CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 28 August 2023
Accepted 15 September 2023

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

Keywords: crystal structure; Hirshfeld surface analysis; iron(II) porphyrin complex; tert butyl isocyanide.

CCDC reference: 975663
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS
Published under a CC BY 4.0 licence

Synthesis and crystal structure of bis(tert-butyl isocyanide- κC) $[5,10,15,20$-tetrakis(4-chloro-phenyl)porphyrinato- $\kappa^{4} N$]iron(II)

Soumaya Nasri*

Department of Chemistry, College of Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia. *Correspondence e-mail: soumaya.n@mu.edu.sa

In the title compound, $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{C}_{44} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{~N}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right.$] or [$\mathrm{Fe}^{\mathrm{II}}(\mathrm{TClPP})(t \text {-BuNC })_{2}$] [where TCIPP and t-BuNC are 5,10,15,20-tetrakis(4-chlorophenyl)porphyrinate and tert-butyl isocyanide ligands, respectively], the metal ion lies on an inversion center and is octahedrally coordinated by the N atoms of the porphyrin ring in the equatorial plane and by carbon atoms of the trans t-BuNC ligands in the axial sites. The $\mathrm{Fe}-\mathrm{N}$ bond length of 2.0074 (14) A suggests a low-spin complex $(S=0)$. The crystal packing of the title compound is sustained by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots C g(C g=$ the centroid of a pyrrole ring of the TCIPP porphyrinate) interactions, leading to a three-dimensional network. The Hirshfeld surface (HS) analysis indicates that 61.4% of the intermolecular interactions are from $\mathrm{H} \cdots \mathrm{H}$ contacts while other contributions are from $\mathrm{C} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{C}, \mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ interactions, which comprise 21.3%, 13.3% and 3.6% of the HS, respectively.

1. Chemical context

Since the beginning of the 1960s, hexacoordinated iron(II) metalloporphyrins of type $\left[\mathrm{Fe}^{\mathrm{II}}(\operatorname{Porph})(L)_{2}\right]$, where Porph $=$ porphyrin and L is a N -donor neutral axial ligand like pyridine or imidazole, have been widely employed to mimic hemoproteins such as hemoglobin, myoglobin and cytochrome c. These ferrous porphyrin complexes are low-spin $3 d^{6}$ systems ($S=0$). Such $\mathrm{Fe}^{\mathrm{II}}$ models with π-acceptor axial ligands like $\mathrm{CN}^{-}, \mathrm{CO}$ and isocyanides $(R-\mathrm{NC})$ are also known. Hemeisocyanide derivatives were studied starting from 1951 (St. George \& Pauling, 1951) as a result of their electronic similarity to CO-hemoproteins. Jameson \& Ibers (1979) studied the IR data and the molecular structure of the $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\right.$ BuNC) $)_{2}$] compound. In 1984, the Mössbauer-effect data and the IR of the bis(isocyanide) iron(II) porphyrin $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(\mathrm{PhCO}-\mathrm{NC})_{2}\right] \quad$ (PhCO-NC $=$ benzoylisocyanide) and the mixed ligand isocyanide-py ligands $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(\mathrm{PhCO}-\right.$ $\mathrm{NC})(\mathrm{py})$] were reported (Le Plouzennec et al., 1984). Subsequently, Salzmann et al. (1999) documented the molecular structure, and undertook ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR studies of the [Fe ${ }^{\text {II }}$ (TPP) $(\mathrm{iPrNC})(1$-MeIm) $]$ (iPrNC $=2$-isocyanopropane and 1-MeIm = 1- methylimidazole) complex. In 2001, spectroscopic investigations of the $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}} n$-butyl isocyanide complexes P450cam and P450nor were reported (Lee et al., 2001). In 2017, we reported the spectroscopic and structural characterization of the $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPBP})(t-\mathrm{BuNC})_{2}\right]$ complex where TPBP is the 5,10,15,20-\{tetrakis-[para-(benzoyloxy) phenyl]porphyrinate ligand (Nasri et al., 2017). In order to obtain more insight into the electronic and structural properties of iron(II) bis(isocyanide) porphyrin complexes, we now
report the synthesis, UV/Vis and IR data and the single crystal X-ray structure of the title bis(t-butyl isocyanide)[5,10,15,20-tetra(para-chlorophenyl)porphyrinato]iron(II) complex, $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TClPP})(t-\mathrm{BuNC})_{2}\right]$, I.

2. Structural commentary

Complex I forms monoclinic crystals ($P 2_{1} / n$ space group), wherein the iron(II) atom is positioned on an inversion center. The $\mathrm{Fe}^{\mathrm{II}}$ center atom exhibits an octahedral coordination by four pyrrole N atoms from the porphyrin macrocycle and two trans t-BuNC axial ligands. One-half of the $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TCIPP})(t\right.$ BuNC) $)_{2}$] molecule comprises the asymmetric unit of complex I (Fig. 1). Scheidt \& Reed (1981) observed a correlation between the average equatorial $\mathrm{Fe}-\mathrm{N}_{\mathrm{p}}(\mathrm{p}=$ porphyrin $)$ bond

