(0)

# research communications

# Synthesis, crystal structure, Hirshfeld surface analysis, DFT and NBO study of ethyl 1-(4fluorophenyl)-4-[(4-fluorophenyl)amino]-2,6diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate

## Ravi Bansal,<sup>a</sup> Ray J. Butcher<sup>b</sup> and Sushil K. Gupta<sup>a</sup>\*

<sup>a</sup>School of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and <sup>b</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA. \*Correspondence e-mail: skggwr@gmail.com

The title compound,  $C_{32}H_{28}F_2N_2O_2$ , a highly functionalized tetrahydropyridine, was synthesized by a one-pot multi-component reaction of 4-fluoroaniline, ethyl acetoacetate and benzaldehyde at room temperature using sodium lauryl sulfate as a catalyst. The compound crystallizes with two molecules in the asymmetric unit. The tetrahydropyridine ring adopts a distorted boat conformation in both molecules and the dihedral angles between the planes of the fluoro-substituted rings are 77.1 (6) and 77.3 (6)°. The amino group and carbonyl O atom are involved in an intramolecular  $N-H \cdots O$  hydrogen bond, thereby generating an S(6) ring motif. In the crystal, molecules are linked by C-H···F hydrogen bonds forming a three-dimensional network and  $C-H\cdots\pi$  interactions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from  $H \cdot \cdot \cdot H$  (47.9%),  $C \cdot \cdot \cdot H/$  $H \cdots C$  (30.7%) and  $F \cdots H/H \cdots F$  (12.4%) contacts. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6-311+G(2d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO-LUMO behaviour was used to determine the energy gap and the Natural Bond Orbital (NBO) analysis was done to study donoracceptor interconnections.

### 1. Chemical context

Highly functionalized tetrahydropyridines are widely present in naturally occurring and synthetic drugs (Watson et al., 2000), which exhibit many desirable pharmacological activities, such as hyperglycemic (Yeung et al., 1982), analgesic (Rao et al., 1995; Gangapuram et al., 2006), antimalarial (Misra et al., 2009), nicotinic (Olesen et al., 1998), anti-influenza (Chand et al., 2001) and anticonvulsant properties (Ho et al., 2001). Earlier literature shows that a lot of effort was devoted to develop a simple and easy protocol for the synthesis of substituted tetrahydropyridines using various catalytic systems, such as bromodimethylsulfonium bromide (BDMS) (Khan et al., 2008), iodine, tetrabutylammonium tribromide (TBATB) (Khan et al., 2010), cerium ammonium nitrate (Wang et al., 2010), BF<sub>3</sub>·SiO<sub>2</sub> (Ramachandran et al., 2012), ZrOCl<sub>2</sub>·8H<sub>2</sub>O (Mishra & Ghosh, 2011), Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O (Brahmchari & Das, 2012), oxalic acid (Sajadikhah et al., 2012), picric acid (Mukhopadhyay et al., 2011), AcOH (Lashkari et al., 2013), L-proline/TFA (Misra et al., 2009), InCl<sub>3</sub> (Clarke et al., 2008), zirconia pillared clay-polyphosphoric acid (Kar et al., 2014), silica sulfuric acid (Daraei et al., 2015), graphene oxide (Gupta et al., 2017), cyanuric chloride (Ramesh et al., 2017), aluminized polyborate (Mali et al., 2018) and thiamine hydrochloride (Singh et al., 2020). These meth-

OPEN O ACCESSgraphene oxide (Gupt<br/>(Ramesh et al., 2017), alu<br/>and thiamine hydrochlosi



ISSN 2056-9890

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 14 August 2023 Accepted 26 August 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

**Keywords:** Functionalized tetrahydropyridine; crystal structure; Hirshfeld surface analysis; twodimensional fingerprint plot; DFT; NBO.

CCDC reference: 2290952

**Supporting information:** this article has supporting information at journals.iucr.org/e



odologies suffer from one or other disadvantages, such as a multi-step synthetic sequence, the requirement for expensive reagents or catalysts, *etc*.



The development of improved synthetic procedures with an objective of green chemistry and technology, and the use of recyclable catalysts for organic synthesis to maximize efficiency and minimize waste, has been currently in demand. To accomplish this objective, our laboratory has developed an ecofriendly catalyst for organic transformations; herein, this article describes the application of sodium lauryl sulfate (SLS) as an efficient and ecofriendly catalyst for tetrahydropyridine synthesis in water at room temperature by the reaction of benzaldehyde, 4-fluoroaniline and  $\beta$ -ketoester. This catalyst is environmentally benign due to its reusability and nontoxic nature; it is readily available and inexpensive, and this reaction can be regarded as an efficient approach for the preparation of synthetically and pharmaceutically important functionalized tetrahydropyridine systems. To the best of our knowledge, this is the second report on the use of SLS for the synthesis of a highly functionalized tetrahydropyridine (Bansal *et al.*, 2017). Herein, we report the synthesis, crystal structure and Hirshfeld surface analysis of ethyl 1-(4-fluorophenyl)-4-[(4-fluorophenyl)amino]-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate, (**I**), using sodium lauryl sulfate as catalyst.

#### 2. Structural commentary

The title compound, (I) (Fig. 1), which is a rare example of fluorophenyl groups attached to the N atom of a central tetrahydropyridine ring, crystallizes in a noncentrosymmetric space group (monoclinic,  $P2_1$ ). There are two molecules in the asymmetric unit (Z = 4). In the arbitrarily chosen asymmetric unit, the stereogenic atoms C1A, C5A, C1B and C5B all have an S configuration. The absolute structure is not well established, but the racemic molecule presumably spontaneously resolves into its enantiomers upon crystallization. The tetrahydropyridine ring adopts a distorted boat conformation in both molecules. The fluorophenyl groups are attached to the tetrahydropyridine ring in a pseudo-para orientation. The C-N-C-C torsion angles are 171.8 (10) and 161.0 (11)° in molecule A (containing C1A), and 172.2 (9) and 160.9  $(12)^{\circ}$  in molecule B containing C1B. The dihedral angles between the planes of the C12A-C17A/C18A-C23A and C12B-C17B/ C18B-C23B rings are 77.1 (6) and 77.3 (6) $^{\circ}$ , respectively. The mean plane of the central tetrahydropyridine N1A/C1A-C5A ring subtends dihedral angles of 74.0 (6), 45.9 (6), 46.4 (6) and 70.4 (6)° with the pendant phenyl C6A–C11A, C12A–C17A, C18A-C23A and C24A-C29A rings, respectively. Equivalent data for the N1B/C1B-C5B ring and the C6B-C11B, C12B-C17B, C18B-C23B and C24B-C29B phenyl groups are 76.2 (6), 48.7 (6), 45.0 (6), 71.5 (6) $^{\circ}$ , respectively. In both



Figure 1

The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. The  $N-H\cdots O$  hydrogen bonds are depicted by dashed lines.

#### Table 1

Hydrogen-bond geometry (Å,  $^{\circ}$ ).

Cg2, Cg4, Cg7 and Cg9 are the centroids of the C6A–C11A, C18A–C23A, C6B–C11B and C18B–C23B rings, respectively.

| $D - H \cdots A$                          | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------|-------------|-------------------------|-------------------------|---------------------------|
| $N2A - H2AA \cdots O1A$                   | 0.85 (3)    | 1.98 (10)               | 2.652 (13)              | 136 (12)                  |
| $N2B - H2BA \cdots O1B$                   | 0.88        | 2.04                    | 2.664 (13)              | 127                       |
| $C31A - H31A \cdots F2B$                  | 0.99        | 2.43                    | 3.327 (14)              | 151                       |
| $C31A - H31B \cdot \cdot \cdot F1B$       | 0.99        | 2.40                    | 3.257 (15)              | 144                       |
| C31 <i>B</i> −H31 <i>C</i> ···F2 <i>A</i> | 0.99        | 2.45                    | 3.213 (15)              | 134                       |
| $C31B-H31D\cdots F1A$                     | 0.99        | 2.32                    | 3.281 (13)              | 165                       |
| $C5A - H5AA \cdots Cg9^{i}$               | 1.00        | 2.91                    | 3.907 (13)              | 178                       |
| $C5B-H5BA\cdots Cg4^{ii}$                 | 1.00        | 2.96                    | 3.958 (14)              | 174                       |
| $C22A - H22A \cdots Cg7^{i}$              | 0.95        | 2.87                    | 3.770 (14)              | 159                       |
| $C22B - H22B \cdots Cg2^{ii}$             | 0.95        | 2.94                    | 3.857 (15)              | 162                       |
| $C29A - H29A \cdots Cg7^{iii}$            | 0.95        | 2.71                    | 3.437 (13)              | 134                       |
| $C29B - H29B \cdots Cg2^{iv}$             | 0.95        | 2.84                    | 3.595 (13)              | 138                       |

Symmetry codes: (i)  $-x + 1, y - \frac{1}{2}, -z$ ; (ii)  $-x, y + \frac{1}{2}, -z$ ; (iii) x - 1, y, z + 1; (iv) x + 1, y, z.

molecules, the amine N atoms are clearly nonplanar, with the sum of the bond angles around N1*A* and N2*A* being 351.0 and 359.0°, respectively, and those around N1*B* and N2*B* being 351.4 and 347.3°, respectively. Otherwise, all bond lengths and angles are comparable to those observed in related structures (Anthal *et al.*, 2013*a*; Yu *et al.*, 2013). In both molecules, the amine N atom participates in an intramolecular N-H···O hydrogen bond of length *ca* 2.65 Å with the O1 atom of the carbonyl group, thereby generating an *S*(6) ring, essentially similar to those in [Ph(C<sub>6</sub>H<sub>4</sub>N)Ph(NH)(FC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(OCOC<sub>2</sub>H<sub>5</sub>)] [2.672 (3) Å; Anthal *et al.*, 2013*a*] and [Ph(C<sub>6</sub>H<sub>4</sub>N)-Ph(NH)(ClC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>(OCOC<sub>2</sub>H<sub>5</sub>)] [2.659 (5) Å; Yu *et al.*, 2013].



#### Figure 2

Packing diagram of (I), viewed along the *a* axis. Dashed lines indicate  $N-H\cdots O$  hydrogen bonds and intermolecular  $C-H\cdots F$  interactions.

Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound.

| Contact                                         | Percentage contribution |
|-------------------------------------------------|-------------------------|
| H···H                                           | 47.9                    |
| $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$   | 30.7                    |
| $F \cdot \cdot \cdot H/H \cdot \cdot \cdot F$   | 12.4                    |
| $O \cdots H/H \cdots O$                         | 4.9                     |
| $N \cdots H/H \cdots N$                         | 1.3                     |
| $F \cdots C/C \cdots F$                         | 0.8                     |
| C···C                                           | 0.7                     |
| $C \cdots O / O \cdots C$                       | 0.6                     |
| $F \cdot \cdot \cdot F$                         | 0.5                     |
| $F \cdot \cdot \cdot O / O \cdot \cdot \cdot F$ | 0.2                     |

#### 3. Supramolecular features

The crystal packing of (I), viewed along the *a* axis, is presented in Fig. 2. The compound packs in a way that allows close contacts between the F and H atoms of adjacent molecules, leading to a network of  $C-H\cdots F$  interactions (Table 1). Furthermore, there are six  $C-H\cdots \pi$  interactions (Table 1), which may help to consolidate the packing.

### 4. Hirshfeld surface analysis and computational chemistry

The Hirshfeld surface analysis was performed with *Crystal-Explorer* (Version 21.5; Spackman *et al.*, 2021). Fig. 3 shows



#### Figure 3

A view of the three-dimensional Hirshfeld surface mapped over  $d_{\text{norm}}$  in the range from -0.25 to 1.48 a.u. for molecule A and from -0.25 to 1.43 a.u. for molecule B.

## research communications

views of the  $d_{norm}$  surfaces for the two molecules in the asymmetric unit plotted over the limits from -0.25 to 1.48 a.u. for molecule **1** and -0.25 to 1.43 a.u. for molecule **2**. The red spots that appear around atoms F1 and F2 in molecules A and B are caused by intermolecular C31A – H31A···F2B, C31A – H31B···F1B, C31B – H31C···F2A and C31B – H31D···F1A interactions (Table 2). An intramolecular N – H···O hydrogen bond is also indicated by the red spots near the H and O atoms [Figs. 3(a) and 3(b)].

