
C3—C4—N1	125.0 (3)	C10—C14—H14A	109.5
C39—C34—C35	119.2 (3)	C10—C14—H14B	109.5
C39—C34—N5	116.3 (3)	H14A—C14—H14B	109.5
C35—C34—N5	124.5 (3)	C10—C14—H14C	109.5
C38—C39—C34	120.9 (3)	H14A—C14—H14C	109.5
С38—С39—Н39	119.5	H14B—C14—H14C	109.5
С34—С39—Н39	119.5	C6—C46—F4	117.9 (4)
N3—C25—C24	109.4 (2)	C6—C46—C2	123.4 (3)
N3—C25—H25A	109.8	F4—C46—C2	118.7 (4)
C24—C25—H25A	109.8	C46—C6—C5	117.6 (4)
N3—C25—H25B	109.8	C46—C6—H6	121.2
C24—C25—H25B	109.8	С5—С6—Н6	121.2
H25A—C25—H25B	108.2	C28—C33—H33A	109.5
N2-C24-C25	109.3 (2)	C28—C33—H33B	109.5
N2-C24-H24A	109.8	H33A—C33—H33B	109.5
C25—C24—H24A	109.8	C28—C33—H33C	109.5
N2—C24—H24B	109.8	H33A—C33—H33C	109.5
C25—C24—H24B	109.8	H33B—C33—H33C	109.5
H24A—C24—H24B	108.3	C18—C17—H17A	109.5
C8—C9—C10	115.5 (2)	C18—C17—H17B	109.5
С8—С9—Н9А	108.4	H17A—C17—H17B	109.5
С10—С9—Н9А	108.4	C18—C17—H17C	109.5
С8—С9—Н9В	108.4	H17A—C17—H17C	109.5
С10—С9—Н9В	108.4	H17B—C17—H17C	109.5
H9A—C9—H9B	107.5	C46—C2—C3	118.5 (4)
O7—C22—C21	122.5 (3)	C46—C2—H2A	120.7
O7—C22—C23	119.2 (3)	C3—C2—H2A	120.7
C21—C22—C23	118.3 (3)	C18—C16—H16A	109.5
C44—C45—C40	119.3 (3)	C18—C16—H16B	109.5
C44—C45—H45	120.4	H16A—C16—H16B	109.5
C40—C45—H45	120.4	C18—C16—H16C	109.5
C40—C41—C42	120.9 (3)	H16A—C16—H16C	109.5
C40—C41—H41	119.6	H16B—C16—H16C	109.5
C42—C41—H41	119.6	C28—C32—H32A	109.5
C36—C35—C34	119.7 (3)	C28—C32—H32B	109.5
C36—C35—H35	120.2	H32A—C32—H32B	109.5
C34—C35—H35	120.2	C28—C32—H32C	109.5
C37—C36—C35	118.9 (3)	H32A—C32—H32C	109.5
C37—C36—H36	120.6	H32B—C32—H32C	109.5
С35—С36—Н36	120.6	H2WA—O2W—H2WB	104.5
C43—C44—C45	119.1 (3)	H1WA—O1W—H1WB	104.5
C43—C44—H44	120.5	H3WA—O3W—H3WB	104.5
C45—C44—H44	120.5	H4WA—O4W—H4WB	104.5

C20—C19—C18	114.3 (3)	H5WA—O5W—H5WB	104.5
С20—С19—Н19А	108.7	O6W ⁱ —O6W—H6WA	147.7
C18—C19—H19A	108.7	O6W ⁱ —O6W—H6WB	107.6
C20—C19—H19B	108.7	H6WA—O6W—H6WB	104.5
C7—N10—N1—C4	-175.2 (2)	N7—C21—C22—C23	178.6 (3)
C21—N7—N6—C40	177.4 (2)	C20—C21—C22—C23	-1.3 (4)
C31—N4—N5—C34	177.7 (3)	C41—C40—C45—C44	-0.4(4)
C13—N9—C12—C7	-173.7 (2)	N6-C40-C45-C44	-179.7 (3)