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at 40%. The H atoms have been omitted for clarity. Symmetry code: (i) $2-x,-y, 1-z$.
length and the spin state of iron(II) metalloporphyrins. Consequently, in high-spin $(S=2)$ complexes, the $\mathrm{Fe}-\mathrm{N}_{\mathrm{p}}$ distances are the longest, exemplified by the $\left[\mathrm{Fe}(\mathrm{TpivPP})\left(\mathrm{N}_{3}\right)\right]^{-}$ion complex (where TpivPP represents $\alpha, \alpha, \alpha, \alpha$-tetrakis(o-pivalamidophenyl)porphinate, known as the picket-fence porphyrin) where $\mathrm{Fe}-\mathrm{N}=2.094$ (3) \AA (Hachem et al., 2009). In low-spin $(S=0)$ complexes, the average $\mathrm{Fe}-\mathrm{N}_{\mathrm{p}}$ bond length is reduced. For example, in the $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TMPP})(\mathrm{amp})_{2}\right]$ complex [TMPP is 5,10,15,20-tetrakis(4methoxyphenyl)porphyrinato and amp is the 4-(2-aminoethyl) morpholine], the $\mathrm{Fe}-\mathrm{N}$ bond length is 1.988 (2) \AA (Ben Haj Hassen et al., 2016). For our ferrous bis(t-BuNC) derivative (I), the $\mathrm{Fe}-\mathrm{N}$ distance of 2.0074 (14) \AA strongly suggests that this species corresponds to an iron(II) low-spin ($S=0$) porphyrin. Notably, this value closely resembles those for the related $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]($ Jameson \& Ibers, 1979) and $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPBP})(t-\mathrm{BuNC})_{2}\right]$ (Nasri et al., 2017) complexes, which are 2.005 (2) and 2.007 (2) A., respectively.

In complex \mathbf{I}, the $\mathrm{Fe}-\mathrm{C}$ distance to the axial ligand measures 1.924 (2) \AA, which is very near to those observed in the associated $\mathrm{Fe}^{\mathrm{II}} \quad \operatorname{bis}(t-\mathrm{BuNC})$ metalloporphyrins: $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]$ (where TPP is $5,10,15,20$-tetraphenylporphyrinate) and $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPBP})(t-\mathrm{BuNC})_{2}\right]$ where TPBP is [4(benzoyloxy)phenyl]porphyrinate\} with $\mathrm{Fe}^{\mathrm{II}}-\mathrm{C}$ distances of 1.901 (3) and 1.907 (2) Å, respectively (Jameson \& Ibers, 1979; Nasri et al., 2017). As depicted in Fig. 1, complex I exhibits a non-linear iron(II)-(t-BuNC) geometry. Specifically, the $\mathrm{Fe}-\mathrm{C} 23-\mathrm{N} 3$ and $\mathrm{C} 23-\mathrm{N} 3-\mathrm{C} 24$ angles measure 165.75 (15) and $163.66(17)^{\circ}$, respectively, which closely resemble the corresponding angles observed in $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]$ (Jameson \& Ibers, 1979), which are 170.58 (19) and 167.4 (2) ${ }^{\circ}$, respectively.

In the case of the related iron(III) ion complex $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TPP})(t-\mathrm{BuCN})_{2}\right]^{+}$, these angles exhibit significantly higher values, measuring 174.2 and 173.5° for the average $\mathrm{Fe}-\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles, respectively. The deviations from linearity, represented by the angles $14.3 / 16.3^{\circ}$ for complex I and $11.0 / 20.9^{\circ}$ for $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]$ (Jameson \& Ibers, 1979), are notably greater than those observed in the iron(III) TPP-bis(t-BuNC) derivative, where the average deviation values are 5.8/6.5 (Walker et al., 1996). The greater deviation from linearity observed in the $t-\mathrm{BuCN}$ ligand of ferrous meso-metalloporphyrins, compared to the ferric mesoporphyrin ion complex $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TPP})(t-\mathrm{BuCN})_{2}\right]^{+}$, is consistent with the dominance of the π-backbonding effect in iron(II) derivatives over iron(III) coordination compounds.

As highlighted in the IR spectroscopy section, the $\mathrm{Fe}^{\mathrm{II}}$ species exhibit significant π-backbonding, which implies that the $\mathrm{C}-\mathrm{N}$ bond length in the ferrous tert-butyl isocyanide species should be greater than that observed in the ferric tertbutyl isocyanide derivatives. Indeed, in the case of \mathbf{I}, the $\mathrm{C}-\mathrm{N}$ distance measures 1.159 (2) \AA, which is quite similar to the $\mathrm{C}-\mathrm{N}$ distances observed in the related compound $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\mathrm{BuCN})_{2}\right](1.152$ and $1.162 \AA$; Jameson \& Ibers, 1979). Comparatively, for the t-BuNC-iron(III) ion complexes $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]^{+}$(Walker et al., 1996) and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{OEP})(t-\mathrm{BuNC})_{2}\right]^{+}($Walker et al., 1996), the $\mathrm{C}-\mathrm{N}$ bond

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.
$C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 4$ pyrrole ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 25-\mathrm{H} 25 C \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.98	2.86	$3.738(2)$	149
$\mathrm{C} 27-\mathrm{H} 27 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.98	2.86	$3.733(2)$	149
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.95	2.94	$3.7953(18)$	151
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~N} 2^{\mathrm{iii}}$	0.95	2.86	$3.685(2)$	146
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{Cg} 1^{\mathrm{iv}}$	0.96	2.69	$3.518(2)$	146

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2} ; \quad$ (ii) $\quad-x+2,-y+1,-z+1 ; \quad$ (iii)
$x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $-x+1,-y,-z$.
$x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $-x+1,-y,-z$.
length values for the t-BuNC ligand are 1.13 (3)/1.12 (2) \AA and 1.145 (4)/1.144 (4) \AA, respectively.