The two-dimensional fingerprint plots were generated using *CrystalExplorer* encompassing all intermolecular contacts, as well as the delineated specific contacts (Fig. 4). The most significant contacts and their percentage contributions to the Hirshfeld surface are given in Table 2. The most important interaction is  $H \cdots H$ , contributing 47.9% to the crystal packing. The presence of  $C-H \cdots F$  interactions is indicated by pairs of characteristic wings in the fingerprint plot representing  $C \cdots H/H \cdots C$  and  $F \cdots H/H \cdots F$  contacts, with contributions of 30.7 and 12.4%, respectively, to the HS. The lowest contributions are from  $O \cdots H/H \cdots O$  (4.9%),  $N \cdots H/H \cdots N$  (1.3%) and  $F \cdots C/C \cdots F$  (0.8%) contacts.



#### Figure 4

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and those delineated into (b)  $H \cdots H$ , (c)  $C \cdots H/H \cdots C$ , (d)  $F \cdots H/H \cdots F$ , (e)  $O \cdots H/H \cdots O$  and (f)  $N \cdots H/H \cdots N$  interactions. The  $d_i$  and  $d_e$  values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

A density functional theory (DFT) geometry-optimized molecular orbital calculation (*WebMOPro*; Polik & Schmidt, 2021) with the *GAUSSIAN16* program package employing the B3LYP functional and 6-311+G(2d,p) basis set (Becke, 1993) was performed on (**I**) with the starting geometries taken from the X-ray refinement data. The theoretical and experimental results related to bond lengths and angles are in good agreement (see Table S1 in the supporting information) and calculated numerical values are collated in Table S2. The calculated HOMO–LUMO energy gap is 4.22 eV (Fig. 5). An NBO analysis was performed on (**I**) at the DFT level using the B3LYP method and 6-311+G(2d,p) basis set. The perturbation energies of the donor–acceptor interactions are tabulated in Table S3.

#### 5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, update April 2023; Groom *et al.*, 2016) for the basic skeleton of this compound gave 50 hits. Most of these contain the search fragment as part of a larger molecule, but three are considered similar to the title compound. These are ethyl 4-anilino-2,6-bis(4-fluorophenyl)-1-phenyl-1,2,5,6-tetra-hydropyridine-3-carboxylate (CSD refcode LETBET; Anthal *et al.*, 2013*a*), in which the central tetrahydropyridine ring unit is similar to that in (**I**), *anti*-ethyl 4-anilino-1,2,6-triphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (VOLDIK; Khan *et al.*, 2008), in which the 2- and 6-positions of the piperidine was shown to be *anti*, and ethyl 2,6-bis(4-chlorophenyl)-1-(4-fluorophenyl)-4-[(4-fluorophenyl)-

amino]-1,2,5,6-tetrahydropyridine-3-carboxylate (WIHCOH; Anthal *et al.*, 2013*b*), in which the tetrahydropyridine unit is similar to that in ( $\mathbf{I}$ ).

#### 6. Synthesis and crystallization

The title compound was obtained by the one-pot multi-component reaction using sodium lauryl sulfate (SLS) as catalyst.



Figure 5 HOMO–LUMO energy diagram for the title compound.

In a typical experiment, a mixture of 4-fluoroaniline (2 mmol) and ethyl acetoacetate (1 mmol) in 10 ml water was stirred for 10 min in the presence of 0.02 g SLS at room temperature. To this solution was added benzaldehyde (2 mmol) and the reaction mixture was stirred for 30 min. The progress of reactions was monitored by thin-layer chromatography (TLC), eluted with an ethyl acetate and *n*-hexane (3:7 v/v) mixture. After completion of the reaction, a thick precipitate was filtered off and washed with water. Colourless plate-shaped crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from ethanol solution.

Yield 81%, m.p. 443 K. FT–IR (selected):  $(\nu, \text{ cm}^{-1})$ : 3246, 3190, 3080, 2974, 1680, 1645, 1604, 1585, 1492, 1450, 1249, 1072, 941, 802, 698. <sup>1</sup>H NMR [400 MHz, CDCl<sub>3</sub>,  $\delta$  (ppm)]: 10.26 (*br s*, 1H), 7.31–7.27 (*m*, 8H), 7.19–7.17 (*d*, *J* = 8.0 Hz, 1H), 7.09– 7.07 (*d*, *J* = 8.0 Hz, 2H), 7.04–7.02 (*d*, *J* = 8.2 Hz, 2H), 6.48–6.46 (*d*, *J* = 8.0 Hz, 2H), 6.43 (*s*, 1H), 6.21–6.19 (*d*, *J* = 8.0 Hz, 2H), 5.14–5.13 (*s*, 1H), 4.50–4.46 (*d*, *J* = 16.0 Hz, 2H), 4.38–4.35 (*q*, *J* = 12.0 Hz, 2H), 2.75–2.72 (*t*, *J* = 24.0 Hz, 1H), 1.52–1.49 (*t*, *J* = 12.0 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, ppm): 14.8, 33.5, 55.3, 58.3, 114.0, 121.2, 126.3, 126.5, 126.6, 127.0, 127.5, 128.4, 128.7, 128.8, 129.0, 131.4, 136.4, 142.3, 143.3, 145.5, 155.4, 168.1.

#### 7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to carbon were placed in calculated positions (C-H = 0.95–1.00 Å), while those attached to nitrogen were placed in locations derived from a difference map and their coordinates were adjusted to give N-H = 0.85 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

#### **Acknowledgements**

SKG remembers the long-time association and research collaboration of the late Professor Jerry P. Jasinski, Keene State College, New Hampshire. RB thanks JUG for the award of a Post-doctoral Fellowship. RJB acknowledges the NSF-MRI program for funds to purchase the X-ray diffractometer.

#### **Funding information**

The following funding is acknowledged: Jiwaji University, Gwalior (award No. F/Dev/2019/612).

### References

- Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013*a*). *Acta Cryst.* E69, o299–o300.
- Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013*b*). *Acta Cryst.* E**69**, o506–o507.
- Bansal, R., Soni, P. K., Sharma, J., Bhardwaj, S. K. & Halve, A. K. (2017). *Curr. Chem. Lett.* **7**, 135–142.

Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.

Brahmachari, G. & Das, S. (2012), Tetrahedron Lett. 53, 1479-1484.

| T | able | 3 |  |   |
|---|------|---|--|---|
| _ |      |   |  | - |

| Ex | per | imen | tal c | letai | ls. |
|----|-----|------|-------|-------|-----|
|    |     |      |       |       |     |

| Crystal data                                                             |                                                                              |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Chemical formula                                                         | $C_{32}H_{28}F_2N_2O_2$                                                      |
| $M_{\rm r}$                                                              | 510.56                                                                       |
| Crystal system, space group                                              | Monoclinic, $P2_1$                                                           |
| Temperature (K)                                                          | 100                                                                          |
| a, b, c (Å)                                                              | 8.8072 (12), 17.795 (2), 16.222 (2)                                          |
| $\beta$ (°)                                                              | 91.317 (9)                                                                   |
| $V(\text{\AA}^3)$                                                        | 2541.7 (6)                                                                   |
| Ζ                                                                        | 4                                                                            |
| Radiation type                                                           | Μο Κα                                                                        |
| $\mu \text{ (mm}^{-1})$                                                  | 0.09                                                                         |
| Crystal size (mm)                                                        | $0.31 \times 0.24 \times 0.09$                                               |
| Data collection                                                          |                                                                              |
| Diffractometer                                                           | Bruker APEXII CCD                                                            |
| Absorption correction                                                    | Multi-scan (SADABS; Sheldrick, 1996)                                         |
| $T_{\min}, T_{\max}$                                                     | 0.544, 0.745                                                                 |
| No. of measured, independent and                                         | 44124, 10842, 8132                                                           |
| observed $[I > 2\sigma(I)]$ reflections                                  |                                                                              |
| R <sub>int</sub>                                                         | 0.153                                                                        |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                     | 0.636                                                                        |
| Refinement                                                               |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.118, 0.324, 1.17                                                           |
| No. of reflections                                                       | 10842                                                                        |
| No. of parameters                                                        | 689                                                                          |
| No. of restraints                                                        | 75                                                                           |
| H-atom treatment                                                         | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\text{max}} \Delta \rho_{\text{max}}$ (e Å <sup>-3</sup> ) | 1.04 - 0.54                                                                  |
| Absolute structure                                                       | Flack x determined using 2653                                                |
|                                                                          | quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)   |
| Absolute structure parameter                                             | -0.4(7)                                                                      |

Computer programs: *APEX2* (Bruker, 2005), *SAINT* (Bruker, 2005), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2019* (Sheldrick, 2015*b*), *SHELXTL* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chand, P., Kotian, P. L., Dehghani, A., El-Kattan, Y., Lin, T. H., Hutchison, T. L., Babu, Y. S., Bantia, S., Elliott, A. J. & Montgomery, J. A. (2001). *J. Med. Chem.* **44**, 4379–4392.
- Clarke, P. A., Zaytsev, A. V. & Whitwood, A. C. (2008). *Synthesis*, **2008**, 3530–3532.
- Daraei, M., Zolfigol, M. A., Derakhshan-Panah, F., Shiri, M., Kruger, H. G. & Mokhlesi, M. (2015). J. Iran. Chem. Soc. 12, 855–861.
- Gangapuram, M. & Redda, K. K. (2006). J. Heterocycl. Chem. 43, 709–718.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Gupta, A., Kaur, R., Singh, D. K. & Kapoor, K. K. (2017). Tetrahedron Lett. 58, 2583–2587.
- Ho, B., Michael Crider, A. & Stables, J. P. (2001). *Eur. J. Med. Chem.* **36**, 265–286.
- Kar, P., Mishra, B. G. & Pradhan, S. R. (2014). J. Mol. Catal. A Chem. 387, 103–111.
- Khan, A. T., Khan, M. M. & Bannuru, K. K. (2010). *Tetrahedron*, **66**, 7762–7772.
- Khan, A. T., Parvin, T. & Choudhury, L. H. (2008). J. Org. Chem. 73, 8398–8402.
- Lashkari, M., Maghsoodlou, M. T., Hazeri, N., Habibi-Khorassani, S. M., Sajadikhah, S. S. & Doostmohamadi, R. (2013). *Synth. Commun.* **43**, 635–644.
- Mali, A. S., Potnis, C. S. & Chaturbhuj, G. U. (2018). J. Iran. Chem. Soc. 15, 1399–1409.

## research communications

Mishra, S. & Ghosh, R. (2011). Tetrahedron Lett. 52, 2857-2861.

- Misra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). *Bioorg. Med. Chem.* **17**, 625–633.
- Mukhopadhyay, C., Rana, S., Butcher, R. J. & Schmiedekamp, A. M. (2011). *Tetrahedron Lett.* **52**, 5835–5840.
- Olesen, P. H., Swedberg, M. D. B. & Rimvall, K. (1998). *Bioorg. Med. Chem.* 6, 1623–1629.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Polik, W. F. & Schmidt, J. R. (2021). WIREs Comput. Mol. Sci. 12, e1554.
- Ramachandran, R., Jayanthi, S. & Jeong, Y. T. (2012). *Tetrahedron*, **68**, 363–369.
- Ramesh, R., Maheswari, S., Arivazhagan, M., Malecki, J. G. & Lalitha, A. (2017). *Tetrahedron Lett.* 58, 3905–3909.
- Rao, K. N., Redda, K. K., Onayemi, F. Y., Melles, H. & Choi, J. (1995). J. Heterocycl. Chem. **32**, 307–315.
- Sajadikhah, S. S., Maghsoodlou, M. T., Hazeri, N., Habibi-Khorassani, S. M. & Willis, A. C. (2012). *Chin. Chem. Lett.* 23, 569–572.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Singh, S., Gupta, A. & Kapoor, K. K. (2020). Synth. Commun. 50, 1056–1063.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Wang, H. J., Mo, L. P. & Zhang, Z. H. (2010). ACS Comb. Sci. 13, 181– 185.
- Watson, P. S., Jiang, B. & Scott, B. (2000). Org. Lett. 2, 3679-3681.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yeung, J. M., Corleto, L. A. & Knaus, E. E. (1982). J. Med. Chem. 25, 720–723.
- Yu, J., Tang, S., Zeng, J. & Yan, Z. (2013). Acta Cryst. E69, 0947-0948.

