

Received 25 January 2023 Accepted 2 April 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; piperazinium cation; carboxylate anion; supramolecular features; Hirshfeld analysis.

CCDC references: 2253382; 2253381; 2253380

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses and crystal structures of three salts of 1-(4-nitrophenyl)piperazine

Holehundi J. Shankara Prasad,^a Devaraju,^a* Hemmige S. Yathirajan,^b* Mehmet Akkurt,^c Sabine Foro,^d Rishik Balerao^e and Ray J. Butcher^f

^aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore-570 005, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039, Kayseri, Türkiye, ^dInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, ^eThomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria VA 22312, USA, and ^fDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA. *Correspondence e-mail: Passion49432005@gmail.com, yathirajan@hotmail.com

The crystal structures and Hirshfeld surface analyses of three salts of 1-(4-nitrophenyl)piperazine with 2-chlorobenzoic acid, 2-bromobenzoic acid and 2-iodobenzoic acid are reported. The chlorobenzoate salt, $C_{10}H_{14}N_3O_2^+$. $C_7H_4ClO_2^-$, contains whole-ion-disordered cations and anions, which were modeled with two equivalent conformations with occupancies of 0.745 (10)/ 0.255 (10) and 0.563 (13)/0.437 (13), respectively. The bromobenzoate and iodobenzoate derivatives are isomorphous and crystallize as hemihydrates, *viz*. $C_{10}H_{14}N_3O_2^+$. $C_7H_4BrO_2^-$. $0.5H_2O$ and $C_{10}H_{14}N_3O_2^+$. $C_7H_4IO_2^-$. $0.5H_2O$, respectively [the water molecule is disordered over two locations with occupancies of 0.276 (3)/0.223 (3) for the iodobenzoate derivative]. In the extended structures, all three salts feature an R_4^4 (12) loop of two anions and two cations linked by N—H···O hydrogen bonds.

1. Chemical context

Piperazines and substituted piperazines are pharmacophores that can be found in many biologically active compounds across a number of different therapeutic areas (Berkheij, 2005) such as antifungal (Upadhayaya et al., 2004), antibacterial, anti-malarial and anti-psychotic agents (Chaudhary et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives was described (Elliott, 2011). 4-(4-Nitrophenyl)piperazin-1-ium chloride monohydrate has been used as an intermediate in the synthesis of anticancer drugs, transcriptase inhibitors and antifungal reagents and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007). 4-Nitrophenylpiperazine was the starting material in the synthesis and biological evaluation of piperazine containing hydrazone derivatives (Kaya et al., 2016).

Very recently, we have reported the syntheses, crystal structures and Hirshfeld surface analysis of 4-(4-nitrophenyl)piperazin-1-ium trifluoroacetate (Cambridge Structural Database refcode BEYREG) and 4-(4-nitrophenyl)piperazin-1-ium trichloroacetate (BEYRIK) (Shankara Prasad *et al.*, 2023). As part of our ongoing studies in this area, the present paper reports the crystal structure studies and Hirshfeld surface analysis of three salts of 1-(4-nitrophenyl)piperazine with organic acids *viz.*, 4-(4-nitrophenyl)piperazin-1-ium 2-chlorobenzoate, $C_{10}H_{14}N_3O_2^{+}\cdot C_7H_4ClO_2^{-}$ (1), 4-(4-nitrophenyl)piperazin-1-ium 2-bromobenzoate hemihydrate, $C_{10}H_{14}N_3O_2^+ \cdot C_7H_4BrO_2^- \cdot 0.5H_2O$ (2), and 4-(4-nitrophenyl)piperazin-1-ium 2-iodobenzoate hemihydrate, $C_{10}H_{14}N_3O_2^+ \cdot C_7H_4IO_2^- \cdot 0.5H_2O$ (3).

2. Structural commentary

Structure **1** consists of a 4-nitropiperazinium cation linked to a 2-chlorobenzoate anion by two $N-H\cdots O$ hydrogen bonds (Fig. 1, Table 1), which will be discussed in further detail in the *Supramolecular features* section of the paper. Both the cation and the anion exhibit whole-ion disorder, which was modeled with two equivalent conformations with occupancies of 0.745 (10)/0.255 (10) and 0.563 (13)/0.437 (13) respectively. When discussing the conformations of the anion and cation, only the major components will be used. In the chlorobenzoate anion, the carboxylate group is significantly twisted with respect to the 2-chlorophenyl ring with a dihedral angle

Figure 1

The molecular structure of 1 with the N-H···O hydrogen bond shown as a dashed line. Atomic displacement parameters are at the 30% probability level.

Figure 2

The molecular structure of **2** with the $N-H\cdots O$ hydrogen bond shown as a dashed line. Atomic displacement parameters are at the 30% probability level.

Table 1	
Hydrogen-bond geometry $(Å, \circ)$ for (1).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3A\cdots O2^{i}$	0.93	2.13	2.880 (15)	137
$N2-H2B\cdots O3^{ii}$	0.88(2)	1.86 (2)	2.740 (6)	172 (3)
$N2-H2B\cdots O3A^{ii}$	0.88(2)	1.73 (2)	2.590 (13)	164 (3)
$N2-H2C\cdots O4$	0.89(2)	1.83 (2)	2.705 (8)	169 (3)
$N2-H2C\cdots O4A$	0.89(2)	1.81 (3)	2.644 (19)	156 (3)
C8-H8A···Cl1 ⁱⁱⁱ	0.97	2.82	3.629 (5)	142
$C8-H8A\cdots Cl1^{iv}$	0.97	2.95	3.780 (5)	144
$C8-H8A\cdots Cl1A^{iv}$	0.97	2.88	3.643 (12)	136
$C8-H8B\cdots O4A^{iv}$	0.97	2.58	3.13 (2)	116
$C10-H10A\cdots O3A^{ii}$	0.97	2.65	3.285 (19)	123

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 1, -y + 2, -z + 1; (iii) x - 1, y, z; (iv) -x + 1, -y + 1, -z + 1.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for 2.

$\overline{D - H \cdot \cdot \cdot A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} & \\ N2 - H2A \cdots O3 \\ N2 - H2B \cdots O4^{i} \\ C2 - H2 \cdots O2^{ii} \\ C7 - H7B \cdots Br1^{iii} \end{array}$	0.85 (2) 0.88 (2) 0.93 0.97	1.83 (2) 1.82 (2) 2.50 3.11	2.655 (3) 2.701 (3) 3.307 (4) 4.032 (2)	164 (2) 173 (2) 145 160
$C10-H10B\cdots O1W^{i}$	0.97	2.10	3.057 (8)	169

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x, -y + 1, -z + 1; (iii) x - 1, y, z.

Table 3 Hydrogen-bond geometry (Å, °) for **3**.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots I1^{i} C3-H3\cdots O1^{ii} C6-H6\cdots I1^{iii} C7-H7A\cdots O1WA C7-H7A\cdots O1WB C7-H7A-H7A-H7A-H7A-H7A-H7A-H7A-H7A-H7A-H7$	0.93 0.93 0.93 0.97 0.97	3.28 2.53 3.26 2.14 2.01	4.110 (4) 3.347 (7) 3.940 (4) 3.09 (3) 2.85 (3)	150 147 132 167 145
$N2 - H2A \cdots O3^{W}$ $N2 - H2B \cdots O4$	0.88 (5) 0.93 (5)	1.86 (5) 1.77 (5)	2.717 (5) 2.666 (6)	164 (5) 160 (5)
$O1WB - H1W3 \cdots O3^{iv}$	0.83 (2)	1.71 (10)	2.37 (2)	135 (12)

Symmetry codes: (i) x - 1, y, z; (ii) -x - 1, -y + 1, -z; (iii) x, y + 1, z; (iv) -x + 1, -y + 1, -z + 1.

of 76.7 (4)°, which is likely due to the steric interaction between the *ortho*-chloro substituent and the carboxylate group. Structures **2** and **3** exhibit similar cation conformations, with equivalent dihedral angles of 65.5 (3) and 67.1 (5)°, respectively. Additionally, in all three structures, the 4-nitrophenyl group occupies an equatorial position in its attachment to the piperazinium ring.

Figure 3

The molecular structure of **3** with the $N-H\cdots O$ hydrogen bond shown as a dashed line. Atomic displacement parameters are at the 30% probability level.

Since 2 and 3 are isostructural, only 2 will be discussed in detail. This structure consists of a 4-(4-nitrophenyl)piperazin-1-ium cation linked to a 2-bromobenzoate anion by two N– $H \cdots O$ hydrogen bonds (Figs. 2 and 3, Tables 2 and 3). Both 2 and 3 contain 0.5 water molecules of crystallization [disordered over two locations with occupancies of 0.276 (3)/ 0.223 (3) for the iodobenzoate derivative]. Additionally, there is a weak C– $H \cdots Br$ interaction accepted by the bromine atom in the 2-bromobezoate anion and a carbon atom in the piperazinium ring, as well as a pair of weak C– $H \cdots O$ interactions between adjacent 4-nitrophenyl rings in the 4-(4nitrophenyl)piperazin-1-ium cation.

3. Supramolecular features

In the packing of **1**, which contains both a disordered cation and anion as well as disordered water of solvation, the discussion will focus solely on the major component. The cation forms an $R_4^4(12)$ loop involving N-H···O hydrogen bonds with two adjacent anions and an adjacent cation (symmetry codes: 2 - x, 1 - y, 1 - z; x, 1 + y, z; 1 - x, 1 - y, 1 - z; see Fig. 4 for packing and Fig. 5 for fingerprint plots). There is also a π - π interaction between the nitro group in the cation and the phenyl ring of an adjacent cation [symmetry

Figure 4

Packing diagram for **1** showing an $R_4^4(12)$ loop of N-H···O hydrogen bonds with two cations and two anions (symmetry codes: 2 - x, 1 - y, 1 - z; x, 1 + y, z; 1 - x, 1 - y, 1 - z). Hydrogen bonds shown as dashed lines.