C13—N9—C12—C11	5.7 (4)	C45—C40—C41—C42	-0.5(5)
N1—N10—C7—C12	-0.6 (4)	N6-C40-C41-C42	178.9 (3)
N1—N10—C7—C8	-177.4 (2)	C39—C34—C35—C36	0.4 (5)
N9-C12-C7-N10	-8.4 (4)	N5-C34-C35-C36	179.5 (3)
C11—C12—C7—N10	172.2 (3)	C34—C35—C36—C37	0.4 (5)
N9—C12—C7—C8	168.2 (2)	C40—C45—C44—C43	1.2 (5)
C11—C12—C7—C8	-11.2 (4)	N2-C20-C19-C18	-158.9 (3)
N10-C7-C8-O6	9.6 (4)	C21—C20—C19—C18	22.5 (4)
C12—C7—C8—O6	-167.4 (3)	C45—C44—C43—F2	178.3 (3)
N10-C7-C8-C9	-172.5 (2)	C45—C44—C43—C42	-1.1 (5)
C12—C7—C8—C9	10.4 (4)	N4—C31—C30—O3	1.6 (5)
C24—N2—C20—C21	178.8 (3)	C26—C31—C30—O3	-178.1 (3)
C24—N2—C20—C19	0.2 (4)	N4—C31—C30—C29	-177.7 (3)
C12—N9—C13—C13 ⁱ	-111.6 (3)	C26—C31—C30—C29	2.7 (5)
N9—C12—C11—C10	159.0 (3)	N3—C26—C27—C28	-161.6(3)
C7—C12—C11—C10	-21.6(4)	C31—C26—C27—C28	18.7 (4)
C9—C10—C11—C12	51.5 (3)	C32—C28—C27—C26	-166.1(3)
C15—C10—C11—C12	-69.4(3)	C33—C28—C27—C26	73.8 (4)
C14—C10—C11—C12	170.2 (3)	C29—C28—C27—C26	-46.1 (4)
N7—N6—C40—C41	-171.5 (3)	C20-C19-C18-C23	-48.5 (4)
N7—N6—C40—C45	7.8 (4)	C20—C19—C18—C17	72.4 (4)
N6—N7—C21—C20	-0.6(4)	C20—C19—C18—C16	-168.1(3)
N6—N7—C21—C22	179.5 (3)	C34—C39—C38—C37	-0.7(5)
N2-C20-C21-N7	5.5 (5)	F2-C43-C42-C41	-179.1(3)
C19—C20—C21—N7	-175.9(3)	C44—C43—C42—C41	0.3 (5)
N2—C20—C21—C22	-174.6(3)	C40—C41—C42—C43	0.5 (5)
C19—C20—C21—C22	4.0 (4)	C5-C4-C3-C2	1.9 (5)
N5—N4—C31—C26	-1.5 (5)	N1—C4—C3—C2	-179.4 (3)
N5—N4—C31—C30	178.8 (3)	C3—C4—C5—C6	-1.1 (5)
C25—N3—C26—C31	179.9 (3)	N1-C4-C5-C6	-179.9(3)
C25—N3—C26—C27	0.1 (4)	O3-C30-C29-C28	146.9 (3)
N4—C31—C26—N3	5.5 (5)	C31—C30—C29—C28	-33.8(4)
C30—C31—C26—N3	-174.9(3)	C_{32} C_{28} C_{29} C_{30}	173.0 (3)
N4—C31—C26—C27	-174.8(3)	C_{33} C_{28} C_{29} C_{30}	-65.8(4)
C_{30} C_{31} C_{26} C_{27}	4.8 (4)	C_{27} C_{28} C_{29} C_{30}	54.0 (4)
N10-N1-C4-C5	-177.7(3)	C39 - C38 - C37 - F3	-178.6(3)
N10-N1-C4-C3	3.6 (4)	C39—C38—C37—C36	1.5 (5)
N4—N5—C34—C39	-173.0(3)	C_{35} C_{36} C_{37} F_{3}	178 8 (3)
N4—N5—C34—C35	78(4)	$C_{35} - C_{36} - C_{37} - C_{38}$	-13(5)