Acta Cryst. (2023). E79, 877-882 [https://doi.org/10.1107/S205698902300748X]

Synthesis, crystal structure, Hirshfeld surface analysis, DFT and NBO study of ethyl 1-(4-fluorophenyl)-4-[(4-fluorophenyl)amino]-2,6-diphenyl-1,2,5,6-tetra-hydropyridine-3-carboxylate

## Ravi Bansal, Ray J. Butcher and Sushil K. Gupta

## **Computing details**

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2019* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Ethyl 1-(4-fluorophenyl)-4-[(4-fluorophenyl)amino]-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate

Crystal data

 $C_{32}H_{28}F_2N_2O_2$   $M_r = 510.56$ Monoclinic,  $P2_1$  a = 8.8072 (12) Å b = 17.795 (2) Å c = 16.222 (2) Å  $\beta = 91.317$  (9)° V = 2541.7 (6) Å<sup>3</sup> Z = 4

Data collection

Bruker APEX-II CCD diffractometer  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.544$ ,  $T_{\max} = 0.745$ 44124 measured reflections

### Refinement

| Refinement on $F^2$              |
|----------------------------------|
| Least-squares matrix: full       |
| $R[F^2 > 2\sigma(F^2)] = 0.118$  |
| $wR(F^2) = 0.324$                |
| S = 1.17                         |
| 10842 reflections                |
| 689 parameters                   |
| 75 restraints                    |
| Primary atom site location: dual |

F(000) = 1072  $D_x = 1.334 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8110 reflections  $\theta = 2.5-25.9^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 100 KPlate, colorless  $0.31 \times 0.24 \times 0.09 \text{ mm}$ 10842 independent reflections 8132 reflections with  $l > 2 \sigma D$ 

8132 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.153$   $\theta_{max} = 26.9^{\circ}, \ \theta_{min} = 1.7^{\circ}$   $h = -11 \rightarrow 11$   $k = -22 \rightarrow 22$  $l = -20 \rightarrow 20$ 

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.2P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 1.04$  e Å<sup>-3</sup>  $\Delta \rho_{\rm min} = -0.54 \ {\rm e} \ {\rm \AA}^{-3}$ 

Absolute structure: Flack *x* determined using 2653 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.4 (7)

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|      | x           | у          | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|------------|-------------|-----------------------------|--|
| F1A  | 1.2145 (9)  | 0.6537 (4) | -0.0730 (4) | 0.0282 (18)                 |  |
| F2A  | 0.5317 (9)  | 0.4785 (4) | 0.6692 (4)  | 0.0288 (18)                 |  |
| 01A  | 0.9193 (11) | 0.8004 (4) | 0.4287 (5)  | 0.0213 (18)                 |  |
| O2A  | 0.9079 (10) | 0.8507 (4) | 0.3013 (5)  | 0.0202 (19)                 |  |
| N1A  | 0.8252 (12) | 0.6508 (6) | 0.1882 (6)  | 0.019 (2)                   |  |
| N2A  | 0.8030 (13) | 0.6640 (5) | 0.4451 (6)  | 0.021 (2)                   |  |
| H2AA | 0.854 (14)  | 0.700 (5)  | 0.466 (8)   | 0.025*                      |  |
| C1A  | 0.7854 (14) | 0.7253 (6) | 0.2229 (7)  | 0.017 (2)                   |  |
| H1AA | 0.853893    | 0.762724   | 0.196791    | 0.020*                      |  |
| C2A  | 0.8189 (14) | 0.7291 (6) | 0.3160 (7)  | 0.017 (2)                   |  |
| C3A  | 0.7776 (13) | 0.6676 (7) | 0.3607 (7)  | 0.016 (2)                   |  |
| C4A  | 0.7204 (14) | 0.6012 (6) | 0.3143 (7)  | 0.018 (2)                   |  |
| H4AA | 0.616757    | 0.611138   | 0.291943    | 0.021*                      |  |
| H4AB | 0.716095    | 0.556989   | 0.351191    | 0.021*                      |  |
| C5A  | 0.8287 (14) | 0.5858 (6) | 0.2437 (7)  | 0.016 (2)                   |  |
| H5AA | 0.934099    | 0.578633   | 0.266529    | 0.019*                      |  |
| C6A  | 0.6241 (13) | 0.7476 (6) | 0.1984 (7)  | 0.017 (2)                   |  |
| C7A  | 0.5398 (14) | 0.8000 (7) | 0.2428 (8)  | 0.024 (3)                   |  |
| H7AA | 0.582800    | 0.819602   | 0.292566    | 0.028*                      |  |
| C8A  | 0.3983 (14) | 0.8244 (7) | 0.2180 (8)  | 0.022 (3)                   |  |
| H8AA | 0.343692    | 0.857768   | 0.252109    | 0.027*                      |  |
| C9A  | 0.3332 (17) | 0.8006 (7) | 0.1425 (8)  | 0.028 (3)                   |  |
| H9AA | 0.236874    | 0.818845   | 0.124048    | 0.033*                      |  |
| C10A | 0.4142 (14) | 0.7492 (6) | 0.0953 (8)  | 0.020 (2)                   |  |
| H10A | 0.371490    | 0.731408   | 0.044588    | 0.024*                      |  |
| C11A | 0.5557 (14) | 0.7239 (7) | 0.1215 (8)  | 0.023 (3)                   |  |
| H11A | 0.609210    | 0.689818   | 0.087717    | 0.028*                      |  |
| C12A | 0.9314 (13) | 0.6528 (6) | 0.1248 (6)  | 0.013 (2)                   |  |
| C13A | 0.9190 (13) | 0.7101 (7) | 0.0646 (7)  | 0.018 (2)                   |  |
| H13A | 0.844532    | 0.748345   | 0.069360    | 0.021*                      |  |
| C14A | 1.0168 (15) | 0.7099 (7) | -0.0016 (8) | 0.021 (3)                   |  |
| H14A | 1.011386    | 0.748455   | -0.042093   | 0.026*                      |  |
| C15A | 1.1210 (14) | 0.6530 (7) | -0.0073 (7) | 0.020 (2)                   |  |
| C16A | 1.1361 (15) | 0.5967 (7) | 0.0496 (7)  | 0.021 (3)                   |  |

| H16A | 1.211869     | 0.559163   | 0.044266    | 0.025*      |
|------|--------------|------------|-------------|-------------|
| C17A | 1.0379 (13)  | 0.5957 (7) | 0.1156 (7)  | 0.018 (2)   |
| H17A | 1.043535     | 0.555931   | 0.154614    | 0.021*      |
| C18A | 0.7769 (13)  | 0.5144 (7) | 0.1994 (7)  | 0.017 (2)   |
| C19A | 0.6800 (14)  | 0.5125 (7) | 0.1287 (7)  | 0.019 (2)   |
| H19A | 0.646179     | 0.558704   | 0.105421    | 0.023*      |
| C20A | 0.6324 (14)  | 0.4458 (8) | 0.0921 (8)  | 0.025 (3)   |
| H20A | 0.570601     | 0.446242   | 0.043302    | 0.029*      |
| C21A | 0.6779 (17)  | 0.3771 (7) | 0.1290 (7)  | 0.025 (3)   |
| H21A | 0.646713     | 0.330565   | 0.105462    | 0.029*      |
| C22A | 0.7687 (16)  | 0.3787 (7) | 0.2000 (8)  | 0.025 (3)   |
| H22A | 0.797499     | 0.332583   | 0.225436    | 0.030*      |
| C23A | 0.8181 (15)  | 0.4449 (7) | 0.2344 (7)  | 0.021 (3)   |
| H23A | 0.881145     | 0.443783   | 0.282642    | 0.025*      |
| C24A | 0.7268 (13)  | 0.6141 (7) | 0.4997 (7)  | 0.015 (2)   |
| C25A | 0.5808 (13)  | 0.5914 (7) | 0.4869 (7)  | 0.017 (2)   |
| H25A | 0.524947     | 0.607559   | 0.439395    | 0.021*      |
| C26A | 0.5136 (15)  | 0.5440 (7) | 0.5442 (7)  | 0.019 (2)   |
| H26A | 0.414461     | 0.524402   | 0.534433    | 0.023*      |
| C27A | 0.5950 (14)  | 0.5262 (7) | 0.6154 (7)  | 0.019 (3)   |
| C28A | 0.7379 (13)  | 0.5508 (7) | 0.6313 (7)  | 0.020 (2)   |
| H28A | 0.789702     | 0.537041   | 0.681068    | 0.024*      |
| C29A | 0.8093 (15)  | 0.5970 (7) | 0.5731 (7)  | 0.021 (3)   |
| H29A | 0.908936     | 0.615946   | 0.582808    | 0.025*      |
| C30A | 0.8857 (13)  | 0.7933 (6) | 0.3544 (7)  | 0.017 (2)   |
| C31A | 0.9685 (15)  | 0.9203 (6) | 0.3367 (8)  | 0.020 (2)   |
| H31A | 1.019282     | 0.949562   | 0.293281    | 0.024*      |
| H31B | 1.045222     | 0.908244   | 0.380241    | 0.024*      |
| C32A | 0.8443 (17)  | 0.9665 (7) | 0.3726 (8)  | 0.029 (3)   |
| H32A | 0.887315     | 1.012885   | 0.395932    | 0.044*      |
| H32B | 0.769217     | 0.979120   | 0.329256    | 0.044*      |
| H32C | 0.795121     | 0.937857   | 0.416099    | 0.044*      |
| F1B  | 0.7271 (9)   | 0.3382 (5) | 0.5895 (4)  | 0.0304 (18) |
| F2B  | -0.0100 (10) | 0.5223 (4) | -0.1668 (4) | 0.0329 (19) |
| O1B  | 0.4225 (11)  | 0.2050 (5) | 0.0798 (5)  | 0.0229 (19) |
| O2B  | 0.4196 (10)  | 0.1528 (4) | 0.2072 (5)  | 0.0198 (18) |
| N1B  | 0.3238 (11)  | 0.3488 (5) | 0.3190 (5)  | 0.0145 (19) |
| N2B  | 0.2858 (12)  | 0.3375 (6) | 0.0594 (6)  | 0.018 (2)   |
| H2BA | 0.354557     | 0.308190   | 0.037569    | 0.022*      |
| C1B  | 0.2806 (12)  | 0.2748 (7) | 0.2817 (7)  | 0.017 (2)   |
| H1BA | 0.348035     | 0.236205   | 0.308500    | 0.021*      |
| C2B  | 0.3132 (13)  | 0.2727 (7) | 0.1889 (7)  | 0.016 (2)   |
| C3B  | 0.2687 (13)  | 0.3315 (6) | 0.1419 (7)  | 0.017 (2)   |
| C4B  | 0.2144 (13)  | 0.3993 (7) | 0.1903 (7)  | 0.017 (2)   |
| H4BA | 0.111102     | 0.389769   | 0.210747    | 0.021*      |
| H4BB | 0.209976     | 0.444022   | 0.153993    | 0.021*      |
| C5B  | 0.3249 (15)  | 0.4137 (6) | 0.2634 (7)  | 0.019 (3)   |
| H5BA | 0.429634     | 0.420071   | 0.241909    | 0.022*      |