Figure 5

Fingerprint plot for 1 showing the $N{-}H{\cdots}O$ hydrogen bonds as prominent spikes.

code: $1 - x, -y, -z; Y \cdots Cg$ distance = 3.488 (18) Å; $X - Y \cdots Cg$: 85.8 (12)°].

In the packing of **2**, two cations and two anions form an R_4^4 (12) loop (Etter *et al.*, 1990) of N-H···O hydrogen bonds (symmetry code: 1 - x, -y, -z; see Fig. 6 for packing and Fig. 7 for fingerprint plots). Additionally, there are weak C-H···O interactions between adjacent nitrophenyl rings (symmetry code: -x, 1 - y, 1 - z) that form an $R_2^2(10)$ ring (Fig. 6), as well as a weak C-H···Br interaction between the piperazine ring and the bromine atom in an adjacent 2-bromobenzoate anion (symmetry code: -1 + x, y, z). The phenyl rings in adjacent cations form $\pi - \pi$ interactions with a perpendicular distance between centroids of 3.5332 (11) Å (symmetry code: 1 - x, 1 - y, 1 - z; slippage = 0.737 Å). These are all clearly seen in the fingerprint plot generated by *CrystalExplorer* (Spackman *et al.*, 2021).

In the packing of **3**, a pair of cations and a pair of anions form an $R_4^4(12)$ loop linked by N-H···O hydrogen bonds

Packing diagram for **2** showing an $R_4^4(12)$ loop arising from N-H···O hydrogen bonds with an adjacent cation and anion (symmetry code: 1 - x, -y, -z) and an $R_2^2(10)$ loop comprised of weak C-H···O interactions between adjacent nitrophenyl rings (symmetry code: -x, 1 - y, 1 - z). Hydrogen bonds and C-H···O interactions shown as dashed lines. The half occupancy water molecule is omitted for clarity.

research communications

Figure 7

Fingerprint plot for 2 showing the $N\!-\!H\!\cdots\!O$ hydrogen bonds as prominent spikes.

(symmetry code: 1 - x, 1 - y, 1 - z; see Fig. 8 for packing and Fig. 9 for fingerprint plots). Additionally, there are weak C-H···O interactions between adjacent nitrophenyl rings (symmetry code: 1 - x, 1 - y, -z) that form an R_2^2 (10) ring. This structure contains a partially occupied water molecule close to a center of inversion for which the hydrogen atoms were not able to be located (see *Refinement*). This species is likely to be involved in hydrogen bonding with an adjacent oxygen atom in the anion (symmetry code: 1 - x, 1 - y, 1 - z) and with the piperazine ring in the cation, forming an $R_3^3(10)$ ring. The phenyl rings in adjacent cations form $\pi - \pi$ interactions with a perpendicular distance between centroids of 3.586 (4) Å (symmetry code: -x, 1 - y, -z; slippage = 0.379 Å).

4. Database survey

426

Related structures containing the 4-(4-nitrophenyl)piperazin-1-ium cation include 4-(4-nitrophenyl)piperazin-1-ium chloride monohydrate (refcode LIJNAU; Lu, 2007) and 4,6dimethoxy pyrimidin-2-amine-1-(4-nitrophenyl)piperazine (1:1) (LUDMUU; Wang *et al.*, 2014). Very recently, we have

Packing diagram for **3** showing the same features as Fig. 6.

Fingerprint plot for 3 showing the $N-H\cdots O$ hydrogen bonding as prominent spikes.

reported the crystal structures of six salts of 1-(4-nitro-NEBVUP, phenyl)piperazine (NEBVOJ, NEBWAW. NEBWEA, NEBWIE, NEBWOK; Mahesha et al., 2022a). The syntheses and crystal structures of 4-(4-nitrophenyl)piperazin-1-ium benzoate monohydrate (BEFGIG) and 4-(4-nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (BEFGOM) have been reported (Shankara Prasad et al., 2022). A survey of these published derivatives containing the 4-(4-nitrophenyl)piperazin-1-ium cation shows that the most common conformation adopted by the 4-nitrophenyl substituent with respect to the six-membered piperazinium ring is equatorial (LUDMUU, NEBVOJ, NEBVUP, NEBWAW, NEBWEA, NEBWOK, BEFGIG and BEYRIK) with only three adopting the axial conformation (LUDMUU, BEFGOM, and BEYREG). One published structure contains two 4-nitrophenyl cations, with one adopting an equatorial conformation and the other an axial conformation (Mahesha et al., 2022a).

5. Synthesis and crystallization

For the synthesis of salts (1)–(3), a solution of commercially available (from Sigma-Aldrich) 1-(4-nitrophenyl)piperazine (100 mg, 0.483 mmol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) and ethyl acetate (10 ml), *viz.*, 2-chlorobenzoic acid (76 mg, 0.483 mmol) for (1), 2-bromobenzoic acid (97 mg, 0.483 mmol) for (2), and 2-iodobenzoic acid (120 mg, 0.483 mmol) for (3), The resulting solutions were stirred for 15 minutes at room temperature and allowed to stand at the same temperature. X-ray quality crystals were formed on slow evaporation after one week for all compounds, where ethanol:ethylacetate (1:1) was used for crystallization. The melting points are 439–441 K (1), 443–445 K (2) and 451–453 K (3).

Table 4Experimental details.

	1	2	3
Crystal data			
Chemical formula	$C_{10}H_{14}N_{3}O_{2}^{+}\cdot C_{7}H_{4}ClO_{2}^{-}$	$C_{10}H_{14}N_{3}O_{2}^{+}\cdot C_{7}H_{4}BrO_{2}^{-}\cdot 0.5H_{2}O_{2}$	$C_{10}H_{14}N_{3}O_{2}^{+}\cdot C_{7}H_{4}IO_{2}^{-}\cdot 0.5H_{2}O_{1}$
M_r	363.79	417.26	928.50
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	293	293	293
a, b, c (Å)	6.6073 (5), 8.2708 (5), 16.984 (1)	7.2570 (5), 9.7772 (6), 14.202 (1)	7.3949 (6), 9.3440 (8), 14.498 (1)
α, β, γ (°)	102.385 (6), 91.745 (6), 99.903 (6)	102.101 (6), 99.534 (6), 110.981 (6)	104.967 (8), 94.707 (7), 107.430 (8)
$V(\dot{A}^3)$	890.84 (10)	887.41 (11)	909.44 (13)
Z	2	2	1
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.24	2.35	1.79
Crystal size (mm)	$0.48 \times 0.44 \times 0.24$	$0.36 \times 0.32 \times 0.20$	$0.50 \times 0.44 \times 0.24$
Data collection			
Diffractometer	Oxford Diffraction Xcalibur CCD	Oxford Diffraction Xcalibur CCD	Oxford Diffraction Xcalibur CCD
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.894, 1.000	0.781, 1.000	0.697, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6637, 3787, 1916	6177, 3856, 2478	6275, 3904, 2443
R _{int}	0.014	0.016	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.653	0.660	0.661
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.162, 1.06	0.036, 0.084, 0.94	0.046, 0.117, 1.02
No. of reflections	3787	3856	3904
No. of parameters	357	244	264
No. of restraints	714	5	13
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.15, -0.15	0.51, -0.33	0.61, -0.44

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXL2018 (Sheldrick, 2015b), SHELXL2018/3 (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. For all structures, the hydrogen atoms were located in difference maps and relocated to idealized locations (C-H = 0.93-0.97 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ while the N-H hydrogen atoms were refined isotropically. For **1**, in which both the cation and the anion exhibit whole-ion disorder, two equivalent conformations were modeled with occupancies of 0.745 (10)/ 0.255 (10) and 0.563 (13)/ 0.437 (13) respectively. The water hydrogen atoms were refined isotropically with idealized geometries.

Acknowledgements

One of the authors (HJS) is grateful to the University of Mysore for research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

References

- Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). *Tetrahedron Lett.* 46, 2369–2371.
- Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). *Bioorg. Med. Chem.* 14, 1819–1826.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

Elliott, S. (2011). Drug Test. Anal. 3, 430-438.

- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Kaya, B., Ozkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. 5878410.
- Lu, Y.-X. (2007). Acta Cryst. E63, o3611.
- Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022a). Acta Cryst. E78, 510–518.
- Oxford Diffraction (2009). CrysAlis RED, CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.
- Shankara Prasad, H. J., Devaraju, Murthy, S. M., Kaspiaruk, H., Yathirajan, H. S., Foro, S. & Chęcińska, L. (2023). Acta Cryst. E79, 1–7.
- Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840–845.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). *Bioorg. Med. Chem.* **12**, 2225–2238.
- Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. New Cryst. Struct. 229, 97–98.

Acta Cryst. (2023). E79, 423-427 [https://doi.org/10.1107/S205698902300302X]

Syntheses and crystal structures of three salts of 1-(4-nitrophenyl)piperazine

Holehundi J. Shankara Prasad, Devaraju, Hemmige S. Yathirajan, Mehmet Akkurt, Sabine Foro, Rishik Balerao and Ray J. Butcher

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXL2018* (Sheldrick, 2015b); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015a); molecular graphics: Olex2 1.5 (Dolomanov *et al.*, 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov *et al.*, 2009).