It is certainly true that the iron(II) derivatives display longer $\mathrm{C}-\mathrm{N}$ distances. Nevertheless, the difference between the longest $\mathrm{C}-\mathrm{N}$ bond length of an iron(II)-bis $(t-\mathrm{BuNC})$ derivative and the shortest $\mathrm{C}-\mathrm{N}$ bond length of an iron(III)-$\operatorname{bis}(t-\mathrm{BuNC})$ metalloporphyrin is small ($0.042 \AA$).

3. Supramolecular features

Within the crystal structure of I (Figs. 2 and 3, Table 1), the $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TClPP})(t-\mathrm{BuNC})_{2}\right]$ complexes are linked to each other via weak non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots C g$ intermolecular interactions where $C g$ is the centroid of a pyrrole ring. It may be noted that Cl 1 acts as acceptor for three different $\mathrm{C}-\mathrm{H}$ groups.

4. Database survey

A search in the Cambridge Structural Database (version 5.43, update of September 2022; Groom et al., 2016), of iron(II) hexacoordinated metalloporphyrin complexes type $\left[\mathrm{Fe}^{\mathrm{II}}\right.$ $($ Porph $\left.)(L)_{2}\right]$ where Porph is a porphyrin and L is a N -donor, O-donor, S-donor or C-donor axial ligand gave 25 hits where L is a neutral N -donor axial ligand, ten hits for neutral O donor axial ligands, three S-donor neutral S-donor axial ligands and four neutral C-donor axial ligands. In fact, for the latter type of neutral axial ligands, it is the tert-butyl isocyanide corresponding to $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]$ (Jameson \& Ibers, 1979), $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{OOEP})(t-\mathrm{BuNC})_{2}\right] \quad(\mathrm{OOEP}=$ octaethyloxophlorinato) (Rath et al., 2004) and $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPBP})(t-\mathrm{BuNC})_{2}\right]$

Figure 2
A portion of the crystal packing of the title complex, viewed down [100].

Figure 3
A partial view of the crystal packing of \mathbf{I} showing the link between the complexes via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.
$($ TPBP $=5,10,15,20-$ (tetrakis-[4-(benzoyloxy)phenyl]porphyrinate]).

5. FT-IR and UV/Vis spectroscopies

The FT-IR spectrum of $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TClPP})(t-\mathrm{Bu}-\mathrm{NC})_{2}\right]$ (I) (Fig. 4) was obtained in the $4000-400 \mathrm{~cm}^{-1}$ range by a PerkinElmer Spectrum Two FTIR spectrometer. The spectrum exhibits characteristic IR bands of the TCIPP porphyrinate. The C-H stretching frequencies of the porphyrin are shown between 3083 and $2923 \mathrm{~cm}^{-1}$ while $\nu(\mathrm{CH})$ of the methyl groups of the t BuNC axial ligand occurs at $2883 \mathrm{~cm}^{-1}$. The strong band at $996 \mathrm{~cm}^{-1}$ is attributed to the bonding vibration $\delta(\mathrm{CCH})$ of the porphyrin core for which a value around $1000 \mathrm{~cm}^{-1}$ is characteristic of a metalled porphyrin while a $\delta(\mathrm{CCH})$ value around $960 \mathrm{~cm}^{-1}$ is specific of a free base porphyrin.

It has been found that the values of the $\mathrm{C} \equiv \mathrm{N}$ stretching frequency for ferric t-BuNC metalloporphyrins are displaced by at least $60 \mathrm{~cm}^{-1}$ to higher frequency compared to those of ferrous t-BuNC porphyrin complexes. Thus for the

Figure 4
FT-IR spectrum of \mathbf{I}.

Figure 5
UV/Vis spectrum of I recorded in chloroform.
$\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]^{+}$ion complex (Simonneaux et al., 1989), the $\nu(\mathrm{C} \equiv \mathrm{N})$ frequency value of the t - BuNC axial ligand is $2222 \mathrm{~cm}^{-1}$ while that of the $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]$ compound (Simonneaux et al., 1989) is $2129 \mathrm{~cm}^{-1}$. Our $\mathrm{Fe}^{\mathrm{II}}-$ TCIPP-bis (t-BuNC) species (I), exhibits two bands attributed to the $\nu(\mathrm{C} \equiv \mathrm{N})$ frequency value of the t-BuNC axial ligand with the weak one at $2202 \mathrm{~cm}^{-1}$ and the main strong IR band is shown at $2126 \mathrm{~cm}^{-1}$. This indicates clearly that complex \mathbf{I} is iron(II) metalloporphyrin.

The UV/Vis spectrum of complex I was obtained in chloroform using a WinASPECT PLUS scanning spectrophotometer (Fig. 5). The measurements were conducted in 1.0 cm path length cuvettes containing dry degassed chloroform solutions, all under an argon atmosphere. The $\lambda_{\max }$ value of the Soret band for complex \mathbf{I} is 436 nm (Gouterman et al., 1963), which closely resembles the values observed in the related species $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TPP})(t-\mathrm{BuNC})_{2}\right]$ and $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{TBPPP})(t-\right.$

Figure 6
View of the three-dimensional Hirshfeld surface of complex (I) plotted over $d_{\text {norm }}$.

Figure 7
Two-dimensional fingerprint plots of complex I showing close contacts of (a) all contributions in the crystal and those delineated into $(b) \mathrm{H} \cdots \mathrm{H},(c)$ $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ and $(d) \mathrm{Cl} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{Cl}$ interactions.