| C6B  | 0.1226 (13)  | 0.2530 (6) | 0.2997 (6)  | 0.013 (2) |
|------|--------------|------------|-------------|-----------|
| C7B  | 0.0376 (14)  | 0.1990 (6) | 0.2501 (7)  | 0.017 (2) |
| H7BA | 0.082555     | 0.179232   | 0.202045    | 0.020*    |
| C8B  | -0.1027 (16) | 0.1759 (8) | 0.2695 (8)  | 0.026 (3) |
| H8BA | -0.155672    | 0.142312   | 0.233550    | 0.031*    |
| C9B  | -0.1726 (14) | 0.2003 (7) | 0.3418 (8)  | 0.022 (3) |
| H9BA | -0.268637    | 0.181456   | 0.357452    | 0.026*    |
| C10B | -0.0921 (16) | 0.2548 (8) | 0.3905 (8)  | 0.030 (3) |
| H10B | -0.137923    | 0.275706   | 0.437790    | 0.036*    |
| C11B | 0.0476 (13)  | 0.2767 (7) | 0.3700 (7)  | 0.015 (2) |
| H11B | 0.099352     | 0.310785   | 0.405830    | 0.018*    |
| C12B | 0.4325 (12)  | 0.3468 (7) | 0.3852 (7)  | 0.016 (2) |
| C13B | 0.4196 (16)  | 0.2909 (7) | 0.4453 (7)  | 0.023 (3) |
| H13B | 0.341036     | 0.254565   | 0.439633    | 0.027*    |
| C14B | 0.5194 (16)  | 0.2871 (7) | 0.5134 (7)  | 0.023 (3) |
| H14B | 0.510508     | 0.248077   | 0.552897    | 0.028*    |
| C15B | 0.6305 (14)  | 0.3409 (7) | 0.5221 (7)  | 0.020 (2) |
| C16B | 0.6480 (14)  | 0.3964 (7) | 0.4645 (7)  | 0.021 (2) |
| H16B | 0.727042     | 0.432396   | 0.470803    | 0.025*    |
| C17B | 0.5467 (14)  | 0.3994 (6) | 0.3957 (7)  | 0.017 (2) |
| H17B | 0.557315     | 0.438215   | 0.356067    | 0.020*    |
| C18B | 0.2774 (14)  | 0.4867 (6) | 0.3053 (7)  | 0.019 (3) |
| C19B | 0.1929 (14)  | 0.4892 (7) | 0.3747 (8)  | 0.023 (3) |
| H19B | 0.162808     | 0.443980   | 0.400826    | 0.028*    |
| C20B | 0.1509 (16)  | 0.5585(7)  | 0.4072 (7)  | 0.026 (3) |
| H20B | 0.092136     | 0.559260   | 0.455561    | 0.031*    |
| C21B | 0.1912 (13)  | 0.6262 (7) | 0.3719 (8)  | 0.023(3)  |
| H21B | 0.158869     | 0.672692   | 0.394300    | 0.027*    |
| C22B | 0.2821 (16)  | 0.6237 (8) | 0.3014 (8)  | 0.027 (3) |
| H22B | 0.315915     | 0.668761   | 0.276449    | 0.033*    |
| C23B | 0.3213 (13)  | 0.5542 (6) | 0.2691 (7)  | 0.017(2)  |
| H23B | 0.380027     | 0.552553   | 0.220758    | 0.020*    |
| C24B | 0.2059 (14)  | 0.3854 (6) | 0.0048 (6)  | 0.016 (2) |
| C25B | 0.0596 (13)  | 0.4079 (7) | 0.0145 (7)  | 0.017 (2) |
| H25B | 0.006401     | 0.391756   | 0.061630    | 0.020*    |
| C26B | -0.0124(15)  | 0.4534 (7) | -0.0424 (7) | 0.022 (3) |
| H26B | -0.113603    | 0.469611   | -0.033848   | 0.026*    |
| C27B | 0.0630 (14)  | 0.4757 (7) | -0.1124 (7) | 0.020(2)  |
| C28B | 0.2055 (13)  | 0.4519 (7) | -0.1262(7)  | 0.018(2)  |
| H28B | 0.254965     | 0.466150   | -0.175180   | 0.022*    |
| C29B | 0.2809 (14)  | 0.4058 (6) | -0.0677(7)  | 0.019(2)  |
| H29B | 0.381249     | 0.388659   | -0.076974   | 0.023*    |
| C30B | 0.3901 (13)  | 0.2085 (6) | 0.1534 (7)  | 0.015(2)  |
| C31B | 0.4960 (13)  | 0.0880 (6) | 0.1744 (8)  | 0.018 (2) |
| H31C | 0.549866     | 0.061068   | 0.219784    | 0.022*    |
| H31D | 0.572414     | 0.104610   | 0.134489    | 0.022*    |
| C32B | 0.3846 (19)  | 0.0354(7)  | 0.1322 (8)  | 0.032(3)  |
| H32D | 0.439203     | -0.008036  | 0.110512    | 0.048*    |
|      |              | 2.000000   | <b>-</b>    | 2.0.0     |

| H32E | 0.309921 | 0.018318 | 0.171926 | 0.048* |
|------|----------|----------|----------|--------|
| H32F | 0.332443 | 0.061810 | 0.086729 | 0.048* |

Atomic displacement parameters  $(Å^2)$ 

|      | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | <i>U</i> <sup>12</sup> | <i>U</i> <sup>13</sup> | U <sup>23</sup> |
|------|-----------------|-----------------|-----------------|------------------------|------------------------|-----------------|
| F1A  | 0.035 (4)       | 0.028 (4)       | 0.022 (4)       | 0.003 (3)              | 0.015 (3)              | 0.000 (3)       |
| F2A  | 0.049 (5)       | 0.023 (4)       | 0.015 (3)       | -0.002(3)              | 0.007 (3)              | 0.011 (3)       |
| O1A  | 0.032 (5)       | 0.017 (4)       | 0.015 (4)       | -0.001 (4)             | 0.001 (4)              | -0.004 (3)      |
| O2A  | 0.036 (5)       | 0.010 (4)       | 0.014 (4)       | -0.005(3)              | 0.003 (4)              | 0.002 (3)       |
| N1A  | 0.023 (5)       | 0.018 (5)       | 0.017 (5)       | 0.005 (4)              | 0.011 (4)              | -0.001 (4)      |
| N2A  | 0.039 (6)       | 0.013 (5)       | 0.010 (4)       | -0.006 (4)             | 0.006 (4)              | 0.004 (4)       |
| C1A  | 0.032 (7)       | 0.010 (5)       | 0.009 (5)       | -0.001 (5)             | 0.006 (5)              | -0.005 (4)      |
| C2A  | 0.024 (6)       | 0.012 (5)       | 0.015 (6)       | -0.001 (4)             | 0.005 (5)              | -0.001 (4)      |
| C3A  | 0.015 (5)       | 0.022 (6)       | 0.013 (5)       | 0.002 (5)              | 0.008 (4)              | -0.001 (4)      |
| C4A  | 0.025 (6)       | 0.012 (5)       | 0.016 (5)       | -0.002(5)              | 0.007 (5)              | 0.000 (4)       |
| C5A  | 0.018 (6)       | 0.015 (5)       | 0.015 (6)       | -0.001(5)              | 0.005 (4)              | 0.003 (4)       |
| C6A  | 0.009 (5)       | 0.017 (5)       | 0.025 (6)       | -0.003 (4)             | 0.010 (4)              | -0.008 (5)      |
| C7A  | 0.012 (6)       | 0.027 (7)       | 0.032 (7)       | 0.004 (5)              | 0.013 (5)              | -0.010 (5)      |
| C8A  | 0.018 (6)       | 0.029 (7)       | 0.020 (6)       | 0.005 (5)              | 0.007 (5)              | 0.000 (5)       |
| C9A  | 0.039 (8)       | 0.019 (6)       | 0.025 (7)       | 0.000 (6)              | 0.000 (6)              | -0.006 (5)      |
| C10A | 0.024 (6)       | 0.015 (5)       | 0.022 (6)       | -0.006(5)              | 0.004 (5)              | -0.002 (5)      |
| C11A | 0.017 (6)       | 0.027 (6)       | 0.027 (6)       | -0.011 (5)             | 0.014 (5)              | -0.018 (5)      |
| C12A | 0.019 (6)       | 0.008 (5)       | 0.014 (5)       | -0.003 (4)             | 0.006 (4)              | -0.005 (4)      |
| C13A | 0.014 (4)       | 0.020 (5)       | 0.020 (5)       | 0.003 (4)              | 0.007 (4)              | -0.003 (4)      |
| C14A | 0.031 (7)       | 0.021 (6)       | 0.012 (5)       | 0.002 (5)              | 0.003 (5)              | 0.004 (5)       |
| C15A | 0.019 (5)       | 0.023 (5)       | 0.017 (4)       | 0.002 (4)              | 0.013 (4)              | 0.001 (4)       |
| C16A | 0.038 (7)       | 0.017 (5)       | 0.008 (5)       | 0.002 (5)              | 0.009 (5)              | -0.001 (4)      |
| C17A | 0.016 (6)       | 0.023 (6)       | 0.014 (5)       | -0.005 (5)             | 0.005 (4)              | -0.001 (5)      |
| C18A | 0.017 (6)       | 0.021 (6)       | 0.014 (5)       | -0.003 (5)             | 0.011 (4)              | -0.005 (4)      |
| C19A | 0.020 (6)       | 0.027 (6)       | 0.010 (5)       | 0.001 (5)              | 0.002 (4)              | 0.003 (5)       |
| C20A | 0.021 (6)       | 0.030 (6)       | 0.023 (6)       | -0.006 (6)             | 0.000 (5)              | -0.003 (5)      |
| C21A | 0.048 (9)       | 0.012 (5)       | 0.014 (6)       | -0.008(5)              | 0.008 (5)              | -0.008 (5)      |
| C22A | 0.037 (8)       | 0.017 (6)       | 0.021 (6)       | 0.011 (6)              | 0.006 (6)              | -0.001 (5)      |
| C23A | 0.024 (6)       | 0.018 (6)       | 0.020 (6)       | -0.003 (5)             | 0.002 (5)              | 0.000 (5)       |
| C24A | 0.013 (4)       | 0.017 (4)       | 0.016 (4)       | 0.007 (4)              | 0.007 (4)              | 0.003 (4)       |
| C25A | 0.016 (5)       | 0.023 (5)       | 0.013 (4)       | 0.007 (4)              | 0.008 (4)              | 0.004 (4)       |
| C26A | 0.027 (6)       | 0.015 (5)       | 0.016 (5)       | -0.001 (5)             | 0.006 (5)              | -0.003 (4)      |
| C27A | 0.021 (6)       | 0.020 (6)       | 0.017 (6)       | 0.005 (5)              | 0.012 (5)              | 0.007 (5)       |
| C28A | 0.018 (6)       | 0.028 (6)       | 0.014 (5)       | 0.013 (5)              | 0.004 (5)              | 0.006 (5)       |
| C29A | 0.031 (7)       | 0.019 (6)       | 0.013 (5)       | 0.003 (5)              | 0.003 (5)              | 0.002 (5)       |
| C30A | 0.012 (5)       | 0.016 (5)       | 0.022 (6)       | 0.001 (4)              | 0.006 (4)              | -0.001 (5)      |
| C31A | 0.030 (5)       | 0.012 (4)       | 0.019 (5)       | -0.002 (4)             | 0.001 (4)              | -0.006 (4)      |
| C32A | 0.043 (8)       | 0.018 (6)       | 0.026 (7)       | 0.003 (6)              | 0.001 (6)              | -0.006 (5)      |
| F1B  | 0.037 (5)       | 0.038 (4)       | 0.016 (3)       | -0.002 (4)             | -0.005 (3)             | 0.003 (3)       |
| F2B  | 0.058 (6)       | 0.026 (4)       | 0.015 (3)       | 0.010 (4)              | -0.001 (3)             | 0.004 (3)       |
| O1B  | 0.036 (5)       | 0.016 (4)       | 0.017 (4)       | 0.002 (4)              | 0.010 (4)              | -0.002 (3)      |
| O2B  | 0.026 (5)       | 0.012 (4)       | 0.022 (4)       | 0.004 (3)              | 0.010 (3)              | -0.002 (3)      |