4-(4-Nitrophenyl)piperazin-1-ium 2-chlorobenzoate (1)

Crystal data

 $C_{10}H_{14}N_{3}O_{2}^{+}C_{7}H_{4}ClO_{2}^{-}M_{r} = 363.79$ Triclinic, *P*1 a = 6.6073 (5) Å b = 8.2708 (5) Å c = 16.984 (1) Å a = 102.385 (6)° $\beta = 91.745$ (6)° $\gamma = 99.903$ (6)° V = 890.84 (10) Å³

Data collection

Oxford Diffraction Xcalibur CCD diffractometer ω scans Absorption correction: multi-scan (CrysalisRed; Oxford Diffraction, 2009) $T_{\min} = 0.894, T_{\max} = 1.000$ 6637 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.162$ S = 1.063787 reflections 357 parameters 714 restraints Z = 2 F(000) = 380 $D_x = 1.356 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2365 reflections $\theta = 2.6-27.6^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 293 K Prism, yellow $0.48 \times 0.44 \times 0.24 \text{ mm}$

3787 independent reflections 1916 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 27.7^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -10 \rightarrow 7$ $l = -20 \rightarrow 21$

Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0521P)^2 + 0.3137P]$ where $P = (F_o^2 + 2F_c^2)/3$

Acta Cryst. (2023). E79, 423-427

				14.5			•		н. —						
SU	n	D	NI	11	n	g	11	nt	Ο	rr	n	a	τı	O	n
	<u>۲</u>		-			O			×.					~	

$$(\Delta/\sigma)_{\rm max} < 0.001$$

 $\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$

$$\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	1.0680 (5)	0.6989 (5)	0.5627 (2)	0.0833 (8)	0.745 (10)
03	0.7965 (9)	1.0649 (9)	0.6034 (5)	0.0842 (18)	0.745 (10)
O4	0.6067 (11)	0.8100 (10)	0.5952 (5)	0.082 (2)	0.745 (10)
C11	0.9076 (7)	0.8971 (6)	0.6843 (2)	0.0615 (11)	0.745 (10)
C12	1.0545 (7)	0.7974 (6)	0.6616(3)	0.0650 (12)	0.745 (10)
C13	1.1959 (7)	0.7776 (5)	0.7195 (3)	0.0835 (16)	0.745 (10)
H13	1.294232	0.710907	0.704298	0.100*	0.745 (10)
C14	1.1905 (8)	0.8575 (5)	0.8000 (3)	0.0943 (18)	0.745 (10)
H14	1.285124	0.844228	0.838711	0.113*	0.745 (10)
C15	1.0436 (9)	0.9572 (6)	0.8227 (2)	0.0931 (16)	0.745 (10)
H15	1.039942	1.010634	0.876538	0.112*	0.745 (10)
C16	0.9022 (8)	0.9770 (6)	0.7648 (3)	0.0776 (13)	0.745 (10)
H16	0.803866	1.043720	0.779953	0.093*	0.745 (10)
C17	0.7612 (19)	0.9300 (14)	0.6263 (9)	0.0666 (17)	0.745 (10)
Cl1A	1.0723 (17)	0.6949 (14)	0.5994 (9)	0.100 (3)	0.255 (10)
O3A	0.741 (3)	1.065 (3)	0.6227 (13)	0.082 (4)	0.255 (10)
O4A	0.654 (3)	0.785 (3)	0.5841 (13)	0.073 (4)	0.255 (10)
C11A	0.877 (2)	0.906 (2)	0.7016 (7)	0.066 (2)	0.255 (10)
C12A	1.030 (2)	0.8078 (18)	0.6923 (8)	0.069(2)	0.255 (10)
C13A	1.1458 (19)	0.7951 (16)	0.7596 (10)	0.083 (2)	0.255 (10)
H13A	1.247604	0.729405	0.753378	0.099*	0.255 (10)
C14A	1.110 (2)	0.8807 (17)	0.8362 (8)	0.092 (3)	0.255 (10)
H14A	1.187433	0.872219	0.881231	0.111*	0.255 (10)
C15A	0.958 (2)	0.9790 (17)	0.8455 (7)	0.090 (3)	0.255 (10)
H15A	0.933424	1.036208	0.896755	0.108*	0.255 (10)
C16A	0.841 (2)	0.9916 (19)	0.7782 (8)	0.081 (2)	0.255 (10)
H16A	0.739583	1.057381	0.784426	0.097*	0.255 (10)
C17A	0.735 (7)	0.904 (5)	0.617 (3)	0.067 (3)	0.255 (10)
01A	0.437 (2)	0.1420 (17)	-0.0678 (8)	0.143 (4)	0.437 (13)
O2A	0.725 (2)	0.2969 (18)	-0.0749 (8)	0.127 (3)	0.437 (13)
N3A	0.575 (2)	0.2519 (16)	-0.0385 (7)	0.105 (2)	0.437 (13)
C1A	0.548 (2)	0.5327 (19)	0.1991 (6)	0.071 (2)	0.437 (13)
C2A	0.713 (2)	0.5730 (16)	0.1536(7)	0.085 (3)	0.437 (13)
H2	0.820154	0.661738	0.175667	0.102*	0.437 (13)
C3A	0.7186 (17)	0.4807 (15)	0.0753 (7)	0.089(3)	0.437 (13)
Н3	0.829021	0.507621	0.044865	0.107*	0.437 (13)

C4A	0.5589 (19)	0.3480 (14)	0.0424 (5)	0.086 (2)	0.437 (13)
C5A	0.3939 (18)	0.3077 (15)	0.0878 (7)	0.093 (2)	0.437 (13)
Н5	0.287089	0.218996	0.065773	0.112*	0.437 (13)
C6A	0.389 (2)	0.4001 (18)	0.1662 (7)	0.089 (2)	0.437 (13)
H6	0.278218	0.373111	0.196576	0.107*	0.437 (13)
01	0.5473 (18)	0.1306 (13)	-0.0808 (7)	0.144 (3)	0.563 (13)
O2	0.836 (2)	0.2893 (15)	-0.0755 (6)	0.161 (4)	0.563 (13)
N3	0.675 (2)	0.2455 (14)	-0.0465 (6)	0.109 (3)	0.563 (13)
C1	0.5784 (18)	0.5063 (14)	0.1894 (4)	0.070 (2)	0.563 (13)
C2	0.7641 (16)	0.5504 (13)	0.1562 (5)	0.089 (3)	0.563 (13)
H2A	0.866018	0.635336	0.185813	0.107*	0.563 (13)
C3	0.7975 (15)	0.4676 (12)	0.0787 (5)	0.095 (2)	0.563 (13)
H3A	0.921692	0.497043	0.056517	0.114*	0.563 (13)
C4	0.6452 (15)	0.3406 (11)	0.0345 (4)	0.086 (2)	0.563 (13)
C5	0.4595 (14)	0.2966 (11)	0.0676 (5)	0.087 (2)	0.563 (13)
H5A	0.357591	0.211638	0.038029	0.105*	0.563 (13)
C6	0.4261 (15)	0.3794 (13)	0.1451 (5)	0.0822 (19)	0.563 (13)
H6A	0.301914	0.349929	0.167326	0.099*	0.563 (13)
N1	0.5532 (4)	0.5957 (3)	0.27470 (16)	0.0768 (8)	
N2	0.5064 (4)	0.7717 (3)	0.43581 (17)	0.0675 (7)	
H2B	0.417 (4)	0.834 (3)	0.4252 (17)	0.081*	
H2C	0.530 (5)	0.795 (4)	0.4892 (11)	0.081*	
C7	0.3683 (5)	0.5526 (4)	0.3162 (2)	0.0921 (11)	
H7A	0.313237	0.433276	0.297924	0.110*	
H7B	0.264769	0.614262	0.302794	0.110*	
C8	0.4136 (5)	0.5935 (3)	0.4054 (2)	0.0858 (10)	
H8A	0.286923	0.568239	0.431384	0.103*	
H8B	0.506956	0.523703	0.419185	0.103*	
С9	0.6955 (5)	0.8126 (4)	0.3947 (2)	0.0899 (11)	
H9A	0.796744	0.749561	0.408843	0.108*	
H9B	0.752465	0.931538	0.412976	0.108*	
C10	0.6532 (6)	0.7714 (4)	0.3053 (2)	0.0929 (11)	
H10A	0.565368	0.844595	0.290746	0.111*	
H10B	0.781839	0.792344	0.279945	0.111*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0608 (8)	0.0760 (9)	0.0980 (18)	0.0096 (6)	0.0027 (12)	-0.0109 (13)
03	0.056 (3)	0.069 (2)	0.139 (4)	0.019 (2)	0.014 (3)	0.041 (3)
O4	0.048 (3)	0.077 (3)	0.115 (4)	0.000 (2)	0.000 (3)	0.018 (2)
C11	0.053 (2)	0.0330 (18)	0.092 (3)	-0.0025 (16)	0.002 (2)	0.0088 (19)
C12	0.058 (2)	0.0400 (19)	0.088 (3)	0.0002 (16)	-0.009(2)	0.003 (2)
C13	0.087 (3)	0.050 (2)	0.108 (4)	0.015 (2)	-0.016 (3)	0.007 (3)
C14	0.110 (4)	0.069 (3)	0.096 (4)	0.012 (3)	-0.029 (3)	0.009 (3)
C15	0.107 (4)	0.064 (3)	0.097 (3)	0.002 (3)	-0.004 (3)	0.004 (2)
C16	0.077 (3)	0.049 (2)	0.101 (3)	0.007 (2)	0.009 (2)	0.009 (2)
C17	0.047 (4)	0.048 (4)	0.101 (4)	0.007 (3)	0.010 (3)	0.009 (3)