BuNC) $)_{2}$, which are 432 nm and 437 nm , respectively (Jameson \& Ibers, 1979; Nasri et al., 2017). Notably for the $\operatorname{bis}(t-\mathrm{BuNC})$ ferric metalloporphyrins, the $\lambda_{\max }$ of the Soret band value is blue shifted compared to those of the ferrous bis (t-BuNC) porphyrin complexes, e.g., for $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TPP})(\mathrm{t}-\right.$ BuNC) $\left.)_{2}\right]^{+}$(Simonneaux et al., 1989), the $\lambda_{\max }$ of the Soret band is 420 nm .

6. Hirshfeld surface analysis

The supramolecular interactions in the title structure have been further investigated and visualized by Hirshfeld surface (HS) analysis performed with Crystal Explorer 17 (Turner et al., 2017). The Hirshfeld surface of complex I mapped over $d_{\text {norm }}$ in the range -0.19 to 1.14 a.u. is represented in Fig. 6. This study confirms that the crystal packing of complex I is mainly made by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg}$ intermolecular interactions, as already shown by the PLATON program (Spek, 2020) (Fig. 3). According to the two-dimensional fingerprint plots of complex I shown in Fig. 7, most important intermolecular interactions are $\mathrm{H} \cdots \mathrm{H}$ contacts (61.4%). The $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}, \mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ interactions comprise $21.3 \%, 13.3 \%$ and 3.6% of the HS, respectively.

7. Synthesis and crystallization

The starting materials 5,10,15,20-tetra(para-chlorophenyl) porphyrin $\left(\mathrm{H}_{2} \mathrm{TClPP}\right)$ and $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{TClPP})\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)\right]$ were prepared as described in the literature (Adler et al., 1967;

Gismelseed et al., 1990). To a solution of $\left[\mathrm{Fe}^{\text {III }}\right.$ (TClPP)$\left.\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)\right](100 \mathrm{mg}, 0.105 \mathrm{mmol})$ in dichloromethane $(35 \mathrm{ml})$ was added an excess of tert-butyl isocyanide (t-BuNC) (1.2 ml , 10.5 mmol). The reaction mixture was stirred at room temperature for 3 h . Crystals of the title complex were obtained by diffusion of the n-hexane and dichloromethane solutions. Elemental analysis calculated (\%) for $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{Cl}_{4} \mathrm{FeN}_{6}$: C 66.68, H 4.35, N 8.64; found: C 66.81, H 4.41, N 8.78,

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms attached to C atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=$ $0.99 \AA$ (methylene) and $0.95 \AA$ (aromatic) with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project No. R-2023-608.

References

Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. \& Korsakoff, L. (1967). J. Org. Chem. 32, 476-476.
Agilent (2014). CrysAlis PRO. Agilent Technologies, Abingdon, England.
Ben Haj Hassen, L., Ezzayani, K., Rousselin, Y., Stern, C., Nasri, H. \& Schulz, C. E. (2016). J. Mol. Struct. 1110, 138-142.
Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2012). APEX2. Bruker AXS, Inc., Madison, WI, USA.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.

Burnett, M. N. \& Johnson, C. K. (1996). Report ORNL-6895, Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A. X., Winkler, H., Nasri, H., Doppelt, P., Mandon, D., Fischer, J. \& Weiss, R. (1990). Inorg. Chem. 29, 2741-2749.

Gouterman, M., Wagnière, G. H. \& Snyder, L. C. (1963). J. Mol. Spectrosc. 11, 108-127.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hachem, I., Belkhiria, M. S., Giorgi, M., Schulz, C. E. \& Nasri, H. (2009). Polyhedron, 28, 954-958.

Jameson, G. B. \& Ibers, J. A. (1979). Inorg. Chem. 18, 1200-1208.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Fe}\left(\mathrm{C}_{44} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{~N}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$
$M_{\text {r }}$	972.58
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	115
$a, b, c(\mathrm{~A})$	$\begin{aligned} & 10.9679(5), 16.9240(7), \\ & 13.3536(5) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	114.015 (1)
$V\left(\AA^{3}\right)$	2264.15 (16)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.62
Crystal size (mm)	$0.28 \times 0.21 \times 0.18$
Data collection	
Diffractometer	Nonius Kappa APEXII
Absorption correction	Numerical (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.903, 0.982
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	44887, 5201, 4077
$R_{\text {int }}$	0.052
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.650
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.033, 0.083, 1.05
No. of reflections	5201
No. of parameters	295
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.43,-0.35$
Computer programs: APEX2 (Bruker, (Agilent, 2014), SIR2004 (Burla et al., 200 PIII (Burnett \& Johnson, 1996), ORTE publication routines (Farrugia, 2012).	SAINT (Bruker, 2007), CrysAlis PRO HELXL 2013 (Sheldrick, 2015), ORTE r Windows (Farrugia, 2012)and WinGX

Lee, D.-S., Park, S.-Y., Yamane, K., Obayashi, E., Hori, H. \& Shiro, Y. (2001). Biochemistry, 40, 2669-2677.

Le Plouzennec, M., Bondon, A. \& Simonneaux, G. (1984). Inorg. Chem. 23, 4398-4399.
Nasri, S., Brahmi, J., Turowska-Tyrk, I., Schulz, C. E. \& Nasri, H. (2017). J. Organomet. Chem. 846, 176-184.

Rath, S. P., Olmstead, M. M. \& Balch, A. L. (2004). Inorg. Chem. 43, 7648-7655.
Salzmann, R., McMahon, M. T., Godbout, N., Sanders, L. K., Wojdelski, M. \& Oldfield, E. (1999). J. Am. Chem. Soc. 121, 38183828.