| N1B  | 0.020 (5)  | 0.011 (4) | 0.013 (4) | 0.002 (4)  | 0.002 (4)  | 0.001 (4)  |
|------|------------|-----------|-----------|------------|------------|------------|
| N2B  | 0.022 (5)  | 0.018 (5) | 0.015 (5) | 0.002 (4)  | 0.006 (4)  | -0.005 (4) |
| C1B  | 0.005 (5)  | 0.028 (6) | 0.019 (6) | 0.006 (4)  | 0.003 (4)  | -0.007 (5) |
| C2B  | 0.010 (5)  | 0.023 (6) | 0.016 (5) | -0.003 (4) | 0.010 (4)  | -0.007 (5) |
| C3B  | 0.018 (6)  | 0.012 (5) | 0.023 (6) | -0.002 (4) | 0.008 (5)  | 0.000 (4)  |
| C4B  | 0.013 (4)  | 0.019 (5) | 0.020 (5) | 0.002 (4)  | 0.010 (4)  | 0.000 (4)  |
| C5B  | 0.035 (7)  | 0.011 (5) | 0.011 (5) | -0.002 (5) | 0.011 (5)  | -0.002 (4) |
| C6B  | 0.017 (4)  | 0.014 (4) | 0.009 (3) | 0.005 (3)  | 0.002 (3)  | -0.001 (3) |
| C7B  | 0.024 (6)  | 0.015 (5) | 0.011 (5) | 0.000 (5)  | 0.003 (4)  | -0.002 (4) |
| C8B  | 0.026 (7)  | 0.030 (7) | 0.023 (6) | 0.001 (6)  | 0.000 (5)  | -0.010 (5) |
| C9B  | 0.015 (5)  | 0.026 (5) | 0.025 (5) | -0.004 (4) | 0.007 (4)  | 0.002 (4)  |
| C10B | 0.026 (5)  | 0.034 (5) | 0.031 (5) | 0.011 (5)  | 0.004 (4)  | -0.010 (5) |
| C11B | 0.014 (4)  | 0.020 (4) | 0.012 (4) | 0.003 (4)  | 0.003 (4)  | -0.005 (4) |
| C12B | 0.007 (5)  | 0.027 (6) | 0.015 (5) | 0.004 (5)  | 0.005 (4)  | -0.002 (5) |
| C13B | 0.039 (7)  | 0.014 (5) | 0.015 (5) | -0.001 (5) | 0.001 (5)  | -0.002 (4) |
| C14B | 0.041 (8)  | 0.018 (6) | 0.011 (5) | 0.006 (5)  | 0.000 (5)  | -0.001 (5) |
| C15B | 0.024 (6)  | 0.023 (6) | 0.013 (5) | 0.005 (5)  | -0.004 (5) | -0.002 (5) |
| C16B | 0.018 (6)  | 0.019 (6) | 0.025 (6) | 0.002 (5)  | 0.001 (5)  | -0.002 (5) |
| C17B | 0.025 (6)  | 0.007 (5) | 0.019 (6) | -0.001 (4) | 0.007 (5)  | 0.003 (4)  |
| C18B | 0.031 (7)  | 0.008 (5) | 0.020 (6) | -0.002 (5) | 0.003 (5)  | 0.001 (4)  |
| C19B | 0.023 (6)  | 0.023 (6) | 0.023 (6) | 0.006 (5)  | 0.012 (5)  | -0.001 (5) |
| C20B | 0.040 (8)  | 0.022 (6) | 0.016 (6) | 0.008 (6)  | 0.003 (5)  | -0.007 (5) |
| C21B | 0.010 (5)  | 0.022 (6) | 0.036 (7) | 0.003 (5)  | 0.001 (5)  | -0.011 (5) |
| C22B | 0.035 (8)  | 0.020 (6) | 0.027 (7) | 0.000 (6)  | 0.005 (6)  | 0.004 (5)  |
| C23B | 0.011 (5)  | 0.016 (5) | 0.023 (6) | 0.004 (4)  | 0.006 (5)  | 0.005 (5)  |
| C24B | 0.026 (6)  | 0.016 (5) | 0.007 (5) | -0.006 (5) | 0.006 (4)  | 0.002 (4)  |
| C25B | 0.010 (5)  | 0.027 (6) | 0.013 (5) | -0.008 (5) | 0.004 (4)  | 0.002 (5)  |
| C26B | 0.025 (6)  | 0.024 (6) | 0.016 (6) | 0.005 (5)  | 0.008 (5)  | -0.001 (5) |
| C27B | 0.026 (6)  | 0.019 (6) | 0.015 (5) | -0.003 (5) | -0.004 (5) | 0.004 (5)  |
| C28B | 0.022 (5)  | 0.021 (5) | 0.012 (4) | -0.005 (4) | -0.001 (4) | 0.009 (4)  |
| C29B | 0.022 (6)  | 0.018 (6) | 0.017 (6) | -0.001 (5) | 0.005 (5)  | 0.000 (5)  |
| C30B | 0.020 (6)  | 0.014 (5) | 0.013 (5) | -0.001 (4) | 0.008 (4)  | 0.002 (4)  |
| C31B | 0.011 (5)  | 0.016 (5) | 0.027 (6) | 0.002 (4)  | 0.007 (4)  | -0.002 (5) |
| C32B | 0.059 (10) | 0.009 (5) | 0.028 (7) | -0.004 (6) | 0.005 (7)  | -0.005 (5) |
|      |            |           |           |            |            |            |

## Geometric parameters (Å, °)

| F1A—C15A | 1.362 (12) | F1B—C15B | 1.370 (13) |
|----------|------------|----------|------------|
| F2A—C27A | 1.347 (13) | F2B—C27B | 1.361 (14) |
| O1A-C30A | 1.242 (15) | O1B—C30B | 1.235 (14) |
| O2A-C30A | 1.352 (14) | O2B—C30B | 1.343 (14) |
| O2A—C31A | 1.461 (14) | O2B—C31B | 1.442 (13) |
| N1A—C12A | 1.407 (13) | N1B—C12B | 1.423 (15) |
| N1A—C5A  | 1.466 (14) | N1B—C5B  | 1.465 (14) |
| N1A—C1A  | 1.485 (14) | N1B—C1B  | 1.496 (15) |
| N2A—C3A  | 1.383 (15) | N2B—C3B  | 1.354 (15) |
| N2A—C24A | 1.432 (14) | N2B—C24B | 1.407 (16) |
| N2A—H2AA | 0.85 (3)   | N2B—H2BA | 0.8800     |
|          |            |          |            |

| C1A—C6A   | 1.520 (17) | C1B—C6B   | 1.480 (15) |
|-----------|------------|-----------|------------|
| C1A—C2A   | 1.533 (16) | C1B—C2B   | 1.540 (15) |
| C1A—H1AA  | 1.0000     | C1B—H1BA  | 1.0000     |
| C2A—C3A   | 1.366 (16) | C2B—C3B   | 1.347 (17) |
| C2A-C30A  | 1.423 (16) | C2B—C30B  | 1.454 (15) |
| C3A—C4A   | 1.484 (16) | C3B—C4B   | 1.523 (15) |
| C4A—C5A   | 1.532 (15) | C4B—C5B   | 1.539 (18) |
| C4A—H4AA  | 0.9900     | C4B—H4BA  | 0.9900     |
| C4A—H4AB  | 0.9900     | C4B—H4BB  | 0.9900     |
| C5A—C18A  | 1.524 (16) | C5B—C18B  | 1.529 (15) |
| С5А—Н5АА  | 1.0000     | C5B—H5BA  | 1.0000     |
| C6A—C7A   | 1.402 (15) | C6B—C11B  | 1.395 (14) |
| C6A—C11A  | 1.436 (17) | C6B—C7B   | 1.451 (16) |
| C7A—C8A   | 1.372 (18) | C7B—C8B   | 1.347 (18) |
| С7А—Н7АА  | 0.9500     | C7B—H7BA  | 0.9500     |
| C8A—C9A   | 1.406 (19) | C8B—C9B   | 1.405 (17) |
| C8A—H8AA  | 0.9500     | C8B—H8BA  | 0.9500     |
| C9A—C10A  | 1.399 (17) | C9B—C10B  | 1.430 (19) |
| С9А—Н9АА  | 0.9500     | С9В—Н9ВА  | 0.9500     |
| C10A—C11A | 1.383 (19) | C10B—C11B | 1.340 (18) |
| C10A—H10A | 0.9500     | C10B—H10B | 0.9500     |
| C11A—H11A | 0.9500     | C11B—H11B | 0.9500     |
| C12A—C17A | 1.392 (16) | C12B—C17B | 1.382 (16) |
| C12A—C13A | 1.413 (16) | C12B—C13B | 1.398 (16) |
| C13A—C14A | 1.393 (16) | C13B—C14B | 1.397 (18) |
| C13A—H13A | 0.9500     | C13B—H13B | 0.9500     |
| C14A—C15A | 1.370 (18) | C14B—C15B | 1.373 (19) |
| C14A—H14A | 0.9500     | C14B—H14B | 0.9500     |
| C15A—C16A | 1.367 (16) | C15B—C16B | 1.371 (17) |
| C16A—C17A | 1.392 (15) | C16B—C17B | 1.414 (17) |
| C16A—H16A | 0.9500     | C16B—H16B | 0.9500     |
| C17A—H17A | 0.9500     | C17B—H17B | 0.9500     |
| C18A—C23A | 1.406 (17) | C18B—C19B | 1.365 (16) |
| C18A—C19A | 1.413 (17) | C18B—C23B | 1.395 (16) |
| C19A—C20A | 1.389 (18) | C19B—C20B | 1.394 (17) |
| С19А—Н19А | 0.9500     | C19B—H19B | 0.9500     |
| C20A—C21A | 1.415 (19) | C20B—C21B | 1.384 (18) |
| C20A—H20A | 0.9500     | C20B—H20B | 0.9500     |
| C21A—C22A | 1.387 (19) | C21B—C22B | 1.411 (18) |
| C21A—H21A | 0.9500     | C21B—H21B | 0.9500     |
| C22A—C23A | 1.370 (18) | C22B—C23B | 1.390 (18) |
| С22А—Н22А | 0.9500     | C22B—H22B | 0.9500     |
| С23А—Н23А | 0.9500     | C23B—H23B | 0.9500     |
| C24A—C25A | 1.359 (17) | C24B—C25B | 1.362 (17) |
| C24A—C29A | 1.413 (17) | C24B—C29B | 1.409 (15) |
| C25A—C26A | 1.396 (16) | C25B—C26B | 1.373 (17) |
| С25А—Н25А | 0.9500     | C25B—H25B | 0.9500     |
| C26A—C27A | 1.382 (17) | C26B—C27B | 1.386 (16) |
|           | × /        |           | · · ·      |