Cl1A	0.071 (3)	0.079 (3)	0.140 (6)	0.017 (2)	0.020 (5)	-0.004 (5)
O3A	0.064 (8)	0.063 (5)	0.128 (9)	0.024 (6)	0.017 (7)	0.030 (6)
O4A	0.048 (8)	0.062 (6)	0.104 (7)	0.005 (6)	0.004 (6)	0.014 (5)
C11A	0.057 (4)	0.038 (4)	0.099 (4)	0.005 (3)	0.001 (4)	0.009 (4)
C12A	0.063 (4)	0.039 (4)	0.098 (4)	0.004 (3)	-0.007(4)	0.009 (4)
C13A	0.085 (4)	0.054 (4)	0.103 (5)	0.011 (4)	-0.015 (4)	0.010 (4)
C14A	0.096 (5)	0.068 (5)	0.105 (5)	0.009 (5)	-0.010 (5)	0.009 (5)
C15A	0.089 (6)	0.066 (5)	0.106 (5)	0.001 (4)	0.000 (5)	0.011 (5)
C16A	0.080 (5)	0.054 (4)	0.101 (4)	0.001 (4)	0.002 (4)	0.008 (4)
C17A	0.051 (5)	0.047 (5)	0.102 (5)	0.011 (4)	0.006 (4)	0.015 (5)
O1A	0.145 (8)	0.134 (6)	0.107 (6)	-0.007 (6)	-0.031 (6)	-0.035 (5)
O2A	0.135 (7)	0.122 (6)	0.103 (6)	0.019 (6)	0.005 (6)	-0.019 (5)
N3A	0.117 (5)	0.090 (4)	0.089 (4)	0.007 (5)	-0.014 (4)	-0.007 (3)
C1A	0.090 (5)	0.033 (4)	0.080 (4)	0.002 (4)	-0.014 (3)	-0.001 (3)
C2A	0.095 (5)	0.053 (4)	0.091 (4)	-0.005 (4)	-0.014 (4)	-0.001 (3)
C3A	0.094 (5)	0.072 (4)	0.087 (4)	-0.001 (4)	-0.010 (4)	0.004 (3)
C4A	0.104 (5)	0.068 (3)	0.074 (3)	0.001 (4)	-0.018 (4)	-0.001 (3)
C5A	0.112 (5)	0.071 (4)	0.077 (5)	-0.009(4)	-0.017 (4)	0.000 (4)
C6A	0.107 (5)	0.063 (4)	0.079 (5)	-0.006 (4)	-0.017 (4)	-0.001 (4)
01	0.146 (7)	0.123 (4)	0.116 (5)	-0.016 (5)	-0.006 (5)	-0.043 (4)
O2	0.144 (7)	0.150 (5)	0.140 (5)	-0.011 (6)	0.036 (5)	-0.051 (4)
N3	0.125 (6)	0.090 (4)	0.088 (4)	-0.008 (5)	-0.003 (4)	-0.008 (3)
C1	0.090 (4)	0.033 (3)	0.082 (3)	0.007 (3)	-0.017 (3)	0.006 (3)
C2	0.099 (5)	0.059 (4)	0.092 (3)	-0.004 (4)	-0.003 (3)	-0.004 (3)
C3	0.103 (5)	0.074 (3)	0.090 (3)	-0.005 (4)	-0.005 (4)	-0.002 (3)
C4	0.105 (5)	0.068 (3)	0.076 (3)	0.004 (4)	-0.012 (3)	0.004 (2)
C5	0.108 (5)	0.068 (3)	0.069 (4)	-0.010 (3)	-0.015 (3)	0.002 (3)
C6	0.101 (4)	0.058 (3)	0.070 (4)	-0.011 (3)	-0.012 (3)	-0.001 (3)
N1	0.0767 (17)	0.0420 (12)	0.099 (2)	-0.0114 (11)	-0.0042 (15)	0.0076 (13)
N2	0.0543 (15)	0.0425 (12)	0.103 (2)	0.0079 (10)	0.0018 (15)	0.0101 (14)
C7	0.079 (2)	0.0508 (17)	0.127 (3)	-0.0174 (16)	-0.006 (2)	0.0043 (19)
C8	0.086 (2)	0.0425 (16)	0.121 (3)	-0.0017 (15)	0.014 (2)	0.0099 (17)
C9	0.061 (2)	0.074 (2)	0.111 (3)	-0.0155 (16)	0.0106 (19)	-0.0102 (19)
C10	0.096 (3)	0.0543 (18)	0.105 (3)	-0.0236 (17)	0.011 (2)	-0.0043 (18)

Geometric parameters (Å, °)

Cl1—C12	1.715 (3)	C3A—C4A	1.3900
Cl1—H8A ⁱ	2.953 (5)	СЗА—НЗ	0.9300
O3—C17	1.247 (14)	C4A—C5A	1.3900
O4—C17	1.304 (10)	C5A—C6A	1.3900
C11—C12	1.3900	C5A—H5	0.9300
C11—C16	1.3900	С6А—Н6	0.9300
C11—C17	1.458 (15)	O1—N3	1.189 (9)
C12—C13	1.3900	O2—N3	1.216 (10)
C13—C14	1.3900	N3—C4	1.468 (8)
С13—Н13	0.9300	C1—C2	1.3900
C14—C15	1.3900	C1—C6	1.3900

C14—H14	0.9300	C1—N1	1.507 (7)
C15—C16	1.3900	C2—C3	1.3900
C15—H15	0.9300	C2—H2A	0.9300
C16—H16	0.9300	C3—C4	1.3900
Cl1A—C12A	1.711 (4)	С3—НЗА	0.9300
O3A—C17A	1.31 (4)	C4—C5	1.3900
O4A—C17A	1.06 (4)	C5—C6	1.3900
C11A - C12A	1 3900	C5—H5A	0.9300
C11A - C16A	1 3900	C6—H6A	0.9300
$C_{11}A - C_{17}A$	1.68 (4)	N1—C7	1 459 (4)
	1 3000	N1 C10	1.457(4)
C12A = C13A	1 3000	N2 C8	1.469(3)
	0.0200	N2 C0	1.409(3)
CIAA CI5A	0.9300		1.474(4)
C14A - C13A	1.3900		0.882(17)
CI4A—HI4A	0.9300	N2—H2C	0.889(17)
CISA—CI6A	1.3900		1.488 (5)
CISA—HISA	0.9300	C/—H/A	0.9700
CI6A—HI6A	0.9300	C/—H/B	0.9700
O1A—N3A	1.182 (10)	C8—H8A	0.9700
O2A—N3A	1.235 (12)	С8—Н8В	0.9700
N3A—C4A	1.448 (9)	C9—C10	1.490 (5)
C1A—N1	1.275 (9)	С9—Н9А	0.9700
C1A—C2A	1.3900	С9—Н9В	0.9700
C1A—C6A	1.3900	C10—H10A	0.9700
C2A—C3A	1.3900	C10—H10B	0.9700
С2А—Н2	0.9300		
C12_C11_H8A ⁱ	92 6 (2)	C4A—C5A—H5	120.0
C_{12} C_{11} C_{16}	120.0	$C_{5} - C_{6} - C_{1}$	120.0
$C_{12} = C_{11} = C_{10}$	122.0 (6)	$C_{5A} = C_{6A} = H_6$	120.0
$C_{12} = C_{11} = C_{17}$	122.9(0) 117.0(6)		120.0
$C_{10} = C_{11} = C_{17}$	117.0 (0)	CIA = COA = II0	120.0
$C_{11} = C_{12} = C_{13}$	120.0 121.24(18)	O1 N3 O2	122.0(9)
C12 - C12 - C11	121.34(10)	$O_1 = N_2 = C_4$	120.0(8)
C13 - C12 - C11	118.00 (18)	02 - N3 - C4	110.9(7)
C14 - C13 - C12	120.0	$C_2 = C_1 = C_0$	120.0
C14—C13—H13	120.0	C2—C1—NI	117.8 (6)
С12—С13—Н13	120.0	C6—C1—N1	122.1 (6)
C13—C14—C15	120.0	C1—C2—C3	120.0
C13—C14—H14	120.0	C1—C2—H2A	120.0
C15—C14—H14	120.0	C3—C2—H2A	120.0
C14—C15—C16	120.0	C4—C3—C2	120.0
C14—C15—H15	120.0	C4—C3—H3A	120.0
C16—C15—H15	120.0	С2—С3—НЗА	120.0
C15—C16—C11	120.0	C3—C4—C5	120.0
C15—C16—H16	120.0	C3—C4—N3	122.1 (5)
C11-C16-H16	120.0	C5—C4—N3	117.9 (5)
O3—C17—O4	122.2 (12)	C4—C5—C6	120.0
O3—C17—C11	119.3 (7)	C4—C5—H5A	120.0

O4—C17—C11	118.2 (10)	С6—С5—Н5А	120.0
C12A—C11A—C16A	120.0	C5—C6—C1	120.0
C12A—C11A—C17A	116.6 (17)	С5—С6—Н6А	120.0
C16A—C11A—C17A	123.3 (17)	C1—C6—H6A	120.0
C11A—C12A—C13A	120.0	C1A—N1—C7	117.5 (7)
C11A—C12A—C11A	121.3 (4)	C1A—N1—C10	118.6 (7)
C13A—C12A—Cl1A	118.7 (4)	C7—N1—C10	111.7 (3)
C14A—C13A—C12A	120.0	C7—N1—C1	121.9 (5)
C14A—C13A—H13A	120.0	C10—N1—C1	120.3 (5)
C12A—C13A—H13A	120.0	C8—N2—C9	109.7 (2)
C13A—C14A—C15A	120.0	C8—N2—H2B	108 (2)
C13A—C14A—H14A	120.0	C9—N2—H2B	109.3 (19)
C15A—C14A—H14A	120.0	C8—N2—H2C	111 (2)
C16A—C15A—C14A	120.0	C9—N2—H2C	112 (2)
С16А—С15А—Н15А	120.0	H2B—N2—H2C	107 (3)
C14A—C15A—H15A	120.0	N1—C7—C8	111.2 (3)
C15A - C16A - C11A	120.0	N1—C7—H7A	109.4
C15A - C16A - H16A	120.0	C8—C7—H7A	109.4
C11A - C16A - H16A	120.0	N1—C7—H7B	109.4
04A - C17A - O3A	140 (4)	C8-C7-H7B	109.4
O4A - C17A - C11A	118 (4)	H7A - C7 - H7B	108.0
O3A - C17A - C11A	101(2)	N2-C8-C7	1116(3)
01A - N3A - 02A	1235(11)	N2-C8-H8A	109.3
O1A - N3A - C4A	118 5 (10)	C7—C8—H8A	109.3
O2A - N3A - C4A	117.8 (10)	N2-C8-H8B	109.3
N1—C1A—C2A	121 6 (9)	C7—C8—H8B	109.3
N1-C1A-C6A	1174(9)	H8A - C8 - H8B	108.0
C_{2A} C_{1A} C_{6A}	120.0	N2-C9-C10	1113(3)
C1A - C2A - C3A	120.0	N2-C9-H9A	109.4
C1A - C2A - H2	120.0	C10-C9-H9A	109.4
C3A - C2A - H2	120.0	N2-C9-H9B	109.4
C4A - C3A - C2A	120.0	C10-C9-H9B	109.4
C4A - C3A - H3	120.0	H9A - C9 - H9B	108.0
C2A - C3A - H3	120.0	N1-C10-C9	1119(3)
C3A - C4A - C5A	120.0	N1-C10-H10A	109.2
C3A - C4A - N3A	118.0 (6)	C9—C10—H10A	109.2
C5A - C4A - N3A	122.0 (6)	N1—C10—H10B	109.2
C6A - C5A - C4A	120.0	C9-C10-H10B	109.2
C6A - C5A - H5	120.0	H10A-C10-H10B	107.9
	120.0		107.9
C16—C11—C12—C13	0.0	O1A—N3A—C4A—C5A	4.2 (16)
C17—C11—C12—C13	177.0 (7)	O2A - N3A - C4A - C5A	179.5 (10)
C16—C11—C12—C11	-179.2 (4)	C3A—C4A—C5A—C6A	0.0
C17—C11—C12—C11	-2.3 (6)	N3A—C4A—C5A—C6A	177.9 (10)
$H8A^{i}$ —Cl1—Cl2—Cl1	-77.7	C4A—C5A—C6A—C1A	0.0
$H8A^{i}$ —Cl1—Cl2—Cl3	103.1	N1—C1A—C6A—C5A	-169.0 (13)
C11—C12—C13—C14	0.0	C2A—C1A—C6A—C5A	0.0
Cl1—Cl2—Cl3—Cl4	179.2 (4)	C6-C1-C2-C3	0.0