Scheidt, W. R. \& Reed, C. A. (1981). Chem. Rev. 81, 543-555.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Simonneaux, G., Hindre, F. \& Le Plouzennec, M. (1989). Inorg. Chem. 28, 823-825.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
St. George, R. C. C. \& Pauling, L. (1951). Science, 114, 629-634.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
Walker, F. A., Nasri, H., Turowska-Tyrk, I., Mohanrao, K., Watson, C. T., Shokhirev, N. V., Debrunner, P. G. \& Scheidt, W. R. (1996). J. Am. Chem. Soc. 118, 12109-12118.

supporting information

Synthesis and crystal structure of bis(tert-butyl isocyanide- κ C) [5,10,15,20-tetra-kis(4-chlorophenyl)porphyrinato- $\boldsymbol{\kappa}^{4} N$]iron(II)

Soumaya Nasri

Computing details

Bis(tert-butyl isocyanide- κ C) $\left[5,10,15,20\right.$-tetrakis(4-chlorophenyl)porphyrinato- $\left.\kappa^{4} N\right]$ iron(II)

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{44} \mathrm{H}_{24} \mathrm{Cl}_{4} \mathrm{~N}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$
$M_{r}=972.58$
Monoclinic, $P 2_{1} / n$
$a=10.9679$ (5) \AA
$b=16.9240$ (7) \AA
$c=13.3536$ (5) \AA
$\beta=114.015$ (1) ${ }^{\circ}$
$V=2264.15(16) \AA^{3}$
$Z=2$

Data collection

Nonius Kappa APEXII diffractometer
Radiation source: X-ray tube
Graphite monochromator
Detector resolution: 512×512 pixels mm^{-1}
φ and ω scans
Absorption correction: numerical
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.903, T_{\text {max }}=0.982$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.083$
$S=1.05$
5201 reflections
295 parameters
0 restraints
$F(000)=1004$
$D_{\mathrm{x}}=1.427 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9956 reflections
$\theta=2.4-27.2^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=115 \mathrm{~K}$
Prism, dark violet
$0.28 \times 0.21 \times 0.18 \mathrm{~mm}$

44887 measured reflections
5201 independent reflections
4077 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-14 \rightarrow 14$
$k=-22 \rightarrow 21$
$l=-17 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0294 P)^{2}+1.8163 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.43$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$

Special details

Experimental. SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0545 before and 0.0502 after correction. The Ratio of minimum to maximum transmission is 0.9200 . The $\lambda / 2$ correction factor is 0.0015 .

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Fe	1.0000	0.0000	0.5000	0.01108 (9)
C23	1.02702 (17)	0.01547 (10)	0.36771 (14)	0.0145 (4)
N3	1.05491 (15)	0.03942 (9)	0.29849 (12)	0.0170 (3)
C24	1.10111 (19)	0.08937 (11)	0.23145 (15)	0.0198 (4)
C25	1.0239 (2)	0.16655 (11)	0.21248 (19)	0.0276 (5)
H25A	1.0520	0.2019	0.1677	0.041*
H25B	1.0418	0.1917	0.2832	0.041*
H25C	0.9281	0.1558	0.1744	0.041*
C26	1.2495 (2)	0.10337 (15)	0.29680 (19)	0.0349 (5)
H26A	1.2841	0.1367	0.2543	0.052*
H26B	1.2966	0.0526	0.3123	0.052*
H26C	1.2636	0.1298	0.3660	0.052*
C27	1.0745 (2)	0.04753 (13)	0.12358 (17)	0.0312 (5)
H27A	1.1054	0.0808	0.0785	0.047*
H27B	0.9786	0.0378	0.0845	0.047*
H27C	1.1226	-0.0029	0.1384	0.047*
N1	0.82346 (14)	0.05565 (8)	0.43209 (11)	0.0123 (3)
N2	1.09274 (14)	0.10501 (8)	0.53887 (11)	0.0123 (3)
C1	0.69880 (17)	0.02084 (10)	0.38631 (14)	0.0137 (3)
C2	0.59681 (18)	0.08046 (10)	0.34686 (14)	0.0164 (4)
H2	0.5034	0.0716	0.3103	0.020*
C3	0.65836 (18)	0.15122 (11)	0.37137 (15)	0.0175 (4)
H3	0.6166	0.2016	0.3566	0.021*
C4	0.79981 (17)	0.13574 (10)	0.42436 (14)	0.0137 (3)
C5	0.89792 (17)	0.19464 (10)	0.46487 (14)	0.0138 (3)
C6	1.03494 (17)	0.17860 (10)	0.51399 (14)	0.0138 (3)
C7	1.13680 (18)	0.23832 (10)	0.53796 (15)	0.0176 (4)
H7	1.1230	0.2937	0.5281	0.021*
C8	1.25547 (18)	0.20053 (10)	0.57700 (15)	0.0177 (4)
H8	1.3410	0.2243	0.5995	0.021*
C9	1.22812 (17)	0.11779 (10)	0.57818 (14)	0.0142 (3)
C10	0.67285 (17)	-0.05975 (10)	0.38344 (14)	0.0137 (3)
C11	0.85653 (17)	0.27954 (10)	0.45362 (14)	0.0152 (4)
C12	0.78007 (18)	0.31308 (10)	0.35164 (15)	0.0172 (4)
H12	0.7471	0.2803	0.2884	0.021*
C13	0.75130 (18)	0.39353 (11)	0.34085 (15)	0.0188 (4)
H13	0.6975	0.4156	0.2714	0.023*