| C26A—H26A                              | 0.9500                 | C26B—H26B                                            | 0.9500                 |
|----------------------------------------|------------------------|------------------------------------------------------|------------------------|
| C27A—C28A                              | 1.352 (18)             | C27B—C28B                                            | 1.349 (18)             |
| C28A—C29A                              | 1.412 (16)             | C28B—C29B                                            | 1.409 (17)             |
| C28A—H28A                              | 0.9500                 | C28B—H28B                                            | 0.9500                 |
| C29A—H29A                              | 0.9500                 | C29B—H29B                                            | 0.9500                 |
| $C_{31} \Delta = C_{32} \Delta$        | 1 498 (18)             | $C_{31B}$ $C_{32B}$                                  | 1 509 (18)             |
| C31A H31A                              | 0.0000                 | C31B H31C                                            | 0.0000                 |
|                                        | 0.0000                 |                                                      | 0.9900                 |
|                                        | 0.9900                 |                                                      | 0.9900                 |
| C32A—H32A                              | 0.9800                 | C32B—H32D                                            | 0.9800                 |
| С32А—Н32В                              | 0.9800                 | С32В—Н32Е                                            | 0.9800                 |
| C32A—H32C                              | 0.9800                 | C32B—H32F                                            | 0.9800                 |
| C20A C2A C21A                          | 116.6.(0)              | C20D 02D C21D                                        | 1150(9)                |
| $C_{30A} = O_{2A} = C_{31A}$           | 110.0(9)               | $C_{30B} = O_{2B} = C_{31B}$                         | 113.9 (8)              |
| CI2A—NIA—CJA                           | 117.6 (9)              | CI2B—NIB—C3B                                         | 118.2 (10)             |
| CI2A—NIA—CIA                           | 115.0 (9)              | CI2B—NIB—CIB                                         | 116.3 (9)              |
| C5A—N1A—C1A                            | 118.2 (8)              | C5B—N1B—C1B                                          | 116.8 (9)              |
| C3A—N2A—C24A                           | 125.0 (11)             | C3B—N2B—C24B                                         | 127.3 (10)             |
| C3A—N2A—H2AA                           | 116 (9)                | C3B—N2B—H2BA                                         | 116.4                  |
| C24A—N2A—H2AA                          | 118 (9)                | C24B—N2B—H2BA                                        | 116.4                  |
| N1A—C1A—C6A                            | 111.2 (10)             | C6B—C1B—N1B                                          | 112.5 (9)              |
| N1A—C1A—C2A                            | 111.8 (10)             | C6B—C1B—C2B                                          | 112.6 (10)             |
| C6A—C1A—C2A                            | 113.9 (9)              | N1B—C1B—C2B                                          | 111.4 (10)             |
| N1A—C1A—H1AA                           | 106.5                  | C6B—C1B—H1BA                                         | 106.7                  |
| C6A—C1A—H1AA                           | 106.5                  | N1B—C1B—H1BA                                         | 106.7                  |
| C2A—C1A—H1AA                           | 106.5                  | C2B—C1B—H1BA                                         | 106.7                  |
| C3A - C2A - C30A                       | 121.5 (11)             | C3B—C2B—C30B                                         | 121.2 (10)             |
| $C_{3A}$ $-C_{2A}$ $-C_{1A}$           | 1161(10)               | C3B - C2B - C1B                                      | 1185(10)               |
| $C_{30A}$ $C_{2A}$ $C_{1A}$            | 122 3 (10)             | $C_{30B} = C_{2B} = C_{1B}$                          | 120.3(10)              |
| $C_2 \Delta = C_3 \Delta = N_2 \Delta$ | 122.5(10)<br>121.6(11) | C2B_C3B_N2B                                          | 125.7(10)              |
| $C_{2A}$ $C_{3A}$ $C_{4A}$             | 121.0(11)<br>117.3(10) | $C_{2B} C_{3B} C_{4B}$                               | 123.7(10)<br>114.5(10) |
| N2A C3A C4A                            | 117.3(10)<br>120.7(10) | $N2P C^{2}P C^{4}P$                                  | 114.3(10)              |
| $N_{2A} = C_{3A} = C_{4A}$             | 120.7(10)              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 119.3(10)              |
| $C_{A} = C_{A} = U_{A}$                | 108.2 (9)              | $C_{3}D = C_{4}D = U_{4}D_{4}$                       | 109.2 (10)             |
| C3A—C4A—H4AA                           | 110.1                  | C3B—C4B—H4BA                                         | 109.8                  |
| CSA—C4A—H4AA                           | 110.1                  | C3B—C4B—H4BA                                         | 109.8                  |
| СЗА—С4А—Н4АВ                           | 110.1                  | C3B—C4B—H4BB                                         | 109.8                  |
| C5A—C4A—H4AB                           | 110.1                  | C5B—C4B—H4BB                                         | 109.8                  |
| H4AA—C4A—H4AB                          | 108.4                  | H4BA—C4B—H4BB                                        | 108.3                  |
| N1A—C5A—C18A                           | 111.5 (9)              | N1B—C5B—C18B                                         | 112.9 (9)              |
| N1A—C5A—C4A                            | 108.2 (9)              | N1B—C5B—C4B                                          | 109.3 (10)             |
| C18A—C5A—C4A                           | 108.5 (9)              | C18B—C5B—C4B                                         | 108.1 (10)             |
| N1A—C5A—H5AA                           | 109.5                  | N1B—C5B—H5BA                                         | 108.8                  |
| С18А—С5А—Н5АА                          | 109.5                  | C18B—C5B—H5BA                                        | 108.8                  |
| С4А—С5А—Н5АА                           | 109.5                  | C4B—C5B—H5BA                                         | 108.8                  |
| C7A—C6A—C11A                           | 115.2 (11)             | C11B—C6B—C7B                                         | 113.9 (10)             |
| C7A—C6A—C1A                            | 122.8 (11)             | C11B—C6B—C1B                                         | 123.2 (10)             |
| C11A—C6A—C1A                           | 121.5 (10)             | C7B—C6B—C1B                                          | 122.7 (10)             |
| C8A—C7A—C6A                            | 123.2 (13)             | C8B—C7B—C6B                                          | 122.5 (10)             |
| С8А—С7А—Н7АА                           | 118.4                  | C8B—C7B—H7BA                                         | 118.7                  |

| С6А—С7А—Н7АА   | 118.4      | C6B—C7B—H7BA   | 118.7      |
|----------------|------------|----------------|------------|
| C7A—C8A—C9A    | 120.7 (12) | C7B—C8B—C9B    | 121.5 (12) |
| С7А—С8А—Н8АА   | 119.7      | C7B—C8B—H8BA   | 119.2      |
| С9А—С8А—Н8АА   | 119.7      | C9B—C8B—H8BA   | 119.2      |
| C10A—C9A—C8A   | 118.1 (13) | C8B—C9B—C10B   | 116.8 (11) |
| С10А—С9А—Н9АА  | 120.9      | C8B—C9B—H9BA   | 121.6      |
| С8А—С9А—Н9АА   | 120.9      | C10B—C9B—H9BA  | 121.6      |
| C11A—C10A—C9A  | 120.7 (12) | C11B—C10B—C9B  | 120.4 (11) |
| C11A—C10A—H10A | 119.6      | C11B—C10B—H10B | 119.8      |
| C9A—C10A—H10A  | 119.6      | C9B—C10B—H10B  | 119.8      |
| C10A—C11A—C6A  | 121.9 (11) | C10B—C11B—C6B  | 124.8 (12) |
| C10A—C11A—H11A | 119.0      | C10B—C11B—H11B | 117.6      |
| C6A—C11A—H11A  | 119.0      | C6B—C11B—H11B  | 117.6      |
| C17A—C12A—N1A  | 121.4 (10) | C17B—C12B—C13B | 117.8 (11) |
| C17A—C12A—C13A | 119.6 (10) | C17B—C12B—N1B  | 123.4 (11) |
| N1A—C12A—C13A  | 118.7 (10) | C13B—C12B—N1B  | 118.7 (11) |
| C14A—C13A—C12A | 119.5 (11) | C14B—C13B—C12B | 121.7 (12) |
| C14A—C13A—H13A | 120.3      | C14B—C13B—H13B | 119.2      |
| C12A—C13A—H13A | 120.3      | C12B—C13B—H13B | 119.2      |
| C15A—C14A—C13A | 118.7 (11) | C15B—C14B—C13B | 118.8 (11) |
| C15A—C14A—H14A | 120.7      | C15B—C14B—H14B | 120.6      |
| C13A—C14A—H14A | 120.7      | C13B—C14B—H14B | 120.6      |
| F1A-C15A-C16A  | 118.9 (11) | F1B-C15B-C16B  | 119.4 (11) |
| F1A-C15A-C14A  | 117.7 (11) | F1B-C15B-C14B  | 119.1 (11) |
| C16A—C15A—C14A | 123.4 (10) | C16B—C15B—C14B | 121.5 (11) |
| C15A—C16A—C17A | 118.4 (11) | C15B—C16B—C17B | 119.1 (11) |
| C15A—C16A—H16A | 120.8      | C15B—C16B—H16B | 120.4      |
| C17A—C16A—H16A | 120.8      | C17B—C16B—H16B | 120.4      |
| C16A—C17A—C12A | 120.3 (11) | C12B—C17B—C16B | 121.0 (11) |
| C16A—C17A—H17A | 119.8      | C12B—C17B—H17B | 119.5      |
| C12A—C17A—H17A | 119.8      | C16B—C17B—H17B | 119.5      |
| C23A—C18A—C19A | 116.8 (11) | C19B—C18B—C23B | 118.7 (11) |
| C23A—C18A—C5A  | 118.1 (10) | C19B—C18B—C5B  | 123.7 (10) |
| C19A—C18A—C5A  | 124.8 (11) | C23B—C18B—C5B  | 117.5 (10) |
| C20A—C19A—C18A | 122.6 (11) | C18B—C19B—C20B | 119.7 (12) |
| С20А—С19А—Н19А | 118.7      | C18B—C19B—H19B | 120.2      |
| С18А—С19А—Н19А | 118.7      | C20B—C19B—H19B | 120.2      |
| C19A—C20A—C21A | 118.5 (11) | C21B—C20B—C19B | 122.8 (11) |
| C19A—C20A—H20A | 120.7      | C21B—C20B—H20B | 118.6      |
| C21A—C20A—H20A | 120.7      | C19B—C20B—H20B | 118.6      |
| C22A—C21A—C20A | 119.1 (11) | C20B—C21B—C22B | 117.6 (11) |
| C22A—C21A—H21A | 120.4      | C20B—C21B—H21B | 121.2      |
| C20A—C21A—H21A | 120.4      | C22B—C21B—H21B | 121.2      |
| C23A—C22A—C21A | 121.8 (12) | C23B—C22B—C21B | 119.0 (12) |
| C23A—C22A—H22A | 119.1      | C23B—C22B—H22B | 120.5      |
| C21A—C22A—H22A | 119.1      | C21B—C22B—H22B | 120.5      |
| C22A—C23A—C18A | 121.1 (12) | C22B—C23B—C18B | 122.2 (11) |
| C22A—C23A—H23A | 119.5      | C22B—C23B—H23B | 118.9      |