C12—C13—C14—C15	0.0	N1—C1—C2—C3	177.8 (9)
C13—C14—C15—C16	0.0	C1—C2—C3—C4	0.0
C14-C15-C16-C11	0.0	C2—C3—C4—C5	0.0
C12—C11—C16—C15	0.0	C2-C3-C4-N3	-177.9 (8)
C17—C11—C16—C15	-177.1 (6)	O1—N3—C4—C3	175.2 (11)
C12—C11—C17—O3	-99.0 (12)	O2—N3—C4—C3	-4.2 (14)
C16—C11—C17—O3	78.0 (14)	O1—N3—C4—C5	-2.8 (15)
C12—C11—C17—O4	75.1 (13)	O2—N3—C4—C5	177.8 (10)
C16—C11—C17—O4	-107.8 (11)	C3—C4—C5—C6	0.0
C16A—C11A—C12A—C13A	0.0	N3—C4—C5—C6	178.0 (8)
C17A—C11A—C12A—C13A	-176.2 (19)	C4—C5—C6—C1	0.0
C16A—C11A—C12A—Cl1A	177.7 (12)	C2-C1-C6-C5	0.0
C17A—C11A—C12A—C11A	1.5 (19)	N1—C1—C6—C5	-177.7 (9)
C11A—C12A—C13A—C14A	0.0	C2A—C1A—N1—C7	176.8 (6)
Cl1A—C12A—C13A—C14A	-177.7 (12)	C6A—C1A—N1—C7	-14.3 (11)
C12A—C13A—C14A—C15A	0.0	C2A—C1A—N1—C10	37.6 (12)
C13A—C14A—C15A—C16A	0.0	C6A—C1A—N1—C10	-153.6 (5)
C14A—C15A—C16A—C11A	0.0	C2-C1-N1-C7	-176.9 (4)
C12A—C11A—C16A—C15A	0.0	C6—C1—N1—C7	0.9 (9)
C17A—C11A—C16A—C15A	176 (2)	C2-C1-N1-C10	32.7 (8)
C12A—C11A—C17A—O4A	57 (5)	C6-C1-N1-C10	-149.5 (5)
C16A—C11A—C17A—O4A	-119 (4)	C1A—N1—C7—C8	164.1 (9)
C12A—C11A—C17A—O3A	-132 (2)	C10—N1—C7—C8	-54.0 (4)
C16A—C11A—C17A—O3A	52 (3)	C1—N1—C7—C8	153.4 (6)
N1—C1A—C2A—C3A	168.6 (14)	C9—N2—C8—C7	-57.1 (4)
C6A—C1A—C2A—C3A	0.0	N1—C7—C8—N2	56.4 (4)
C1A—C2A—C3A—C4A	0.0	C8—N2—C9—C10	56.2 (4)
C2A—C3A—C4A—C5A	0.0	C1A—N1—C10—C9	-164.9 (9)
C2A—C3A—C4A—N3A	-178.0 (10)	C7—N1—C10—C9	53.6 (4)
O1A—N3A—C4A—C3A	-177.9 (12)	C1—N1—C10—C9	-153.2 (6)
O2A—N3A—C4A—C3A	-2.6 (14)	N2—C9—C10—N1	-55.0 (4)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

	D—H	H····A	D···A	D—H···A
C3—H3 <i>A</i> ···O2 ⁱⁱ	0.93	2.13	2.880 (15)	137
N2—H2 <i>B</i> ···O3 ⁱⁱⁱ	0.88 (2)	1.86 (2)	2.740 (6)	172 (3)
N2—H2B····O3A ⁱⁱⁱ	0.88 (2)	1.73 (2)	2.590 (13)	164 (3)
N2—H2C···O4	0.89 (2)	1.83 (2)	2.705 (8)	169 (3)
N2—H2 <i>C</i> ···O4 <i>A</i>	0.89 (2)	1.81 (3)	2.644 (19)	156 (3)
C8—H8A····Cl1 ^{iv}	0.97	2.82	3.629 (5)	142
C8—H8A···Cl1 ⁱ	0.97	2.95	3.780 (5)	144
C8—H8A····Cl1A ⁱ	0.97	2.88	3.643 (12)	136
C8—H8 B ···O4 A^{i}	0.97	2.58	3.13 (2)	116
C10—H10 <i>A</i> ····O3 <i>A</i> ⁱⁱⁱⁱ	0.97	2.65	3.285 (19)	123

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) *x*-1, *y*, *z*.

4-(4-Nitrophenyl)piperazin-1-ium 2-bromobenzoate hemihydrate (2)

Crystal data

 $\begin{array}{l} {\rm C}_{10}{\rm H}_{14}{\rm N}_{3}{\rm O}_{2}^{+}{\rm \cdot}{\rm C}_{7}{\rm H}_{4}{\rm Br}{\rm O}_{2}^{-}{\rm \cdot}0.5{\rm H}_{2}{\rm O}\\ M_{r}=417.26\\ {\rm Triclinic}, P\overline{1}\\ a=7.2570~(5)~{\rm \AA}\\ b=9.7772~(6)~{\rm \AA}\\ c=14.202~(1)~{\rm \AA}\\ a=102.101~(6)^{\circ}\\ \beta=99.534~(6)^{\circ}\\ \gamma=110.981~(6)^{\circ}\\ V=887.41~(11)~{\rm \AA}^{3} \end{array}$

Data collection

Oxford Diffraction Xcalibur CCD
diffractometer
ω scans
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
$T_{\min} = 0.781, T_{\max} = 1.000$
6177 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: mixed
$wR(F^2) = 0.084$	H atoms treated by a mixture of independent
S = 0.94	and constrained refinement
3856 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0444P)^2]$
244 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: dual	$\Delta ho_{ m max} = 0.51 \ m e \ m \AA^{-3}$
-	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 2

F(000) = 426

 $\theta = 3.0 - 27.9^{\circ}$

 $\mu = 2.35 \text{ mm}^{-1}$

Prism, brown

 $R_{\rm int} = 0.016$

 $h = -9 \rightarrow 9$

 $k = -12 \longrightarrow 12$ $l = -11 \longrightarrow 18$

 $0.36 \times 0.32 \times 0.20$ mm

 $\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$

3856 independent reflections 2478 reflections with $I > 2\sigma(I)$

T = 293 K

 $D_{\rm x} = 1.562 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2832 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.4472 (3)	0.9088 (2)	0.57716 (16)	0.0866 (7)	
O2	0.1466 (4)	0.7360 (3)	0.53813 (19)	0.0965 (8)	
N1	0.5490 (3)	0.3809(2)	0.27923 (14)	0.0452 (5)	
N2	0.6259 (3)	0.1873 (2)	0.12301 (15)	0.0462 (5)	
H2A	0.686 (3)	0.132 (3)	0.1015 (18)	0.055*	
H2B	0.556 (3)	0.198 (3)	0.0700 (14)	0.055*	
N3	0.3218 (4)	0.7818 (3)	0.53126 (16)	0.0593 (6)	
C1	0.3797 (4)	0.6788 (3)	0.46525 (17)	0.0447 (6)	