C14	$0.80245(18)$	$0.44073(10)$	$0.43308(16)$	$0.0190(4)$
C15	$0.87414(19)$	$0.40905(11)$	$0.53618(16)$	$0.0217(4)$
H15	0.9057	0.4420	0.5992	0.026^{*}
C16	$0.89919(19)$	$0.32841(11)$	$0.54595(15)$	$0.0196(4)$
H16	0.9461	0.3060	0.6166	0.024^{*}
C17	$0.52953(17)$	$-0.08653(10)$	$0.33800(14)$	$0.0148(4)$
C18	$0.46030(18)$	$-0.10376(12)$	$0.22725(15)$	$0.0219(4)$
H18	0.5034	-0.0973	0.1788	0.026^{*}
C19	$0.32887(19)$	$-0.13036(12)$	$0.18617(16)$	$0.0236(4)$
H19	0.2825	-0.1420	0.1104	0.028^{*}
C20	$0.26692(18)$	$-0.13963(11)$	$0.25659(17)$	$0.0209(4)$
C21	$0.3315(2)$	$-0.12213(14)$	$0.36586(17)$	$0.0299(5)$
H21	0.2873	-0.1280	0.4136	0.036^{*}
C22	$0.4631(2)$	$-0.09559(13)$	$0.40590(16)$	$0.0270(5)$
H22	0.5083	-0.0834	0.4816	0.032^{*}
C12	$0.10157(5)$	$-0.17304(3)$	$0.20542(5)$	$0.03464(14)$
C11	$0.78308(5)$	$0.54293(3)$	$0.41772(5)$	$0.03197(14)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe	$0.00822(17)$	$0.01188(16)$	$0.01215(17)$	$-0.00047(13)$	$0.00312(13)$	$0.00022(13)$
C23	$0.0088(8)$	$0.0138(8)$	$0.0178(9)$	$-0.0010(6)$	$0.0024(7)$	$-0.0018(7)$
N3	$0.0138(7)$	$0.0197(8)$	$0.0167(8)$	$0.0018(6)$	$0.0053(6)$	$-0.0003(6)$
C24	$0.0179(9)$	$0.0241(9)$	$0.0198(9)$	$0.0024(8)$	$0.0102(8)$	$0.0065(8)$
C25	$0.0253(11)$	$0.0195(9)$	$0.0401(12)$	$0.0018(8)$	$0.0154(10)$	$0.0045(9)$
C26	$0.0185(11)$	$0.0500(14)$	$0.0349(12)$	$-0.0002(10)$	$0.0095(9)$	$0.0147(11)$
C27	$0.0425(13)$	$0.0337(12)$	$0.0243(11)$	$0.0067(10)$	$0.0207(10)$	$0.0053(9)$
N1	$0.0107(7)$	$0.0130(7)$	$0.0132(7)$	$-0.0004(5)$	$0.0049(6)$	$0.0000(6)$
N2	$0.0084(7)$	$0.0133(7)$	$0.0138(7)$	$-0.0003(5)$	$0.0031(6)$	$0.0001(6)$
C1	$0.0104(8)$	$0.0171(8)$	$0.0136(8)$	$0.0003(7)$	$0.0049(7)$	$-0.0003(7)$
C2	$0.0101(8)$	$0.0192(9)$	$0.0175(9)$	$0.0013(7)$	$0.0032(7)$	$0.0019(7)$
C3	$0.0145(9)$	$0.0178(9)$	$0.0194(9)$	$0.0024(7)$	$0.0060(7)$	$0.0025(7)$
C4	$0.0123(8)$	$0.0155(8)$	$0.0132(8)$	$0.0025(7)$	$0.0051(7)$	$0.0016(7)$
C5	$0.0151(9)$	$0.0137(8)$	$0.0132(8)$	$0.0009(7)$	$0.0062(7)$	$0.0000(7)$
C6	$0.0149(9)$	$0.0128(8)$	$0.0136(8)$	$-0.0002(7)$	$0.0056(7)$	$-0.0009(7)$
C7	$0.0163(9)$	$0.0136(8)$	$0.0214(9)$	$-0.0022(7)$	$0.0060(8)$	$-0.0002(7)$
C8	$0.0135(9)$	$0.0160(9)$	$0.0220(9)$	$-0.0043(7)$	$0.0054(8)$	$-0.0023(7)$
C9	$0.0124(8)$	$0.0171(8)$	$0.0128(8)$	$-0.0026(7)$	$0.0047(7)$	$-0.0017(7)$
C10	$0.0105(8)$	$0.0177(8)$	$0.0118(8)$	$-0.0012(7)$	$0.0036(7)$	$-0.0012(7)$
C11	$0.0131(9)$	$0.0149(8)$	$0.0187(9)$	$-0.0001(7)$	$0.0078(7)$	$0.0002(7)$
C12	$0.0162(9)$	$0.0167(8)$	$0.0181(9)$	$-0.0008(7)$	$0.0062(7)$	$-0.0008(7)$
C13	$0.0147(9)$	$0.0205(9)$	$0.0212(9)$	$0.0029(7)$	$0.0072(8)$	$0.0049(7)$
C14	$0.0157(9)$	$0.0119(8)$	$0.0309(11)$	$0.0018(7)$	$0.0112(8)$	$-0.0006(7)$
C15	$0.0194(10)$	$0.0205(9)$	$0.0226(10)$	$0.0020(8)$	$0.0061(8)$	$-0.0055(8)$
C16	$0.0191(9)$	$0.0205(9)$	$0.0176(9)$	$0.0029(7)$	$0.0058(8)$	$-0.0004(7)$
C17	$0.0103(8)$	$0.0114(8)$	$0.0202(9)$	$0.0009(6)$	$0.0035(7)$	$0.0007(7)$
C18	$0.0137(9)$	$0.0317(11)$	$0.0204(10)$	$-0.0021(8)$	$0.0071(8)$	$-0.0027(8)$