| C18A—C23A—H23A                          | 119.5      | C18B—C23B—H23B                      | 118.9      |
|-----------------------------------------|------------|-------------------------------------|------------|
| C25A—C24A—C29A                          | 122.0 (10) | C25B—C24B—N2B                       | 124.4 (10) |
| C25A—C24A—N2A                           | 123.1 (11) | C25B—C24B—C29B                      | 119.0 (11) |
| C29A—C24A—N2A                           | 114.5 (11) | N2B—C24B—C29B                       | 116.4 (10) |
| C24A—C25A—C26A                          | 119.5 (11) | C24B—C25B—C26B                      | 121.3 (10) |
| C24A—C25A—H25A                          | 120.2      | C24B—C25B—H25B                      | 119.4      |
| C26A—C25A—H25A                          | 120.2      | C26B—C25B—H25B                      | 119.4      |
| C27A—C26A—C25A                          | 118.3 (12) | C25B—C26B—C27B                      | 119.8 (11) |
| C27A—C26A—H26A                          | 120.8      | C25B—C26B—H26B                      | 120.1      |
| C25A—C26A—H26A                          | 120.8      | C27B—C26B—H26B                      | 120.1      |
| F2A—C27A—C28A                           | 118.5 (11) | C28B—C27B—F2B                       | 120.7 (10) |
| F2A—C27A—C26A                           | 118.1 (11) | C28B—C27B—C26B                      | 120.8 (11) |
| C28A—C27A—C26A                          | 123.2 (11) | F2B-C27B-C26B                       | 118.5 (11) |
| C27A—C28A—C29A                          | 119.2 (11) | C27B—C28B—C29B                      | 119.8 (10) |
| C27A—C28A—H28A                          | 120.4      | C27B—C28B—H28B                      | 120.1      |
| C29A—C28A—H28A                          | 120.4      | C29B—C28B—H28B                      | 120.1      |
| C28A—C29A—C24A                          | 117.5 (11) | C28B—C29B—C24B                      | 119.3 (11) |
| С28А—С29А—Н29А                          | 121.3      | C28B—C29B—H29B                      | 120.4      |
| С24А—С29А—Н29А                          | 121.3      | C24B—C29B—H29B                      | 120.4      |
| O1A—C30A—O2A                            | 120.4 (10) | O1B—C30B—O2B                        | 123.0 (10) |
| O1A—C30A—C2A                            | 126.4 (11) | O1B—C30B—C2B                        | 122.9 (11) |
| O2A—C30A—C2A                            | 113.1 (10) | O2B—C30B—C2B                        | 114.1 (9)  |
| O2A—C31A—C32A                           | 110.8 (10) | O2B—C31B—C32B                       | 111.0 (10) |
| O2A—C31A—H31A                           | 109.5      | O2B—C31B—H31C                       | 109.4      |
| C32A—C31A—H31A                          | 109.5      | C32B—C31B—H31C                      | 109.4      |
| O2A—C31A—H31B                           | 109.5      | O2B-C31B-H31D                       | 109.4      |
| C32A—C31A—H31B                          | 109.5      | C32B—C31B—H31D                      | 109.4      |
| H31A—C31A—H31B                          | 108.1      | H31C—C31B—H31D                      | 108.0      |
| C31A—C32A—H32A                          | 109.5      | C31B—C32B—H32D                      | 109.5      |
| C31A—C32A—H32B                          | 109.5      | C31B—C32B—H32E                      | 109.5      |
| H32A—C32A—H32B                          | 109.5      | H32D—C32B—H32E                      | 109.5      |
| $C_{31}A - C_{32}A - H_{32}C$           | 109.5      | C31B - C32B - H32F                  | 109.5      |
| H32A - C32A - H32C                      | 109.5      | H32D— $C32B$ — $H32F$               | 109.5      |
| H32B— $C32A$ — $H32C$                   | 109.5      | H32E = C32B = H32F                  | 109.5      |
|                                         | 107.0      |                                     | 109.0      |
| C12A—N1A—C1A—C6A                        | 109.5 (11) | C12B—N1B—C1B—C6B                    | 110.8 (11) |
| C5A—N1A—C1A—C6A                         | -104.3(12) | C5B—N1B—C1B—C6B                     | -102.2(12) |
| C12A— $N1A$ — $C1A$ — $C2A$             | -122.0(11) | C12B = N1B = C1B = C2B              | -121.7(10) |
| C5A—N1A—C1A—C2A                         | 24.2 (15)  | C5B—N1B—C1B—C2B                     | 25.2 (13)  |
| NIA—CIA—C2A—C3A                         | -432(14)   | C6B-C1B-C2B-C3B                     | 80 7 (14)  |
| C6A - C1A - C2A - C3A                   | 83.8 (13)  | N1B-C1B-C2B-C3B                     | -467(14)   |
| N1A— $C1A$ — $C2A$ — $C30A$             | 1383(11)   | C6B-C1B-C2B-C30B                    | -99.2(12)  |
| C6A - C1A - C2A - C30A                  | -94 6 (13) | N1B-C1B-C2B-C30B                    | 1334(11)   |
| C30A - C2A - C3A - N2A                  | -21(18)    | $C_{30B} C_{2B} C_{3B} N_{2B}$      | 15(19)     |
| C1A - C2A - C3A - N2A                   | 179 4 (11) | C1B = C2B = C3B = N2B               | -1784(11)  |
| $C_{111} = C_{21} = C_{31} = C_{112}$   | -175.7(11) | $C_{1D} = C_{2D} = C_{3D} = C_{4D}$ | -170.4(11) |
| $C_{1A} = C_{2A} = C_{3A} = C_{4A}$     | 63(16)     | C1B C2B C3P C4B                     | 1,0.2(10)  |
| $C_{A} = C_{A} = C_{A} = C_{A} = C_{A}$ | 160.7(10)  | $C_{1D} = C_{2D} = C_{3D} = C_{4D}$ | 7.9(13)    |
| $U_{A} = U_{A} = U_{A}$                 | 100.7 (11) | U24D—IN2D—U3D—U2D                   | 100.5 (12) |

| C24A—N2A—C3A—C4A    | -26.4 (18)  | C24B—N2B—C3B—C4B    | -28.4 (18)  |
|---------------------|-------------|---------------------|-------------|
| C2A—C3A—C4A—C5A     | 47.0 (14)   | C2B—C3B—C4B—C5B     | 44.4 (13)   |
| N2A—C3A—C4A—C5A     | -126.2 (12) | N2B-C3B-C4B-C5B     | -127.8 (12) |
| C12A—N1A—C5A—C18A   | -68.8 (13)  | C12B—N1B—C5B—C18B   | -67.5 (13)  |
| C1A—N1A—C5A—C18A    | 145.9 (10)  | C1B—N1B—C5B—C18B    | 146.2 (10)  |
| C12A—N1A—C5A—C4A    | 171.9 (10)  | C12B—N1B—C5B—C4B    | 172.2 (9)   |
| C1A—N1A—C5A—C4A     | 26.6 (14)   | C1B—N1B—C5B—C4B     | 25.9 (13)   |
| C3A—C4A—C5A—N1A     | -62.8 (12)  | C3B—C4B—C5B—N1B     | -62.7 (11)  |
| C3A—C4A—C5A—C18A    | 176.1 (10)  | C3B—C4B—C5B—C18B    | 174.1 (9)   |
| N1A—C1A—C6A—C7A     | 157.8 (11)  | N1B-C1B-C6B-C11B    | -27.8 (15)  |
| C2A—C1A—C6A—C7A     | 30.4 (15)   | C2B—C1B—C6B—C11B    | -154.6 (11) |
| N1A—C1A—C6A—C11A    | -30.9 (15)  | N1B—C1B—C6B—C7B     | 158.7 (10)  |
| C2A—C1A—C6A—C11A    | -158.3 (11) | C2B—C1B—C6B—C7B     | 31.9 (15)   |
| C11A—C6A—C7A—C8A    | 3.5 (18)    | C11B—C6B—C7B—C8B    | 1.8 (17)    |
| C1A—C6A—C7A—C8A     | 175.3 (12)  | C1B—C6B—C7B—C8B     | 175.8 (12)  |
| C6A—C7A—C8A—C9A     | -4 (2)      | C6B—C7B—C8B—C9B     | -3 (2)      |
| C7A—C8A—C9A—C10A    | 2.5 (19)    | C7B—C8B—C9B—C10B    | 4.3 (19)    |
| C8A—C9A—C10A—C11A   | -1.3 (18)   | C8B-C9B-C10B-C11B   | -4.5 (19)   |
| C9A—C10A—C11A—C6A   | 1.4 (18)    | C9B—C10B—C11B—C6B   | 4 (2)       |
| C7A—C6A—C11A—C10A   | -2.3 (17)   | C7B—C6B—C11B—C10B   | -2.1 (17)   |
| C1A—C6A—C11A—C10A   | -174.2 (11) | C1B—C6B—C11B—C10B   | -176.1 (13) |
| C5A—N1A—C12A—C17A   | -1.1 (16)   | C5B—N1B—C12B—C17B   | -5.6 (15)   |
| C1A—N1A—C12A—C17A   | 145.3 (11)  | C1B—N1B—C12B—C17B   | 140.9 (11)  |
| C5A—N1A—C12A—C13A   | 172.6 (10)  | C5B—N1B—C12B—C13B   | 171.2 (10)  |
| C1A—N1A—C12A—C13A   | -41.0 (15)  | C1B—N1B—C12B—C13B   | -42.3 (13)  |
| C17A—C12A—C13A—C14A | -2.0 (17)   | C17B—C12B—C13B—C14B | -0.9 (17)   |
| N1A—C12A—C13A—C14A  | -175.7 (11) | N1B—C12B—C13B—C14B  | -177.8 (10) |
| C12A—C13A—C14A—C15A | 1.2 (19)    | C12B—C13B—C14B—C15B | 1.5 (18)    |
| C13A—C14A—C15A—F1A  | 179.4 (11)  | C13B—C14B—C15B—F1B  | 178.9 (10)  |
| C13A—C14A—C15A—C16A | -1 (2)      | C13B—C14B—C15B—C16B | -1.9 (18)   |
| F1A-C15A-C16A-C17A  | -178.7 (11) | F1B-C15B-C16B-C17B  | -179.2 (10) |
| C14A—C15A—C16A—C17A | 2 (2)       | C14B—C15B—C16B—C17B | 1.6 (18)    |
| C15A—C16A—C17A—C12A | -2.7 (18)   | C13B—C12B—C17B—C16B | 0.6 (16)    |
| N1A—C12A—C17A—C16A  | 176.3 (11)  | N1B-C12B-C17B-C16B  | 177.4 (10)  |
| C13A—C12A—C17A—C16A | 2.8 (17)    | C15B—C16B—C17B—C12B | -1.0 (17)   |
| N1A—C5A—C18A—C23A   | 160.1 (10)  | N1B-C5B-C18B-C19B   | -22.1 (18)  |
| C4A—C5A—C18A—C23A   | -80.8 (13)  | C4B-C5B-C18B-C19B   | 98.9 (14)   |
| N1A—C5A—C18A—C19A   | -25.1 (15)  | N1B-C5B-C18B-C23B   | 159.1 (11)  |
| C4A—C5A—C18A—C19A   | 94.0 (12)   | C4B-C5B-C18B-C23B   | -79.9 (13)  |
| C23A—C18A—C19A—C20A | -3.1 (16)   | C23B—C18B—C19B—C20B | 0.8 (19)    |
| C5A—C18A—C19A—C20A  | -178.0 (11) | C5B-C18B-C19B-C20B  | -178.0 (13) |
| C18A—C19A—C20A—C21A | 2.6 (17)    | C18B—C19B—C20B—C21B | 0 (2)       |
| C19A—C20A—C21A—C22A | -0.3 (18)   | C19B—C20B—C21B—C22B | -2 (2)      |
| C20A—C21A—C22A—C23A | -1.4 (19)   | C20B—C21B—C22B—C23B | 3 (2)       |
| C21A—C22A—C23A—C18A | 0.8 (19)    | C21B—C22B—C23B—C18B | -2 (2)      |
| C19A—C18A—C23A—C22A | 1.4 (16)    | C19B—C18B—C23B—C22B | 0.1 (19)    |
| C5A—C18A—C23A—C22A  | 176.6 (11)  | C5B—C18B—C23B—C22B  | 178.9 (13)  |
| C3A—N2A—C24A—C25A   | -32.1 (18)  | C3B—N2B—C24B—C25B   | -31.2 (19)  |