C2	0.2487 (4)	0.5276 (3)	0.4245 (2)	0.0540 (7)	
H2	0.123215	0.491207	0.439437	0.065*	
C3	0.3015 (4)	0.4304 (3)	0.36200 (19)	0.0518 (6)	
H3	0.209824	0.328530	0.333702	0.062*	
C4	0.4910 (3)	0.4806 (2)	0.33958 (16)	0.0399 (5)	
C5	0.6204 (4)	0.6357 (3)	0.38273 (19)	0.0493 (6)	
H5	0.746350	0.673689	0.368381	0.059*	
C6	0.5675 (4)	0.7326 (3)	0.44508 (18)	0.0505 (6)	
H6	0.657730	0.834750	0.473932	0.061*	
C7	0.3935 (4)	0.2306 (3)	0.2201 (2)	0.0611 (8)	
H7A	0.307731	0.241586	0.164666	0.073*	
H7B	0.307496	0.187484	0.261102	0.073*	
C8	0.4847 (5)	0.1232 (3)	0.1806 (2)	0.0676 (8)	
H8A	0.557431	0.102503	0.235884	0.081*	
H8B	0.376210	0.026977	0.138441	0.081*	
C9	0.7856 (4)	0.3349 (3)	0.1852 (2)	0.0781 (10)	
H9A	0.874756	0.378980	0.145729	0.094*	
H9B	0.867453	0.319121	0.239824	0.094*	
C10	0.6991 (5)	0.4438 (3)	0.2265 (3)	0.0808 (10)	
H10A	0.809491	0.536313	0.271886	0.097*	
H10B	0.635383	0.471694	0.172320	0.097*	
Br1	0.92610 (5)	-0.00832 (3)	0.31967 (2)	0.06679 (14)	
O3	0.8488 (3)	0.0263 (3)	0.09269 (16)	0.0782 (6)	
O4	0.6156 (3)	-0.2125 (3)	0.03302 (17)	0.0860 (7)	
C11	0.9379 (3)	-0.1685 (3)	0.12893 (18)	0.0438 (6)	
C12	1.0135 (4)	-0.1304 (3)	0.23087 (19)	0.0469 (6)	
C13	1.1536 (4)	-0.1827 (3)	0.2715 (2)	0.0609 (7)	
H13	1.201561	-0.157757	0.340436	0.073*	
C14	1.2204 (4)	-0.2701 (3)	0.2107 (3)	0.0671 (8)	
H14	1.316352	-0.303199	0.238116	0.080*	
C15	1.1471 (4)	-0.3102 (3)	0.1086 (2)	0.0630 (8)	
H15	1.193664	-0.369875	0.067067	0.076*	
C16	1.0048 (4)	-0.2615 (3)	0.0683 (2)	0.0545 (7)	
H16	0.952495	-0.291267	-0.000611	0.065*	
C17	0.7895 (5)	-0.1121 (4)	0.0817 (2)	0.0564 (7)	
O1W	0.5508 (9)	-0.5202 (7)	-0.0662 (6)	0.138 (2)	0.5
H1W1	0.435882	-0.430124	-0.060307	0.207*	0.5
H1W2	0.458306	-0.629327	-0.042348	0.207*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0975 (16)	0.0587 (13)	0.0842 (15)	0.0191 (13)	0.0368 (13)	-0.0055 (11)
O2	0.0777 (15)	0.0870 (16)	0.1195 (19)	0.0333 (13)	0.0502 (15)	0.0009 (14)
N1	0.0415 (11)	0.0324 (10)	0.0568 (12)	0.0109 (9)	0.0146 (10)	0.0093 (9)
N2	0.0471 (13)	0.0423 (12)	0.0490 (12)	0.0236 (10)	0.0069 (10)	0.0080 (10)
N3	0.0699 (17)	0.0574 (15)	0.0511 (13)	0.0261 (14)	0.0222 (13)	0.0119 (11)
C1	0.0523 (15)	0.0453 (14)	0.0398 (13)	0.0228 (13)	0.0121 (12)	0.0143 (11)

Acta Cryst. (2023). E79, 423-427

C2	0.0445 (14)	0.0516 (15)	0.0666 (17)	0.0165 (13)	0.0229 (13)	0.0177 (13)
C3	0.0435 (15)	0.0382 (13)	0.0670 (17)	0.0108 (12)	0.0159 (13)	0.0112 (12)
C4	0.0384 (13)	0.0357 (12)	0.0452 (13)	0.0148 (11)	0.0067 (11)	0.0149 (10)
C5	0.0413 (14)	0.0372 (13)	0.0630 (16)	0.0100 (11)	0.0163 (12)	0.0105 (12)
C6	0.0506 (15)	0.0378 (13)	0.0524 (15)	0.0121 (12)	0.0083 (13)	0.0066 (11)
C7	0.0520 (16)	0.0403 (14)	0.0762 (18)	0.0041 (13)	0.0293 (15)	0.0039 (13)
C8	0.088 (2)	0.0366 (14)	0.0735 (18)	0.0160 (15)	0.0382 (17)	0.0111 (13)
С9	0.0509 (17)	0.0548 (17)	0.101 (2)	0.0095 (14)	0.0262 (17)	-0.0155 (16)
C10	0.075 (2)	0.0370 (15)	0.125 (3)	0.0103 (14)	0.061 (2)	0.0078 (16)
Br1	0.0855 (2)	0.05620 (19)	0.05928 (19)	0.02352 (16)	0.03290 (16)	0.01687 (13)
03	0.1037 (16)	0.0759 (15)	0.0967 (15)	0.0672 (14)	0.0419 (13)	0.0421 (12)
O4	0.0686 (14)	0.1081 (18)	0.0862 (15)	0.0493 (15)	-0.0021 (13)	0.0322 (14)
C11	0.0435 (13)	0.0383 (13)	0.0501 (14)	0.0172 (11)	0.0089 (12)	0.0154 (11)
C12	0.0479 (14)	0.0379 (13)	0.0538 (15)	0.0126 (12)	0.0135 (12)	0.0194 (11)
C13	0.0569 (17)	0.0535 (16)	0.0625 (17)	0.0141 (15)	0.0009 (15)	0.0236 (14)
C14	0.0530 (17)	0.0570 (18)	0.094 (2)	0.0271 (15)	0.0038 (17)	0.0318 (17)
C15	0.0583 (17)	0.0508 (16)	0.088 (2)	0.0320 (15)	0.0202 (16)	0.0180 (15)
C16	0.0564 (16)	0.0532 (16)	0.0554 (15)	0.0288 (14)	0.0108 (13)	0.0107 (13)
C17	0.067 (2)	0.076 (2)	0.0507 (15)	0.0494 (18)	0.0227 (15)	0.0258 (15)
O1W	0.118 (4)	0.096 (4)	0.197 (7)	0.036 (4)	0.044 (4)	0.046 (4)

Geometric parameters (Å, °)

01—N3	1.204 (3)	C8—H8A	0.9700
O2—N3	1.216 (3)	C8—H8B	0.9700
N1-C4	1.387 (3)	C9—C10	1.487 (4)
N1-C10	1.452 (3)	С9—Н9А	0.9700
N1—C7	1.456 (3)	С9—Н9В	0.9700
N2-C9	1.461 (3)	C10—H10A	0.9700
N2-C8	1.465 (3)	C10—H10B	0.9700
N2—H2A	0.846 (16)	Br1—C12	1.896 (2)
N2—H2B	0.881 (16)	O3—C17	1.230 (3)
N3—C1	1.452 (3)	O4—C17	1.254 (3)
C1—C2	1.370 (3)	C11—C12	1.378 (3)
C1—C6	1.376 (3)	C11—C16	1.389 (3)
C2—C3	1.363 (3)	C11—C17	1.502 (4)
С2—Н2	0.9300	C12—C13	1.389 (4)
C3—C4	1.400 (3)	C13—C14	1.355 (4)
С3—Н3	0.9300	C13—H13	0.9300
C4—C5	1.399 (3)	C14—C15	1.377 (4)
C5—C6	1.361 (3)	C14—H14	0.9300
С5—Н5	0.9300	C15—C16	1.375 (4)
С6—Н6	0.9300	C15—H15	0.9300
С7—С8	1.492 (3)	C16—H16	0.9300
C7—H7A	0.9700	O1W—H1W1	1.4134
С7—Н7В	0.9700	O1W—H1W2	1.1905
C4—N1—C10	118.22 (18)	С7—С8—Н8А	109.4

C4—N1—C7	118.65 (17)	N2—C8—H8B	109.4
C10—N1—C7	112.0 (2)	C7—C8—H8B	109.4
C9—N2—C8	109.6 (2)	H8A—C8—H8B	108.0
C9—N2—H2A	106.7 (16)	N2—C9—C10	112.0 (2)
C8—N2—H2A	114.7 (17)	N2—C9—H9A	109.2
C9—N2—H2B	110.9 (17)	С10—С9—Н9А	109.2
C8—N2—H2B	108.5 (16)	N2—C9—H9B	109.2
H2A—N2—H2B	106 (2)	С10—С9—Н9В	109.2
O1—N3—O2	122.2 (2)	H9A—C9—H9B	107.9
01—N3—C1	119.5 (2)	N1—C10—C9	112.8 (2)
Ω_{2} N3 $-C_{1}$	118.3 (2)	N1—C10—H10A	109.0
C2-C1-C6	120.1 (2)	C9—C10—H10A	109.0
C2-C1-N3	119.9 (2)	N1—C10—H10B	109.0
C6-C1-N3	120.0(2)	C9-C10-H10B	109.0
$C_{3}-C_{2}-C_{1}$	120.2(2)	H10A—C10—H10B	107.8
C3—C2—H2	119.9	C12-C11-C16	118.0 (2)
C1-C2-H2	119.9	C12 $-C11$ $-C17$	122.6(2)
$C^2 - C^3 - C^4$	121 4 (2)	C16-C11-C17	122.0(2) 1193(2)
$C_2 = C_3 = H_3$	119 3	C11-C12-C13	119.3(2) 120.8(2)
C4-C3-H3	119.3	$C_{11} - C_{12} - Br_{1}$	120.0(2) 121.09(19)
N1-C4-C5	121 73 (19)	C13 - C12 - Br1	121.05(15)
N1-C4-C3	121.6(2)	C14 - C13 - C12	1200(3)
$C_{5}-C_{4}-C_{3}$	1166(2)	C14-C13-H13	120.0 (5)
C6-C5-C4	121.9(2)	C12-C13-H13	120.0
C6-C5-H5	119.0	$C_{12} = C_{13} = C_{15}$	120.0 120.4(3)
C4-C5-H5	119.0	C_{13} C_{14} H_{14}	110.8
$C_{2} = C_{2} = C_{1}$	119.7 (2)	C_{15} C_{14} H_{14}	119.8
C5-C6-H6	120.2	C_{16} C_{15} C_{14} C_{14}	119.0 119.7(3)
C1_C6_H6	120.2	C_{16} C_{15} H_{15}	120.2
N1 - C7 - C8	120.2 112.2(2)	C14-C15-H15	120.2
N1 = C7 = H7A	100.2		120.2 121.0(3)
R = C - H7A	109.2	$C_{15} = C_{16} = C_{17}$	121.0 (5)
N1 C7 H7B	109.2	$C_{11} = C_{16} = H_{16}$	119.5
C_{8} C_{7} $H_{7}B$	109.2	$C_{11} = C_{10} = 1110$	119.5 126.0 (3)
H_{1}^{-1}	109.2	03 - C17 - C11	120.0(3)
$M^2 = C^2 = C^2$	107.9	04 - C17 - C11	117.9(3)
N2 C8 H8A	100 /	$H_1W_1 \cap W \cap H_1W_2$	105.4
N2-C0-110A	109.4	111 W 1-01 W	103.4
01 - N3 - C1 - C2	170.2 (3)	N1-C7-C8-N2	-55.5 (3)
02-N3-C1-C2	-9.8(4)	C8-N2-C9-C10	-56.2(3)
01 - N3 - C1 - C6	-8.7(4)	C4-N1-C10-C9	165.9(2)
0^{2} N3 $-C1$ $-C6$	171 2 (3)	C7-N1-C10-C9	-50.6(4)
C_{6} C_{1} C_{2} C_{3}	-14(4)	$N_{2}^{2} = C_{10}^{2} = C_{10}^{10} = N_{10}^{10}$	53 6 (4)
$N_3 - C_1 - C_2 - C_3$	179 7 (2)	C16-C11-C12-C13	0.5(4)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 4 (4)	C17 - C11 - C12 - C13	-178 8 (2)
$C_1 = C_2 = C_3 = C_4$	-260(3)	C16-C11-C12-Br1	$-178 \ 41 \ (17)$
C7 - N1 - C4 - C5	-1671(2)	C_{17} C_{11} C_{12} B_{r1}	24(3)
$C_{10} = 101 - C_{10} + C_{20}$	107.1(2) 155.3(3)	$C_{11} = C_{12} = C_{12} = C_{14}$	2.7(3)
10 - 11 - 04 - 03	155.5 (5)	011-012-013-014	1.2 (4)