C19	$0.0150(9)$	$0.0300(10)$	$0.0215(10)$	$-0.0030(8)$	$0.0029(8)$	$-0.0071(8)$
C20	$0.0088(8)$	$0.0187(9)$	$0.0312(10)$	$-0.0037(7)$	$0.0041(8)$	$0.0001(8)$
C21	$0.0173(10)$	$0.0489(13)$	$0.0257(11)$	$-0.0065(9)$	$0.0109(9)$	$0.0028(10)$
C22	$0.0163(10)$	$0.0453(13)$	$0.0185(10)$	$-0.0059(9)$	$0.0061(8)$	$-0.0032(9)$
C12	$0.0135(2)$	$0.0395(3)$	$0.0448(3)$	$-0.0117(2)$	$0.0056(2)$	$-0.0006(2)$
C11	$0.0304(3)$	$0.0139(2)$	$0.0455(3)$	$0.00429(19)$	$0.0091(2)$	$0.0003(2)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Fe}-\mathrm{C} 23$	1.9244 (18)	C5-C11	1.496 (2)
$\mathrm{Fe}-\mathrm{C} 23{ }^{\text {i }}$	1.9244 (18)	C6-C7	1.443 (2)
$\mathrm{Fe}-\mathrm{N} 1^{1}$	2.0074 (14)	C7-C8	1.350 (3)
$\mathrm{Fe}-\mathrm{N} 1$	2.0074 (14)	C7-H7	0.9500
$\mathrm{Fe}-\mathrm{N}^{\text {i }}$	2.0081 (14)	C8-C9	1.434 (2)
$\mathrm{Fe}-\mathrm{N} 2$	2.0081 (14)	C8-H8	0.9500
C23-N3	1.159 (2)	C9-C10 ${ }^{\text {i }}$	1.398 (2)
N3-C24	1.464 (2)	$\mathrm{C} 10-\mathrm{C} 9^{\text {i }}$	1.398 (2)
C24-C26	1.520 (3)	C10-C17	1.506 (2)
C24-C25	1.521 (3)	C11-C12	1.397 (2)
C24-C27	1.523 (3)	C11-C16	1.398 (2)
C25-H25A	0.9800	C12-C13	1.392 (2)
C25-H25B	0.9800	C12-H12	0.9500
C25-H25C	0.9800	C13-C14	1.381 (3)
C26-H26A	0.9800	C13-H13	0.9500
C26-H26B	0.9800	C14-C15	1.386 (3)
C26-H26C	0.9800	C14-Cl1	1.7446 (18)
C27-H27A	0.9800	C15-C16	1.388 (3)
C27-H27B	0.9800	C15-H15	0.9500
C27-H27C	0.9800	C16-H16	0.9500
N1-C4	1.376 (2)	C17-C22	1.383 (3)
N1-C1	1.382 (2)	C17-C18	1.391 (3)
N2-C6	1.376 (2)	C18-C19	1.392 (3)
N2-C9	1.376 (2)	C18-H18	0.9500
C1-C10	1.391 (2)	C19-C20	1.375 (3)
C1-C2	1.438 (2)	C19-H19	0.9500
C2-C3	1.348 (2)	C20-C21	1.370 (3)
C2-H2	0.9500	C20-Cl2	1.7513 (18)
C3-C4	1.443 (2)	C21-C22	1.394 (3)
C3-H3	0.9500	C21-H21	0.9500
C4- 55	1.404 (2)	C22-H22	0.9500
C5-C6	1.400 (2)		
$\mathrm{C} 23-\mathrm{Fe}-\mathrm{C} 23{ }^{\text {i }}$	180.0	N1-C4-C3	110.35 (15)
$\mathrm{C} 23-\mathrm{Fe}-\mathrm{N} 1^{\text {i }}$	89.88 (6)	C5-C4-C3	124.23 (16)
C23 $-\mathrm{Fe}-\mathrm{Nl}^{\text {i }}$	90.12 (6)	C6-C5-C4	123.44 (16)
$\mathrm{C} 23-\mathrm{Fe}-\mathrm{N} 1$	90.12 (6)	C6-C5-C11	117.22 (15)
$\mathrm{C} 23{ }^{\text {i }}$ - $\mathrm{Fe}-\mathrm{N} 1$	89.88 (6)	C4-C5-C11	119.32 (15)
$\mathrm{N1}$ - $-\mathrm{Fe}-\mathrm{N} 1$	180.00 (5)	N2-C6-C5	126.17 (15)