	/ · · · · · / · /		1.2 (2)

C35—C34—C39—C38	-0.2 (5)	O7—C22—C23—C18	153.5 (3)
N5-C34-C39-C38	-179.4 (3)	C21—C22—C23—C18	-28.2 (5)
C26—N3—C25—C24	-178.3 (3)	C19—C18—C23—C22	51.9 (4)
C20—N2—C24—C25	-176.4 (3)	C17—C18—C23—C22	-69.2 (4)
N3—C25—C24—N2	-59.1 (3)	C16—C18—C23—C22	170.2 (3)
O6—C8—C9—C10	-158.5 (3)	F4C46C5	-178.7 (3)
C7—C8—C9—C10	23.6 (4)	C2—C46—C6—C5	1.3 (6)
C15—C10—C9—C8	68.3 (3)	C4—C5—C6—C46	-0.5 (5)
C14—C10—C9—C8	-170.0 (3)	C6—C46—C2—C3	-0.5 (6)
C11—C10—C9—C8	-52.6 (3)	F4—C46—C2—C3	179.5 (3)
N7—C21—C22—O7	-3.2 (5)	C4—C3—C2—C46	-1.2 (5)
C20—C21—C22—O7	176.8 (3)		

Symmetry code: (i) -x+2, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N9—H9…N1	0.86	1.93	2.609 (3)	135
N2—H2…N6	0.86	1.91	2.585 (3)	134
N3—H3…N5	0.86	1.90	2.582 (3)	136
C13—H13 <i>B</i> ····O2 <i>W</i> ¹	0.97	2.59	3.302 (4)	130
C25—H25A···O6	0.97	2.46	3.370 (4)	156
C24—H24 <i>A</i> ···O3 ⁱⁱ	0.97	2.65	3.518 (4)	149
C24—H24 A ···O5 W ^{tii}	0.97	2.58	3.27 (4)	128
C27—H27 <i>B</i> ···O6	0.97	2.58	3.451 (4)	149
C42—H42···F4 ^{iv}	0.93	2.52	3.218 (4)	132
C5—H5···O2 <i>W</i>	0.93	2.53	3.441 (5)	166
C23—H23 <i>A</i> ···O6 ^v	0.97	2.43	3.311 (4)	151
O2 <i>W</i> —H2 <i>WA</i> ···O7	0.85	2.08	2.926 (4)	178
$O2W$ — $H2WB$ ···O $1W^{vi}$	0.85	1.91	2.749 (5)	171
O1W—H1 WA ···O3 W ^{vii}	0.85	2.26	3.042 (5)	154
O1 <i>W</i> —H1 <i>WB</i> ···O3	0.85	2.03	2.812 (4)	152
O3 <i>W</i> —H3 <i>WA</i> ···O4 <i>W</i>	0.85	2.09	2.921 (10)	164
O3 <i>W</i> —H3 <i>WA</i> ···O5 <i>W</i>	0.85	2.11	2.88 (4)	151
O3 <i>W</i> —H3 <i>WB</i> ···O7	0.85	2.13	2.866 (4)	144
$O4W$ — $H4WA$ ···O $4W^{1}$	0.85	2.20	3.04 (2)	170
O4W— $H4WB$ ···O $3W$	0.85	2.08	2.921 (10)	168
O5 <i>W</i> —H5 <i>WA</i> ···O3 <i>W</i>	0.85	2.32	2.88 (4)	124
$O5W$ — $H5WB$ ···O5 W^{i}	0.85	1.97	2.48 (7)	118
O6 <i>W</i> —H6 <i>WA</i> ···O3 ^{vi}	0.85	2.06	2.90 (2)	175

Symmetry codes: (i) -x+2, y, -z+1/2; (ii) -x+3/2, -y+3/2, -z+1; (iii) -x+3/2, y+1/2, -z+1/2; (iv) x+1/2, -y+3/2, z+1/2; (v) -x+3/2, y-1/2, -z+1/2; (vi) x, -y+1, z-1/2; (vii) -x+2, -y+1, -z+1.