C7—N1—C4—C3	14.2 (3)	Br1-C12-C13-C14	-179.9 (2)
C2-C3-C4-N1	177.4 (2)	C12-C13-C14-C15	-1.3 (4)
C2—C3—C4—C5	-1.3 (4)	C13—C14—C15—C16	-0.2 (4)
N1-C4-C5-C6	-177.4 (2)	C14—C15—C16—C11	1.9 (4)
C3—C4—C5—C6	1.4 (4)	C12—C11—C16—C15	-2.0 (4)
C4—C5—C6—C1	-1.4 (4)	C17—C11—C16—C15	177.2 (3)
C2-C1-C6-C5	1.4 (4)	C12—C11—C17—O3	65.2 (3)
N3—C1—C6—C5	-179.6 (2)	C16—C11—C17—O3	-114.1 (3)
C4—N1—C7—C8	-165.1 (2)	C12—C11—C17—O4	-115.8 (3)
C10—N1—C7—C8	51.5 (3)	C16—C11—C17—O4	64.9 (3)
C9—N2—C8—C7	57.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N2—H2A····O3	0.85 (2)	1.83 (2)	2.655 (3)	164 (2)
N2—H2 <i>B</i> ···O4 ⁱ	0.88 (2)	1.82 (2)	2.701 (3)	173 (2)
С2—Н2…О2 ^{іі}	0.93	2.50	3.307 (4)	145
C7—H7 <i>B</i> ···Br1 ⁱⁱⁱ	0.97	3.11	4.032 (2)	160
C10—H10 <i>B</i> ···O1 <i>W</i> ⁱ	0.97	2.10	3.057 (8)	169

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*.

4-(4-Nitrophenyl)piperazin-1-ium 2-iodobenzoate hemihydrate (3)

Crystal data

 $\begin{array}{l} C_{10}H_{14}N_{3}O_{2}^{+}\cdot C_{7}H_{4}IO_{2}^{-}\cdot 0.5H_{2}O\\ M_{r}=928.50\\ \text{Triclinic, }P\overline{1}\\ a=7.3949\ (6)\ \text{\AA}\\ b=9.3440\ (8)\ \text{\AA}\\ c=14.498\ (1)\ \text{\AA}\\ a=104.967\ (8)^{\circ}\\ \beta=94.707\ (7)^{\circ}\\ \gamma=107.430\ (8)^{\circ}\\ V=909.44\ (13)\ \text{\AA}^{3} \end{array}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer ω scans Absorption correction: multi-scan (CrysalisRed; Oxford Diffraction, 2009) $T_{\min} = 0.697, T_{\max} = 1.000$ 6275 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.117$ S = 1.02 Z = 1 F(000) = 462 $D_x = 1.695 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2991 reflections $\theta = 3.0-28.0^{\circ}$ $\mu = 1.79 \text{ mm}^{-1}$ T = 293 KPrism, orange $0.50 \times 0.44 \times 0.24 \text{ mm}$

3904 independent reflections 2443 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 12$ $l = -19 \rightarrow 11$

3904 reflections264 parameters13 restraintsPrimary atom site location: dual

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0514P)^2 + 0.5457P]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.1376 (6)	0.6393 (4)	0.1581 (3)	0.0555 (10)	
C2	-0.0631 (7)	0.5730 (5)	0.1440 (3)	0.0687 (12)	
H2	-0.116914	0.503974	0.178262	0.082*	
C3	-0.1822 (7)	0.6059 (6)	0.0822 (4)	0.0724 (13)	
H3	-0.314731	0.558330	0.073932	0.087*	
C4	-0.1064 (7)	0.7096 (5)	0.0318 (3)	0.0636 (11)	
C5	0.0897 (7)	0.7763 (6)	0.0429 (3)	0.0723 (13)	
Н5	0.141500	0.845343	0.008346	0.087*	
C6	0.2093 (7)	0.7419 (5)	0.1044 (3)	0.0667 (12)	
H6	0.341659	0.787923	0.110643	0.080*	
C7	0.4418 (7)	0.7234 (7)	0.2667 (5)	0.0957 (18)	
H7A	0.418923	0.802683	0.317971	0.115*	
H7B	0.499045	0.773784	0.220487	0.115*	
C8	0.5801 (7)	0.6593 (7)	0.3092 (4)	0.0927 (17)	
H8A	0.619508	0.592894	0.257190	0.111*	
H8B	0.693988	0.745578	0.346016	0.111*	
C9	0.3145 (8)	0.4451 (6)	0.3207 (4)	0.0897 (16)	
H9A	0.256781	0.389355	0.364560	0.108*	
H9B	0.340842	0.370385	0.267916	0.108*	
C10	0.1766 (7)	0.5111 (6)	0.2811 (4)	0.0835 (15)	
H10A	0.061412	0.425824	0.244767	0.100*	
H10B	0.139797	0.577245	0.334373	0.100*	
C11	0.8424 (6)	0.2081 (5)	0.3805 (3)	0.0609 (11)	
C12	0.8206 (6)	0.1340 (5)	0.2821 (3)	0.0635 (12)	
C13	0.9344 (9)	0.0414 (6)	0.2499 (4)	0.0850 (16)	
H13	0.920205	-0.009287	0.184112	0.102*	
C14	1.0663 (9)	0.0254 (7)	0.3150 (5)	0.0919 (17)	
H14	1.143373	-0.034148	0.292932	0.110*	
C15	1.0857 (8)	0.0952 (7)	0.4112 (5)	0.0857 (15)	
H15	1.174200	0.082483	0.455149	0.103*	
C16	0.9743 (7)	0.1845 (6)	0.4432 (4)	0.0769 (13)	
H16	0.987579	0.231020	0.509488	0.092*	
C17	0.7295 (7)	0.3142 (7)	0.4194 (3)	0.0746 (13)	
I1	0.61864 (5)	0.15483 (4)	0.18127 (2)	0.08807 (17)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N1	0.2589 (5)	0.6027 (4)	0.2184 (3)	0.0622 (9)		
N2	0.4954 (6)	0.5683 (5)	0.3724 (3)	0.0686 (10)		
H2A	0.482 (7)	0.635 (6)	0.424 (4)	0.082*		
H2B	0.596 (7)	0.539 (6)	0.396 (4)	0.082*		
N3	-0.2340 (7)	0.7474 (5)	-0.0316 (3)	0.0825 (12)		
01	-0.4061 (7)	0.6959 (6)	-0.0342 (4)	0.1259 (16)		
O2	-0.1641 (7)	0.8273 (6)	-0.0819 (3)	0.1165 (14)		
03	0.6139 (6)	0.2673 (6)	0.4715 (3)	0.1206 (15)		
O4	0.7641 (6)	0.4395 (5)	0.4000 (3)	0.0969 (11)		
O1WA	0.426 (5)	0.976 (3)	0.449 (2)	0.154 (7)	0.224 (3)	
H1W1	0.396 (13)	1.048 (8)	0.483 (6)	0.231*	0.224 (3)	
H1W2	0.470 (14)	1.011 (10)	0.406 (4)	0.231*	0.224 (3)	
O1WB	0.507 (4)	0.935 (3)	0.4569 (19)	0.149 (6)	0.276 (3)	
H1W3	0.427 (8)	0.892 (15)	0.486 (6)	0.224*	0.276 (3)	
H1W4	0.604 (7)	0.916 (12)	0.475 (10)	0.224*	0.276 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.061 (2)	0.043 (2)	0.057 (2)	0.0145 (19)	0.023 (2)	0.0061 (18)
C2	0.068 (3)	0.062 (3)	0.076 (3)	0.014 (2)	0.020 (2)	0.027 (2)
C3	0.065 (3)	0.065 (3)	0.079 (3)	0.012 (2)	0.017 (2)	0.017 (2)
C4	0.078 (3)	0.057 (3)	0.049 (2)	0.021 (2)	0.015 (2)	0.0047 (19)
C5	0.083 (3)	0.071 (3)	0.063 (3)	0.017 (2)	0.026 (2)	0.026 (2)
C6	0.062 (3)	0.067 (3)	0.067 (3)	0.010 (2)	0.018 (2)	0.025 (2)
C7	0.067 (3)	0.082 (3)	0.140 (5)	0.007 (3)	0.005 (3)	0.062 (3)
C8	0.063 (3)	0.124 (4)	0.113 (4)	0.029 (3)	0.024 (3)	0.073 (4)
C9	0.098 (4)	0.081 (3)	0.091 (4)	0.015 (3)	0.013 (3)	0.047 (3)
C10	0.069 (3)	0.090 (4)	0.094 (3)	0.009 (3)	0.018 (3)	0.051 (3)
C11	0.066 (3)	0.056 (2)	0.063 (2)	0.022 (2)	0.024 (2)	0.016 (2)
C12	0.073 (3)	0.042 (2)	0.066 (3)	0.008 (2)	0.028 (2)	0.0089 (19)
C13	0.110 (4)	0.056 (3)	0.085 (3)	0.026 (3)	0.048 (3)	0.004 (2)
C14	0.097 (4)	0.073 (3)	0.125 (5)	0.044 (3)	0.051 (4)	0.035 (3)
C15	0.082 (3)	0.086 (4)	0.110 (4)	0.039 (3)	0.033 (3)	0.046 (3)
C16	0.085 (3)	0.089 (3)	0.072 (3)	0.040 (3)	0.031 (3)	0.031 (3)
C17	0.073 (3)	0.079 (3)	0.064 (3)	0.032 (3)	0.012 (2)	0.000 (2)
I1	0.0918 (3)	0.0799 (2)	0.0696 (2)	0.00239 (18)	0.00710 (17)	0.01674 (16)
N1	0.061 (2)	0.057 (2)	0.071 (2)	0.0143 (17)	0.0198 (18)	0.0276 (17)
N2	0.073 (2)	0.081 (3)	0.065 (2)	0.038 (2)	0.0256 (19)	0.025 (2)
N3	0.092 (3)	0.082 (3)	0.063 (2)	0.019 (2)	0.002 (2)	0.019 (2)
O1	0.091 (3)	0.159 (4)	0.138 (4)	0.035 (3)	0.005 (3)	0.075 (3)
O2	0.116 (3)	0.134 (4)	0.100 (3)	0.022 (3)	0.003 (2)	0.064 (3)
O3	0.119 (3)	0.124 (3)	0.130 (3)	0.058 (3)	0.075 (3)	0.019 (3)
O4	0.106 (3)	0.077 (2)	0.116 (3)	0.051 (2)	0.018 (2)	0.020 (2)
O1WA	0.208 (17)	0.155 (15)	0.160 (13)	0.119 (12)	0.070 (15)	0.070 (12)
O1WB	0.210 (16)	0.145 (13)	0.161 (12)	0.123 (11)	0.079 (14)	0.069 (11)