$\mathrm{C} 23-\mathrm{Fe}-\mathrm{N} 2^{\text {i }}$	97.71 (6)
$\mathrm{C} 23{ }^{\mathrm{i}}-\mathrm{Fe}-\mathrm{N} 2^{\text {i }}$	82.29 (6)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Fe}-\mathrm{N} 2^{\mathrm{i}}$	89.75 (6)
$\mathrm{N} 1-\mathrm{Fe}-\mathrm{N} 2^{\text {i }}$	90.25 (6)
$\mathrm{C} 23-\mathrm{Fe}-\mathrm{N} 2$	82.29 (6)
$\mathrm{C} 23-\mathrm{Fe}-\mathrm{N} 2$	97.71 (6)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Fe}-\mathrm{N} 2$	90.25 (6)
$\mathrm{N} 1-\mathrm{Fe}-\mathrm{N} 2$	89.75 (6)
$\mathrm{N} 2{ }^{\text {i }}$-Fe- N 2	180.00 (4)
N3-C23-Fe	165.75 (15)
C23-N3-C24	163.66 (17)
N3-C24-C26	107.17 (15)
N3-C24-C25	106.85 (15)
C26-C24-C25	110.81 (17)
N3-C24-C27	109.23 (16)
C26-C24-C27	111.31 (17)
C25-C24-C27	111.25 (16)
C24-C25-H25A	109.5
C24-C25-H25B	109.5
H25A-C25-H25B	109.5
C24-C25-H25C	109.5
H25A-C25-H25C	109.5
H25B-C25-H25C	109.5
C24-C26-H26A	109.5
C24-C26-H26B	109.5
H26A-C26-H26B	109.5
C24-C26-H26C	109.5
H26A-C26-H26C	109.5
$\mathrm{H} 26 \mathrm{~B}-\mathrm{C} 26-\mathrm{H} 26 \mathrm{C}$	109.5
C24-C27-H27A	109.5
C24-C27-H27B	109.5
H27A-C27-H27B	109.5
C24- $\mathrm{C} 27-\mathrm{H} 27 \mathrm{C}$	109.5
H27A-C27-H27C	109.5
H27B-C27-H27C	109.5
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	105.33 (14)
C4-N1-Fe	127.86 (11)
C1-N1-Fe	126.77 (11)
C6-N2-C9	105.64 (14)
C6-N2-Fe	127.13 (11)
C9—N2-Fe	126.32 (11)
N1-C1-C10	125.79 (16)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	110.18 (15)
C10-C1-C2	123.93 (16)
C3-C2-C1	107.24 (16)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	126.4
C2-C3-C4	106.85 (16)

82.29 (6)
89.75 (6)
90.25 (6)
82.29 (6)
97.71 (6)
90.25 (6)
89.75 (6)
180.00 (4)
165.75 (15)
163.66 (17)
107.17 (15)
110.81 (17)
109.23 (16)
111.31 (17)
111.25 (16)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
09.5
105.33 (14)
127.86 (11)
126.77 (11)
105.64 (14)
127.13 (11)
126.32 (11)
125.79 (16)
110.18 (15)
123.93 (16)
107.24 (16)
126.4
106.85 (16)

N2-C6-C7	109.97 (15)
C5-C6-C7	123.69 (16)
C8-C7-C6	106.95 (16)
C8-C7-H7	126.5
C6-C7-H7	126.5
C7-C8-C9	107.09 (16)
C7-C8-H8	126.5
C9-C8-H8	126.5
$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	125.90 (16)
N2-C9-C8	110.34 (15)
C10--C9-C8	123.75 (16)
C1-C10-C9 ${ }^{\text {i }}$	124.00 (16)
C1-C10-C17	118.33 (15)
C9 - $\mathrm{C} 10-\mathrm{C} 17$	117.65 (15)
C12-C11-C16	118.18 (16)
C12-C11-C5	121.71 (16)
C16-C11-C5	120.05 (16)
C13-C12-C11	121.30 (17)
C13-C12-H12	119.4
C11-C12-H12	119.4
C14-C13-C12	118.74 (17)
C14-C13-H13	120.6
C12-C13-H13	120.6
C13-C14-C15	121.51 (17)
C13-C14-Cl1	118.87 (14)
C15-C14-Cl1	119.55 (14)
C14-C15-C16	118.98 (17)
C14-C15-H15	120.5
C16-C15-H15	120.5
C15-C16-C11	121.10 (17)
C15-C16-H16	119.4
C11-C16-H16	119.4
C22-C17-C18	117.94 (17)
C22-C17-C10	120.72 (16)
C18-C17-C10	121.34 (16)
C17-C18-C19	121.09 (18)
C17-C18-H18	119.5
C19-C18-H18	119.5
C20-C19-C18	119.22 (18)
C20-C19-H19	120.4
C18-C19-H19	120.4
C21-C20-C19	121.22 (17)
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{Cl} 2$	119.33 (16)
C19-C20-Cl2	119.44 (15)
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	118.95 (19)
C20- $\mathrm{C} 21-\mathrm{H} 21$	120.5
C22-C21-H21	120.5
C17-C22-C21	121.57 (18)

supporting information

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	126.6	$\mathrm{C} 17-\mathrm{C} 22-\mathrm{H} 22$	119.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	126.6	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	119.2
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 5$	$125.39(16)$		

Symmetry code: (i) $-x+2,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 4$ pyrrole ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 25 — \mathrm{H} 25 C \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.98	2.86	$3.738(2)$	149
$\mathrm{C} 27 — \mathrm{H} 27 B \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.98	2.86	$3.733(2)$	149
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.95	2.94	$3.7953(18)$	151
$\mathrm{C} 13 — \mathrm{H} 13 \cdots \mathrm{~N} 2^{\mathrm{iv}}$	0.95	2.86	$3.685(2)$	146
$\mathrm{C} 21 — \mathrm{H} 21 \cdots \mathrm{Cg} 1^{\mathrm{v}}$	0.96	2.69	$3.518(2)$	146

Symmetry codes: (ii) $-x+3 / 2, y-1 / 2,-z+1 / 2$; (iii) $-x+2,-y+1,-z+1$; (iv) $x-1 / 2,-y+1 / 2, z-1 / 2$; (v) $-x+1,-y,-z$.