| C3A—N2A—C24A—C29A   | 154.7 (11)  | C3B—N2B—C24B—C29B   | 153.9 (11)  |
|---------------------|-------------|---------------------|-------------|
| C29A—C24A—C25A—C26A | -5.9 (17)   | N2B—C24B—C25B—C26B  | -178.5 (11) |
| N2A—C24A—C25A—C26A  | -178.6 (10) | C29B—C24B—C25B—C26B | -3.8 (18)   |
| C24A—C25A—C26A—C27A | 4.7 (17)    | C24B—C25B—C26B—C27B | 1.6 (19)    |
| C25A—C26A—C27A—F2A  | -177.9 (10) | C25B—C26B—C27B—C28B | 1.4 (19)    |
| C25A—C26A—C27A—C28A | -1.9 (18)   | C25B—C26B—C27B—F2B  | -178.5 (11) |
| F2A—C27A—C28A—C29A  | 176.1 (10)  | F2B-C27B-C28B-C29B  | 177.8 (10)  |
| C26A—C27A—C28A—C29A | 0.1 (18)    | C26B—C27B—C28B—C29B | -2.1 (19)   |
| C27A—C28A—C29A—C24A | -1.1 (17)   | C27B—C28B—C29B—C24B | -0.2 (18)   |
| C25A—C24A—C29A—C28A | 4.1 (17)    | C25B—C24B—C29B—C28B | 3.1 (17)    |
| N2A—C24A—C29A—C28A  | 177.4 (10)  | N2B-C24B-C29B-C28B  | 178.2 (10)  |
| C31A—O2A—C30A—O1A   | -1.6 (15)   | C31B—O2B—C30B—O1B   | 1.5 (17)    |
| C31A—O2A—C30A—C2A   | 176.8 (10)  | C31B—O2B—C30B—C2B   | -179.9 (10) |
| C3A—C2A—C30A—O1A    | 3.2 (19)    | C3B—C2B—C30B—O1B    | 2.1 (19)    |
| C1A-C2A-C30A-O1A    | -178.4 (12) | C1B—C2B—C30B—O1B    | -178.0 (11) |
| C3A—C2A—C30A—O2A    | -175.1 (11) | C3B—C2B—C30B—O2B    | -176.4 (11) |
| C1A—C2A—C30A—O2A    | 3.3 (15)    | C1B—C2B—C30B—O2B    | 3.4 (15)    |
| C30A—O2A—C31A—C32A  | -82.5 (13)  | C30B—O2B—C31B—C32B  | -82.7 (12)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                  | D—H      | H···A     | $D \cdots A$ | D—H···A  |
|----------------------------------------------------------|----------|-----------|--------------|----------|
| N2A—H2AA····O1A                                          | 0.85 (3) | 1.98 (10) | 2.652 (13)   | 136 (12) |
| N2 <i>B</i> —H2 <i>BA</i> ···O1 <i>B</i>                 | 0.88     | 2.04      | 2.664 (13)   | 127      |
| $C31A$ — $H31A$ ···F2 $B^{i}$                            | 0.99     | 2.43      | 3.327 (14)   | 151      |
| C31 <i>A</i> —H31 <i>B</i> …F1 <i>B</i> <sup>ii</sup>    | 0.99     | 2.40      | 3.257 (15)   | 144      |
| C31 <i>B</i> —H31 <i>C</i> …F2 <i>A</i> <sup>iii</sup>   | 0.99     | 2.45      | 3.213 (15)   | 134      |
| C31 $B$ —H31 $D$ ···F1 $A^{iv}$                          | 0.99     | 2.32      | 3.281 (13)   | 165      |
| $C5A - H5AA \cdots Cg9^{v}$                              | 1.00     | 2.91      | 3.907 (13)   | 178      |
| $C5B$ — $H5BA$ ··· $Cg4^{vi}$                            | 1.00     | 2.96      | 3.958 (14)   | 174      |
| $C22A$ — $H22A$ ···· $Cg7^{v}$                           | 0.95     | 2.87      | 3.770 (14)   | 159      |
| C22 $B$ —H22 $B$ ···· $Cg2^{vi}$                         | 0.95     | 2.94      | 3.857 (15)   | 162      |
| C29 <i>A</i> —H29 <i>A</i> … <i>C</i> g7 <sup>vii</sup>  | 0.95     | 2.71      | 3.437 (13)   | 134      |
| C29 <i>B</i> —H29 <i>B</i> … <i>Cg</i> 2 <sup>viii</sup> | 0.95     | 2.84      | 3.595 (13)   | 138      |
|                                                          |          |           |              |          |

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*; (ii) -*x*+2, *y*+1/2, -*z*+1; (iii) -*x*+1, *y*-1/2, -*z*+1; (iv) -*x*+2, *y*-1/2, -*z*; (v) -*x*+1, *y*-1/2, -*z*; (vi) -*x*, *y*+1/2, -*z*; (vii) *x*-1, *y*, *z*+1; (viii) *x*+1, *y*, *z*.

| Comparison | of selected | (X-ray and DF1 | 7) bond lengths | and angles (Å, °). |  |
|------------|-------------|----------------|-----------------|--------------------|--|
|            | -,          | (              | /               |                    |  |

| Bonds/angles | X-ray      | B3LYP/6-311+G(2d,p) |  |
|--------------|------------|---------------------|--|
| F1A—C15A     | 1.363 (12) | 1.3636              |  |
| F2A—C27A     | 1.346 (13) | 1.3463              |  |
| O1A-C30A     | 1.242 (15) | 1.2407              |  |
| O2A—C30A     | 1.351 (14) | 1.3509              |  |
| O2A—C31A     | 1.464 (14) | 1.4637              |  |
| N1A—C12A     | 1.408 (13) | 1.4078              |  |
| N1A—C5A      | 1.467 (14) | 1.466               |  |
| N1A—C1A      | 1.485 (14) | 1.4854              |  |
|              |            |                     |  |

| N2A—C24A       | 1.431 (14) | 1.4318   |  |
|----------------|------------|----------|--|
| C30A—O2—C31A   | 116.6 (9)  | 116.5807 |  |
| C12A—N1A—C1A   | 115.1 (9)  | 115.088  |  |
| C5A—N1A—C1A    | 118.2 (8)  | 117.6837 |  |
| C3A—N2A—C24A   | 125.0 (11) | 124.9578 |  |
| N1A—C1A—C6A    | 111.1 (10) | 111.1474 |  |
| N1A—C1A—C2A    | 111.9 (10) | 111.8615 |  |
| F1A—C15A—C14A  | 117.7 (11) | 118.7741 |  |
| F1A—C15A—C16A  | 118.8 (11) | 119.0320 |  |
| F2A—C27A—C28A  | 118.8 (11) | 119.5501 |  |
| F2A—C27A—C26A  | 118.1 (11) | 119.3655 |  |
| O1AC30AO2A     | 120.4 (10) | 120.4296 |  |
| O1A—C30A)—C2A  | 126.4 (11) | 126.4327 |  |
| O2A-C30A-C2A   | 113.2 (10) | 113.1168 |  |
| O2A—C31A –C32A | 110.7 (10) | 110.7128 |  |
|                |            |          |  |

## Calculated energies

| Molecular property               | Title compound |
|----------------------------------|----------------|
| Total energy, TE (eV)            | -46146         |
| E <sub>HOMO</sub>                | -5.6182        |
| $E_{ m LUMO}$                    | -1.3986        |
| Gap, $\Delta E$ (eV)             | 4.22           |
| Dipole moment, $\mu$ (Debye)     | 3.5082         |
| Ionization enthalpy, IE (eV)     | 5.6182         |
| Electron gain enthalpy, EE (eV)  | 1.3986         |
| Electronegativity, $\chi$        | 3.508          |
| Hardness, $\eta$                 | 2.1098         |
| Softness, $\sigma$               | 0.2369         |
| Electrophilicity index, $\omega$ | 2.9167         |

### Second-order perturbation theory analysis of Fock matrix in NBO basis for (I)

| NBO<br>No. | Donor      | Occupancy | NBO<br>No. | Acceptor                | Occupancy | <i>E</i> (2) <sup><i>a</i></sup><br>(kcal<br>mol <sup>-1</sup> ) | $E(j) - E(i)^b$ (a.u.) | F(ij) <sup>c</sup><br>(a.u.)<br>(a.u.) |
|------------|------------|-----------|------------|-------------------------|-----------|------------------------------------------------------------------|------------------------|----------------------------------------|
| 59         | π(C44-C53) | 1.64436   | 1170       | π*(C45-<br>C47)         | 0.35828   | 19.09                                                            | 0.28                   | 0.065                                  |
| 59         | π(C44-C53) | 1.64436   | 1175       | π*(C49-<br>C51)         | 0.38366   | 19.14                                                            | 0.31                   | 0.069                                  |
| 45         | π(C33-C42) | 1.66035   | 1156       | π*(C34-<br>C36)         | 0.32171   | 17.47                                                            | 0.32                   | 0.067                                  |
| 45         | π(C33-C42) | 1.66035   | 1161       | π*(C38-<br>C40)         | 0.33276   | 20.75                                                            | 0.28                   | 0.069                                  |
| 19         | π(C7-C8)   | 1.65789   | 1133       | π*(C10-<br>C12)         | 0.37463   | 19.76                                                            | 0.28                   | 0.067                                  |
| 19         | π(C7-C8)   | 1.65789   | 1138       | <i>π</i> *(C14-<br>C16) | 0.33955   | 20.06                                                            | 0.29                   | 0.068                                  |

| 72  | π(C56-C57) | 1.65426 | 1186 | π*(C59-<br>C61)         | 0.33151 | 19.54 | 0.30 | 0.069 |
|-----|------------|---------|------|-------------------------|---------|-------|------|-------|
| 53  | π(C38-C40) | 1.66153 | 1153 | π*(C33-<br>C42)         | 0.35511 | 19.12 | 0.29 | 0.067 |
| 53  | π(C38-C40) | 1.66153 | 1156 | π*(C34-<br>C36)         | 0.32171 | 18.31 | 0.32 | 0.068 |
| 48  | π(C34-C36) | 1.65591 | 1161 | π*(C38-<br>C40)         | 0.33276 | 20.46 | 0.28 | 0.068 |
| 48  | π(C34-C36) | 1.65591 | 1153 | π*(C33-<br>C42)         | 0.35511 | 21.06 | 0.29 | 0.070 |
| 30  | π(C14-C16) | 1.69306 | 1133 | <i>π</i> *(C11-<br>C13) | 0.37463 | 21.43 | 0.28 | 0.070 |
| 30  | π(C14-C16) | 1.69306 | 1127 | $\pi^*(C8-C9)$          | 0.39217 | 19.23 | 0.28 | 0.067 |
| 25  | π(C10-C12) | 1.65797 | 1138 | π*(C15-<br>C17)         | 0.33955 | 19.96 | 0.29 | 0.068 |
| 25  | π(C10-C12) | 1.65797 | 1127 | $\pi^*(C8-C9)$          | 0.39217 | 20.13 | 0.29 | 0.069 |
| 15  | π(C5-C19)  | 1.79891 | 1142 | <i>π</i> *(C20-<br>O21) | 0.36217 | 30.34 | 0.27 | 0.084 |
| 62  | π(C45-C47) | 1.72021 | 1167 | π*(C44-<br>C53)         | 0.40601 | 18.64 | 0.29 | 0.068 |
| 62  | π(C45-C47) | 1.72021 | 1175 | <i>π</i> *(C49-<br>C51) | 0.38366 | 17.53 | 0.31 | 0.068 |
| 67  | π(C49-C51) | 1.67609 | 1167 | <i>π</i> *(C44-<br>C53) | 0.40601 | 17.81 | 0.29 | 0.066 |
| 67  | π(C49-C51) | 1.67609 | 1170 | π*(C45-<br>C47)         | 0.35828 | 21.20 | 0.29 | 0.071 |
| 73  | π(C56-C65) | 1.97102 | 1191 | π*(C63-<br>C65)         | 0.32811 | 14.60 | 1.98 | 0.152 |
| 78  | π(C59-C61) | 1.66853 | 1180 | π*(C56-<br>C57)         | 0.34323 | 15.72 | 0.34 | 0.066 |
| 83  | π(C63-C65) | 1.67036 | 1180 | π*(C56-<br>C57)         | 0.34323 | 13.27 | 0.34 | 0.061 |
| 83  | π(C63-C65) | 1.67036 | 1186 | π*(C59-<br>C61)         | 0.33151 | 16.27 | 0.30 | 0.063 |
| 124 | (LP1-N6)   | 1.64338 | 1123 | $\pi^{*}(C5-C19)$       | 0.30393 | 54.49 | 0.29 | 0.114 |
| 124 | (LP1-N6)   | 1.64338 | 1127 | $\pi^{*}(C8-C9)$        | 0.39217 | 20.26 | 0.27 | 0.067 |
| 130 | (LP1-O22)  | 1.96095 | 1142 | <i>σ</i> *(C20-21)      | 0.36217 | 7.89  | 1.13 | 0.085 |
| 127 | (LP2-F13)  | 1.92911 | 1133 | <i>π</i> *(C11-<br>C13) | 0.37463 | 18.00 | 0.43 | 0.085 |
| 126 | (LP2-F13)  | 1.97237 | 1133 | σ*(C11-<br>C13)         | 0.37463 | 6.04  | 0.97 | 0.068 |
| 133 | (LP2-F50)  | 1.97282 | 1175 | σ*(C49-<br>C51)         | 0.38366 | 5.94  | 0.98 | 0.068 |
| 131 | (LP2-O22)  | 1.80316 | 1142 | <i>π</i> *(C20-<br>O21) | 0.36217 | 46.33 | 0.32 | 0.114 |
| 134 | (LP3-F50)  | 1.93507 | 1175 | π*(C49-<br>C51)         | 0.38366 | 15.94 | 0.46 | 0.084 |

Notes: (a) (2) means energy of hyperconjugative interactions; (b) energy difference between donor and accepter i and j NBO orbitals; (c) F(i,j) is the Fock matrix element between i and j NBO orbitals