Geometric parameters (Å, °)

C1—N1	1.377 (5)	С10—Н10А	0.9700
C1—C6	1.398 (6)	C10—H10B	0.9700
C1—C2	1.401 (6)	C11—C16	1.384 (7)
C2—C3	1.359 (7)	C11—C12	1.387 (6)
С2—Н2	0.9300	C11—C17	1.511 (7)
C3—C4	1.376 (6)	C12—C13	1.403 (7)
С3—Н3	0.9300	C12—I1	2.090 (5)
C4—C5	1.373 (6)	C13—C14	1.369 (8)
C4—N3	1.443 (7)	С13—Н13	0.9300
C5—C6	1.367 (7)	C14—C15	1.354 (8)
С5—Н5	0.9300	C14—H14	0.9300
С6—Н6	0.9300	C15—C16	1.365 (7)
C7—N1	1.454 (6)	C15—H15	0.9300
С7—С8	1.496 (7)	C16—H16	0.9300
C7—H7A	0.9700	C17—O4	1.232 (6)
С7—Н7В	0.9700	C17—O3	1.243 (6)
C8—N2	1.461 (6)	N2—H2A	0.88 (5)
C8—H8A	0.9700	N2—H2B	0.93 (5)
C8—H8B	0.9700	N3—O1	1.212 (6)
C9—N2	1.465 (7)	N3—O2	1.212 (6)
C9—C10	1.487 (7)	O1WA—H1W1	0.82 (2)
С9—Н9А	0.9700	O1WA—H1W2	0.82 (2)
С9—Н9В	0.9700	O1WB—H1W3	0.83 (2)
C10—N1	1.453 (5)	O1WB—H1W4	0.82 (2)
N1—C1—C6	121.4 (4)	N1-C10-H10B	109.3
N1—C1—C2	122.6 (4)	C9—C10—H10B	109.3
C6—C1—C2	115.9 (4)	H10A—C10—H10B	107.9
C3—C2—C1	122.4 (4)	C16—C11—C12	118.0 (4)
С3—С2—Н2	118.8	C16—C11—C17	120.1 (4)
C1—C2—H2	118.8	C12—C11—C17	121.9 (4)
C2—C3—C4	120.0 (4)	C11—C12—C13	119.3 (5)
С2—С3—Н3	120.0	C11—C12—I1	121.3 (3)
С4—С3—Н3	120.0	C13—C12—I1	119.4 (4)
C5—C4—C3	119.5 (5)	C14—C13—C12	120.1 (5)
C5—C4—N3	120.9 (4)	C14—C13—H13	119.9
C3—C4—N3	119.6 (4)	С12—С13—Н13	119.9
C6—C5—C4	120.5 (4)	C15—C14—C13	120.8 (5)
С6—С5—Н5	119.8	C15—C14—H14	119.6
С4—С5—Н5	119.8	C13—C14—H14	119.6
C5—C6—C1	121.7 (4)	C14—C15—C16	119.4 (6)
С5—С6—Н6	119.2	C14—C15—H15	120.3
С1—С6—Н6	119.2	C16—C15—H15	120.3
N1—C7—C8	112.7 (4)	C15—C16—C11	122.3 (5)
N1—C7—H7A	109.1	C15—C16—H16	118.9
С8—С7—Н7А	109.1	C11—C16—H16	118.9

N1—C7—H7B	109.1	O4—C17—O3	126.3 (5)
С8—С7—Н7В	109.1	O4—C17—C11	118.0 (5)
H7A—C7—H7B	107.8	O3—C17—C11	115.6 (5)
N2—C8—C7	111.8 (4)	C1—N1—C10	118.7 (4)
N2—C8—H8A	109.3	C1—N1—C7	117.8 (3)
С7—С8—Н8А	109.3	C10—N1—C7	111.5 (4)
N2—C8—H8B	109.3	C8—N2—C9	110.3 (4)
С7—С8—Н8В	109.3	C8—N2—H2A	107 (3)
H8A—C8—H8B	107.9	C9—N2—H2A	114 (3)
N2-C9-C10	111.7 (4)	C8—N2—H2B	104 (3)
N2—C9—H9A	109.3	C9—N2—H2B	119 (3)
С10—С9—Н9А	109.3	H2A—N2—H2B	102 (5)
N2—C9—H9B	109.3	O1—N3—O2	122.4 (5)
С10—С9—Н9В	109.3	O1—N3—C4	119.3 (5)
H9A—C9—H9B	107.9	O2—N3—C4	118.3 (5)
N1—C10—C9	111.8 (4)	H1W1—O1WA—H1W2	103 (3)
N1—C10—H10A	109.3	H1W3—O1WB—H1W4	103 (3)
C9—C10—H10A	109.3		
N1—C1—C2—C3	-178.0 (4)	C12—C11—C16—C15	1.9 (7)
C6—C1—C2—C3	-0.1 (6)	C17—C11—C16—C15	-177.1 (5)
C1—C2—C3—C4	-1.0 (7)	C16—C11—C17—O4	111.4 (5)
C2—C3—C4—C5	1.5 (7)	C12—C11—C17—O4	-67.5 (6)
C2—C3—C4—N3	-178.2 (4)	C16—C11—C17—O3	-66.2 (6)
C3—C4—C5—C6	-0.8 (7)	C12—C11—C17—O3	114.9 (5)
N3—C4—C5—C6	178.8 (4)	C6-C1-N1-C10	172.5 (4)
C4—C5—C6—C1	-0.3 (7)	C2-C1-N1-C10	-9.7 (6)
N1—C1—C6—C5	178.7 (4)	C6—C1—N1—C7	32.9 (6)
C2-C1-C6-C5	0.8 (6)	C2-C1-N1-C7	-149.3 (5)
N1—C7—C8—N2	-53.1 (7)	C9—C10—N1—C1	164.4 (4)
N2-C9-C10-N1	56.1 (6)	C9—C10—N1—C7	-53.6 (6)
C16—C11—C12—C13	-1.3 (6)	C8—C7—N1—C1	-165.4 (4)
C17—C11—C12—C13	177.7 (4)	C8—C7—N1—C10	52.3 (7)
C16—C11—C12—I1	177.8 (3)	C7—C8—N2—C9	54.3 (7)
C17—C11—C12—I1	-3.3 (6)	C10—C9—N2—C8	-56.0 (6)
C11—C12—C13—C14	-0.4 (7)	C5-C4-N3-O1	-174.4 (5)
I1—C12—C13—C14	-179.5 (4)	C3—C4—N3—O1	5.2 (7)
C12—C13—C14—C15	1.6 (8)	C5—C4—N3—O2	7.1 (7)
C13—C14—C15—C16	-1.0 (8)	C3—C4—N3—O2	-173.3 (5)
C14—C15—C16—C11	-0.7 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C2—H2…I1 ⁱ	0.93	3.28	4.110 (4)	150
C3—H3···O1 ⁱⁱ	0.93	2.53	3.347 (7)	147
C6—H6…I1 ⁱⁱⁱ	0.93	3.26	3.940 (4)	132
C7—H7A····O1WA	0.97	2.14	3.09 (3)	167

C7—H7 <i>A</i> ···O1 <i>WB</i>	0.97	2.01	2.85 (3)	145
N2—H2A···O3 ^{iv}	0.88 (5)	1.86 (5)	2.717 (5)	164 (5)
N2—H2 <i>B</i> ···O4	0.93 (5)	1.77 (5)	2.666 (6)	160 (5)
O1 <i>WB</i> —H1 <i>W</i> 3····O3 ^{iv}	0.83 (2)	1.71 (10)	2.37 (2)	135 (12)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*-1, -*y*+1, -*z*; (iii) *x*, *y*+1, *z*; (iv) -*x*+1, -*y*+1, -*z*+1.